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FOREWORD

Welcome to the Proceedings of the fourth in a series of agent simulation conferences
cosponsored by Argonne National Laboratory and The University of Chicago. Agent 2003 is the
second conference in which three Special Interest Groups from the North American Association
for Computational Social and Organizational Science (NAACSOS) have been involved in
planning the program—Computational Social Theory; Simulation Applications; and Methods,
Toolkits and Techniques.

The theme of Agent 2003, Challenges in Social Simulation, is especially relevant, as there
seems to be no shortage of such challenges. Agent simulation has been applied with increasing
frequency to social domains for several decades, and its promise is clear and increasingly visible.
Like any nascent scientific methodology, however, it faces a number of problems or issues that
must be addressed in order to progress. These challenges include:

• Validating models relative to the social settings they are designed to represent;
• Developing agents and interactions simple enough to understand but

sufficiently complex to do justice to the social processes of interest;
• Bridging the gap between empirically spare artificial societies and naturally

occurring social phenomena;
• Building multi-level models that span processes across domains;
• Promoting a dialog among theoretical, qualitative, and empirical social

scientists and area experts, on the one hand, and mathematical and
computational modelers and engineers, on the other;

• Using that dialog to facilitate substantive progress in the social sciences; and
• Fulfilling the aspirations of users in business, government, and other

application areas, while recognizing and addressing the preceding challenges.

Although this list hardly exhausts the challenges the field faces, it does identify topics addressed
throughout the presentations of Agent 2003.

Agent 2003 is part of a much larger process in which new methods and techniques are applied to
difficult social issues. Among the resources that give us the prospect of success is the innovative
and transdisciplinary research community being built.

We believe that Agent 2003 contributes to further progress in computational modeling of social
processes, and we hope that you find these Proceedings to be stimulating and rewarding. As the
horizons of this transdiscipline continue to emerge and converge, we hope to provide similar
forums that will promote development of agent simulation modeling in the years to come.

Charles Macal, Director
Michael North, Deputy Director
David Sallach, Associate Director

Center for Complex Adaptive Agent Systems Simulation (CAS2)
Decision and Information Sciences Division
Argonne National Laboratory
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AIDS TRANSMISSION IN SUB-SAHARAN AFRICA:
ISSUES IN MODELING AND METHODS

P. HEUVELINE,* The University of Chicago
D.L. SALLACH, The University of Chicago

T. HOWE, The University of Chicago

ABSTRACT

 Hybrid strategies offer advantages over the dominant modeling strategies for agent-based
social simulation, which rely on highly simplified assumptions or on empirical patterns
that could result in overfitting to particular settings. Hybrid strategies seek to create
models that incorporate the advantages of these approaches while incorporating rules of
agent behavior that more closely represent complex social dynamics. The present study
documents the types of social complexities that make a hybrid strategy desirable with
respect to the pattern of AIDS transmission in sub-Saharan Africa, which is structured,
complex, and largely hidden. Existing methods cannot capture the underlying dynamics,
while emerging modeling techniques depend heavily on assumptions. The goal of the
research discussed here is to provide a test bed for the development of prospective hybrid
models. The strategy was twofold. First, we constructed a simple model that incorporates
generic representations of the sources of variation in the HIV infection patterns. Second,
the richness of the model was enhanced to better represent the social complexities from
which AIDS emerges, while avoiding the risk of overfitting in producing the resulting
hybrid models.

 Keywords: hybrid modeling strategies, multilayer interactions, AIDS/HIV, sub-Saharan
Africa

INTRODUCTION

AIDS is not only a devastating epidemic, but also one that is challenging to model
effectively. The modeling difficulty arises from the intensely interactive nature of its
transmission, an interactivity that gives rise to structured empirical patterns, but structures that
may shift based upon changes at one or more levels of interaction. The most rigorous types of
demographic models (Heuveline 2001) may be unable to capture the nature of these multilayer
interactions and their co-evolution. In various parts of the world, the AIDS epidemic is spread by
drug usage patterns, heterosexual and homosexual patterns of sexual relations, and infected birth.
Each of these sources of HIV infection are likely to be influenced by differing patterns of
interaction that are, at best, difficult to represent within a mathematical model.

In Africa, the primary source of AIDS transmission is heterosexual intercourse. However,
even considering only this source of HIV infection, social factors rapidly multiply. For example,
AIDS is sub-Saharan Africa is recognized to be related to migration patterns (Hunt 1989; Chirwa
1997; Hampshire 2002). Migration patterns may, in turn, be related to seasonal variation and/or

                                                
* Corresponding author address: Patrick Heuveline, Department of Sociology, The University of Chicago,

Chicago, IL 60637; e-mail: pheuveli@midway.uchicago.edu.
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economic conditions. Migration patterns may also be related to cultural factors, such as coming-
of-age rituals. As a result, the patterns from country to country and region to region, may differ
significantly.

Socially generated complexity takes other forms as well. The norm governing casual
affairs may vary by whether an actor is (1) married or not (as well as when and how particular
marriages occur — see, for example, Todd, Billari and Billari 2003) and (2) in a home village or
migratory camp (or city). Further, available social networks in each locale determine operative
constraints and opportunities. Such social networks may, in turn, be influenced by cultural group
proximity and activity, with the result that, while infection rates are significantly shaped by
migratory dynamics, these patterns are themselves socially mediated in complex ways.

The strategy of the present study is two-fold. First, we have constructed a simple model
that incorporates generic representations of economic variation, migration, social networking and
other selected sources of variation in the HIV infection patterns. Where such factors are notional,
we incorporate applicable probability distributions, along with a capability of exploring
interactive effects through relevant parameter sweeps. Second, we gradually enhance the
richness of the model to more fully represent the social complexities from which the AIDS
epidemic emerges while, at the same time, avoiding the risk of overfitting in the production of
the resulting hybrid models. Ultimately, it is anticipated that the hybrid models may be used in
exploring more complex issues, such as the secondary effects of AIDS infection patterns on the
structuring of families (Heuveline, Timberlake and Furstenberg 2001; Wachter 2002).

AGENT-BASED MODELING

Over the last several decades, agent simulation has emerged as a novel methodology in
the social sciences, one that integrates theory and empirical research, drawing premises and
assumptions from the former, and generating aggregate patterns that can be compared with the
latter. Although it takes somewhat different forms in the several disciplines, as a method it holds
the promise of integrating the insights of multiple types of specialization into unified models.

The early work of Schelling (1978), Maynard Smith (1982) and Axelrod (1984)1

provided a first wave of exemplars demonstrating the potential of a new approach to social
simulation research.2 Schelling’s enormously influential model, which was essentially a thought
experiment carried out on a checkerboard, was perhaps the closest to demographic concerns.
With minimal technical resources, Schelling demonstrated that segregation at the aggregate level

                                                
1 For a critique of Axelrod’s work from a game theoretic perspective, see Binmore (1998).

2 The waves or generations of agent simulation exemplars identified here are drawn primarily from two areas of
social simulation: complex adaptive systems and evolutionary game theory. Parallel developments were
occurring in distributed artificial intelligence (AI, or multiagent systems, see Weiss 1999), demography
(microsimulation, see Wachter, Blackwell and Hammel 1997), ecological modeling (individual-based
simulation, see DeAngelis and Gross 1992), and computational organization theory (see Carley and Prietula
1994). Development in each of these areas followed a different pattern. Early and continuing contributions in
distributed AI, for example, were primarily in a variety of technical and problem-solving domains (see Bond and
Gasser 1988); only later did multiagent insights begin to be applied in the area of social simulation
(cf., Castelfranchi and Werner 1994). It is of inherent interest how the same computational capabilities give rise
to similar innovations in various specialized areas of research.
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was possible without bias in the micro-level population. In general, these studies illustrate how
relatively simple models can provide insights into complex issues, including those with potential
policy implications.

A subsequent generation of agent simulation research, including Epstein and Axtell
(1996), Axelrod (1997) and Young (1998), provides a second wave of exemplars. They
respectively illustrate, inter alia: (1) how agent simulation can be applied to an range of
interactive social processes, (2) the diversity of social topics that can be addressed using
simulation based on simple agents, and (3) the emergence of social institutions and structure
from the interaction of agent strategies.

Based upon such foundations, more specialized types of research began to emerge, for
example in economics (Sargent 1993), ecology (DeAngelis and Gross 1992) and international
relations (Cederman 1997). It is not surprising then that demography, with its tradition of
microsimulation, came to apply agent-based techniques as well (Billari and Fürnkranz-Prskawetz
2003). Whether addressing migration, the evolution of the family dynamics, or important
historical transitions, agent-based computational demography (sometimes abbreviated as ABCD)
provides the means for more deeply probing the complexities out of which demographic
processes arise.

MODEL CONSTRUCTION

As indicated, one of the strengths of agent simulation is its ability to model complex
interactions. This potential, which provides a focal point for the expression of theoretical
generalizations, is also what enables the capability of modeling the complex cultural and social
structures through which the AIDS epidemic is transmitted. To fully realize the potential of agent
modeling, it is necessary to design relevant mechanisms and also to structure the interactions
among such mechanisms. This is fundamentally a theoretical exercise, an activity that draws
upon existing theory and by which further theoretical insights can be refined.

The present research project involves the design of four categories of mechanisms:
(1) work-related migration, (2) networking and interaction, (3) disease and mortality, and
(4) marriage and divorce. Each type of mechanism can be seen as contributing to the larger
pattern of AIDS transmission in the South African region, which we selected for being currently
the region of highest prevalence. In this paper, we discuss the construction of a basic version of
the model, and its gradual elaboration. This basic model has a full architecture in the sense that
the four mechanisms are represented, but they are initially represented by aggregate statistical
distributions only, as they would be in any other type of micro-simulation. These aggregate
parameters can be thought as “place holders” in order to establish the architecture of the full
model, but will be gradually replaced by modeling the rules of behavior and interactions between
agents that determine the observed distribution. It is only when this is fully implemented that the
full potential of an agent-based simulation will be realized. At this time, only the marriage and
divorce module has been so implemented.
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THE BASIC MODEL

Work-Related Migration. In Southern Africa, migration plays a role in the spread of the
AIDS infection (Hunt 1989; Chirwa 1997; Hampshire 2002). Young men migrate to urban areas
and/or work camps where the HIV/AIDS rate and the risk of infection are significantly higher
than in the villages and rural areas. Specific parameters will vary from population to population,
depending inter alia on topology, population distribution, and cultural patterns. However, the
generalized effect of migration creates a two-tier structure to the spread of the disease to which
an HIV/AIDS model must attend. The sources of variation can then be explored by conducting a
sensitivity analysis of relevant parameter ranges.

Our baseline migration model is driven by an exogenously determined unemployment
rate. At present, the structure of its distribution, which is relative to quasi-discrete bands, is
artificially defined. Subsequent refinement can substitute a theoretical or empirical economic
base, but the present goal is simply to capture the two-tier structure.

As is typical in employment-driven migration processes, we assume that the propensity to
migrate is highest among young adult males. The frequency of migration for specific agents
gradually declines as, over time, migrating workers age and marry. Seasonal effects also
influence the rate of migration. In the model, the rate of migration return is determined by
season, and current migration duration of the agent. The entire migration process can be
visualized using Geographical Information System (GIS) capabilities.

Networking and Interaction. Potential sexual partners are found within affinity networks
of various types. In the basic model described here, affinity networks operate according to the
following rules: (1) new acquaintances (and therefore prospective sexual partners) are introduced
by mutual friends, (2) friendships without further contact decay over time, and (3) there is an
upper limit on total friendships.

The number of sexual partners for a given agent is reduced by village residence,
increased by migration, and is influenced by marital status (i.e., after agents marry, the number
of sexual partners in a given time period is reduced). In the current model, frequency of sexual
intercourse is based on an empirical distribution shaped by the values of relevant parameters. As
discussed before, as the model evolves, any particular component may be refined or replaced.

Disease and Mortality. In the basic model, we have two mortality schedules depending
on HIV status. In other words, when an individual becomes infected, she leaves the original age-
at-death distribution and her age-at-death follows a second distribution corresponding to her
reduced survival chances.

The infectivity of infected agents is also duration dependent, that is, it depends on the
length of time between the time of infection and the time of a subsequent sexual contact. As
suggested by epidemiological studies, infectivity is assumed to be highest during the first two
weeks after the infected agent has been exposed to the virus and lowest immediately thereafter.
Subsequently, there is a gradual increase correlated with the length of the agent’s infection.

Marriage Formation and Dissolution. In our earliest models, marriage and divorce rates
were based on a probability distribution summarizing empirical patterns. During young
adulthood (ages 20–29) both marriage and divorce rates are relatively high. Subsequently, both
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marriage and divorce rates drop to levels that are roughly equivalent. There are aspects of the
African cultural context (e.g., polygamy) that are not yet captured in this model.

MODULE SUBSTITUTION

Marriage is the first example in which one of the underlying mechanisms has been
refined by replacing the basic mechanism with one that it is more sophisticated and intuitive.
Specifically, what might be called the Basic Plus model draws upon and extends the marriage
formation model of Todd and Billari (2003). In this model, each agent has a base quality,
aspiration level, and courtship duration. Each is assigned randomly from a normal distribution.
From about age 13 on, each agent surveys their friends in search of a friend of the opposite sex
whose quality level exceeds their aspiration level. When one is found, an offer of courtship is
extended. If the potential partner agrees, using the same criteria, a dating relationship is formed.

During courtship agents continue to look for a better relationship with friends of higher
quality. Each agent also has a waiting threshold. If they do not participate in a courtship for
longer than that threshold, their aspiration level is reduced. If agents date someone whose quality
is higher than their aspiration level, the latter is adjusted upward. Alternatively, if an offer of a
relationship is rejected, the agent’s aspiration level declines as well. Ultimately, if the
relationship lasts longer than the courtship duration parameter of both agents, they get married.

This marriage formation model better captures the serial and contingent nature of
relationship formation than simple assignment based upon probability distribution does. In the
present study, the mechanism has been further adapted by making aspiration levels more
concrete and multi-dimensional, specifically using aspiration levels for age and wealth of
prospective partners. As model development continues, it as anticipated that cultural criteria will
be incorporated as well. This process serves as an example of how a mechanism based
demographic model can extended to model more socially and culturally specific processes.

GENERATION AND ASSESSMENT OF RESULTS

The current study has completed its design and development phases and is presently
moving into exploratory analysis. This phase initially focuses on how the five family structure
variables presented in Table 1 evolve over time.

These endogenous variables will be affected by the parameters governing each of the
mechanisms of the model, including the rate of migration, presence/strength of a right of
passage, transmission rate (suggestive of agent condom use), proportion affected by network
embedding and marriage/divorce rates. The interaction of these effects provide a central focus of
ongoing research activities.

CONCLUSION

During the relatively brief history of agent simulation, two modeling strategies have
come to dominate. The first, in which simulations are based upon artificial society models,
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TABLE 1  Family Structure Variables

Male and female prevalence
(% HIV positive in the population)

Ratio of male to female currently infected with HIV/AIDS
Proportion of children who are orphans

(maternal, paternal or both)
Proportion of adults age 50+ with at least one orphaned
grandchild whose deceased parent was their own child

Proportion of population by age category
(0–15, 15–25, 25–50, 50+)

involves designs based on highly simplified assumptions. These computational models are used
to clarify key relationships without attempting to fully capture the empirical complexities that
arise in natural settings. The strength of this approach resides in its transparency and
accessibility, while its weakness is the gap between the simple model and the complex structured
reality to which it is (designed to be) applicable.

A second strategy attempts to achieve verisimilitude by drawing upon empirical patterns
as a means of capturing complex social dynamics. While this approach may appear more
representative in applied and/or policy settings, it runs the risk of being overfitted to a particular
setting.

Between these poles, hybrid strategies seek to create models that incorporate advantages
from each approach. The present study documents the types of social complexities that make a
hybrid strategy desirable. More specifically, the pattern of HIV/AIDS transmission in
sub-Saharan Africa is structured, complex, and largely hidden. Prevailing methods cannot
capture the underlying dynamics, while emerging techniques are heavily dependent upon
underlying assumptions. In addition to the goal of reducing the human cost of this pernicious
epidemic, the present modeling strategy provides a salient test bed for the development of hybrid
methods.
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MODEL ROBUSTNESS VERSUS PARAMETER EVOLUTION:
ASSORTATIVE INTERACTION WITHIN A BARGAINING GAME

MARK H. GOADRICH,∗ Computer Sciences Department
University of Wisconsin−Madison

ABSTRACT

 Agent-based models that explore aspects of social behavior invariably contain multiple
parameters, such as population size, heterogeneous makeup, and spatial distribution.
A common way to validate a model is to ensure robustness; that is, the model must
produce consistent results independent of the initial parameter settings. When
information can be learned about the prior probability of some parameter settings,
however, robustness requirements on these parameters should be relaxed. The focus
instead should be on the results produced from using these more likely settings. Brian
Skyrms investigates a two-player noncooperative one-shot bargaining game called
“Divide the Cake.” Placed in an evolutionary setting, where players’ claims are
genetically hardwired and pairings are made at random, only 67% of initial population
distributions result in all players using the “fair” strategy. Skyrms introduces correlation
among players and shows that it precipitates the evolution of fairness from 100% of
initial populations. Critics argue, however, that his exploration of correlation is lacking;
other correlation models yield much worse performances. This paper examines the
evolution of these nonrandom correlations, known as assortative interactions, through
two separate agent-based models  a social network and a Schelling segregation model.
The experiments show convergence to the fair strategy occurs approximately 90% of the
time. This paper concludes that evolving the assortative interactions between players to
find likely correlations, as opposed to guaranteeing model robustness, leads to a much
more realistic picture of a model’s behavior.
 
 Keywords: Model robustness, assortative interaction, social networks, evolutionary
game theory, agent-based models

INTRODUCTION

One of the common dimensions used to classify agent-based models is the degree of
complexity. Models can be abstract, such as an iterated Prisoner’s Dilemma (Axelrod, 1984), or
realistic, such as an attempt to “investigate where prehistoric people of the American Southwest
would have situated their households based on both the natural and social environments in which
they lived” (Village Project, 2003). Abstract models usually have broad applicability and are
pursued to explain the general mechanisms underlying a particular process, but these simple
models are criticized for not capturing the complex details of the real world.

As we move toward realistic models, however, the size and scope of what is being
simulated explode. As a result, our agents might have to cope with heterogeneous thresholds and
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diverse landscapes, among other complications. Each new aspect brings into the simulation new
parameters that must be tested, as these models are open to being overly sensitive to any one
choice of parameters. Ultimately, our models should be “robust” and produce consistent behavior
independent of our parameter settings, but how reasonable is this goal? Testing for robustness
implies that all parameter settings are equally likely, yet this is not always the case. What if prior
information were known about the parameter likelihood, a situation that brings into question the
strict pass or fail test for robustness?

To demonstrate this situation, this paper explores a simple bargaining game made popular
by Brian Skyrms. In his book, Evolution of the Social Contract, Skyrms explores the use of
evolutionary game theory to explain our concepts of fairness (Skyrms, 1996). As in other fields,
Skyrms hopes this direction will help to explain human social behavior when theories that rely
on rational deliberation are lacking. His initial abstract model quickly becomes complicated
when he introduces correlation among his agents, and the model is no longer robust when it takes
into account these new parameters. The following two sections briefly summarize the current
literature on this topic.

Divide the Cake

Skyrms’ first example involves dividing a chocolate cake between two players, C1 and
C2. Each player demands a certain amount of cake; when the total cake demand is less than or
equal to the whole cake, each player receives her demand. Should the total demand exceed one,
however, the cake is discarded, and the players leave empty handed. Our natural inclination
when presented with this game is to divide the cake evenly  one-half for C1 and one-half for
C2. But why do we consider this split fair?  Skyrms points out that an infinite number of
polymorphic solutions, or Nash equilibriums (e.g., C1 demands 30% and C2 demands 70%),
exist. Rational deliberation does not help us distinguish between the “fair” solution and the
polymorphic splits. This distinction opens the door to other explanations of fairness, namely, that
evolution may have a hand in deciding our social behavior.

An evolutionary model is constructed by creating a finite population of players, each with
preset and constant cake demands. This scenario assumes the use of the D’Arms et al. (1998)
finite population and discrete simulation rather than the Skyrms continuous equations. Later, we
explore larger numbers of strategies, but to simplify the analysis, we start with three:

• S1: Always demand one-third of the cake (modest)

• S2: Always demand one-half of the cake (fair)

• S3: Always demand two-thirds of the cake (greedy)

Individual cake games are conducted by independently and uniformly drawing C1 and C2
without replacement until all players are exhausted. A player’s fitness score is the portion of the
cake, if any, received in a game. The next generation of players is determined by the relative
success or failure of each strategy for this game in combination with the current population
distribution, a selection process known as the replicator dynamics (Weibull, 1995). This iterative
process is continued until convergence of the population reaches a steady distribution. Skyrms
states that the percent of initial population distributions, which evolve to a population where all
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players demand 50% of the cake, is 74%, not exactly the degree of success that we might
expect.1

Skyrms solves the problem by introducing positive correlation among the strategies, or
nonrandom mating of like-minded players. His players are given the ability to determine self-
versus non-self-relationships among opposing players: greedy most likely plays with greedy, fair
with fair, and modest with modest. This assumption breaks the polymorphic barrier, and Skyrms
reports that only minimal correlation is necessary to cause widespread outbreaks of fairness
quickly reaching 100%.

We can incorporate this correlation into our model by allowing the first player to
influence the choice of an opponent. The initial finite-size population is still created according
to a random population distribution, and C1 is selected randomly from the current population
distribution, P(Si). A player’s preference for other strategies can be as defined by a function
pref(i, j), the preference of a player using strategy i for a player using strategy j. Table 1 shows
the correlation matrix when using Skyrms’ assumptions of nonrandom mating. The selection of
C2 is governed by the following formula:

where α is the normalization constant. If the total demand of C1 + C 2 is less than 1, a record is
made of a successful game for each player’s strategy. This process continues to sample without
replacement until all players are exhausted. The average fitness for a strategy is calculated on the
basis of successful games, and the players are redistributed accordingly for the next round. To
assist in evaluating correlations, we define the strength of a correlation matrix in terms of the
scale between preferred and nonpreferred strategies. For example, Table 1 is based on strength 8
because since fair is eight times more likely to choose fair over either greedy or modest.

TABLE 1  Skyrms’ positive correlation matrix

Strategy i pref(i, Modest) pref(i, Fair) pref(i, Greedy)

Modest 0.8 0.1 0.1
Fair 0.1 0.8 0.1
Greedy 0.1 0.1 0.8

Anti-Correlation Rebuttal

Skyrms’ positive correlation is part of a broad class of correlations known as assortative
interactions. Assortative interaction is usually discussed in the context of choosing a mate for
reproduction as opposed to random mating strategies; in general it describes the tendency
for individuals to choose their associates. In Divide the Cake, C1 is still randomly selected, but
the selection of C2 is now weighted by the preferences of C1.

                                                
1 Skyrms’ result of 62% (presented in his book) is calculated for a population with 10 possible cake divisions,

which are explored later. In the simulations of the three divisions described here, this number was 74%.
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D’Arms (1996) quickly replies with questions about the assumption of positive
correlation. He proposes that a model is robust if the result is virtually independent of the starting
parameters. Skyrms’ positive correlation makes the model robust with respect to initial
population distributions, but correlation is now a parameter and should be examined with the
same scrutiny. Finding one particular correlation that works is not a very robust argument.

D’Arms, et al. (1998) expand this claim into a model that allows for both correlation and
anti-correlation as shown in Table 2. A greedy player using anti-correlation should wish to face
anyone but another greedy in competition for cake. Fair still uses positive correlation and prefers
fair players, and modest is happy playing against all three strategies. Unfortunately, anti-
correlation enlarges the basin of attraction for a greedy/modest polymorphism to 54%, and their
results hold across many strengths. D’Arms, et al. conclude that Skyrms’ model is not robust
with respect to variations in correlations.

TABLE 2  Anti-correlation matrix from D’Arms, et al.

Strategy i pref(i, Modest) pref(i, Fair) pref(i, Greedy)

Modest 0.33 0.33 0.33
Fair 0.1 0.8 0.1
Greedy 0.47 0.47 0.06

MODELS OF CORRELATION

Both Skyrms and D’Arms, et al. use a scatter-shot approach to find reasonable correlation
assumptions. While D’Arms, et al. succeed in their goal of providing a counter-example to
Skyrms, the discussion should not end here. What other models of correlation are possible; how
do they influence the evolution of fairness; and, more important, are some more likely than
others?

In a separate critique of Skyrms’ model, Barrett, et al. (1999) describe what they believe
is the most natural correlation matrix (shown in Table 3): players choose associates with a mind
toward their own utility. Modest players still freely associate with all players equally, but fair
players prefer fair and modest opponents, while greedy players exclusively prefer modest
opponents.2 In general, players seek opponents who will not tip their combined demand over
one. Using the preference matrix from Table 3, the experiments discussed in this paper show that
90% of initial populations evolve to all fair. If fair players constitute at least 8% of the initial
population, this evolution is guaranteed. As the strength of this correlation increases, fairness
approaches 100%.

Why is there such a benefit for fair players? Since fair is content with either fair or
modest opponents, it steals some of the necessary modest players from the greedy players. The

                                                
2 Barrett, et al. suspect the resulting fairness model will evolve similarly to D’Arms, et al. with a broad basin for

polymorphism.
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TABLE 3  Utility preference correlation matrix

Strategy i pref(i, Modest) pref(i, Fair) pref(i, Greedy)

Modest 0.33 0.33 0.33
Fair 0.47 0.47 0.06
Greedy 0.8 0.1 0.1

greedy strategy is never able to act with full power and, therefore, is at an evolutionary
disadvantage. This strategy is opposite that of the D’Arms anti-correlation, where greedy players
were stealing fair players and disrupting the average utility of fair. But for realistic anti-
correlation, some greedy players must be willing to sacrifice themselves for the good of the
strategy. This option is unlikely considering that they demand two-thirds of the cake.

Another possible correlation is created when players search for opponents who are
seeking an equal portion of cake, a correlation suggested by Ernst (2001). Table 4 shows this
“efficiency” correlation at strength 8. Ernst considers competition between groups of players, as
opposed to a single population, and finds that efficient populations fare better than those that
leave cake behind. How this situation could arise within a population is not exactly clear, since
there is currently no benefit to consuming all of the offered cake. Nevertheless, this correlation is
possible, and it exhibits behavior similar to that of utility preference.

Table 5 lists each correlation matrix discussed and shows the effect on fairness evolving
as the strength of correlation increases. With all correlations except anti-correlation, greater

TABLE 4  Efficiency preference correlation matrix

Strategy i pref(i, Modest) pref(i, Fair) pref(i, Greedy)

Modest 0.1 0.1 0.8
Fair 0.1 0.8 0.1
Greedy 0.8 0.1 0.1

TABLE 5  Effects of various assortative interactions
on evolution of fairness

Strength
Positive

(%)
Anti-Correlation

(%)
Utility

(%)
Efficiency

(%)

0 74 74 74 74
2 98 63 77 67
4 100 59 83 70
8 100 56 90 79
16 100 56 95 87
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strength brings about a greater evolution of fairness. While neither is as successful as positive
correlation, utility preference is the closest. The use of a utility preference correlation matrix
would very beneficial to the evolution of fairness.

Rather than relying solely on robustness as the criterion for success, it is also important to
discriminate between correlations to find those that could arise naturally from player
interactions. To properly understand the relationship between assortative interactions and the
evolution of fairness, we must consider the evolution of correlations. The remainder of this paper
explores two models used for discovering such correlations. First, players consciously construct
a social network to help them learn what types of players will benefit their own claim. Second,
players unconsciously employ a Schelling segregation model on a two-dimensional lattice;
players randomly select new locations, without looking at their opponents’ strategies, when their
current utility falls below a threshold.

SOCIAL NETWORK MODEL

Learning preferences among players is not as hard as it may seem. In fact, nature
provides evidence that these interactions exist. Sober and Wilson (1998) cite an experiment that
examined the interactions of guppies in the context of altruism:

A separate experiment allowed three guppies to inspect predators in an aquarium
divided by transparent panels into three lanes. The guppies were placed in an
apparatus that allowed the fish that occupied the center lane to indicate
a preference for one of the two side fish by swimming over to join it as a
companion. The side fish that moved closer to the predator was consistently
chosen as a future associate (p. 140).

If simple-minded guppies can learn preferences that increase their utility, Sober and
Wilson contend, how much more likely is it that humans with all our faculties can do the same?
A simple way to learn the preferences for our agents is to randomly pair them with opponents
and then record whether a game is successful or not. We assume each strategy is assigned a tag,
which can be recognized by other players, and records are kept based on those tags, not on
individual players. The resulting correlation matrix is consistent with the utility preference
matrix from Table 3, but this process seems too easy.

Skyrms and Pemantle (2000) suggest a more complex mechanism to dynamically learn
a social network between game players. To make things more interesting, the number of
strategies is now 9, from 0.1 to 0.9. We redefine greedy and modest players as those demanding
more or less than one-half the cake, respectively. Players begin with a uniform preference for all
other players. Each player is given 1,000 rounds to play Divide the Cake, choosing opponents
according to her preference vector. Whenever a game is successful, the player initiating the visit
updates her preference vector to increase the chance of revisiting this cooperative strategy.
To add noise, unsuccessful games are recorded favorably 20% of the time.

While this model might be expected to evolve like the simple model, there are key
differences. Tables 6 and 7 show two resulting correlation matrices. Although all of the
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TABLE 6  Sample results of dynamic social network model: resulting fairness 99%

Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)

0.1 0.08 0.17 0.02 0.12 0.06 0.21 0.14 0.13 0.07
0.2 0.12 0.00 0.07 0.07 0.15 0.24 0.08 0.27 0.00
0.3 0.06 0.03 0.02 0.44 0.41 0.03 0.01 0.01 0.00
0.4 0.55 0.07 0.11 0.07 0.13 0.04 0.00 0.01 0.01
0.5 0.19 0.16 0.18 0.25 0.21 0.00 0.00 0.01 0.01
0.6 0.39 0.03 0.41 0.15 0.00 0.00 0.01 0.00 0.01
0.7 0.01 0.84 0.13 0.00 0.01 0.01 0.00 0.00 0.00
0.8 0.58 0.40 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.9 0.94 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00

TABLE 7  Sample results of dynamic social network model: resulting fairness 58%

Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)

0.1 0.08 0.03 0.25 0.03 0.15 0.16 0.01 0.18 0.11
0.2 0.02 0.01 0.06 0.44 0.32 0.06 0.08 0.00 0.00
0.3 0.02 0.21 0.01 0.23 0.04 0.10 0.40 0.00 0.00
0.4 0.17 0.25 0.10 0.02 0.05 0.41 0.01 0.00 0.00
0.5 0.23 0.43 0.22 0.09 0.01 0.01 0.00 0.00 0.00
0.6 0.06 0.15 0.62 0.14 0.00 0.00 0.00 0.00 0.01
0.7 0.25 0.07 0.66 0.01 0.00 0.00 0.00 0.00 0.00
0.8 0.63 0.34 0.00 0.00 0.00 0.00 0.01 0.01 0.00
0.9 0.97 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00

preference is concentrated on opponents that provide a positive outcome, this preference is no
longer uniform; random choices of initial opponents cause the revisiting and reinforcement of
certain players rather than other equally acceptable players.

For experiments described in this paper, the dynamic social network model was used to
create 800 networks. Each correlation matrix was then tested for the resulting fairness, with
1,000 randomly selected initial populations. Figure 1 shows a histogram for the distribution of
fairness percentages. The mean fairness was 89.3%, but the median score was 94.6%, showing
evidence of a distribution skewed heavily toward fairness evolving. In social nets where fairness
did not dominate, evidence of a tight network is shown between other demands. Table 7 shows
the close preferences of 0.3, 0.4, and 0.6, as well as the fair strategy of 0.5 preferring opponents
of 0.2. Exactly why these correlation matrices do not evolve fairness is still being investigated.
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FIGURE 1  Resulting distribution of fairness evolution using 800 learned
social networks

SCHELLING SEGREGATION MODEL

Evolving assortative interaction matrices can also be approached from the perspective of
a spatial model. Again, we tried to make a minimal number of assumptions, which are reasonable
and relatively benign. Under this model, we removed the previous assumption that players can
distinguish between other players based on strategy. First, players are spatially distributed.
Second, players are allowed to change their location if they deem it unsuitable. Finally,
a player’s goal is to maximize utility  a common assumption in game theory. Skyrms and
Alexander (1999) have explored spatial models of Divide the Cake, but they only allowed
players to change strategies.

These assumptions can be readily modeled in a common framework borrowed from
economics. Schelling’s famous segregation model demonstrates that minor preferences of
satisfaction within your neighborhood can have striking results for the overall distribution
of individuals (Schelling, 1978). He specifies a simple game to be played with pennies and dimes
on a chessboard. First, place about 45 dimes and pennies randomly on the board.3 The
neighborhood of a coin is defined as the eight surrounding squares, with both the horizontal and
vertical edges wrapping around as in a torus. Second, assign certain preferences to both dimes
and pennies; for instance, dimes prefer neighborhoods with at least one-third dimes, and pennies
are only happy when surrounded by at least one-half pennies. Third, determine who is unhappy

                                                
3 Similar segregation behavior should evolve independent of the initial distribution of dimes to pennies.
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in the initial board and move them to a new random location.4 Finally, repeat this process until
either all the coins have reached stability or oscillations develop. The overall behavior of the
game gravitates toward patterns of segregation, even though both dimes and pennies would be
satisfied under certain layouts of integration.

Divide the Cake naturally fits into this framework. To continue our simple model of three
strategies, we now have three types of players  one for each strategy. A player is defined as
unhappy in her neighborhood as follows:

where

),( ji NCu = average utility Ci receives against all her neighbors Ni,

demand (Ci) = demand of the player, and

t = parameter in the range [0,1] indicating the threshold a player has
for receiving no cake.5

In other words, players are looking for neighborhoods to maximize their total possible gain.
Repeatedly moving unhappy players and examining the resulting neighborhoods exposes the
preferences for each strategy.

Simulations of the Schelling model were tested for population sizes from 1,000 to 5,000
by using random samples of population distributions. Players were allowed to assort for 20 time
steps before evolving into the next generation based on their current fitness levels. Unsettled
populations were terminated after 100 generations and recorded as a failure to evolve fairness.
Our new parameters for this more complex model are the size of the board and the tolerance t at
which a person is unhappy. Figure 2 shows a sample run for an initial board size of 31 × 31,
9 player categories, with a distribution of 50 players per strategy, and a tolerance value 0.75.
Table 8 reports the evolved correlation matrix after 20 time steps. This matrix was calculated by
counting the neighboring strategies for each individual and then normalizing to one.

When looking at the preference of happy players, this run of the Schelling simulation
appears to evolve a utility preference matrix similar to that shown in Table 3. Since not all
players are happy, the utility preference matrix is an asymptote. When all players are considered,
greedy individuals display an overall preference to choose themselves because of the
unavailability of suitable modest players. Figure 3 shows the change in fitness scores due to
assortment of the players.

                                                
4 Schelling recommends starting at the upper left corner and proceeding row by row. He claims the order of

movement is unimportant; however, this procedure leads to waves of unhappy players moving down the board.

5 Here, 0 means the player is happy no matter how much cake she receives, and 1 means the player must fully
receive her demand to be happy.
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       Initial Board        Assorted Board

(shades range on the gradient from 0.1 = black to 0.9 = light grey)

FIGURE 2  Rearrangement of players based on Schelling’s model

TABLE 8  Sample results of Schelling’s spatial model: resulting fairness 89%

Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)

0.1 0.10 0.17 0.14 0.12 0.13 0.12 0.07 0.06 0.07
0.2 0.13 0.18 0.16 0.13 0.13 0.12 0.08 0.03 0.02
0.3 0.10 0.16 0.12 0.18 0.13 0.18 0.06 0.04 0.02
0.4 0.09 0.12 0.17 0.26 0.13 0.17 0.02 0.01 0.03
0.5 0.11 0.14 0.15 0.15 0.23 0.02 0.05 0.07 0.07
0.6 0.11 0.14 0.21 0.21 0.02 0.12 0.05 0.07 0.07
0.7 0.10 0.14 0.11 0.04 0.07 0.07 0.14 0.22 0.11
0.8 0.09 0.06 0.07 0.02 0.11 0.11 0.23 0.13 0.18
0.9 0.09 0.03 0.04 0.05 0.11 0.11 0.11 0.17 0.28

Modest players rarely move from their initial random locations. The only reason they
would be unhappy is if they were lonely and had no neighbors; otherwise, they would be content
to play against anyone. Also, fair players settle down and find groups much more easily than do
greedy players. This fact is true irrelevant of the initial distribution of players, which could result
because fair players can find neighborhoods of either fair or modest players, whereas greedy
players must find near-exclusive modest neighborhoods complementary to their own demand to
be satisfied. As more and more greedy players surround modest players, the average utility for
each greedy player falters and places her on the move again.
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FIGURE 3  Change in fitness due to Schelling’s assortment

Settings for the board size parameter were tested for up to three times what is necessary
to fit all the players. Differences in the resulting evolution of fairness were minimal; however,
extra space made it easier for players to find favorable opponents. With more elbow room,
greedy players can surround modest players while still avoiding each other. This ability shifts the
correlation matrix closer to the efficiency correlation of Table 4.

Variations of the tolerance threshold produced more interesting results. Figure 4 (on the
following page) shows the average fairness evolution when tolerance was varied from 0 to 1.
Values from 0.6 to 0.85 result in close to 90% fairness, while higher values, such that players are
only happy with receiving their demand, show a return to polymorphic solutions over fair
evolution.

CONCLUSIONS

Skyrms shows that a certain model of correlation effectively promotes the evolution of
fairness across all initial populations. But once he introduces correlation, he is open to criticisms
from D’Arms, et al. that other correlation schemes produce opposite results. We feel that the
examination of alternate correlation systems should also proceed in an evolutionary environment
to bring out those correlations that could naturally emerge from player interactions. While
certainly not robust with respect to alternative correlations, the approach of learning our probable
parameter values gives a much more accurate picture of the model.
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FIGURE 4  Variation of tolerance threshold parameter from 0 to 1 (error bars for one
standard deviation)

The use of a social network model for player types rather than actual players could be
seen as overly simplistic; a more complete model would have each player learn a distinct
preference vector for every other player. Also, Skyrms and Pemantle (2000) discuss other
variations on their dynamic social network formation, such as reciprocal visiting and decay in
memory, which should be investigated in the context of the bargaining game.

The results from the spatial Schelling model are very promising. To reinforce the claims
made in this paper, a number of extensions should be made to the model. First, the space of
possible tolerance values should be examined. With this new parameter, we should examine
ways of letting each player learn her own tolerance, as the implications of heterogeneous
tolerance by strategy and by player could have very drastic implications and need to be explored.
Second, at this time, unhappy players are randomly relocated to a new location; better relocation
packages for displaced players should be explored, such that a player could select the best from
n randomly chosen new locations. In addition, the cost of obtaining preferences as discussed in
D’Arms, et al. has been totally ignored. A cost could be assessed per player based on how many
times they must move to be happy.

Each model was not entirely successful in showing a complete evolution of fairness;
however, these results are significantly different than when using a random correlation and bear
further investigation. The approach shown here can be readily incorporated into other agent-
based models, allowing us to delve deeper into those relevant areas of the model. Although it
requires an additional step to tune the model parameters, the benefits can be drastic. We should
focus our attention on essential areas rather than quibble over irrelevant parameter values.
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TOWARD SIMULATION-BASED, PROBLEM-SOLVING ENVIRONMENTS
FOR CONFLICT MANAGEMENT IN COMPUTATIONAL SOCIAL SCIENCE

LEVENT YILMAZ,* Auburn University
TUNCER Y. ÖREN, University of Ottawa

ABSTRACT

 With the increasing power and utility of computational tools and infrastructures in
performing social science research, the need to move forward to simulation-based
advanced problem-solving environments (PSEs) and computational social science
laboratories is evident. The field of computational social conflict modeling and analysis
is growing rapidly. PSEs, such as those suggested in this paper, offer a new way of
performing simulation-based social science research. To this end, this paper focuses on
supporting computational social scientists in conflict modeling. PSEs are integrated
computer systems that provide computational facilities necessary to solve a target class of
problems efficiently. By definition, PSEs extend the program-compile-execute cycle of
model development and simulation to high-level, problem-solving activities. While
existing simulation-based methods suggest a program-compile-execute cycle, this paper
emphasizes the significance of a simulation modeling environment that integrates model
building, simulation management, collaboration, intelligent distributed simulation, and
sophisticated analysis tools. This paper also discusses fundamental features of social
conflict modeling and analysis PSEs and argues the limitations of the existing simulation
conceptual frameworks in modeling realistic conflict scenarios. Existing problems in PSE
technology are discussed, and several recommendations are provided to address these
limitations.
 
 Keywords: Conflict management, simulation-based problem-solving environments,
social simulation, social agents

INTRODUCTION

The social science research community is focusing more than ever on simulation-based
computational models. The capability of modeling and simulating sophisticated social
phenomena and understanding the implications of mechanisms based on abstractions of reality
facilitates reasoning about complex social systems. As the emphasis in social science
computation shifts from low-level simulation programming and execution to high-level,
problem-solving environments (PSEs) to specify models and scenarios and to test hypotheses,
PSEs will become even more important for performing social science research; this movement
follows the trends in engineering and the physical sciences.

Among the social phenomena worth studying are conflicts because they affect the quality
of life everywhere. Conflicts have occurred frequently throughout human history; national and
international conflicts are ubiquitous (Balencie and de La Grange, 1999). As common
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occurrences during the 20th century (Grant, 1992), conflicts are at least as worthy of study as the
Cold War (Arquilla and Ronfeldt, 1997; Khalilzad and Lesser, 1998). Even more important,
perhaps, is the study of conflict management (i.e., conflict avoidance and conflict resolution).
For example, on the basis of behavioral science’s prospect theory, Davis and Arquilla (1991)
assert that “possible opponents are likely to become increasingly and unreasonably
risk-accepting as they become emotionally more dissatisfied with [the] current situation and
trends.” Game theory has been applied to social problems (Shubik, 1964). Evidence exists,
however, that classical game theory fails in cases where opponents have different value systems.
Schelling’s (1980) pioneering work of analytical game theory recommends identification and
consideration of focal points, which are the perceived mutual expectations, obsessions,
sensitivities, appreciation, and the like for conflict resolution in search of win-win conditions.

Conflict systems are complex social systems. Some modeling approaches available for
resolving conflicts are based on, for example, different types of game theories (e.g., sequential,
differential, evolutionary, and hyper games). Several other approaches, such as bounded
rationality, deterrence theory, and crisis destabilization, are also used for their solutions. Some
novel simulation modeling formalisms, which are not in competition with already proven
theories and approaches, may be useful for the proper formulations and resolutions of conflicts.
Waldrop (1993) and Kaufmann (1996) have investigated the subject of complexity. There are
examples in conceiving complexity in elegant ways. For example, fractals can be used to
generate a complex system based on simple initial knowledge (Barnsley, et al., 1988).
A catastrophic manifold can represent interesting, and sometimes contradictory and
counterintuitive, patterns of behavior (Casti, 1979). Cybernetics has been considered as a source
of paradigm for simulating complex systems, including social systems (Knight, et al., 1971;
Ören, 1978). For a bibliography on contemporary sociocybernetics studies, see Geyer and van
der Zouven (1998). Recently, computational social science initiatives have emerged to facilitate
systemic and intelligent study of societies; yet, computational studies of conflict management are
not as pervasive as economics and other social phenomena. Furthermore, unlike researchers in
the life and physical sciences, social scientists who study conflict management are not yet
equipped with state-of-the-art, domain-specific computational laboratories. To this end, the goal
of the research reported in this paper is to develop a problem-solving environment for
computational social scientists to rapidly compose multi-level, multi-faceted artificial societies
to facilitate experimentation with sophisticated intervention and conflict negotiation
mechanisms.

Why Is This Problem Important?

The way we perceive reality affects our actions. Ideally, we need appropriate paradigms
and modeling methodologies to perceive, conceive, and foresee conflicting situations to avoid
them and, if they are inevitable, to resolve them (Ören, 2001). Regardless of their type and
origin, conflicts are parts of social systems; like other social phenomena, they are difficult to
model. Social systems are sometimes labeled in the literature as “soft” or “ill-defined” systems,
where the usefulness of traditional mathematical representations is questioned (Spriet and
Vansteenkiste, 1982, p. 42). In a major effort, Davis (1986) used the structure of war gaming
and included artificial intelligence models (rule-based systems) to represent national and
international leaders and commanders. Zeigler (1990) used these works as an example of the
more general approach of variable structure agent-based simulation. Many studies have been
conducted on a special type of conflict, namely, war gaming. In war gaming, military decision



27

makers (i.e., commanders at different levels) can obtain “war experience” in peacetime by using
gaming simulations, also called constructive simulation, in defense applications. Today,
war-gaming studies use computers extensively, although such studies predate computers. For
example, in a bibliography on professional war gaming, early studies date back to the second
half of the 1880s (Riley and Young, 1957). Two types of war games exist: one for professionals
and one for hobbyists. In war gaming, it is much easier to model equipment than it is to model
humans. Recently, studies have been performed to remedy the situation (Pew and Mavor, 1998).
It is argued that conflict avoidance and conflict resolution deserve levels of effort similar to war
gaming. Like war-gaming experience, military and civilian decision makers can enhance their
conflict management skills through conflict management simulation studies.

What Is Required?

The premise of the outlined research is to develop appropriate modeling paradigms, such
as multi-aspect and multi-stage modeling formalisms, and associated enhanced simulation
formalisms (i.e., multi-simulation) to simulate conflict avoidance and conflict resolution. The
suggested modeling and associated simulation formalisms would allow simultaneous
experimentation with different — even contradictory — aspects of reality. Results of the
experiments with multi-stage models can be displayed at the same time by taking advantage of
the possibilities offered by virtual and augmented realities. Such modeling and simulation
formalisms might also be useful in modeling other social phenomena and hence useful for
sociocybernetics studies.

TOP-DOWN CONCEPT OF THE COMPUTATIONAL ENVIRONMENT

Simulation-based, Problem-solving Environment for Computational Conflict
Analysis and Management

As integrated computational environments, PSEs allow users to access relevant
knowledge and software tools to solve problems. Software tools are used to specify problems; to
check consistency and completeness of the specifications; to transform the problem
specifications into executable computer programs; and to run these programs to generate,
analyze, document, display, and store the results and other relevant aspects of the problems. The
PSE would mentor and advise users on several aspects of knowledge about conflicts and conflict
management. The simulation ability of the PSE would enable users to test the effect of decisions
on the conflict management process. The simulation system would be a discrete event-driven
system. Discrete event abstractions represent dynamic systems through discretely occurring
events that can be triggered on the basis of conditions that occur outside and inside the system
model. In discrete event systems, control over time can be expressed explicitly and flexibly,
along with its essential constraints on complex adaptive system behavior and structure. Also, the
capability to efficiently represent loosely coupled distributed semiautonomous processes through
either synchronous or asynchronous communication provides insight into the behavior of the
system as well as the interactions among its components. Moreover, because it can run with trace
data, discrete event abstraction facilitates parallel experimentation with real-world data.
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Figure 1 illustrates the conventional usage of simulation-based problem environments.
The simulation is often initialized with domain-specific configuration parameters and uses the
underlying hard-wired assumptions and strategies modeled at design time. The extension of this
basic problem-solving mode is discussed in the following section to argue for potential
extensions to deal with realistic conflict scenarios.

MODES OF USING AN ADVANCED PSE

Three types of system usage are envisaged:

• A systematic source of knowledge about conflict and conflict management.
Advanced PSE can be used as a separate service and/or within the following
two types of simulation studies:

• A conventional stand-alone simulation system, where simulation is helpful for
analysis, education, training, and research.

• An embedded simulation system (integrated with the real system). The
simulation system can support the operation of the real system by allowing
parallel experimentation while the real system is running. The simulation
system provides predictive displays for decision making as well as calibration
of the knowledge embedded in the PSE while monitoring the predictions of
the simulation system and the occurrences of the real phenomena. Embedded
simulation systems are well known, especially in training associated with
equipment operation (embedded simulation system [ESS], Simulation
Training and Instrumentation Command [STRICOM]); however, they are also
applicable to decision systems (Beer 1975).

Role of Personality and Cultural Knowledge

The PSE would include the five-factor personality traits knowledge of human behavior in
order to take into account knowledge about the personality traits in human behavior simulation
(Ghasem-Aghaee and Ören, 2003a). Knowledge about cultural backgrounds of the participants
and their value systems has to be included in the PSE knowledge base because they are often
sources of disagreements as well as essential elements in consensus building (Laszlo, et al.,
1977; Huntington, 1996; Lewis, 1999).

FIGURE 1  Traditional problem-solving practice
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Figure 2 illustrates the extension of the basic model using the knowledge that
incorporates the social, cultural, and psychological context. One strategy to encode this
knowledge into simulation models is to use the computational intelligence methods as discussed
below.

FIGURE 2  Incorporating social, cultural, and psychological context

Modeling Intelligent Entities, Artificial Intelligence, and Soft Computing

“Soft computing differs from conventional (hard) computing in that, unlike hard
computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for
soft computing is the human mind. The guiding principle of soft computing is: Exploit the
tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low
solution cost” (Zadeh, 1975).

Software Agents and Agent Simulation

Software agents are entities that function continuously and autonomously in a particular
environment, often inhabited by other agents and processes (Shoham, 1993). These agents
possess some of the following characteristics to a certain level of degree:

1. Reactivity (selectively sense and act),

2. Autonomy (i.e., goal directness, proactive and self-started behavior),

3. Collaboration (i.e., work with other agents and entities to achieve a common
goal),

4. Knowledge-level communication ability (i.e., communicate with other entities
in a language like speech-act, higher level than symbol-level, program-to-
program protocols),

5. Inferential capability (i.e., act on abstract task specifications, using models of
self, situation, and/or other agents),

6. Temporal continuity (i.e., show persistence of state and personality),

7. Personality (i.e., manifest attributes of a believable agent),
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8. Adaptability (i.e., learn and improve with experience), and

9. Mobility (i.e., migrate from one host to another in a self-directed way).

The envisaged PSE would utilize and extend the multi-agent simulation (MAS) paradigm by
the novel concepts briefly discussed in the following sections. Software agents constitute the
fundamental components of MAS. The MAS paradigm brings a radically new solution to the
very concept of modeling and simulation in social sciences by offering the possibility of directly
representing individuals, their behavior, and their interactions. The MAS paradigm makes it
possible to model complex situations and synthetic worlds whose overall structures emerge from
interactions between individuals, that is, to cause structures on the macro level to emerge
from models on the micro level, thus breaking the level of barrier in classical modeling
(Ghasem-Aghaee and Ören, 2003b).

Fuzzy Agents and Systems

By their vary nature, digital simulations consider only quantitative parameters and seem
powerless when faced with multitudes of qualitative data collected by researchers in the field.
Fuzzy set theory is a mathematical apparatus for the formal representation, processing, and
utilization of data and information characterized by nonprobabilistic uncertainty and vagueness.
The extension of discrete-event simulation agents of the envisaged PSE with this theory can
allow the creation of agent behavioral models that reason on imprecisely and ambiguously
defined terms, relations, and mechanisms of approximate inference, which are typical of human
reasoning (Ghasem-Aghaee and Ören, 2003a).

Holonic Systems, Cooperation, and Holonic Agents

Holonic agent simulations can allow exploration of the effects of curtailing autonomy of
the holons (or some subsystems) to optimize the performance of the entire system to provide
a basis for negotiations (Ghasem-Aghaee and Ören, 2003b). Furthermore, between competition
and full cooperation, there is an important possibility, namely, cooperation in some areas, but
competition in other areas (i.e., co-opetition). Methodologies have to be developed to model and
explore co-opetition.

Novel Simulation Paradigms for Conflict Modeling and Analysis

Multi-models and Multi-aspect Models

A multi-model is a modular model where only one model module is active at a certain
time. Each model module is an alternate model. A multi-model provides a conceptually clean
way of representing system entities. With multi-models, similar to any conventional simulation
study, only one aspect of reality can be simulated at a given time. The concept is applicable to
continuous, discrete, and memoryless models, as well as to other modeling formalisms, such as
discrete-event systems, rule-based models and software agents, including intelligent agents and
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mobile agents (Ören, 1987, 1991, 2001). Two special cases of multi-models are metamorphic
models and multi-aspect models.

A metamorphosis can be represented by a metamorphic model which, in turn, can be
represented as a special case of a multi-model. For example, alternate models can represent egg,
larva, pupa, and butterfly; alternate models can be selected under well-defined conditions. In this
case, however, there is a predefined sequence for the alternate models; that is, transitions from
alternate models would be rather limited.

A multi-aspect model is another special case of a multi-model where the condition of
having only one alternate model active at a given time is relaxed. An example usage might be
representation of solid, fluid, and vapor phases of the same mass of material (e.g., ice, water, and
vapor) and the transitions from one phase to another. In the example, alternate models
representing both water and vapor can exist concurrently with a mass transfer from one to
another alternate model. The direction of the transfer of an entity — in the example, water, or
vapor — depends on whether energy is given to or taken from the multi-model. Similarly,
multi-models can be used to represent turmoiled and law-abiding groups that can co-exist with
transitions from one group to another based on the emerging/created/engineered conditions.

Multi-stage Models and Multi-simulation

In a multi-stage modeling formalism, several aspects of reality can be formulated by sets
of component models. Normally, all the multi-stage models are not known a priori. For example,
only the initial model M1 may be known. In this case, one can attempt to model alternative
models to prepare for contingencies. Multi-stage model formalism can allow multi-simulation.
A multi-simulation can allow the experimentation with several (even contradictory) aspects of
reality simultaneously as shown in Figure 3. When some previously unforeseen conditions arise
(i.e., under emerging conditions), one can add emerging successor models to existing models to
explore behavior of alternative system models. Multi-simulation may be the simulation paradigm
to experiment with Schrödinger’s cat, which can be alive and dead at the same time (Marshall
and Zohar, 1997). In non-quantum theoretic realm, it is argued that ability to experiment with
several — even contradictory — aspects of reality may bring new vistas in conflict management.
Multi-stage models facilitate exploratory analysis. But exploratory analysis becomes

FIGURE 3  Dealing with emergent reality with multi-stage modeling
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computationally difficult to manage as the level of model detail increases. Multi-resolution
modeling with metamodels (Davis, 2000) is suggested to deal with this issue.

Substantive Theories Explaining Social Phenomena

The knowledge about social, cultural, and psychological context needs to be formulated
under consistent and powerful conceptual frameworks to facilitate explanation and reasoning.
Our long-term goal is to develop a full-fledged formalization of context that can be used, among
many others, in conflict modeling and analysis. Situation theory is a mathematical theory of
information that can be used to capture abstract situations that designate real-world counterparts.

In situation calculus, the world is conceived as a tree of situations, starting at an initial
situation, S0, and evolving to a new situation through the performance of actions by the
opponents in conflict. The state of the world is expressed in terms of relations and functions that
are true or false or have a particular value in situation s. The major contribution of situation
theory in a PSE would be deductive plan synthesis to plan sequences of real-world actions and
preference options over a search space. To this end, situation theory offers a powerful framework
that might be useful in realizing the exploratory modeling and simulation concept introduced by
Davis (2000). Figure 4 illustrates the inclusion of context modeling through a substantive theory,
such as situation theory.

PROBLEMS AND RECOMMENDATIONS FOR PSE DEVELOPMENT

The current state of computational social science problem solving has limitations. These
limitations are due primarily to the lack of mature technologies that would support the identified
requirements and features. In this section, we review principal technical problems and suggest
recommendations to facilitate further progress in this area.

FIGURE 4  Using substantive theory for context modeling
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Monolithic Problem-Solving Practice

Most existing problem solvers in the computational social science domain focus on
a specific problem. Flexibility is achieved through parameterization of the problem inputs, rather
than customization of the model configuration and components at the time of construction. That
is, given a slightly different problem, such hard-wired problem solvers cannot be reconfigured to
model a different problem with new domain-specific constraints. Furthermore, these problem
solvers are stand-alone systems independent of the services or models provided by potential
collaborators. The plug-and-play paradigm can increase the flexibility of existing problem
solvers. The paradigm suggests taking one algorithm or new implementation and substituting in
place of another existing model component without causing conflicts. Specification-directed
model generators can help ease model derivation for a wide variety of problems as long as the
specification is expressive enough to communicate constraints and requirements of a general
problem area.

Lack of Architecture, Technology, and Methodological Support
for Scalable Problem Solving

One of the fundamental barriers to problem solving is the lack of environments and
methods that can scale to handle realistic artificial societies. Existing distributed simulation
infrastructures, such as high-level architecture, immediately degrade in performance as the
number of federations that join to the simulation increases. It is well known that it is difficult to
develop and manage large complex software systems. As simulation-based PSEs become more
and more software intensive, the scientific community that relies on simulation to analyze
scientific phenomena is affected by the lack of a “silver bullet” that can deal with software
complexity.

Lack of Flexible Model Adaptation and Assembly

It is difficult and unrealistic to have a single model that is useful for many purposes. Such
models immediately become overcomplicated and hard to maintain. Hence, developing flexible
and adaptable components can facilitate having reconfigurable designs that can be adapted to
satisfy the constraints of emerging scenarios. Parameterized modeling of scenarios and
components enables not only adaptation, but also composition through parameter instantiation.

Lack of Principled Design Methodologies for Cognitive Modeling
of Human Behavior Simulation Components

In a system (or model) without memory, an input can be transformed to an identical
output according to the transfer function of the system as many times as the input is applied to
the system. In state-determined systems (or systems with memory), a given input may induce
different outputs corresponding to the state of the system. Human behavior is not only state
determined (i.e., past experience influences the current outcome), but several filters affect the
outcomes (decisions, reactions, etc.). For example, personality acts as a filter. Two individuals
who may have similar past experiences are expected to react differently on the basis of their
personalities (Ghasem-Aghaee and Ören, 2003a,b). Furthermore, mood, cultural background,
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and value system of an individual (group) also act as filters to affect decisions (or reactions) of
the individual (or the group). Development and proper consideration of these filters as well as
emotion management knowledge are not to be excluded in conflict management studies (and
simulations).

ROLE OF THE PSE IN CONFLICT EDUCATION AND TRAINING

Educating students enrolled in social science disciplines at all levels in emergent next
generation paradigms in their own disciplines is an immediate and paramount goal for the
continued vitality of the country’s technical infrastructure. Recently, this objective has been
the subject of intense debate at various National Science Foundation meetings and panels. It has
been recognized that the effectiveness of technical education lies not only in improved facilities,
but also in the social aspects involving pedagogy, presentation, and dissemination. The chief
educational frontier in computational social science thus refers to the design of leading-edge
tools, software, and learning modules that use innovative methodologies for transforming the
educational experience. Simulation-based PSEs are definitely superior to other types of learning
environments. Simulation studies facilitate experimentation with dynamic models of real systems
under any conceivable and even extreme conditions and allow generation and observation of
knowledge pertinent to the behavior of the model under the experimentation scenarios. This type
of rich knowledge about a system could not be represented without using simulation.

Pedagogical Uses of PSEs

The conventional wisdom and approach in teaching the application of computational
methods in social sciences (computational science, in general) are to emphasize that it is easier to
change the problem to suit the algorithms and models than vice versa. The goal in PSEs and
problem formulation methodology discussed here is to select and adapt algorithms to suit the
problem at hand. Matching problems to appropriate algorithms is an integral aspect of
a scientist’s formative training, and its importance in educational circles is widely recognized.
The central idea is to promote the use and integration of PSEs into the social science curriculum.
An increasing number of educational tools are needed, such as modeling platforms with prebuilt
intellective models that are available to students to manipulate and run virtual experiments. To
this end, problem formulation, model selection, simulation, and the ability to explain how certain
outcomes emerge are the fundamental components of a pedagogical plan. One important aspect
that is an immediate implication of the proposed multi-modeling (i.e., multi-stage) approach is
the ability to explain why certain recommendations are made. This aspect can be advantageously
utilized toward the formalization of decision processes for the student and the development of
a learning module that emphasizes a recommendation and simulation-based approach to solving
computational social science problems.

CONCLUSIONS

After the conquest of the material world which led to material wealth, it is extremely
challenging to start to understand ourselves and to learn how to manage our conflicts.
Simulation, which helped us in many ways in the material world, may also be useful for
achieving these goals. Diligently, we must focus on exploring the synergy of several related
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fields by gleaning useful knowledge from humanities, developing appropriate modeling and
simulation methodologies and technologies, and taking advantage of ubiquitous computational
power. Some possibilities are pointed out in this paper.
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DISCUSSION:

SIMULATION METHODS

(Thursday, October 2, 2003, 1:00 to 3:15 p.m.)

Chair: Michael North, Argonne National Laboratory
Discussant: Roger Burkhart, Deere Company

AIDS Transmission in Sub-Saharan Africa: Issues in Modeling and Methods

Roger Burkhart: We would like to take questions on each session and leave time at the
end for a general discussion. We would like to start with questions or comments for David
Sallach.

Unidentified Speaker: What do you think an agent-based model would provide you?
Would it give epidemiologic models?

David Sallach: Traditional methods of epidemiology do not address this epidemic. This
epidemic is rooted in specific forms of interaction. Therefore, I think that one of the things you
can achieve is a higher level of accuracy [with agent-based models]. Beyond that, however, there
are policy-oriented issues that have to do with lifestyle facts and so forth. By having a much
deeper understanding of the social mechanisms involved, the potential for addressing those
policy issues increases.

Unidentified Speaker: The model that you described is incredibly complex and the ones
you want to do may become even more so. I’m assuming this is done in Repast. Is that correct?

Sallach: Yes.

Unidentified Speaker: Can you explain more about what this model looks like? How are
you encoding all this? How many agents do you have running, and how much is happening per
cycle, per step for each agent? What’s going on?

Sallach: We do not have a tremendously large number of agents — only a couple of
hundred agents or so, because we are specifically looking at the migration cycle. In other words,
we are not modeling a country. In that respect, the model has some of the characteristics of an
artificial society model, in spite of the complexity that we have built into it. The reason is that we
are really looking at the multi-tier process by which the infection spreads, say the way that
seasonal and age affects the migration cycle, which increases the risk of exposure, which is then
brought back into the village. Even when it is brought back into the village, though, it is
mediated by the affinity network. It is really a simple model. There is one affinity network, but,
of course, the idea is to multiply. The simple model is a friendship network; however, we want a
workplace network and a cultural network along similar lines.

So, this is just one process by which young people (by a certain probability that is
mediated by about three or four considerations) who do or do not migrate can increase their
exposure when they do migrate. At some point, they come back into a relationship with the
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duration of the time stay. When they come back, if they have been infected, there is an increase
in the probability that the disease, or the epidemic, will spread. But the disease will spread in
social network-mediated ways. That is a basic description of how the simple model works.

Model Robustness Versus Parameter Evolution: Assortative Interaction within a
Bargaining Game

Burkhart: Our next speaker is Mark Goadrich from the University of Wisconsin–
Madison.

Mark Goadrich: I am currently a graduate student in computer science at the University
of Wisconsin–Madison. Today, I’m going to speak about some issues that have come up in
a “philosophy of science” setting, such as evolutionary game theory. Next, I will move into
agent-based systems, including the complexity discussed by David Sallach, that is, moving from
a simple model into a very complex model. I will discuss some of the problems that will come
up, and some of the ways that we might try to approach them.

[Presentation]

Burkhart: Thank you, Mark. We have time to take a couple of questions.

Unidentified Speaker: With regard to your last comment, if we assume that there will
always be some level of uncertainty, isn’t this a bit of a false dichotomy? There is always going
to be a range of values to measure parameters, and you are going to have to worry about
robustness inside of that range and even about absent measurements. Your robustness is across
a larger range, but the result is that the data restrict the range across which you need to worry
about robustness. Will the dimensionality of the problem remain the same regardless of whether
you compare the data or not?

Goadrich: I hope that once we start modeling the parameters, as seen with the threshold,
there will still be another parameter to model; however, I hope it will be reduced. If you learn
a model for one parameter, you can move on to another parameter and try to model that
parameter. The number of parameters that you end up with is much less than if you tested across
everything.

Unidentified Speaker: Can you address robustness in terms of the initial numbers of the
distribution of the correct research within the population? Most theoretical grid-based games are
very sensitive as to how many agents are of each type and start the simulations. For example, if
you have very few greedy agents, they tend to dominate or win, mostly because they take
advantage of the others. So can you say a few words about this type of robustness?

Goadrich: That’s the parameter that [I used to keep] robustness in these models. I did
test across many different populations, some with only 10 greedy people, 900 fair people, and
10 modest people. That is where I get the average fairness from a model. I still kept that in
because cannot be sure what happens. At that point, you want robustness to help you out. It is a
situation where you do not know what those parameters should be. In situations where you know
what your outcome should be, however, in some ways, you know that we observe this
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phenomenon of fairness. We want a model to show us fairness. We can still have depth within
that.

Unidentified Speaker: When you talked about adjusting the parameters one by one, did
you assume that these parameters did not correlate with each other? If you did not, the minute
you adjust one and then move on to the other one for the new value of the second parameter, the
first one may not be at the appropriate place. As a result, you will have a continuous iterative
process that would be very long and time-consuming.

Goadrich: That is a great point. What I was saying does assume independence of your
parameters. But if they are not independent, you might have to either model them together or just
leave it to robustness.

Burkhart: We have time for one more question. Any additional questions or comments
can be given in the discussion.

Unidentified Speaker: I was wondering whether you have ever incorporated altruistic
behaviors in this model. If you talk about fairness, one aspect of that characteristic would be
agents benefiting from how well the other agents do in their utility function.

Goadrich: That would be a great extension. No, I have not incorporated altruistic
behavior in the model. The fitness is only based on that individual model. However, if we do
extend it to where the fitness of an individual in the Shelly model is based on their eight-person
neighborhood and how well they are doing because they could share, we would definitely want
to look at that extension.

Toward Simulation-based, Problem-solving Environments for Conflict
Management in Computational Social Science

Burkhart: Our next speaker is Levent Yilmaz in a joint effort with Tuncer Oren. Levent
is from Auburn University, and Oren is from University of Ottawa.

Levent Yilmaz: Thank you. This presentation is quite different than those of my
colleagues in this session. Their main interest involved finding solutions to interesting problems
— unique, normal problems — in terms of conventional methodologies or simulation
methodologies. The point of our paper, however, is to look at ways to extend or enhance
simulation methodologies to solve certain problems for which agent-based social simulation by
itself is not sufficient.

[Presentation]

Burkhart: Thank you Levent. Let’s take a couple of quick questions at this time. Please
hold additional questions for the discussion session.

Joanna Bryson: I want to revisit one of your slides midway through your presentation.
You talked about needing fuzzy logic, and after that, multiple other logics to represent emotions
and further roles.
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First, you said the BDI architecture does not have anything like that. I think that statement is true
of Woolridge and Jennings and Rowlings, or theory-based people, but if you go back further,
when it was actually running on robots, I believe Karen Myers and Kurt Konolige did something
called PRS Lite, which updated PRS to use fuzzy rules. That was working on robots.

Yilmaz: They might have; I am familiar with their work. Basically, when I referred to
fuzzy logic, I not only meant the framework of the agents but also how to describe personality
dynamics in terms of fuzzy variables.

Bryson: I don’t understand. I’m agnostic about this. I have never found it necessary to
have anything except deterministic control for performing the modeling that I do because the
environment has a great deal of uncertainty. From my perspective, when I have seen fuzzy logic
or probabilistic talks, it seems that the probabilistic work and the Bayesian stuff are very clean.
What is the advantage of the fuzzy logic and multi-modal logic?

Yilmaz: I think probabilistic ideas and fuzzy ideas are different. Probabilistic reasoning
means that we are talking about the certain probability of going from one state to another. It is
not about greatness or uncertainty. Rather, it is a probability associated with a certain transition
from one state to another. And that probability is 0.6%: you go from State A to State B. It does
not say anything about notions. For instance, “I am very hungry. I am very, very, very hungry.”
You see, it is uncertain and vague. It is not probabilistic, and that is the main difference between
fuzzy logic and probabilistic reason. So, in my opinion, they are not the same.

Panel Discussion

Burkhart: Mark [Goadrich], please join the panel so that all three speakers [from this
session] can respond to questions. Thank you.

This session was not about toolkits specifically. It was, however, titled “Simulation
Methods,” and as a toolkit developer myself, I thought it was quite interesting. Taken together,
the three talks actually help to build a case for some of the models we are attempting to build.
Certainly, all of the speakers raise the issue of the simple, of the theoretical, of what David
[Sallach] called the “artificial society,” but almost the artificially simplified reality of trying to
define and discover often-simple mechanisms in isolation. Together, they are concerned with
how to actually test alternative mechanisms and also with the results of many different
mechanisms working together.

The paper on problem-solving environments used multi-models, multi-simulation, multi-
aspect, and multi-stage. It strikes me that the theme of these talks is multi-mechanism models,
whether it deals with how we validate or even distinguish them. We heard three different
mechanisms for possible fairness games — from the assortative roles to the spatial to the social
networks.

Another question also raised by the problem-solving environments is: Have we begun to
discover and put together mechanisms to use in more roles than just the theoretical or scientific
role as suggested by “problem-solving environment?” Are we switching to the applications of
some of these models, and certainly with policy implications and problems such as AIDS?
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I would like to open this discussion with some basic questions, one for each speaker, as
a way of priming discussion. I invite everyone to participate.

For David [Sallach], the question involves all of the mechanisms. You are the one who
really defined “social mechanism” — this stylized causal chain, which I think is very important
for identifying the potential building blocks as we start to work with these larger models. The
question is: Can we actually validate the individual mechanisms empirically in addition to trying
to recognize the results of all of them put together? I would like to hold that question so that I
can present all three questions to the speakers up front.

For Mark [Goadrich], the question is regarding the robustness criterion: When I read the
paper, I wondered why is robustness the rule? I think we really are trying to create the observed
phenomenon of fairness, but when doing the a priori, more theoretical game theory models, are
such criteria enough? Or are they weaker, thus ending some sort of extra-empirical validation or
other source, and ultimately being necessary to distinguish?

Finally, for Levent [Yilmaz], you want to build models that have more mechanisms. I
was struck by not only the mechanism that might be there, but also by the ones endogenously
created in successive multi-stage models. The model recommender module, the run-time
recommender, seemed interesting. Do you think it is enough to anticipate the kinds of
mechanisms, but then go to run-time switching? Or is it necessary to either run-time load or run-
time generate, or merge the kinds of mechanisms that might be present?

Feel free, everyone, to comment on each other’s talks and also to address this question of
what expanded roles we might be looking at for in these complex multi-mechanism models.

Unidentified Speaker: I would say that I’m not very close to addressing the validation
issue at this point. The scope of the issue I wanted to address had to do more with the kind of
multi-dimensional complexity that you find in a real-world problem and how you get that under
control conceptually and in terms of modeling. I also looked at how to begin to integrate it or
synthesize it in ways that you can talk about — a reduction of the parameter space, which I think
necessarily means a higher level of abstraction. Of course, I agree that at some point we have to
turn to creative ways for validating models. But if you look at the factors that I considered, you
could see that even if those were aligned very well from Malawi, all you would have to do is
shift to another country, where you have a different mix of factors. Those factors might be
migration factors or the presence or absence of IV drug use or any number of things, where if
you could model it for Malawi, it would not necessarily be applicable to the other.

So, from my perspective, at least for that type of problem, looking for a great deal of
rigor and validation is premature. What I am looking more for kind of abstractions that will help
us to structure the problem first.

Unidentified Speaker: Yes, that’s an interesting intermediate point as we go from the
theory construction models to the explanatory models for specific problems. Actually, I think
these mechanisms can help to build the vocabulary, identify the building blocks.

I think the question has to do with the multiple mechanisms that are being tested and with
checking the robustness of the parameter. Is that a strong enough criterion, or do you really need
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other ways of distinguishing, or ultimately answering, which mechanisms are the appropriate
ones to explain fairness?

Unidentified Speaker: In the concept of fairness, much more would come into play.
This model is very restrictive, and you only get one demand. There are many more models that
ask: “Do I get to change my policy? Do I get to change my demand? Do I get to change, not just
where I live, but do I get to change my demand based on people around me?” In our situation
where we had such limited information, you need robustness to validate across numerous things.
As you get more specific and as you add more information, however, the robustness seems to
fade away, because more is understood about what’s happening. You also know more about the
actual situation, and you can limit yourself to looking in-between certain areas.

Unidentified Speaker: The final question concerned whether the mechanisms might be
dynamic to the point where they could emerge or be introduced after the model starts.

Yilmaz: This is the reason I like to come to conferences. That is an excellent question,
which I had not considered before. If you try and anticipate what type of situation will emerge,
how do you come up with some counter approach to be able to recommend that?

The best answer to that question would be to incorporate learning mechanisms. That is,
under certain conditions, if an actor is doing a good job in terms of the tactics, strategies, and
outcomes, you might reinforce that particular conflict management procedure captured by a
model and incorporate it as often as possible in the future.

But that is a very difficult problem. You do not have a table that describes under what
conditions a particular model would be able to help an actor in a conflict situation, so that makes
the problem more difficult to handle.

You asked an excellent question. You bring an excellent question to Dr. Sallach about
how do you modularly valvate. There are different social mechanisms in your model; it is very
complex. How did he compose them into different social process mechanisms, valvate them
separately, and bring them together modularly in a tractable manner? This also is an excellent
question, and there are certain studies in social engineering and modeling that deal with modular
composition validation of different models that might help.

Burkhart: At this time, I would like to open the discussion so that you can ask questions
of any the speakers on these things or other topics that you think the papers raise.

Greg Madey: My comment on the presentation has to do with fairness. You ignored
need. Suppose someone was hungry and someone else was not hungry, or someone was 200
pounds and someone else was 100 pounds. In those scenarios, your equilibrium point would be
different.

Unidentified Speaker: Definitely. Many assumptions went into the games that we talked
about. But if there were a need, we would want to have a model that produced the appropriate
behavior, given that need. I think we would still go through some of the same mechanisms and
follow the same procedure to try to validate a model of fairness, given who needs what.
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Bryson: I also have a question for the same person, Mark [Goadrich]. However, the other
panelists may want to talk about this, too. My comment actually goes back to the question that
Roger [Burkhart] asked. To some extent, if you show that your model is very robust for a
particular parameter, you are showing that that parameter does not matter, at least within your
model. You have come up with an agent that can learn to deal with the fact that it may have
individual variation.

So, what you really want is to identify what variables you cannot do that for, because
that’s just a critical attribute that could actually start explaining some of the data. It may be that
sometimes when you are not robust to a variable, that it is extremely important information. That
might have confused me, and until you asked me that question, I had not figured out what was
bothering me.

Goadrich: That seems to make sense. If you are exploring and trying to identify the
correct model for a situation, you might want to focus on parameters that have some give-and-
take. But in cases where you know what’s going on, you want your model to apply in many
different situations. That was the focus of this work. If you are trying to discover things,
however, you want to look at the interesting parameters, the ones you are talking about.

My model is a good explanation for fairness. How do I go about doing that? One method
that was proposed was to test across all different parameters. Perhaps that is not the situation,
though, because many models fail when you do that. If you focus on the likely parameters, or
what the situation is now, how does it change things?

Jesse Voss: First, I want to say … try to interpret your present modeling in terms of that
call, and second, would you agree that a conclusion that Idee’s discussion of Body 1, Body 2,
and the dimension of technology he uses in his recent book would be appropriate tools for
visualizing what you are trying to do? If I am correct, you are trying to create a new scientific
visualization to describe the AIDS problem in Africa.

Unidentified Speaker: I’m sorry. I missed part of your second question. Could you
repeat that part, that is, before the new visualization?

Voss: Don Idee has come out with another book in which he describes Body 1 in the
introduction. The Body 1 concept involves our experiences of the body that come through virtue
of thought; our biological echo system in the Body 2 concept is the dimension that’s possibly
culturally constrained. According to Idee, in one culture, a person would be aroused by looking
at a … and in another culture by another body part, so those body responses would be another
type of thing. The third dimension is that of technology … or language or those types of things
that connect. I was wondering if it would be appropriate to interpret your present work as a …

Unidentified Speaker: So, does the first part address the hermeneutic methodology,
design methodology, and so forth?

I think that the place that that would come in is less, for example, on the simple model,
less on the basic migration and things like that, and more on the things that we are trying to move
toward, for example, the cultural effect, where different priorities, different interpretations, and
different meanings are possible. These meanings might evolve endogenously, so I would not say
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that we have used a tremendous amount of that methodology in the first phase, but I think it is
present in the horizon.

As for the second part, it is not directly influenced by the Idee work that you cite, but I do
think that something is present here that we all face, because we are in a very qualitative pre-
Newtonian, social science mode, and we are trying to account for the tremendous range of
diversity and flux of social settings. Therefore, one way to look at it is moving toward
abstraction and determining the appropriate level of abstraction. Another way of looking at it,
though, is to move in more situated frameworks. And that is what I see: a body-centric
framework is one form that “situatedness” takes, just like temporal situatedness, spatial
situatedness, and so forth. If you push that down to the point, we arrive at the question of how we
relate to our physiology — the role of hunger, the role of thirst, the role of sexual attraction, and
so forth. We are physically grounded beings.

But that doesn’t answer the question. We know that. In many different fields, this is
becoming more and more important, but it does not answer the important modeling question,
which is, “Yes, okay, we’re physiologically grounded people, and we need to take that into
account, but what’s the right modeling level to take that into account?”

On a personal level, I am most interested in the interaction between emotion and
cognition, the way in which emotion drives cognition; the way in which the cognitive framework
will adapt itself to emotion. Sometimes, though, there is a reciprocal effect, and a new fact can
actually begin to shift the emotional balance. But that’s just my focus. Other people may be more
interested in the neurological side of it. A great deal of very interesting research is going on in
that realm, and it seems that Idee’s approach is a little different.

Unidentified Speaker: That was another interesting suggestion posited by of a couple of
the papers. That is, that the situatedness may actually help provide the context as we build these
multiple mechanisms, both for the conditions in which they apply and the parameterization by
which we correlate them. If we are going to do run-time recommenders of these or possibly some
of the structures, we will need to provide these multi-mechanism models.
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ABSTRACT

 Agent-based modeling (ABM) has transformed social science research by allowing
researchers to replicate or generate the emergence of empirically complex social
phenomena from a set of relatively simple agent-based rules at the micro level. Swarm,
Repast, Ascape, and others currently provide simulation environments for ABM social
science research. Since the development of Swarm, arguably the first widely used ABM
simulator employed in the social sciences, subsequent simulators have sought to enhance
available simulation tools and computational capabilities by providing additional
functionalities and formal modeling facilities. Our system, called MASON (Multi-Agent
Simulator of Neighborhoods), follows in a similar tradition that seeks to enhance the
power and diversity of the available scientific toolkit in computational social science.
MASON provides a core of facilities useful not only to social science but also to other
ABM fields, such as artificial intelligence and robotics. This flexibility can foster useful
“cross-pollination” between such diverse disciplines. Furthermore, MASON’s additional
facilities will become increasingly important as social complexity simulation matures
and grows into new approaches. The new MASON simulation library is illustrated with
a replication of HeatBugs, and a demonstration of MASON is applied to two challenging
case studies: ant-like foragers and micro-aerial agents. Other applications are also being
developed. The HeatBugs replication and the two new applications give an idea of
MASON’s potential for computational social science and artificial societies.
 
 Keywords: MASON, agent-based modeling, multi-agent social simulation, ant foraging,
aerial-vehicle flight

1  INTRODUCTION

Agent-based modeling (ABM) in the social sciences is a productive and innovative
frontier for understanding complex social systems (Berry, et al., 2002). Object-oriented
programming from computer science allows social scientists to model social phenomena directly
in terms of social entities and their interactions in ways that are inaccessible through either
statistical or mathematical modeling in closed form (Axtell and Epstein, 1996; Axelrod, 1997;
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Gilbert and Troitzsch, 1999). The multi-agent simulation environments developed in recent years
are designed to meet the needs of a particular discipline:

• TeamBots (Balch, 1998) and Player/Stage (Gerkey, et al., 2003) emphasize
robotics.

• StarLogo (Massachusetts Institute of Technology, 2002) is geared toward
education.

• breve (Klein, 2002) specializes in physical modeling and artificial life.

• Repast (University of Chicago, 2003), Ascape (Brookings Institution, 2003),
and Swarm (Swarm Development Group, 2003) have traditionally emphasized
social complexity scenarios with discrete or network-based environments.

Social science ABM applications-based environments in this final category are well
documented in earlier proceedings of this conference (Macal and Sallach, 2000; Sallach and
Wolsko, 2001) and have contributed substantial new knowledge in numerous domains of the
social sciences, including anthropology (hunter-gatherer societies and prehistory), economics
(finance), sociology (organizations and collective behavior), political science (government and
conflict), and linguistics (emergence of language) — to name only a few examples.

We present MASON, a new Multi-Agent Simulator of Neighborhoods developed at
George Mason University as a joint collaborative project between the Department of Computer
Science’s Evolutionary Computation Laboratory and the Center for Social Complexity. MASON
seeks to continue the tradition of improvements and innovations initiated by Swarm. Because it
is a more general system, however, MASON can also support core simulation computations
outside the human and social domain in a strict sense. More specifically, MASON is a general-
purpose, single-process, discrete-event simulation library intended to support diverse multi-agent
models across the social and other sciences, artificial intelligence, and robotics, ranging from
three-dimensional continuous models, to social complexity networks, to discretized foraging
algorithms based on evolutionary computation. MASON is of special interest to the social
sciences and social insect algorithm community because one of its primary design goals is to
support very large numbers of agents efficiently. As such, MASON is faster than scripted
systems such as StarLogo or breve, while still remaining portable and producing guaranteed
replicable results. Another MASON design goal is to make it easy to build a wide variety of
multi-agent simulation environments (for example, to test machine learning and artificial
intelligence algorithms or to cross-implement for validation purposes), rather than provide
a domain-specific framework.

This paper is organized as follows. Section 2 describes the new MASON environment in
greater detail, including our motivation for creating MASON, and its main features and modules.
Section 3 argues for MASON’s applicability to social complexity simulation, including
a comparison with Repast and a simple case study replication of HeatBugs (a common Swarm-
inspired ABM widely familiar to computational social scientists). Section 4 presents two
additional case studies of MASON applied to areas somewhat outside of the computational
social science realm, but which point in directions of interest to the field in the future. Section 5
provides a brief summary.
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2  MASON

2.1  Why MASON? History and Justification

MASON originated as a small library for a very wide range of multi-agent simulation
needs, from robotics to game agents to social and physical models. The impetus for further
development of MASON stemmed from our needs as the original architects of the system (Luke,
Balan, and Panait). As computer scientists, we specialize in artificial intelligence, machine
learning, and multi-agent behaviors. We needed a system in which to apply these methods to
a wide variety of multi-agent problems. Previously, various robotics and social agent simulators
were used for this purpose (notably TeamBots). Domain-specific simulators tend to be complex,
however, and can lead to unexpected bugs if modified for use in domains for which they are not
designed.

Our approach provides the intersection of features needed for most multi-agent problem
domains, rather than the union of them, and makes it as easy as possible for the designer to add
increased domain functionality. This “additive” approach to simulation development is less
prone to problems than the “subtractive” method of modifying an existing domain-specific
simulation environment. As such, MASON is intentionally simple, but highly flexible.

Machine learning methods, optimization, and other techniques are also expensive,
requiring a large number of simulation runs to achieve good results. Thus, we needed a system
that ran efficiently on back-end machines (such as Beowulf clusters), while the results were
visualized, often in the middle of a run, on a front-end workstation. Because simulations might
take a long time, we further needed built-in checkpointing to disk so we could stop a simulation
at any point and restart it later.

Finally, our needs tended toward parallelism in the form of many simultaneous
simulation runs, rather than one large simulation spread across multiple machines. Thus,
MASON is a single-process library intended to run on one machine at a time.

While MASON was not conceived originally for the social agents community, we believe
it will prove a useful tool for social agent simulation designers, especially as computational
social science matures and grows into new approaches that require functionalities such as those
implemented by the MASON environment. MASON’s basic functionality has considerable
overlap with Ascape and Repast, partially to facilitate new applications as well as replications of
earlier models in Swarm, Repast or Ascape; indeed, we think that developers accustomed to
these simulators will find MASON’s architecture strikingly familiar. Finally, our motivation also
includes the need to replicate simulation results as an essential strategy in advancing
computationally based claims (Cioffi-Revilla, 2002), similar to the role of replication in
empirical studies (Altman, et al., 2001).

2.2  Features

MASON was conceived as a core library around which one might build a domain-
specific custom simulation library, rather than as a full-fledged simulation environment. Custom
simulation library “flavors” might include robotics simulation library tools, graphics and
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physical modeling tools, or interactive simulator environments. MASON also provides enough
simulation tools that it is quite usable as a basic “vanilla” flavor library in and of itself; indeed,
the applications described later in this paper use plain MASON without any particular simulator
flavor wrapped around it.

To achieve the flavors concept, MASON is highly modular, with an explicit layered
architecture: inner layers have no ties to outer layers whatsoever, and outer layers may be
completely removed. In some cases, outer layers can be removed or added to the simulation
dynamically during a simulation run. We envision at least five layers: a set of basic utilities, the
core model library, provided visualization toolkits, additional custom simulation layers (flavors),
and the simulation applications using the library. These layers are shown in Figure 1.

Two additional MASON design goals are portability and guaranteed replicability.
Replicability means that for a given initial setting, the system should produce identical results
regardless of the platform on which it is running, and whether or not it is being visualized.
Replicability and portability are crucial features of a high-quality scientific simulation system
because they guarantee the ability to disseminate simulation results not only in publication form,
but also in repeatable code form. To meet these goals, MASON is written totally in Java.

Java’s serialization facilities and MASON’s complete divorcing of model from
visualization permit the model to easily perform checkpointing; at any time, the model can be
serialized to the disk and reloaded. As shown in Figure 2, models can be checkpointed and
loaded with or without visualization. In addition, serialized data can be reused on any Java
platform. For example, one can freely checkpoint a model from a back-end Intel platform
running Linux, then load and visualize its current running state on Mac OS X.

FIGURES 1 and 2  (1) MASON layers and (2) checkpointing architecture
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Despite its Java roots, MASON is also intended to be fast, particularly when running
without visualization. The core model library encourages direct manipulation of model data, is
designed to avoid thread synchronization wherever possible, has carefully tuned visualization
facilities, and is built on top of a set of utility classes optimized for modern Java virtual
machines.1 Although MASON is a single-process, discrete-event library, it still permits multi-
threaded execution in certain circumstances, primarily to parallelize expensive operations in a
given simulation.

2.3  Model and Utilities Layers

MASON’s model layer, shown in Figure 3, consists of two parts: fields and a discrete-
event schedule. Fields store arbitrary objects and relate them to locations in some spatial
neighborhood. Objects are free to belong to multiple fields or, in some cases, to the same field
multiple times. The schedule represents time and permits agents to perform actions in the future.
A basic simulation model typically consists of one or more fields, a schedule, and user-defined
auxiliary objects. There is some discrepancy in the use of the term agents between social
sciences and computer sciences. We refer to agents as entities that can manipulate the world in
some way: they are brains rather than bodies. Agents are very often embodied — physically
located in fields along with other objects — but are not required to be so.

FIGURE 3  MASON utilities, model, and visualization layers

                                                
1 One efficiency optimization issue not settled yet is whether to use Java-standard multi-dimensional arrays or to

use so-called “linearized” array classes (such as used in Repast). MASON has been implemented with both of
them for testing purposes. In tight-loop microbenchmarks, linearized arrays are somewhat faster; but in full
MASON simulation applications, Java arrays appear to be significantly faster. This is likely due to a loss in
cache and basic-block optimization in real applications as opposed to simple microbenchmarks. We are still
investigating this issue.
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The model layer comes with fields providing the following spatial relationships, but other
fields can be created easily:

• Bounded and toroidal discrete grids in 2D and in 3D for integers, doubles, and
arbitrary objects (one integer/double/object per grid location)

• Bounded and toroidal hexagonal grids in 2D for integers, doubles, and
arbitrary objects (one integer/double/object per grid location)

• Efficient sparse bounded, unbounded, and toroidal discrete grids in 2D and 3D
(mapping zero or more objects to a given grid location)

• Efficient sparse bounded, unbounded, and toroidal continuous space in 2D and
3D (mapping zero or more objects to a real-valued location in space)

• Binary-directed graphs or networks (a set of objects plus an arbitrary binary
relation)

When combined with certain classes of the utilities layer, models can run by themselves.
They can be launched from the command line with no visualization or graphical user interface
(GUI) code attached.

The utilities layer consists of Java classes free of simulation-specific function. Such
classes include bags (highly optimized Java collection subclasses designed to permit direct
access to integer, double, and object array data), immutable 2D and 3D vectors, and a highly
efficient implementation of the Mersenne Twister random number generator.

2.4  Visualization Layer

As noted earlier, MASON simulations can operate either with or without a GUI and
switch between the two modes in the middle of a simulation run. To achieve this, the model layer
is kept completely separate from the visualization layer. When operated without a GUI, the
model layer runs in the main Java thread as an ordinary Java application. When run with a GUI,
the model layer is kept essentially in its own “sandbox;” it runs in its own thread, with no
relationship to the GUI and can be swapped in and out at any time. Besides the checkpointing
advantages described earlier, another important and desirable benefit of MASON’s separation of
model from visualization is that the same model objects may be visualized in radically different
ways at the same time (in both 2D and 3D, for example). The visualization layer, and its
relationship to the model layer, is shown in Figure 3.

To perform the feat of separation, the GUI manages its own separate auxiliary schedule
tied to the underlying schedule, queuing visualization agents that update the GUI displays. The
schedule and auxiliary schedule are stepped through a controller in charge of running the
simulation. The GUI does not display or manipulate the model directly, but through portrayals
that act as proxies for the objects and fields in the model layer. Objects in the model proper may
act as their own portrayals but do not have to.
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The portrayal architecture is divided into various simple portrayals and field portrayals.
Simple portrayals are stored in a field portrayal and used to portray various objects in the field
portrayal’s underlying field. Field portrayals are, in turn, attached to a display, which provides
a GUI environment for them to draw and manipulate their fields and field objects. Portrayals can
also provide auxiliary objects known as inspectors (approximately equivalent to “probes” in
Repast and Swarm) that permit the examination and manipulation of basic model data.

MASON provides displays and portrayals for both 2D and 3D space and can display
all of its provided fields in 2D and 3D, including displaying certain 2D fields in 3D.
Two-dimensional portrayals are displayed by using the Abstract Windowing Toolkit and Java2D
graphics primitives. Three-dimensional portrayals are displayed by using the Java3D scene graph
library. Examples of these portrayals are shown in Figure 4 in Section 3.2.

3  APPLICABILITY TO SOCIAL COMPLEXITY ENVIRONMENTS

MASON was designed with an eye toward social agent models, which may be of value to
social science researchers. MASON shares many core features with social agent simulators, such
as Swarm, Ascape, and Repast. This section specifies the primary differences between MASON
and Repast, followed by a simple example in which MASON is used to simulate the well-known
HeatBugs model.

3.1  Comparison with Repast

We provide a brief enumeration of most of the differences between the facilities provided
by MASON and those of Repast; the latter evolved from Swarm to model situated social agents.

3.1.1  Differences

• One of the key differences between MASON and Repast is that MASON
provides a full division between model and visualization. As a result,
MASON can either separate or join the two at any time and easily provide
cross-platform checkpointing. In addition, MASON objects and fields can be
portrayed in radically different ways at the same time, and visualization
methods can be changed even during an expensive simulation run.

• MASON has facilities for 3D models and other visualization capabilities that
remain largely unexplored in the social science realm, but that are potentially
insightful for social science ABM simulations.

• In our experience, MASON generally has faster models and visualization than
Repast, especially on Mac OS X; it also has more memory-efficient sparse
and continuous fields. MASON’s model data structures have computational
complexity advantages.

• MASON has a clean, unified approach for handling network and continuous-
field visualization.
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• Repast provides many facilities, notably, a geographic information system,
Excel import/export, charts and graphs, and SimBuilder and related tools.
Because of its design philosophy, MASON does not include these facilities.
We believe they are better provided as separate packages rather than bundled.
Furthermore, many of these tools can be trivially ported to MASON.

3.1.2  Differences in Flux2

• Repast uses linearized array classes for multi-dimensional arrays. MASON
currently has facilities for both linearized arrays and true Java arrays but may
reduce to using one or the other.

• Repast’s schedule uses doubles, whereas MASON’s schedule presently uses
longs.

• Repast allows objects to be selected and moved by the mouse.

• Repast provides deep inspection of objects; MASON’s inspection is at present
shallow.

3.2  Replicating HeatBugs

HeatBugs is arguably the best known ABM simulation introduced by Swarm and is also a
standard demonstration application in Repast. It contains basic features common to many social
agent simulations, for example, a discrete environment defining neighborhood relationships
among agents, residual effects (heat) of agents, and interactions among them. The ability to
replicate models like HeatBugs, Sugarscape, Conway’s Game of Life (or other cellular
automata), and Schelling’s segregation model in a new computational ABM environment should
be as essential as the ability to implement regression, factor analysis, ANOVA, and similar basic
data facilities in a statistical analysis environment.

Indeed, a 100 × 100 toroidal world, 100-agent HeatBugs model was MASON’s very first
application. In addition to this classic HeatBugs model, we implemented several other HeatBugs
examples. Figure 4 includes partial screenshots of two of them. Figure 4b shows HeatBugs on
a hexagonal grid (fittingly called “HexaBugs” in Repast). Figure 4f shows 2D HeatBugs
visualized in 3D space, where vertical scale indicates temperature; HeatBugs on the same square
are also shown stacked vertically. Whereas the original HeatBugs model is based on a 2D grid of
interacting square cells (connected by Moore or von Neumann neighborhoods), HexaBugs is
more relevant in some areas of computational social science where hexagonal cells are more
natural (e.g., computational political science, especially international relations) and four-corner
situations are rare or nonexistent (Cioffi-Revilla and Gotts, 2003).

                                                
2 These features will probably be changed in the final version of MASON.
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FIGURE 4  Sample field portrayals (applications in parentheses): a. discrete 2D grids
(ant foraging), b. hexagonal 2D grids (hexagonal HeatBugs), c. continuous 2D space
(“Woims:” flocking worms), d. networks in 2D (a network test), e. continuous 3D space
(3D “Woims”), and f. discrete 2D grids in 3D space (HeatBugs)

4  CASE STUDIES

Although it has been in use for only six months, MASON has already been used in
a variety of research and educational contexts. We are also conducting tests to port Repast,
Swarm, and Ascape models to MASON, by modelers not immediately familiar with MASON.
These ports include a model of warfare among countries, a model of land use in a geographic
region, and a model of the spread of anthrax in the human body.

This section describes the implementation and results of two research projects that used
the MASON simulation library. In the first case, MASON was used to discover new ant colony
foraging and optimization algorithms. In the second case, MASON was applied to the
development of evolved micro-aerial vehicle flight behaviors. These are not computational social
science models per se, but they are relevant enough to prove illuminating. The first case uses
a model that is similar to the discrete ABM models presently used, but it is applied to an
automated learning method, which demonstrates the automated application of large numbers of
simulations in parallel. The second case uses a continuous 2D domain environment and
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interaction, which points to a future area for ABM research. Neither of these more advanced
applications is currently implemented in Swarm, Repast, or Ascape; both take advantage of
features specific to MASON. In both cases, experiments were conducted running MASON on
the command-line in several back-end machines; progress was analyzed by attaching the
simulators to visualization tools on a front-end workstation. In addition, the second case involved
a continuous, scalable field that is both memory- and time-efficient (both O[#agents], rather than
O[spatial area]).

The projects described in Sections 4.1 and 4.2 both have an evolutionary computation
(EC) component. To save repetition, we provide a brief explanation of evolutionary computation.
EC is a family of stochastic search and optimization techniques for “hard” problems for which
there is no known procedural optimization or solution-discovery method. EC is of special interest
to certain multi-agent fields because it is agent oriented: it operates not by modifying a single
candidate solution, but by testing a “population” of such solutions all at one time. Such candidate
solutions are known as “individuals,” and each individual’s assessed quality is known as its
“fitness.”

The general EC algorithm is as follows. First, an initial population of randomly generated
individuals is created and each individual’s fitness is assessed. Second, a new population of
individuals (the next generation) is assembled through an iterative process of stochastically
selecting individuals (tending to select the ones who are most fit), copying them, breeding the
copies (mixing and matching individuals’ components and mutating them), and then placing the
results into the next generation. The new generation replaces the old generation; its individuals’
fitnesses are in turn assessed, and the cycle continues. EC ends when a sufficiently fit individual
is discovered, or when resources (notably time) expire. The most famous example of EC is the
genetic algorithm (Holland, 1975), but other versions exist as well. We discuss genetic
programming (Koza, 1992) as one alternative EC method below.

4.1  Ant Foraging

Ant foraging models attempt to explain how ant colonies discover food sources and then
communicate those discoveries to other ants by leaving pheromone trails, the proverbial “bread
crumbs” to mark the way. This area has become popular not just in biology but curiously, in
artificial intelligence and machine learning because pheromone-based communication has
proved to be an effective abstract notion for new optimization algorithms (known collectively as
ant colony optimization) and cooperative robotics.

Previous ant foraging models have relied to some degree on a priori knowledge of the
environment, in the form of explicit gradients generated by the nest, by hard-coding the nest
location in an easily discoverable place, or by imbuing the ants with the knowledge of the nest
direction. In contrast, the case study presented here solves ant foraging problems by using two
pheromones — one applied when leaving the nest and one applied when returning to the nest.
The resulting algorithm is orthogonal, simple, and biologically plausible, yet ants are able to
establish increasingly efficient trails from the nest to the food even in the presence of obstacles.

Ants are sensitive to one of the two pheromones at any given time; the sensitivity
depends on whether they are foraging or carrying food. While foraging, an ant stochastically
moves in the direction of increasing food pheromone concentration and deposits some amount of
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nest pheromone. If there is already more nest pheromone than the desired level, the ant deposits
nothing. Otherwise, the ant “tops off” the pheromone value in the area to the desired level. As
the ant wanders from the nest, its desired level of nest pheromone drops. This decrease in
deposited pheromone establishes an effective gradient. When the ant carries food, the movement
and pheromone-laying procedures use the pheromones opposite those used during foraging.

The model assumes a maximum number of ants per location in space. At each time step,
an ant moves to its best choice among nonfull, nonobstacle locations; the decision is made
stochastically with probabilities correlated to the amounts of pheromones in the nearby locations.
Ants move in random order. Ants live for 500 time steps; a new ant is born at the nest at each
time step unless the total number of ants is at its limit. Pheromones both evaporate and diffuse in
the environment.

Figure 4a shows a partial screenshot of a small portion of the ant colony foraging
environment. The ants have laid down a path from the nest to the food and back again. Part of
the ground is colored with pheromones. The large oval regions are obstacles. The MASON
implementation was done with two discrete grids of doubles (two pheromone values); discrete
grids of obstacles, food sources, and ant nests; and a sparse discrete grid holding the ants proper.
Each ant is also an agent (and so is scheduled at each time step to move itself). Additional agents
are responsible for the evaporation and diffusion of pheromones in the environment and for
creating new ants when necessary.

In addition to successfully designing hard-coded ant foraging behaviors, we also
experimented with allowing the computer to optimize those behaviors. For this purpose, we
connected MASON to the ECJ (evolutionary computation in Java) system (Luke, 2000);
ECJ handled the main evolutionary loop. An individual took the form of a set of ant behaviors
applied to every ant in the colony. To evaluate an individual, ECJ spawned a MASON
simulation with the specified ant behaviors. The simulation was run for several hundred time
steps. At the end of the simulation, the amount of food foraged indicated the individual’s fitness.

To evolve ant behaviors, we used genetic programming (Koza, 1992). In genetic
programming, individuals are actually computer programs in the form of one or more parse trees.
We do not describe parse trees here, except to explain that breeding consisted of swapping
subtrees among individuals. Our EC individuals (the behaviors) consisted of two such genetic
programming trees. The execution of one tree returned the amount of pheromone to deposit, and
the execution of the other tree yielded the direction to move. The same behavior was used for
both foraging and food-carrying states, but the pheromones specified in the behaviors (food
pheromone vs. nest pheromone) were different for each state.

A first experiment scaled the number of ants (50, 50, 500), the number of simulation time
steps (501, 1001, 2501), and the world size (10 × 10, 33 × 33, 100 × 100). In each case, the
EC populations converged rapidly to simple but reasonably high-performing ant foraging
behaviors. Increasing the world size led to longer convergence times (from a mere two
generations in the 10 × 10 case to ten generations on average in the 100 × 100 case).
Interestingly, these behaviors differed from one another in meaningful ways. When the three
highest-performing behaviors were compared, the results showed that more difficult domains led
to the discovery of more robust foraging strategies. Additional details on this work can be found
in Panait and Luke (2003a,b).
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4.2  Micro-aerial Vehicle Simulation

An unmanned aerial vehicle (UAV) is a flying device, often an airplane, operated by
remote control usually for military functions (such as surveillance, reconnaissance, or attack).
The UAV most familiar to the general public is the Predator, a flying drone by General Atomics.
The Predator has flown surveillance missions over Afghanistan and Iraq. Large UAVs such as
the Predator are expensive to produce; moreover, even though they have no on-board pilot,
UAVs require a large team of controllers on the ground to fly the vehicle. One recent thrust in
UAVs has been the micro-aerial vehicle (MAV), a tiny (less than 1 meter), inexpensive UAV
primarily intended for surveillance. Because they are inexpensive, MAVs are often designed to
fly in “swarms” of up to hundreds of vehicles. Such swarms mean that a unique human controller
cannot feasibly be allocated for each MAV. Instead, it is hoped that an entire MAV swarm can
be controlled by a small team of controllers. To achieve this, MAVs must be semiautonomous;
they receive high-level commands from human controllers, but most of the work is achieved by
the MAVs themselves. Figure 5 shows an MAV simulation in MASON.

The University of Central Florida (UCF) and George Mason University recently worked
on a joint project with the Defense Advanced Research Projects Agency (DARPA)
demonstrating the feasibility of having swarms of MAVs learn behaviors via simulated
evolution. The research system that was developed combined an evolutionary computation
system and a library of dominance hierarchies developed at UCF with a MASON simulation
environment. The system was recently completed; published results are forthcoming.

FIGURE 5  Micro-aerial vehicle simulation in
MASON (Vehicles [circles] appear much larger
than they actually are. Gray values indicate
level of dominance, and lines indicate
orientation of each vehicle.)
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The MASON simulation held MAVs in a continuous 2D neighborhood along with
regions, colored shapes “painted” on the ground, over which the MAVs would fly. Our goal was
to develop MAV behaviors that caused them to fly over specific colored regions as much and as
often as possible while avoiding collisions with one another. If MAVs collided, they were
removed from the simulation.

Our MAV behaviors consisted of sets of basic sensor values→action rules: a rule might
say, for example, that if the MAV were directly above the appropriate region color, and there
was another nearby MAV to the upper left, then the MAV should turn right. An additional
“sensor” available to the rules was the dominance of the MAV relative to its neighbors; nearby
MAVs established dominance hierarchies among themselves by using a method developed by
Tomlinson (2002).

After some number of time steps, the swarm quality of the MAV was assessed by adding
up the total time that each MAV was located over a region of interest. We applied an
evolutionary computation system to learn MAV behaviors that, when used by an MAV swarm in
the simulator, produced the highest quality assessments possible.

The system was constructed in MASON as follows. Each MAV was an embodied
MASON agent and was stored in a continuous 2D field. Regions were stored in a second
continuous 2D field. Each MAV held a ring of eight “sonar sensors” (rays emanating in eight
directions from the MAV). At each time step, each MAV called the provided dominance library
to update its dominance values based on the relative values of nearby MAVs. It then determined
the distance to the closest MAV that intersected each sonar ray. These eight distance values, plus
the value indicating the color of the region presently below the MAV, plus the current
dominance value of the MAV, formed the MAV’s 10 sensor values. The MAV then determined
which rule in its rule set most closely matched its current sensor values and performed that
action. An action consisted of 1 of 8 directions in which the MAV could turn. After turning in
that direction, the MAV moved forward some distance. If it then collided with other MAVs, they
were all eliminated from the simulation.

Once again, MASON was used as a subsidiary process to an evolutionary computation
system, this time one devised by Prof. Annie Wu at the UCF. The individuals (the MAV
behaviors) were represented in a genetic algorithm as vectors of numbers indicating the direction
to fly given various sensor values. An individual’s fitness was assessed by creating an MAV
simulation in MASON, plugging the behavior into the MAVs in the model, running the model
for some N time steps, then assessing the total time that MAVs stayed over appropriate target
regions.

5  SUMMARY

Agent-based modeling has already begun to transform social science research —“the
third way of doing science” (Axelrod, 1997) — by allowing researchers to replicate or generate
the emergence of empirically complex social phenomena from a set of relatively simple agent-
based rules at the micro level. One of the keys to this transformation has been object-oriented
modeling (Gulyás, 2002), which moves beyond models in closed form (Taber and Timpone,
1996). Swarm, Repast, Ascape, and other simulation environments already provide numerous
capabilities for ABM social science research. Since the development of Swarm, arguably the first
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widely utilized ABM simulator employed in the social sciences, subsequent simulators have
sought to enhance available simulation tools and computational capabilities by providing
additional functionalities and formal modeling facilities. In this paper, we present MASON
(Multi-Agent Simulator of Neighborhoods), which follows in a similar tradition and seeks to
enhance the power and diversity of the available scientific toolkit in computational social
science, artificial intelligence, and other multi-agent areas. We argue that besides its immediate
use in conducting social complexity simulations, MASON provides a general framework to serve
as a core for a wide range of multi-agent needs, many of which will become increasingly
important as social complexity simulation matures into new approaches. We illustrate the new
MASON simulation library with a replication of HeatBugs and a demonstration of two
challenging MASON applications as case studies: ant-like foragers and micro-aerial vehicles.
Other applications are also being developed to demonstrate and enhance MASON’s features. The
HeatBugs replication and the two new applications provide an idea of MASON’s potential for
computational social science and artificial societies.
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ABSTRACT

 The Multi-Agent−based Behavioral Economic Landscape (MABEL) model introduces
a distributed modeling architecture framework that supports the simulation of land-use
changes over time and space over large regions. The model is based on the Swarm
modeling software package, which is supported by a unique client-server framework with
multiple interfaces built around a geographic information system (GIS), statistical
analysis and database (SPSS), and Bayesian network software. The model architecture
supports an integrated simulation environment with remote data retrieval, distributed and
parallel scenario simulations, centralized decision-making algorithms, graphic displays
for both client and server model components, and analysis capabilities. On the client side
of MABEL, computational agents represent Bayesian relations among geographic,
environmental, human, and socio-economic variables, with respect to land-use changes
occurring across landscapes. A multi-agent simulation environment is created within
Swarm, which simulates the buying, selling, and keeping of land by different types of
agents. Agents are allowed to participate in an abstract market model. The characteristics
of the server side of MABEL include (1) remote data retrieval via multiple interfaces
with GIS software (ArcGIS and Arcview) and statistical database software (SPSS), and
(2) coordinated agent decision making that allows for decision requests of agents from
clients to be made to centralized Bayesian network agent profiles located on the MABEL
server.

 Keywords: Multi-agent systems, MABEL, client-server framework, Swarm, Bayesian
networks, land-use change

INTRODUCTION

Agent-based modeling (ABM) is a form of artificial intelligence simulation in which
autonomous agents interact, communicate, evolve, learn, and make complex decisions within
a real-time simulation framework (Holland, 1975). Multi-agent systems present a bottom-up
approach to modeling individuals’ artificial intelligence (Kohler and Gumerman, 2000). Multi-
agent intelligent systems are constructed to represent and simulate problem-solving situations,
where collaborative and conflict behaviors can co-occur as they do in real human and natural
environments of our daily life (Murch and Johnson, 1999). Recently, ABM approaches have
been applied to simulate land-use changes (Alexandridis, et al., 2003; Alexandridis and
Pijanowski, 2002; Parker, et al., 2001).
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Developing large-scale, multi-agent−based simulations that exist in a dynamic spatial
context presents several technical challenges. First, simulations with large numbers of agents
require high-end computational capabilities. Second, many of the current ABM environments
lack robust modeling tools found in other software packages, such as a geographic information
system (GIS), which allows researchers to manage and analyze spatial data. Integrating agent-
based applications, such as Swarm, with other software applications presents many technical
challenges to modelers who want to seamlessly integrate various software tools into one model.
Finally, building models that can operate on several computers simultaneously requires the
introduction of computer networking technologies that provide for the foundation of a distributed
modeling environment.

The purpose of this paper is to introduce the distributed modeling architecture (DMA) of
the Multi-agent−based Behavioral Economic Landscape (MABEL) model. The DMA is based on
a client-server architecture that separates the specific simulation’s scenarios in Swarm from
agents’ general decision-making and policy rule models stored in Microsoft Bayesian network
databases. It bridges these two parts with an efficient decision-making and model results delivery
mechanism. In this paper, we (1) explain how we develop the intelligent agents, which
participate in a simple market model, and apply algorithms used for land transactions and land
ownership partitioning in the MABEL client, and (2) describe the MABEL server infrastructure
and the decision-reference processes that occurs between clients and the server containing
Bayesian network agent profiles. We conclude by summarizing the main features of MABEL.

MABEL CLIENT

In the MABEL client, “base” agents own land, designated as parcels, on a landscape, the
fundamental simulation environment. Land-use−based attributes are the main drivers of the
simulation, and land-use−driven acquisition of land in a market model represents the basic
framework for determining the actions of base agents. Currently, base agents in MABEL can be
from any land-use category, such as farmer agents, resident agents, and forestry agents.

Each MABEL client represents a spatially defined area with various types of agents that
simulate land-use changes over time and space. Like a person within a society, each agent makes
decisions on the basis of information provided and interacts with other agents in the
environment. MABEL client provides such an environment with specific policy rule regulations
and communication interfaces with the MABEL server for agents to remote data acquisition and
decision-making inference. Each MABEL client ideally represents an area that is under similar
policy controls (i.e., a township in Michigan). Several modeling phases occur within the
MABEL client.

MABEL Client: Initialization Phase

In the initialization phase, MABEL client first creates the simulation environment and the
corresponding two-dimensional (2-D) geographic “world.” The MABEL client then loads land-
use, parcel, and socio-economic data for the specific area. Related data items in the land-use/
parcel and socio-economic data are linked together by an agent’s parcel number, which
represents and indexes a specific agent. Next, the MABEL client creates all agent objects with
corresponding land-use/parcel attributes and socio-economic data organized by an assigned
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parcel number. The client then matches parcel locations to individuals in the socio-economic
database through two variables in the Public Use Microdata Samples (PUMS) database that
relate to parcel size and source of income (U.S. Bureau of the Census, 1995). Finally, each agent
draws and updates itself in the geographic 2-D world and is ready to respond to user inquiries on
GIS and socio-economic attributes associated with each parcel. The MABEL client can also be
used to load the specific market model with policy rule models to control transactions among
agents in the area.

MABEL Client: Multi-agent Interaction Phase

After initialization, each agent begins to act with other agents in the simulation area.
During each time step, which can be predefined as a certain period, an agent runs its specific
strategy based on the land-use type (e.g., farm) and other land-use/parcel and socio-economic
data; agents then communicate with the server to inquire as to what the optimal transaction
decision might be based on the Bayesian network agent profile. The decision requests that agents
send an up-to-date state space of related GIS, human, and socio-economic variables, which are
needed for the decision-making process in the corresponding Bayesian network profile database.
The maximum reward decision received from the Bayesian network model includes action type
(buy, sell, or keep/no action), action quantity, and appropriate agent types that match the
transaction requirements. Finally, the set of agents that intends to make a transaction does so on
the basis of most profitable deal within the market model within policy/rule regulations; agents
then update their spatial/GIS/socio-economic attributes in the simulated world. The principle of
a market model is to help a potential buyer agent make the most profitable deal with any
corresponding seller agent. The degree of the profit in a transaction depends on how close the
transaction quantity of the buyer agent meets that of the seller agent.

MABEL SERVER

The MABEL server acts as a bridge between the MABEL client, which represents agents
in a specific area, and the external decision-making component stored in the belief network
models in MSBNx (Microsoft Bayesian network). The MABEL server receives various decision
requests from multiple MABEL clients and delivers them to different Bayesian network models
for the decision inference using an agent’s GIS/socio-economic attributes, such as land-use
types. Finally, the MABEL server collects the resulting decision replies and sends them back to
corresponding agents across different areas. To satisfy the reliability requirement of the
communication between the MABEL client and MABEL server, a network connection is
established with TCP/IP network protocols over the Internet.

For the design of the MABEL server, we use a multi-threaded technique to achieve
parallel processing capability with high execution efficiency. Unlike the one thread in the single-
threaded program, which executes tasks sequentially, each thread in multi-thread program
executes only part of the task and synchronizes with other threads regarding the execution order
of different parts in the task. In this way, a multi-threaded program can execute different tasks
simultaneously with optimal execution efficiency. We explain the infrastructure of the MABEL
server in two phases  the initialization phase and the execution phase.
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MABEL Server: Initialization Phase

In the initialization phase, multiple proxy threads load their own configuration files and
initialize the communication with corresponding external MSBNx proxy programs. Each
external MSBNx proxy program is responsible for dealing with specific types of decision
requests and communicates with a corresponding MSBN belief network model by calling
routines in the MSBN3 API library. Each proxy thread in the MABEL server also has a specific
working queue to buffer unprocessed decision requests. Every proxy thread watches its queue for
incoming decision requests from specific types of agents that the proxy thread represents. When
all of these initializations have been completed, the MABEL server is ready to receive the
connect requests from MABEL clients.

MABEL Server: Execution Phase

For each client, at the beginning of each time step, all agents in a simulation area
communicate with the server to inquire about optimal transaction decisions with the
corresponding Bayesian network model. The decision requests that agents send include their
up-to-date state space of related GIS, human, and socio-economic variables, which the Bayesian
network model needs for the decision-making process.

Before the MABEL client sends agents’ decision requests for inference, it first
establishes the communication link with the MABEL server by a sending a connection request
using the TCP/IP protocol. Once a connection request has been received from a MABEL client,
the MABEL server assigns a communication link/socket for that client and launches two
input/output (I/O) threads for the I/O operations with the client. The input thread is the request
dispatcher thread, which is responsible for receiving different types of agents’ decision requests
from the MABEL client. The MABEL server then dispatches these requests, including the agent
GIS/socio-economic data for inference, into corresponding working queues of the proxy threads
by their GIS/socio-economic attributes. In addition, the request dispatcher thread attaches a client
port number for every decision request, which represents the client/area information from which
the request originated. Therefore, when the proxy thread finishes the decision-making process, it
can send the results back to the corresponding client by this port number. On the other hand, the
output thread  the decision collector thread  continues to wait for the decision results from
proxy threads at the client port for a specific MABEL client; it then forwards the optimal
decision to the MABEL client.

One of the main advantages of using a multi-thread technique is that the MABEL server
executes different parts of tasks with different threads and synchronizes with each client about
the execution order. Therefore, we can distribute and partition a large simulation task over
different machines and coordinate the distributed working processes. Furthermore, the MABEL
server can accommodate multiple clients simultaneously with optimal execution efficiency,
which eases the work of result fusing and data analysis at the server.

SIMULATION

Using the MABEL environment, we simulated the land-use and transformation changes
over time in different areas and scenarios within the State of Michigan. We ran the simulations
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on Traverse County in Long Lake Township and also in parts of Mecosta County. All simulated
areas, which had various numbers of agents of different land-use types, are represented in
different MABEL clients, which may run in different machines. All decision-making processes
are routed through the MABEL server, which standardizes the inference interface with the
Bayesian network agent profiles and provides server management and communication utilities.

CONCLUSION

This paper introduces a DMA framework that was used as part of the MABEL model.
Some important issues are addressed as to how agent structure, a market model, and land
partition strategy can be integrated within a client-server environment by using multi-threaded
TCP/IP tools. We explain how the MABEL server acts as a bridge between specific simulation
environments and general agent models interacting on clients.

The client-server architecture in the MABEL system allows simultaneous simulation of
land-use change over large regions and does so efficiently. Moreover, the separation of
simulation scenarios and agents’ theoretic models simplifies the work of researchers and greatly
eliminates the translation from the intent or conceptualization of a model to its implementation.
Modelers need only to create, assess, and evaluate agents’ theoretic decision-making models in
their familiar model tool; the model builder can focus on organizing and scheduling the agents’
activity in the specific simulation scenarios.
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A TOPOLOGICAL APPROACH TO AGENT RELATIONS

T. HOWE,* The University of Chicago
M. DIGGORY, Harvard University

ABSTRACT

 Agent-based modeling depends on rectangular grid spaces to represent space and
relationships between agents. This limited, rigid requirement is not conducive for
complex simulations. Researchers are exploring the use of irregular spaces in agent-based
modeling environments, but few focus on compatible, swappable representations of
relationships that have significant semantic meaning. This paper describes a new library
in the Repast toolkit designed to achieve these goals. The library is based on relation
topologies and context and allows agents to function differently depending on the
situation. Topologies need not be fully connected and can take on appropriate structure.
Because topologies are Java interfaces, the flexibility to add and swap them is great. By
combining agents and topologies into contexts, the new library provides a flexible way of
handling agent relationships and lets users focus on agent behavior.

 Keywords:  Relational topology, modeling agent context, model topology library

INTRODUCTION

Agent-based modeling and simulation has long been dependent on rectangular grids to
represent both spatial and social relationships. While this has proven productive for many kinds
of simple simulations, such a limited and rigid requirement has failed to meet the needs of many
modelers. As such, researchers have started to explore the potential of using irregular spaces in
agent-based modeling environments, including cellular automata (Flache and Hegselmann 2001).
Most of these solutions have been “one-off” type solutions lacking generalizability. As
computing power allows for increasingly complex spaces to be used in agent simulations, an
efficient, generic model for agent relationships becomes necessary.

Recently, several publications have discovered that many models are sensitive to the
structure of the relationships in which they are engaged. Flache and Hegselmann (2001) found
“substantively interesting implications of the irregular grid that could not be identified with a
regular grid structure” when studying irregular grid effects on influence dynamics and migration
dynamics. Similarly, Rojas and Howe (2004) found significant effects from network structure on
popular opinion change with both intra-network and extra-network influence. Particularly
compelling about these examples is that they cross domains. The work of Flache and
Hegselmann examined a migration model that contained a distinctly spatial characteristic, while
Rojas and Howe focused on social networks. These examples demonstrate that many models,
across domains, are sensitive to changes in relational structure.

Agent based modeling toolkits, such as Repast, Swarm, MASON, and Netlogo, have long
treated spatial relationships as an entity distinct from social relationships. As such, reusing a
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model’s logic with a different type of relationship can be quite involved. Gulyas (2002)
described the difficulty of working with such libraries. As such, sensitivity testing using the
approaches provided by most agent-based modeling frameworks is impractical.

The framework that we have designed is similar to previous attempts to design
“swappable” spaces (Gulyas 2002). The basic units of the framework are “relation topologies”
and “contexts.” Abstractly, relation topologies simply represent collections of relationships
between agents. As such, by examining a relation topology, one should be able to determine all
of the relationships of a particular type between a given set of agents.

An example of a fairly common relation topology is the relationship between stores and
their customers. The relation topology defines and maintains this “store-customer” relationship.
In this type of scenario some agents represent stores and some agents represent customers. The
“store-customer” relation topology maintains which customers a store has and which stores a
customer patronizes. Note that agents can (and usually will) be involved in multiple relation
topologies. Realistic agents will have very complex collections of relation topologies, which will
comprise all of the relevant pieces of an agent’s domain. As such, an agent might participate in
the “store-customer” relation topology, the “parent-child” relation topology, the “employee-
employer” relation topology, and so on. By keeping each of the relationships in a distinct relation
topology, maintaining an agent’s state with respect to all other agents should be much simpler.

Relation topologies are defined by two functions: distance and range. Distance yields the
domain-specific distance between two points. For a grid-style relationship (where location is
represented by a set of integer coordinates), these functions are quite straightforward. However,
other types of relations may not be as simple to compute. For relationships in a continuous space,
while a simple distance function may be sufficient, a modeler may wish to use another, more
efficient representation for the relationship. When dealing with social relationships, no obvious
representation of distance and range may exist. Any library for representing a topology must
allow the modeler to describe his or her own representation.

For example, in a social relation, the distance between two individuals might be defined
as the sum of the strengths of the edges that form the shortest path between the two individuals.
It is important to note that the distance between individual “a” and individual “b” may not be
equal to the distance between individual “b” and individual “a.” In graph theory, this is a non-
symmetric relationship. A range query returns all of the other members of the topology that are
within a given distance, where, again, the distance is defined by the domain.

Individuals usually engage in multiple types of relationships. Krackhardt’s (1987) work
in the high-technology industry provides a good example of this. He looked at three sets of
relationships: friends-with, reports-to, and asks-advice. Each one of the sets should be
represented by a relation topology. This allows for simple and uniform swapping between
relationship types.

The underlying motivation surrounding the creation of a library for supporting multiple
topologies is the desire to treat all relationships in a consistent manner. In doing so, creating truly
modular agents that can be tested in multiple modeling environments becomes much simpler.
Also, by separating multiple types of relationships from one another, the maintenance of agent
relationships becomes less complex.
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CONTEXTUALIZED TOPOLOGIES

In order to make agent behavior more realistic, all relationships must be interpreted in
terms of context. Context can have several meanings and as such we must define the term
carefully here. Context is, essentially, the state of the model. From the context, agents can
determine what the world looks like at any given point in time. Of course, the context will
contain both global and internal information. The global information is accessible by agents and
might be used by them to make decisions. The internal information should not be accessed by
normal agents, but might play a role in how the relationships are determined.

Many situations have very different interpretations based on the state of the model. As
such, agents might see the current state of a model and view their relationships with others
differently depending on the set of circumstances. For example, the act of sitting in a restaurant
may have distinctly different meanings depending on the surrounding circumstances. Normally,
an agent may view this act as a leisurely moment, consisting of ordering food, eating, and paying
for the meal. However, if a robbery attempt occurs in the restaurant, the agent’s behavior will be
quite different. In addition, the relationships between the actors shift with the context shift.
While in one context the various actors may simply fill their roles as a waiter, patron, manager,
etc., when the robbery occurs, the waiter may choose to confront the robber, changing his
relationship with all of the other actors. In order to support these kinds of interpretations, the
agents must be able to access information about the situation when examining their relationships
and the Relation Topologies should be contextualized.

The topics of context and situated agents go far beyond the scope of the current
discussion. However, when examining issues of topology and relationships for realistic agents, it
is important to keep in mind that relationships can be context dependent.

THE LIBRARY

Building on ideas presented by others and the ideas contained herein, we have built a java
library for the Repast agent toolkit (although the classes are certainly not limited to use with
Repast). The entire library is based on three interfaces: Context, RelationalTopology and
ModifyableTopology. These three interfaces support the behaviors outlined above.

The RelationalTopology interface is fairly simple. It contains a “RelationshipType”
property, a range query, and a distance query. The RelationshipType property is a string that
provides a meaningful description of the relationship described. The real meat of the
RelationalTopology is provided with the other two methods. They determine how relationships
are determined and maintained for agents.

The distance query is described by the following method signature:

double distance(Object element1, Object element2);

This method returns the distance between two objects as determined by the RelationalTopology.
As such, implementers of this interface are required to determine how distance is calculated
between agents. For relationships representing a grid, this may be a very simple arithmetic
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calculation, while for a geographic information system (GIS) style relationship, this may involve
calculating a complex graph.

The range query is described by the following signature:

Collection getRelations(Object o, double d);

Given an agent, this method retrieves all of the other agents whose distances are less than or
equal to the supplied distance. Most simply, this could loop through all of the relationships to
find those with a distance less than the provided distance. But usually, implementers will want to
provide a more efficient approach.

Some kinds of topologies cannot be altered directly. Most relationships involving a grid
fall into this category. For example, adding a Von Neumann relationship is fairly nonsensical,
since that type of relationship is determined by location. However, most topologies do require
the ability to add and remove relationships. Social networks would not be very interesting if
there were no way to add and remove relationships. To support this, we provide
ModifyableTopology. This interface extends the RelationalTopology interface and provides two
additional methods. The first method is described by this signature:

addRelation(Object element1, Object element2, double distance)

Not surprisingly, this method allows the user to create a new relationship of the type described
by the RelationalTopology between element1 and element2, with the given distance. Similarly,
the method

removeRelation(Object element1, Object element2)

removes the relationship between element1 and element2. The removeRelation method does not
necessarily remove the complementary relationship, however. That decision is left up to the
implementing class.

CONCRETE IMPLEMENTATIONS

As a first pass for this library, we provide concrete implementations for two sets of
relationships, grid and network. We chose these two because they seem to be the most widely
used and because of the amount of existing code that has been built to handle this type of data.

Two dimensional discrete spaces or grid spaces support agents whose location can be
described using standard Cartesian coordinates [of the type (x, y) where x and y are integer
values less than equal to the width and height of the space, respectively]. This type of space is
very commonly used as it is easy to understand, fairly simple to implement, and efficient,
performance wise. However, most implementations tend to be very brittle and depend on the
semantics of the grid. As such, most grid implementations are not particularly compatible with
other types of relations.

In order to support two-dimensional discrete spaces (which we are calling grid spaces)
we need to handle several types of relationships. We decided to support three: a Von Neumann
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relationship, a Moore relationship, and a hexagonal relationship. The Von Neumann relationship
is described as the set of objects to the north, south, east, and west. The Moore relationship is the
same as the Von Neumann relationship except that it adds northeast, northwest, southeast, and
southwest. The hexagonal relationship is determined by a hexagonal grid. The neighbors are the
six contiguous spaces surrounding the agent.

We have noticed that previous attempts to develop a generic method to represent
relationships for grids have suffered from performance problems. This was one of the motivating
factors for creating this library. The challenge was to treat grid relationships in a way that would
be consistent with graph relationships without accruing the cost of creating relationship objects.

To solve this problem, we needed to create a mapping between the semantically
meaningful relationship structure and the efficient array structure. For the grid, we created a new
object, the location object. A location object is just that: an object that represents a location in
space. It knows its coordinates and can contain one or more objects. The location objects can
then be stored in an array that is queried for its coordinates. So, agents (or other objects) will
have an “at” relationship with a location. When the agents want to find, for example, their Von
Neumann neighborhood, they ask their location object for the neighborhood. The location object
then uses the array to find the neighbor locations (keeping in mind that the location object has a
set of relationships with other locations) and returns the collection of neighbors. This allows us
to treat all of the connections using a uniform concept of relationship, while maintaining a
reasonable performance level.

This approach has a cost, however. Location objects need to be created and stored in
memory. The creation time is fairly acceptable, though, given the number of other objects that
need to be created at the beginning of a simulation. The memory usage is also small since this
object only requires two integers and a reference to one or more resident objects. In addition,
these objects can be lazily created so that they are only constructed once it is determined that
they need to hold an object.

The implementation for network style relationships was a simpler task. Most network
libraries already support the methods required by the topology library. Since most networks are
represented by graphs, they already contain methods for retrieving and creating relationships. So,
it was a fairly trivial task to hide the implementation of Repast’s existing network library behind
the RelationalTopology interface. Because agents needed to support multiple types of
relationships, slight alterations needed to be made support multiplex networks, but those changes
were simple and required little additional code.

Future work for the topologies should include support for agents that are GIS aware. A
similar approach to the implementation of the grid space can be used to maintain relationships in
real world spaces. Some GIS software has already used a topology approach to index object
relationships in geo-spatial data. There are a couple of differences in the specific implementation
of a GIS topology system compared to a grid-based system, but the approach is the same. An
array-based data structure is not applicable to GIS data because vector-type data is continuous.
Advanced algorithms, such as Delaunay triangulation, have been developed to index spatial data.
It is beyond the scope of this paper to examine these algorithms in depth, but they allow one to
essentially create a graph of relationships between objects in space. So, agents, or other objects,
have an “at” relationship with a location object. In this case, the location object contains a set of
double precision coordinates. The location object can then query the RelationalTopology to
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determine its neighbor locations. Of course, because the coordinates are represented by a pair of
doubles, these location objects do require more memory, but, again, because this approach
provides uniformity in terms of handling relationships.

CONTEXT CONCRETE IMPLEMENTATION

A context is comprised of a set of agents and a collection of RelationalTopologies that
affect those agents. The context is primarily responsible for maintaining the state of the
environment in which the agents exist. It should expose situational information publicly. At a
minimum, this information should include a representation of time and the types of relationships
in which an agent can engage. In addition, though, any information or tools that should be
accessible to all agents should be made public by the context. This might include some utility
like a random number generator or part of the world environment, like the weather. The context
is responsible for keeping all of the various parts of the environment synchronized between the
various agents. The basic context interface is quite simple. It provides methods for retrieving the
types of relationships that exist in that context as well as methods for working with those
relationships. Another method is included to return the time as a double.

The ModelContext is the root context for all models. It provides the methods described
above for the whole model. The ModelContext maintains the master time clock, as well as all of
the agents. For many models, the agents will handle all of their relationships. The ModelContext
can also contain other contexts. Each of these contexts represents a certain situation. They each
can maintain their own set of relationships and public information. For example, in the example
described earlier of the meal at a restaurant, before a robber enters the restaurant, the agents
could be functioning in the ModelContext, but after the robber enters, they may shift into a new
context called the CrisisContext. The CrisisContext would have its own set of relationships and
might have its own sense of time. In addition, it would hold more specific information about the
situation such as whether the police had been called. Once the crisis is resolved, the agents might
switch back to the ModelContext.

By combining different sets of topologies and agents with contexts, we are able to create
a very modular and rich set of tools for interacting with other agents. Because each of the agents
can be contextually aware, they can interpret relationships differently in different sets of
circumstances. Also, because contexts can be combined, context libraries can be built to allow
for maximum modularity amongst model components.

CONCLUSIONS

Creating a library which can support uniform treatment and swappability of topologies is
an important challenge to agent-based simulation toolkit developers in order to provide the
maximum modularity and structure to users’ models. Such a library is a requirement when the
modeler wants to run experiments comparing the results of a simulation across multiple types of
topologies. When a researcher wants create a highly realistic model with agents acting in a
situated and contextualized manner, the modularity provided by this approach simplifies the task.

The library structure provides a space for future work, as well. New types of topologies
can be created and plugged in. Another direction of future work would be to create a method of
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context shifting, possibly combining aspect-oriented programming with the context structure
here.
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DISCUSSION:

TOOLKITS AND TECHNIQUES

(Thursday, October 2, 2003, 3:30 to 5:15 p.m.)

Chair: Micheal North, Argonne National Laboratory
Discussant: Pamela Sydelko, Argonne National Laboratory

MASON: A Java Multi-agent Simulation Library

Claudio Cioffi-Revilla:. I’m going to start off with a very few slides and then Sean
Luke, my colleague, will continue and present the core of this work. And we should say that this
has been a very collaborative project with graduate students, Gabriel [Balan] and Livew [Panait],
and to a lesser extent, also Sean Paus.

So not coincidentally, MASON is a multi-agent simulator of networks and
neighborhoods, and we’ll begin with a few general features, and I’m going to give you mostly
the big picture about this project that we’re very excited about. This is the very first time we
present this, so pardon the rough edges here and there.

[Presentation]

Sean Paus: What I’m going to talk about mostly is some of the details of how MASON
works. To give you kind of a feel of it, I’m going to take you through this and you’re going to
see a lot of things, and you’re going to say, “Well, that’s got a Repast feel to it.” And to some
degree that was intentional. Repast did a lot of things right, so it was one of the models we based
this work on. But I’m a computer scientist, especially in artificial intelligence and evolutionary
computation, and I only know Repast mostly through the A-life world. My specialty has usually
been robotic simulators in other kinds of areas. So some of the similarities you’re going to see
are more due to the fact that we borrowed ideas from other areas, which happen to coincide with
Repast. And some of them are just wild chance.

[Presentation]

Unidentified Speaker: Since your visualization is a separate layer, would it be possible
for the visualization to be on a different computer, through RMI or another method.

Paus: The answer is yes, but you’d have to write the code for it to communicate over the
separate layer. I mean, of course, you can always do it over X-host. But the Java code that we’ve
currently got written is intended to load the model in and display on the same platform, but
there’s no reason why you couldn’t set up an RMI remote display on another machine.

Wesley Stevens: How many agents is the most you’ve run?

Paus: The most I’ve done is a million and a half.

Stevens: I like that answer.
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Paus: But let me say, that’s kind of slow because Java has memory limits on certain
machines, like a two gigabyte limit on a lot of machines. So it all depends on the size of your
agent.

But I will tell you, reasonable numbers usually are in the 10,000 to 100,000 range at
most, until it starts getting a little slow for my tastes, for the kinds of things I need to do.

Unidentified Speaker: You mentioned you had the neophyte program in the high school.
How long did it take them to get up to speed?

Paus: Rather little, actually. Dan Kuberich is a student who doesn’t know a whole lot
about Java. In fact, he wrote three of the demos, and you go through and you find out he didn’t
know the instance of operators, so he actually went to the reflection library to figure out the
identification, the class, and then the instance of operators. And he did three of our demos: the L
systems, the little soccer players, and the light cycles game. He did all three of those, and the
media work for us over the course of maybe a month. We also have the port that was recently
done from the swarm; the anthrax model was done by somebody who knows Java reasonably
well and learned the system in about two days, and then spent about three days doing the port.

Unidentified Speaker: Are you doing any open source licensing on this?

Paus: This is all going to be open source, and it’s going to be under a modified BSD
Netscapish, MITish kind of license.

Unidentified Speaker: How do you see MASON evolving, particularly with regard to
the noncore layers, and how do you see the community possibly driven to that?

Paus: My original vision of this, and I think Claudio has a very similar vision of this, was
that MASON was a core that [had] enough tools that you could do lightweight simulations like
these in it, but it was specifically designed for people to wrap larger simulators over it, for
example, to build Teenbots II on top of it, and then distribute those as open source. And we also
have a lot of commercial entities that are interested in putting their simulators on there for going
after DARPA contracts, etc.

So the answer is that’s kind of the model we’ve been going for. More, we’re trying to
make this as easy as possible for people to put their stuff on top of it rather than for us to really
put those on top ourselves; although I will tell you, the Anthrax one, for example, we hooked up
JChart to it without any problem.

Unidentified Speaker: Are you doing any things in particular to stimulate people to
create those other layers?

Paus: Yes, but most of my efforts so far are because of my interests in the robotics
category. But you have to understand, MASON is nearly brand new. This was developed,
starting in January, on and off for about six months, and then, well, continuing on actually
through the summer. So it’s not been around for very long. This is almost a brand new system,
and nobody has seen it. You are almost the first people outside GMU to see it.
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Simulation and Distributed Architecture of Multi-agent-based Behavioral
Economic Landscape (MABEL) Model within Swarm

Brian Pijanowski: We are working on some National Science Foundation and
U.S. Environmental Protection Agency-funded projects in which we are taking sophisticated
regional atmospheric models, like rams, and coupling them to crop forced net primary
production models, which eventually feed into agent-based simulations. We are also working
with some infectious disease models, some in East Africa. Some of our colleagues are working
on biogeochemical dynamic models, so as landscapes change, nutrients loadings also change.
We have also worked with some process-based hydrologic models.

These agents and models are actually responding to many changes. The models are
generally process-based ones, but at this time, we are wrestling with the idea of how to actually
couple these and also how to look at feedbacks. The scale issues are tremendous. When you have
a climate model that is running on 15-second time steps and 120-kilometer grids, how does it
talk to an agent-based model where you have an individual interested in making decisions about
its parcel?

Looking at tipping points is another area of interest. We are very interested in learning
how changes in the environment change decisions. We are looking at issues of uncertainty. Some
of what Zen [Lei] is going to talk about really focuses on cyber infrastructure problems. When
these are coupled together, things slow down very quickly. We would like to bridge qualitative
and quantitative approaches by conducting well-planned simulations to obtain some broader
impacts.

The model that is going to be presented is called MABEL. MABEL stands for Multi-
Agent-Based Environmental Landscape. We have incorporated a behavioral component based on
some beliefs and an economic market model. It is a landscape-level model. We are here for the
conference, of course, but we are also here because MABEL is here and we have FRED. FRED
is actually MABEL’s father.

I’d like to briefly introduce four people. I’m here, of course, from Purdue. Zen Lei is at
Michigan State. Costas is at Purdue, and Snayhill is living out of a U-Haul truck somewhere
between East Lansing and West Lafayette, heading in our direction [laughter].

[Presentation]

Sydelko: We have time for three or four questions.

Unidentified Speaker: What kind of thing do you try to replicate in terms of realities?

Zen Lei: Is there a data set that you try to replicate in terms of your transactions?

Unidentified Speaker: I work with the data. We have digitized historical data. These
data go back to the beginning of the century, especially some or our data from Michigan. We
have until 1992. We are attempting to simulate — with our database as input — how the
landscape would look, given the decision-making properties of the agents and the people,
because each person is not just a person. Why do we want to see how the landscape will look
20 or 30 years from now? It is a very good tool because decision makers will know how the
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decisions that are made today will affect the landscape 20 or 30 years later. That is a very
powerful decision-making tool.

Lei: Have you made any real comparisons yet?

Unidentified Speaker: Yes, and they are real data experiences.

Unidentified Speaker: I’d like to add to what Lei has said. We are using things such as
role and gaming and expert judgment to blend the qualitative with quantitative approaches, your
Turing-type tests, to be able to determine the value against a real data set. We are also trying to
incorporate that idea. And we also have got, as part of the interface to the gaming simulation, the
Microsoft Belief Network software, which allows players of the game to construct the Bayesian
network and assign initial probabilities. We use that as part of the proxy server construction.

Unidentified Speaker: My comment has to do with a talk by a person at Warwick in
England. He was doing modeling for the British government on foot-and-mouth disease. One of
the requirements was for the models to assume that Welsh farmers exaggerated their numbers of
sheep by 40% for the purposes of a government subsidy or something, because otherwise the
disease would have spread much faster through Wales. Making this assumption was the only
way to get the models to [work]. The point of my comment is that sometimes having a lot of
government data on farms is a dangerous thing.

Unidentified Speaker: Since I am familiar with Europe because I worked for the
European Union, I am aware of the problem, and it has to do with the high European Union
subsidies. The Union gets more revenue from overestimating your yields or the herds or the flock
rather than selling it and doing business with [the proceeds]. But, yes, there is a data quality and
availability issue. We would like to see more data and digital policy-based data, because we’re
talking about, in some instances, 30-by-30-meter data that is digitized from satellite data. So this
process is slow, and sometimes it requires a lot of resources.

Unidentified Speaker: I have a question. When using multiple clients, quite a few
different [ones], these are separate PCs that each one is running on?

Lei: Yes, a separate PC.

Unidentified Speaker: Does it have to be a manual intervention, or do you have a batch
facility to start up the clients of various PCs?

Lei: Actually, we have each client on a different PC in the lab, and the server servicing
our other machine.

Unidentified Speaker: Oh, no, I understand that, but to start up the clients and get those
running. . . .

Lei: Actually, the server is running first.

Unidentified Speaker: It’s a manual process. We’re moving towards a remote method.
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Unidentified Speaker: And why are you using the clients right now? Is that for a higher
performance or is that just for experimentation now?

Unidentified Speaker: Mostly for visualization, but also for simulation.

A Topological Approach to Agent Relations

Sydelko: Next, Tom Howe will talk about “A Topological Representation of Agent
Relations in Repast.”

Tom Howe: Actually, the title has been changed slightly to “A Topological Approach to
Agent Relations.” The reason for this change is that, while there is an implementation in Repast
of agent relations, the ideas and the way in which I will present it is more generic than that and
more of an approach rather than a specific implementation. Having said that, it should become
obvious that this talk is going to be somewhat different than the two previous presentations,
which presented systems, where we are presenting a methodology.

[Presentation]

Sydelko: We have time for some questions.

Unidentified Speaker: Tom, it seems that, if you talk about social structure, that you
would have two structures: a friendship structure and a family structure. Personally, I would
think you would put that on the edges, that there would be a connection between agents — say,
they’re friends — and then this other one is a type of a family edge.

I would have thought the context would have been more temporal. In other words, it
might be easier to think of it as either endogenous or exogenous, but, for example, in a time of
famine, everyone resorts back to the family. Can you comment on that?

Howe: These are handled by the topology. In a time of famine, however, the strength of
the family relationship might be weighted higher.

Unidentified Speaker: ESRI is one of the largest companies in the GIS field at this time.
They are moving toward developing agent-based simulation environments in GIS. It seems that
those of us who are working in spatial environments love our GIS because of its efficiency. We
have all the tools necessary. The most difficult thing that we do in our lab is move the data out of
a GIS and into a simulation environment that was not built for it.

Therefore, getting closer to the GIS environment, to the point of possibly including the
tool within that environment, seems the way to go because you have all of spatial relationships. I
am Agent A. What township am I in? A GIS can easily handle a really complex spatial
relationship.

Howe: Yes, that is correct.

Unidentified Speaker: When it gets to visualization, the tool is right there.
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Howe: Yes, I think that is true. Now, of course, ESRI is basically a monopoly, and
building things into ESRI’s products is difficult because of their dependence on Visual Basic.

To that end, one of the best days of my life was the first time I imported a shape file into
Repast in a successful and easy way and discovered that all of a sudden I had access to any kind
of spatial structure I wanted. I could do complex networks, or I could do just a grid.

There is still this problem, however, that we need to be able to get to those spatial
operators. There has been a movement among several people, and I have spearheaded one of
those movements, to integrate some good GIS facilities into Repast. I know it seems like
reinventing the wheel to put it into Repast instead of putting it into ESRI, but we have already
talked about some of the problems with that.

With help from several people (including James MacGill, who is sitting here right in
front), I have been working on a sort of integrated method with the geo-tools, open-source GIS
limitation. This is back-ended at the moment by the Java Topology Suite, which has all of the
basic spatial operators, such as Lizon, adjacent touches, all of those things, built into it. Once that
is stronger, it becomes very easy to do the kind of relationships that you mentioned. Actually,
there will be a paper on Saturday about this very topic

One of the things that I have noticed about the ESRI’s concept of topology is that it is
very limited. It does not seem to have a lot of different topology-building tools. While I am not a
GIS expert, I haven’t seen things like Delaunay Triangulation built into ESRI.

ESRI’s basic topology builder will build either an adjacency matrix or a congruency
matrix; I don’t remember which. There is a benefit, though, to having this feature. Having the
basic graph library setup makes it easy to implement various topologies, which can then be
interfaced easily with an ESRI-type tool. So the goal with GeoTools is to make it very easy to go
back and forth between the import and the export of data because the flood view utility in ESRI
is still one of the coolest things I have ever seen, and that will just not be implemented in Repast.

Unidentified Speaker: In view of the fact that you delete an old location and add a new
location and in view of the distributed architectures that we’ve seen here today, are you going to
support transaction processing and have it commit in a rollback on the location change?

Howe: Yes, but the goal would be to make that transparent. That is sort of an artifact of
the way grid operations have been handled in the past, which was removing yourself from a
space and adding yourself to a space. It seems quite legitimate to think that the approach of
removing your location and adding your location will change to hide things like transaction
support because I do not want people to start a transaction, commit, catch, roll back, and so on.

Jesse Voss: My question has to do with your notion of topology and how you use it. I am
interested in topology from the standpoint that Kurt Lewin takes in topological psychology,
where you can have multi-dimensional psychological space. A simple example would be
political parties compared to regular relationship networks. Let’s say that someone has a tie to a
person in politics, but belonging to a political party is not spatially oriented. Can your plans
support multi-dimensional and pan-dimensional topological structures, which (based on different
topologies) could build nested topological relationships for individuals or groups?
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Howe: Yes, you bring up an interesting point. I don’t see why that couldn’t be done,
although I haven’t thought about a sort of nested topological structure. It should be do-able in the
sense that you could have a topology. Your individual objects in one context could be actual
contexts in themselves.

In your situation, for example, you have political parties, and each of the political parties
exists in a large-scale national context. Then inside each of those political parties, you have a
localized context, which perhaps consists of individual members. The challenge is to have nested
contexts, where an inner context interacts with an outer context, which it seems necessary in
your particular situation. There is definitely room to explore that, although it becomes rather
complex, so I think that is in the future. In and of itself, however, I don’t see any reasons why
that wouldn’t be possible.

Sydelko: We have listened to three very interesting presentations. They covered a wide
range of topics. In particular, we heard about two different toolkits and also a discussion on
topology.

In terms of coming up with a summary or a synthesis, I first heard multiple
implementations of common underlying concepts. There are different ways of implementing the
same basic concepts, and some of the concepts presented related to management of time.
Simulations run things forward, creating focus points for agency. We had said these would be
agents, but different ways of creating focus points. Regarding the management of relationships
between agents, we might ask: How do you manage the space, or the relationships, that connect
agents? I am sure that the audience recognized other concepts as well, and those would be great
things to suggest as we go into the discussion.

Each implementation has unique strengths and weaknesses. All of the speakers who
discussed some variation or implementation talked about the things that the implementation did
better, but I think they would have to admit that there are a few things that they did not do as
well when compared to the other toolkits. My conclusion would be that there is no one perfect
way to do these things, but there are multiple ways to do them. Those various approaches are
appropriate for different types of problems.

One thing that not discussed quite as often as I had hoped is that well-thought-out
modularity seems to be one of the real keys. I think this idea was mentioned briefly, but someone
would need to decide which modules to use for this system and how those modules should be
factored. People hit on that individually, but as an overall focus, I would think that would be very
important to discuss. It would also be important to talk about the substantial tension that exists
between what should be the modules and what should be the core of the system and how those
modules should be factored. In particular, one person’s core future turns out to be another
person’s optional module in that no one actually wants to be the optional module in this world.

At this time, modularity seems to be defined within a given toolkit rather than between
toolkits. I think this is a practical thing. There is very little, if any, discussion of taking a part
from one toolkit and putting it into another. I think that is a very sophisticated thing to do; it is a
very hard thing to do; and first we need to get the toolkits to work in all the directions we want
them to work. That goal, however, is for the future.
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Finally, in a perfect world, we would probably have a high-level toolkit-independent
language to describe these things. This language would be transparent so that researchers could
understand exactly what their simulation is doing and not always have to rely on programmers.
You’re laughing, because it is hard to do. Actually, it would be a high-level language, perhaps
declarative, as David Sallach has suggested during earlier discussions. But the language could
then be used to instantiate or create a model in any given toolkit, which means you would inherit
the strengths and weaknesses of that toolkit. This is a long-range vision, not something I would
see as practical immediately. But that would be a great thing to do because each of these toolkits
has some very unique strengths. I saw distributed computation; I saw some efficient operation
and 3-D visualization, topology’s relationships, these types of things — all unique strengths. It
would be great to develop an overall model and have a sense of transparency about that model,
so you understand what it does, and then instantiate in the toolkits’ different strengths and
weaknesses. Ultimately, you could even perform a type of docking. That is, you would run the
model in the various toolkits and see how those strengths and weaknesses do or do not influence
the robustness of the results. So that, to me, would be an advantage.

I’m sure people in the audience have questions, but first I have the prerogative to ask all
of you a question. Multiple agent-based toolkits, boon or bane? What would your view be on
multiple-agent toolkits?

Paus: On multiple agent toolkits, boon or bane, I think for the time being the answer is
boon, although there may be people in certain narrow fields that say it’s bane, because you’re
dividing resources, but I think for the time being, very much boon.

We have a lot of discussion about unification and standardization, but the truth is that this
is probably 10 years premature. Swarm and Ascape and Repast are all Generation I and
Generation II toolkits. All are about 30-K lines, which is small. They are the kinds of things that
are hungry to get replicated very rapidly.

Before we can really start talking about the problem of standardization, I think we are
still at the point where we will be seeing several more major toolkits coming out, becoming very
popular in the system before this even becomes an issue.

Unidentified Speaker: Boon, definitely. I agree with a great deal of what Sean just said
regarding this being a growing field. Toolkits have a long way to go. However, I am not as
against standardization as you are. When I say “standardization,” I don’t mean that all the
toolkits do the same thing because I think that each toolkit brings a unique perspective to the
field. As new toolkits are developed, new ideas and new approaches are going to be developed.
Still, I believe that there is, at the base, an abstraction of what an agent-based model is. Taking
the time to figure out what an agent-based model is at its core and then building up the various
toolkits as they are created around some of those ideas — not to say that those ideas won’t
evolve or change — gives many benefits in terms of docking for validation, as we’re talking
about. I also think that they give benefits in terms of cross-pollination and affording the
opportunity to explore new ideas within the various toolkits.

Sydelko: Anyone for a bane?

Lei: Yes. In my point of view, the multi-agent-based modeling is a booming field. I am
interested in the large-scale simulation and also in simplifying. We need to find a way to
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simplify the simulation, and we need to combine some modeling — existing modeling — to
build the external brain. The body is in the simulation, so in that way, we can combine some
existing artificial intelligence tools into the multi-agent-based modeling and achieve a way to
quickly translate the theoretical modeling into the implementation.

Sydelko: Are there questions from the audience?

Pijanowski: I have to ask a couple of questions. What is an agent-based model? What is
it allowing us to do that we were not able to do in the past?

I see similar models that have been around for 20 years, and the question is … What does
it allow us to do? What does it allow us to explore that we could not look at in the past? I don’t
know if there is an answer yet.

Joanna Bryson: I would like to follow on from that question and also from a question
that was asked during the talk. How do you tell how good these things are? This is not a new
question. I think we are looking at it the wrong way. Building a tool base is like building a chip
set. I think the only thing you can do is benchmark. I do think you have to say, how quickly can
we replicate well-known results? That brings up two sets of questions. How quickly can a novice
do it, and how quickly can an expert do it because is it worth becoming an expert? So I think that
there are ways to evaluate these things, but that there are new things because of the power.

Unidentified Speaker: Everything that we do now could have been done in the 1970s
and was done in the 1970s.

Unidentified Speaker: Almost all of the MAS stuff has been done by the robotics
community for 15 years.

Unidentified Speaker: They do some Fortran and C++ and it cooks.

Unidentified Speaker: So what it really boils down to here is software architectural
design. I think this is a multi-objective problem, though. For example, I have an evolutionary
computation system, a machine-learning system, that is probably the best in its field, but it has a
very steep learning curve, and it’s huge. It is very, very sophisticated, it can do almost anything,
but it takes forever to learn it. On the other hand, Ken DeYoung, two doors down from me, has a
very, very small, simple machine that is used by many people. This machine can’t do everything,
but it can do 80% of what people want, and you can learn it in five hours or less.

We are finding systems that are addressing the same kind of simulation functions that
have been done for a long time, but for a different community with very different needs, and the
needs are quite unusual. A large chunk of the community is our relative programming novices —
I don’t mean that with any disrespect — for which we need to have tools that are really easy to
use. Then another segment of the community, such as some of the AI people and other people
that are coming to this, are people who need very sophisticated capabilities and are willing to put
in the effort. Both moved in both directions from what the kinds of tools in the 1970s and the
1980s were able to do.

Unidentified Speaker: Yes, I want to further that just slightly because I agree that
fundamentally we are not doing anything we couldn’t do. However, I also agree with Joanna
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[Bryson] that working with robots takes a long time. But if you think about how people are doing
their agent-based simulations, I would venture, without having any hard data, that the vast
majority, or at least the slight majority, of people are rolling out their own solutions.

My point is that we are not doing anything that you can’t do, that other people haven’t
done. The challenge in the near future is going to be to try to make it so that the “novice”
programmers can build substantial realistic models that are not little toy models that you’ve done
in the original Logo or in the StarLogo but make a way, construct a way, that people can (a)
build those models and (b) have some form of validation, whether it be docking or whatever. I
think that is where the big value added will come from. It will be from all the work we’ve done
in the past five or six years.

Unidentified Speaker: I would like to add one thing as background. I would say that the
focus may be a little bit too software-oriented because this meeting is not necessarily a software-
oriented one; rather, it’s a modeling meeting. I think that is the difference. In principle, we could
go further back, not 20 years, but back to John Von Neumann architecture or to Alan Turing
perhaps. We could work our way back to what seems like thousands of software years.

The idea, though, is to keep our work in perspective .In principle, ever since either Turing
or Von Neumann or maybe Stephen Wolfram, who, I’m sure, would credit Nolan, the basic idea
has been that you can back it off to some great distance and reach the point where nothing new
has been invented in computers. The fundamental idea is that we’re trying to model something
— human behavior, animal behavior, or social systems. This conference talks more about social
systems, so you’ll see a variety of different things that we’re trying to capture and model. That, I
think, is different and new to some extent.

The multi-agent community was in some sense trying to replicate certain parts of human
behavior, but it had a very different focus (than the AI community). This focus was to create an
artificial human intelligence. Here, the idea is to capture social systems and understand them
better, or capture other types of systems and understand them better. I think that to a large extent
quite a bit of that is new. So, in that sense, the software structures may be very similar, even
identical, but how they are being used is very unique and innovative. In fact, that is the reality of
all software. It’s similar to having the Von Neumann architecture, and then everything else is an
application. The point is that it depends on the level that the application is being developed for.

Cioffi-Revilla: I understood the question somewhat differently. From the point of view
of applications in social science in substantive models, there are several important problems in
economics, in sociology, in political science that had been intractable by statistical and
mathematical modeling approaches that have now become tractable. We understand a lot more
about the way revolutions break out, for example. We understand a great deal more about the
way in which the political geography of the world evolves. Bob Reynolds has explained in ways
that other approaches have failed to explain how is it that communities of chieftains and hunter-
gatherers form states. All of that is new, but it is substantive science. It is all new and important
because of the recent generations of agent-based models. There is no turning back on that. New
science is being done now, just like radio-astronomy allowed new science to be done and other
similar tool innovations. My view, therefore, is more optimistic.

David Sallach: I agree with Claudio to some extent. I think, however, that the response is
perhaps that something critically new needs to be done, and that is part of the problem. We need
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to do new things. We are in a situation where probably 80% of substantive social scientists do
not see the relevance of agent modeling because it’s so terminally simplistic in its assumptions.
There’s a higher-dimensional, rich, dynamic, flux-oriented, interpretive process.

We need to have a genuine engagement with the AI community. When you want to talk
about the difference between building AI in units of one versus building it in units of 100,000,
and then actually building social processes, dynamic social processes into that, being necessary
— I mean, you can dismiss a certain part of the substantive social science thing in terms of
disinterest or lack of technical background or ideology, close-mindedness, what have you, but
there’s a big hunk of it that you can’t. That is, that people are immersed in area studies, people
are immersed in qualitative, rich, historical or other kinds of data, and therefore, see the
assumptions as being simplistic. Part of this has to be a dialogue between computational and
social sciences in terms of how to bring that richness into computational modeling. When we do
that, we will be doing something different than what was done 20 years ago.

Unidentified Speaker: So you have to understand that I’m looking at this from a
computer science perspective, that the tools have been available for a long time, but there is an
important feature that has not been available for a long time, and that is the big iron.

I think why you’re seeing this blossoming that’s come up, you know, it started with the
A-life community and Santa Fe, and now you’re seeing it move into social complexity and bio-
complexity communities, etc. What’s making this feasible for these models is that previously the
only way you could do these models is (1) on the very, very small scale, and (2) you had to be a
high priest of computer science to be able to understand how to write the low-level assembly
necessary to get it run without taking a year of computational time.

Now we’re seeing large, inexpensive machines, and we’re seeing that software that runs
on these large inexpensive machines is able to do these kinds of things in a more reasonable
fashion for everybody. Essentially, in the last 10 years, I think that’s where we’re seeing these
toolkits that are coming out that have been making these fields possible in the first place. You
know, you’re not dealing with simple, finite element analysis things; you’re dealing with very
large numbers of interactions, and that wasn’t possible unless you had a lot of money and a really
good programming team 15 years ago.

James MacGill: Assuming what you’re saying about the big iron and the new toolkits,
you said at one point in your talk, in the answer to our first question, you see several more
toolkits down the line in the future. In each one of those, we’re going to see an ever-prettier
version of heat bugs running ever faster with ever more bugs. What is critical at this point is that
we get a way to describe some of our simple models. I’d love to throw a challenge to you two
guys to write an XML document that describes heat bugs that both of you can read.

I think it’s no coincidence that Swarm, that Repast, that Ascape and MASON, are all
open-source projects. We’re scientists, and the way we communicate our findings and our
research is by passing source code to each other. It’s our language. We’re not mathematicians;
we don’t have mathematical expressions that we can pass to each other, so we throw source code
at each other. But that’s why a lot of what we’re talking about is to say, “Well, this is a modeling
meeting, so why do we keep talking about software engineering?” It’s because our language in
which we express ourselves is software at the moment, and it needs to step up from that to
something more abstract so that we can capture what we’re talking about, and that when the next
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mega-thing comes out, the first task somebody doesn’t do is write heat bugs to load the heat bug
definition file.

Unidentified Speaker: I agree with you completely, with one exception. You know, I
think that getting a way that we can come up with a language that’s not code is exactly the way
to go. I really don’t think it should be XML, though. I think we need to have something that’s
somewhat serious — not just easier to work with, but also more semantically meaningful for
what we’re trying to do.

Unidentified Speaker: I’d add, just as a note: David Sallach said that if he did things
over again and developed a new, say, declarative system or something like that, that he would
not do heat bugs, as a political statement, actually.

Unidentified Speaker: I’ve never seen that one, so I’m not sure. I’ve seen Ascape. So he
said he would not do it as a political statement. And also, there’s an interesting comment that
was made as well concerning David’s protesting his heat bugs. That is to say, you know, the
Internet Engineering Task Force has a policy where they don’t accept proposals for new
standards or other new policies unless they see working code, unless they see an actual
implementation. That certainly is a higher standard, and it’s probably a good one. So the next
time people develop either a toolkit or a major new technique — yes, this means you — I’m
kidding, Tom, I have to pick on you — that first people show a working model, substantive
model in some domain that uses that feature effectively, so it might be a way to do things.

We have time for maybe one or two more questions. Do people have questions? I know
you have an outstanding one, Steven. Does anyone else?

Unidentified Speaker: You may or may not have the answer today, but I think we, as
researchers, are working with the multi-agent or agent-based simulation as a tool just for
ourselves to understand the complexity and understand each individual agent’s behavior, or just
like you guys are working on building the toolkits to provide or to facilitate the researcher who
works in this field to understand and extend the work for in different scale. But I think in another
point of view, is it possible? I think it’s possible, but I just try to leave this point. Why don’t we
do it in, you know, a parallel way? Try to build some kind of tools for those individual agents to
learn and understand, because we never predict precisely what is going to happen in the reality in
the future, because that emerges from the individual. So if it can do that, let them learn.

Sydelko: Does anyone want to comment? Good. Thanks. That’s a very good point,
actually. A cry, set them free, yes. It is an outstanding question.
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MODELING PLAYGROUPS IN CHILDREN:
DETERMINING VALIDITY AND VERIDICALITY

W.A. GRIFFIN,* L.D. HANISH, C.L. MARTIN, and R.A. FABES
Family and Human Development, Arizona State University

ABSTRACT

 Over the past two years, we have been developing an agent-based modeling program,
called PlayMate, that simulates playgroup formation in children. In the fall of each year,
new and returning children come together in our child development lab; many eventually
settle into groups of semi-stable play partners. Factors contributing to the formation of
these playgroups are currently unknown, but the dynamics of this evolution appear to
have similar characteristics as other structures in social organizations (e.g., agent actions
appear to be rule based). The children’s social environment differs slightly each year
because of variations in playgroup formations, and these formations derive from the
stability of who plays with whom. Both the groupings and the resulting structures evolve
as the year progresses. Agent-based modeling provides a mechanism for simulating this
type of evolution. In modeling the emergent behavior, we assume that individual child
attributes influence the quality and subsequent likelihood of peer interactions. Analyses
comparing the simulated and the realized data indicate that the current implementation of
PlayMate effectively captures the general formation of specific groups within the
classroom. We illustrate and discuss how the strength of this interpretation is qualified
when model veridicality is probed in depth and across time.
 
 Keywords: Agent-based model, playgroup, model veridicality, ABM

INTRODUCTION

How do young children, each with unique preferences for an ideal play partner, form
semi-stable playgroups that evolve as each child matures? This question addresses a fundamental
problem in contemporary social science: how do disparate entities, through some unknown
process, emerge as self-organized clusters that embody well-known, but poorly understood,
social processes (Watts and Strogatz, 1998; Macy and Willer, 2002)? The ontology of each child
influences the quality, duration, and frequency of time spent playing with other children, and in
turn, this engagement alters the developmental trajectory of each child. Hence, a model of
dynamic reciprocal influence characterizes the immediate social and physical worlds of children
as they change and adapt. At the center is the playgroup, and although the formation of
playgroups is well studied, it is unknown how this critical socio-developmental context develops
and changes over time (Rubin, et al., 1998; Hartup, 1999).

Children’s social networks are characterized by multiple morphologies. Consequently,
investigators have classified the networks according to their gross structure; they typically
distinguish between dyadic relationships (e.g., friendships; Hartup, 1996), relationships among

                                                
* Corresponding author address: William A. Griffin, Department of Family and Human Development,

Box 872502, Arizona State University, Tempe, AZ  85287-2502; e-mail: william.griffin@asu.edu.



94

small groups of peers (e.g., membership in social networks or cliques; Cairns, et al., 1998), and
relationships with large groups of peers (e.g., acceptance by classmates, social status; Coie, et al.,
1982). Categorization in this manner provides no information about the mechanisms or processes
involved in the initiation, maintenance, and evolution of playgroups. It is critical that social
scientists move beyond categorization by static structure and begin utilizing the burgeoning and
innovative work being done in social network analysis (Newman, 2003).

Although the focus is on young children, at the core of our endeavor is an attempt to
understand and model the reciprocal evolutionary dynamics ubiquitous to all social processes
(Conti, et al., 1998). As such, the research is informed by multiple scientific disciplines ranging
from economics (Arthur, 1994), political science (Cederman, 1997; 2002), and sociology
(Gilbert and Troitzsch, 1999) to computer science (Feber, 1999), physics (Rocha, 1999), and
applied mathematics (Newman, 2003). During the last decade, the traditional boundaries among
these disciplines have been broached by a general scientific methodology — agent-based
modeling (ABM). ABM is a common language, and with it, comes common assumptions
(Axelrod, 1997; Casti, 1997). Among the relevant assumptions, one is most pertinent to this
research: social processes are complex and continuously evolving entities that adaptively
configure themselves according to basic rules that, in turn, modify the environment housing the
agents that comprise the entities. This reciprocal relationship among the individual agent, time,
and the emergence of social phenomena is illustrated in Figure 1. Moreover, Figure 1 illustrates
the individualism at the agent level, the ordered grouping of agents, and the resulting macro-level

FIGURE 1  Emergence within a dynamic system derived from the interaction
of individual agents over time

Macro-level: Emergent
Structure

Emergent Order:
(e.g., groups)Reciprocal Influence

Time

Micro-level: Agents
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structures that emerge from the patterned collection of agent behavior. A contemporary debate in
ABM is conveyed in this illustration: at what level of social structure (agent, grouping, emergent
phenomena) does the modeler construct a model and, within the hierarchy where should validity
be assessed (Conte, et al., 2001; Cederman, 2002)?

Our work resides at the center of this discussion. We have agents that cluster together
because of individual- and group-level attributes, and these groupings, in turn, modify the
environmental field that permits the expression of these attributes. We assume that individual
children playing together co-create an environment that allows the emergence of a larger, more
general social process  peer preferences. Peer preferences, and the process of peer group
formation, simultaneously modify child attributes and the environment within which this
metamorphosis occurs.

This assumption is the foundation for our work; at the general level, we investigate social
processes, and at the specific level, we want to know how young children’s playgroups form and
change. From this foundation, we have several broad questions that focus our work:

• How are groups emergent (Axelrod, 1997)? That is, why is the aggregate not
obtainable from simply examining its constituent parts (Humphreys, 1997)?

• What is the developmental value of groups that exceeds the socialization
value obtained in simple parings? What is the limiting or carrying capacity of
groups of children in this age range (Jin, et al., 2001)? Stated differently, is
there an optimal group size that maximizes the assumed benefit of group play?

• How does the group entry criterion, as determined by the best attribute or set
of attributes, change with group size or heterogeneity? Does group
heterogeneity change with group size or density relative to the number of
other groups with a given classroom size? And how does this rule change over
the course of a year (Girvan and Newman, 2002)?

As evident from these questions, our research objectives extend beyond merely studying
playgroups: we address questions about social processes that are germane to all human
interactions involving micro-exchanges of social rewards and the diversity of shifting reinforcers
 and how these crucial processes change over time. Finally, all computational modeling in
service of these objectives must demonstrate validity across the period of emerging friendships.
This paper illustrates some of the methods we use to determine if our ABM is valid, is veridical,
and is sensitive to the intra- and interagent evolutionary changes that occur during friendship
development among five-year-old children.

PLAYGROUPS

The Importance of Peers and Playgroups

Early childhood is an important starting point for the development of peer relationships.
In particular, it is a critical time for the development of skills and expectations related to
interacting within larger groups of children (Fabes, et al., 2003b). For many children, the earliest
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opportunity to interact with a consistent set of peers occurs in preschool as many same-age peers
are brought together to socialize on a regular basis. Children embedded in a social network have
more opportunities to develop their cognitive, behavioral, social, and emotional competencies,
which facilitates later adaptation. These networks provide the socialization opportunities that
children need to develop the nuances required for social negotiation. In contrast, children who
have only limited interactions or who are rejected by peers do not get the opportunities to
experience positive peer socialization. Consequently, these children are at increased risk for
psychosocial and academic maladjustment (Hanish and Guerra, 2002). Understanding how
young children develop positive peer relationships is critical to understanding the conditions that
contribute to successful socialization and adaptation to life experiences. To date, however, most
of the research examining the impact of peers has focused on older children and adolescents.
Relatively little research has focused on young children even though it is well established that
early peer relationships foreshadow the quality of later peer relationships (Hartup and Laursen,
1999).

Playgroup Formation and the Selection of Playmates

One of the most significant features about children’s playgroups is homophily; that is,
they are characterized by a high degree of within-group similarity (Berndt, 1982). Peer groups
form around similarities in propinquity, sex, race, and behavioral dimensions, such as aggression
(Cairns, et al., 1998). The notion of homophily is well established, but the processes accounting
for homophily are not (Espelage, et al., 2003).

In young children, one of the most obvious dimensions of similarity in playgroups is sex.
Preferences for same-sex peers emerge around 30 and 36 months and increase across childhood
(Serbin, et al., 1994). By most estimates, more than one-half of all young children’s peer
interactions involve play with same-sex peers, approximately one-third involve mixed-sex
peers (playing with both a boy and a girl), and less than 10% involve play only with other-sex
peers (Fabes, et al., 2003). Same-sex peer preferences are stable over time (Martin and Fabes,
2001); they are stronger when activities are unstructured and when adults are not immediately
present or involved in children’s play (Thorne, 2001); and they are resistant to change (Serbin,
et al., 1977).

Gender can serve as a primary basis for selecting social partners, but it does not explain
the multiplex of peer relationships. Same sex peers are not selected indiscriminately. Choices
about which boys or girls to play with are also influenced by behavioral compatibility, such that
children seek out peers who exhibit similar behaviors or who have similar interests (Rubin, et al.,
1994). For instance, aggressive peers tend to congregate together, and the social networks that
surround aggressive youngsters often consist of other aggressive youths or children who actively
encourage bullies’ aggressive behavior (Espelage, et al., 2003). Children also are attracted to
peers who share other characteristics, including prosocial behavior, and interest in academic
activities (Fabes, et al., 2003a).

Peer Influence

Peers have the potential to be powerful socialization forces. For young children, this idea
has been examined in research on sex segregation. Because of the high levels of sex segregation
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in children’s play, children have more exposure to, and thus obtain more practice with, the styles
of interaction characterizing their own sex. And, because the sexes play in very different ways,
peer experiences can be described as separate cultures for boys and girls. Boys’ groups are
larger, and they tend to play in more public places with less proximity to adults than do girls
(DiPietro, 1981; Fabes, et al., 2003a). Boys’ play also tends to be rougher and more active than
girls’ play. Boys quickly establish a hierarchical pecking order, which remains stable over time
(Maccoby and Jacklin, 1987). In contrast, dominance hierarchies in girls’ groups are more fluid
and less stable. Girls emphasize cooperation and use enabling forms of communication that
promote group harmony. Compared to boys’ groups, girls’ groups are more likely to select
activities that are governed by strict social rules (Leaper, 1994). Because boys’ and girls’ groups
promote different styles of interacting, it is not surprising that they show different patterns of
peer experiences. Experiences gained within boys’ and girls’ peer groups foster different
behavioral norms and interaction styles. Over time, repeated exposure to these
different behavioral and motivational norms and interaction styles has been hypothesized to
promote the development of different skills, attitudes, motives, interests, and behaviors (Leaper,
1994; Maccoby, 1998).

Recently, evidence on the effects of peer socialization was demonstrated in a study of
preschoolers’ sex-segregated play. Martin and Fabes (2001) examined how individual
differences in the “social dosage” of same-sex peers over several months influenced children’s
behavior. The results showed that both sexes became more gender typed in their behavior over
time (e.g., boys became more aggressive; girls increasingly played near adults), and these
differences were evident above the initial differences that may have led them to play with
same-sex peers. The effects of peer socialization have also been identified for a range of
behaviors, including specific interaction styles. These effects can be seen, for instance, in the
ways in which exposure to particular kinds of peers affects children’s own behavioral and
emotional tendencies. Analyses of an extensive observational data set suggest that spending time
with aggressive peers increases the likelihood that children will escalate in their own aggressive
and disruptive behaviors, particularly girls. In contrast, spending time with prosocial peers
resulted in increases in positive emotionality and decreases in negative emotionality (Fabes,
et al., 2002; Hanish, et al., 2003). Furthermore, peer socialization effects are bi-directional and
complex; exposure to particular interaction styles modifies children’s own behaviors, and
children become more alike over time as they interact (Kindermann, 1998).

The Dynamics of Young Children’s Playgroups

Most studies on peer relationships have approached playgroups as static entities that
classify children into groups or categories as they exist at a single point in time. Even if a static
view is not presumed, difficulties of measurement often provide only a single point in time
assessment of peer relationships. This approach has been crucial in building extant models
of peer group formation, but with recent developments in methodologies that are capable of
capturing dynamic shifts in social phenomena, it is now possible to assess dynamic changes in
peer groups.

A dynamic approach also can be used to compare competing ideas in the literature,
namely, whether the homophily seen in groups is due to selection of peers who are similar or
whether it is due to the processes of influence that occur in peer groups. This issue has been
central in the study of groups for many years from a variety of disciplines. For instance,
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criminologists have long noted the strong connection between delinquent adolescents and
association with delinquent friends. Is this similarity due to the influence of peers (Sutherland
and Cressey. 1974) or to the inability of the adolescent to make friends with nondelinquent
adolescents (Hirschi, 1969)? A dynamic approach can incorporate both theories by allowing that
selection features come into play by influencing who a child is initially interested in (and who
may be interested in playing with the target child), and by proposing that these selection features
likely change over time and depend on the range of available options. Furthermore, central to
a dynamic model is the assumption that peers influence each other, and that this influence varies
depending on the social dosage, or exposure, that a child has to specific children. This exposure,
in turn, may change a child’s selection criteria and/or desirability as a play partner.

Simulating Playgroups: PlayMate

PlayMate is an agent-based model constructed to simulate the formation of playgroups in
children ages four to six years (Griffin, 2003). To keep the model simple and results tractable,
PlayMate uses static (e.g., sex) and dynamic (e.g., sociability) child attributes to modify the
likelihood of interacting with another child (Griffin, et al., 2002; 2003). The effects modeled for
these traits or attributes can be modified to represent postulated developmental shifts.

PlayMate is constructed as a multi-threaded, object-oriented, agent-based platform where
each child, as an agent, is assigned a separate thread and is derived from a parent-child class.
Written in Python, a high-level, interpreted scripting language, PlayMate is framed around a state
transition model, where a child is always in one of four states:

1. Playing with another child,

2. Playing with an adult (a teacher),

3. Playing alone after playing with another child, or

4. Playing alone after playing with an adult.

Early in our work, it became obvious that solitary play, either item 3 or 4, occupies about
20%−25% of a child’s time, and the propensity to enter and exit this state varies according to
whether the child plays with another child or with an adult.

Two key components are used to model the shifts in play likelihoods between and among
children across the four states. The first is Play Propensity, the likelihood that any specific
pairing of children will occur. The second is Arousal, a behavior proxy (of a child’s internal
configuration of cognitions, affect, motivational, and behavioral tendencies) that externally
characterizes the propensity to shift states. This latter component does not imply a change in
physiological systems (e.g., central nervous system); rather, it is a descriptive term to indicate the
current level of a child within each state as he or she moves toward shifting states.

The underlying mechanism PlayMate uses is briefly described as follows. At each
observed epoch (analogous to a single, real, 10-second playground observation), a child is in one
of four discrete states (noted above). Although in a particular state, the child has a cumulating
value in each of the four states that is used to allow spontaneous state transitions (excluding
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those logically not permitted; e.g., solitary [3] following solitary [4]). In round-robin fashion,
a child is selected to play with another child from the available pool (one is randomly removed to
simulate a “sick” day), and upon pairing, child i assesses child j on several dimensions
determined by the investigator; minimally, these include sex and the relevant attribute
(e.g., aggression, anxiety; see details below) being examined. Arousal, and thus the propensity to
exit the child-playing state, increases proportional to play partner dissimilarity. The greater the
homophily, as assessed by closeness on the variables in the model, the less likely the child is to
exit the child-playing state and to continue playing with other children. This reduces the amount
of solitary play and increases the likelihood of playing with other children as long as they are
similar. After each play episode, two things happen using the assessed attribute level difference:
(1) the arousal level of each state is updated according to a set of transition rules and values
associated with those rules, and (2) the degree of similarity in attribute level plus the assigned
value for sex similarity plus a memory value (higher value assigned to having played recently) is
converted to an integer value associated with an investigator-determined curve
(e.g., exponential), and this value is entered into an adjacency “tally” matrix. This matrix is
a proxy to the observation matrix containing real data. After each run, the simulation tally matrix
is converted to a child-to-child play probability matrix and compared to a similar matrix derived
from actual data.

Following the admonishment of Carley (1996) and others (e.g., Leik and Meeker, 1995;
Rykiel, 1996) regarding the necessity of model validation, and her work on veridicality or
truthfulness in the model (Carley, 2002), throughout the evolution of PlayMate, we have tied its
output to real data. Real data were collected via intensive 10-second observations of children’s
naturally occurring behaviors and interactions at preschool or kindergarten. Each year, a large
group of observers were trained to record the activities, actions, and play partners seen in each
observation. Data were recorded in real-time into handheld computers. This procedure was
repeated for a randomized list of children in each classroom. We typically get
2,000−3,000 observations in a month of data collection. Assessment of the reliability of each
coder was conducted and was consistently found to be high (see Martin and Fabes, 2001, for an
example). For model validation, PlayMate generates numerous quantitative indicators of the
structure and composition differences between the simulated and real data; these include
difference measures of Euclidian distance, Mean cell values, Entropy, Uncertainty reduction
(a measure of mutual information), Solitary play, and row (i.e., child) signal-to-noise ratios. Each
measure is assumed to provide slightly different information about the characteristics of the
matrix structure.

Data Simulation

To approximate a typical month of child observation data, a simulation run was defined
as consisting of allowing each child in the class to play 50 rounds in the round-robin fashion.
This routine is performed 50 times, and we generally obtain the appropriate 75−125 play
episodes, characteristic of the number generated for each child during a month of observations.
The 8-month school year was reduced to five data periods because coder training and reliability
acquisition occur during the first month of school, and children are not available during the
holiday period from mid-December to mid-January.

Response Space: The three primary factors influencing state shift propensities and play
partner likelihoods are the influence of sex, attribute difference level, and recency of play
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(Memory). Within PlayMate, each factor is weighted according to empirical or theoretical
justification. In aggregate, these three factors determine the magnitude of the increase in play
propensity of one child toward another; however, only attribute difference is used to modify the
likelihood of the existing play with child state. Although, in principle, the weighting of these
factors should have an empirical or theoretical justification, in practice we ran the simulations
using parameter sweeps across each factor. Sex influences the model by allowing the preference
for matching on sex to be higher for boys than girls, the girl-to-girl play being a percentage of
the maximum of boy-to-boy play. Values ranged from 0.5 to 0.9 in 0.1 increments. This
same-sex differential is consistent with a substantial body of literature (e.g., Martin and Fabes,
2001). As a proxy for a child’s memory, a list is maintained of all recent play pairings. PlayMate
currently maintains a list of five pairings; this list can be modified to correspond to the
developmental level of the children (e.g., older children have better memories). Assuming that
children tend to play with other children who are similar, and that the preference should be
evident in the ordinal ranking within the list, integer values are assigned according this ranking.
Similarly, the distance between classroom attribute ranking is also assigned an integer value. For
the initial analyses, to assign values for Memory and Attribute distance, we did a parameter
sweep using a gamma distribution, modifying the shape and scale parameters. Interestingly, the
best fitting curve(s) reduced to an exponential distribution, implying that reinforcement for these
two factors falls off at a constant rate. Although not in the current version of PlayMate, it is
possible to allow an optimization method (e.g., genetic algorithm, see Mitchell, 1996) to
maximize the correspondence between the value associated with the index location on the
specified curve and the realized data. As we discuss below, however, this introduces a brittleness
that optimizes the model to a particular group of children, and yet, it may not produce an optimal
general model (see Bankes, 2002).

GENERAL MODEL VALIDATION

To date, PlayMate has been through two revisions. The first version was an agent-based
model and equation-based hybrid (Griffin, et al., 2002). More recently, PlayMate was rewritten
to be completely agent based (Griffin, et al., 2003). Our latest analyses indicate that the current
implementation of PlayMate, although simple, effectively captures the formation of specific
groups within the classroom (Griffin, 2003). Among the various indices used to compare
simulated data with real data, the two most sensitive to children’s attribute differences were
Euclidian distance and mean cell difference. Not surprisingly, these were highly correlated
(r = 0.92). The child attributes used in the analyses (obtained via teachers’ and observers’
reports) were (1) prosocial behavior, (2) activity level, (3) aggression, (4) social inhibition,
(5) temperament, (6) anxiety, (7) physical attractiveness, and (8) social competence.

Analyses of the data consisted of running each attribute individually using parameter
sweeps for Sex, Memory, and Attribution distance. We estimated an overall measure of
association between the simulated and real data matrices by using the quadratic assignment
procedure (Hubert and Schultz, 1976; Krackhardt, 1988) as implemented in UCINET 6
(Borgatti, et al., 2002). Taking the best fitting models that minimized Euclidian distance and
mean cell difference, the attributes of prosocial and social inhibition produced matrices that were
nonsignificantly different for periods 1, 2, 3, and 4 (p < 0.01). The mean cell differences were
0.025, 0.026, 0.025, and 0.029, respectively. This indicates that the simulation produced an
average per cell (i.e., ij) play expectancy within about 2.5−2.6% of the actual data. Note however
that at Period 4 the value moves up to 0.029, and although still significant, it does suggest the
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model fits less well over time. This suspicion was confirmed with Period 5; the mean cell
difference was 0.034 (p > 0.05), indicating a significantly different matrix configuration than the
realized data. In short, we were able to adequately simulate playgroup formation for Periods 1−4
using the attributes of prosocial and social inhibition (physical attractiveness also provided
a significant model but only for Period 3); however, as the year progressed, our model fit less
well.

PUNCTUATED VERIDICALITY AND DEPTH OF CORRECTNESS

Having shown that we have produced a pretty good model  in the general sense  we
more closely examine how the model performs under greater scrutiny. Veridicality can be
considered along at least two dimensions: patterns over time and depth of correctness. If we
punctuate time into discrete intervals, we can assume that model veridicality is invariant within
the specified window of time, and that this stability of truthfulness may or may not continue into
the next interval. Such discretization permits exacting tests of the model as it attempts to capture
processes that invariably evolve in a dynamic system (Casti, 1997), and it allows us to ask very
specific questions of the simulated data. For example, can we predict clustering of children over
time, and can we determine the depth of peer preference at each point of assessment? By
dividing the time year into five periods, the analyses presented thus far have addressed the initial
question. The latter question (addressing preference strength) is just as important as the former.

Envision time running horizontally, where the model has been divided into approximately
equal segments, either for analytic or theoretical reasons, and depth of correctness running
perpendicular to time. In the perpendicular plane, degrees of correctness are demarcated (one
could use a 0−1 range to indicate percent of correctness) for one of several categories of
correctness. We illustrate this concept by examining three depth categories per punctuation
point: (1) correct classification of clustering, (2) correct classification of within- and between-
cluster preferences, and (3) correct classification of strength of preference. In the first category,
theory suggests a strong gender affiliation, and this characteristic was built into the model. As
noted above, parameter sweeps for the influence of sex on subsequent play propensity did not
drastically modify the fit to the data; the data fit well as long as the model specified that boys
moderately prefer the company of other boys more than girls prefer the company of other girls
(approximately 60–80% of the preference of boys). Consequently, the general fit in this category
can be considered good. This finding is evident by comparing the realized data in Figure 2 with
the simulated data in Figure 3. Specifically, these figures show the web of connections where the
number of interactions is greater (i.e., 5) than the class mean (real data: M = 4.335, SD = 4.45
and simulated data: M = 4.344, SD = 2.819) for Period 2. Period 2 is used for illustration because
its fit to the data is approximately the same as Periods 1, 3, and 4. The teacher report data were
also collected during this period.

As can be seen by the connections between vertices (each being a child; blue = boy) the
simulated data captures most of the same-sex interactions and several critical between-sex
interactions. However, additional questions, at greater, more microscopic depth need to be
addressed to determine model truthfulness at this punctuation point. First, does the model capture
pertinent same-sex versus between-sex clustering; that is, are we identifying boys and girls that
play with each other? (Recall that same-sex play is configured tightly in the model.) Second, can
we identify and predict peer preference strength, an assumed critical indicator of playmate
longevity?
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FIGURE 2  Realized data with edges greater than 4 at Period 2

FIGURE 3  Simulated data with edges greater than 4 at Period 2



103

To address these questions, we again raise the threshold of criteria for an edge to seven or
greater interactions. This change provides an increase of about 50% over the mean, thus reducing
the number of edges in the web and providing a better visual presentation of if and how the
simulated data differ from the realized data. Figure 4 shows the realized data for Period 2, and
Figure 5 shows the simulated for the same period. It is immediately apparent that the simulated
data capture many of the same-sex interactions but fail to identify several between-sex
playmates. It is clear from Figure 4 that several boys and girls played together on a regular basis,
and although the simulation suggests this cross-sex play occurs at a rate comparable to the
realized data, it generally failed to identify the correct couplings. In addition, information about
the strength of particular couplings that were missed is evident in Figure 6. This figure shows the
edge differences between Figures 4 and 5. Edge width reflects the strength of the interaction;
a wider band indicates more frequent interactions. Not surprisingly, Figure 6 shows that several
cross-sex interactions were missed; it also shows that several significant same-sex playmates
were not found in the simulated data  for both boys and girls.

This finding of approximate fit at the meso or pattern level (Casti, 1997), and a weaker fit
at the agent level was consistent across the first four periods; not surprisingly, Period 5 had the
poorest fit at all levels. It is clearly evident that as we punctuate time into discrete windows
looking for veridicality within each, and as depth progresses  either at the agent level or the
process sequence level  fit between the realized data and the simulated data lessens. Does this
mean model veridicality depends on the level of examination, or does determining model
truthfulness of dynamic processes within a complex evolving system require some latitude for the
system’s inherent variability and possible nonreplicability? We are trying to address these
questions as another school year of data collection begins, and the model is again being revised.

FIGURE 4  Realized data with edges greater than 6 at Period 2



104

FIGURE 5  Simulated data with edges greater than 6 at Period 2

The web diagrams in this section indicate that the simulated data are more democratic in
their distribution of playing time, and that real data cluster at higher rates and are maintained
longer (i.e., more occurrences) than our current model generates. The simulated data encompass
most of the connections at levels around the mean, but they fail to lock-in on unique
relationships. This suggests that something beyond mere homophily is operating to maintain
a friendship. Sex clearly maps onto the realized process, and in conjunction with prosocial
behavior, we get a generally good fit to the model. Although at a level less than prosocial
behavior, other attributes, especially social inhibition, and to a lesser degree, physical
attractiveness, improved fit to the data. We are currently examining methods of creating vector
variables, with and without element weighting, consisting of these attributes in the hope that
unique combinations might generate simulated data that capture the depth and complexity seen
in the realized data. This idea is discussed in greater detail below.

DISCUSSION

Proposed Refinement of PlayMate

Although analyses indicated that the model generally was adequate, several prominent
shortcomings of PlayMate were revealed. First, in its current implementation, the model does not
provide a mechanism to modify the child’s attribute level as a function of interactions with other
children (see Figure 1). This reciprocal modification among interacting children is key to
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FIGURE 6  Edge differences between realized and simulated data for edges greater than 6
at Period 2 (line width indicates strength [frequency] of interaction)

modeling the evolution of change (e.g., co-evolution; Fogel, 1993). If this was in the model, we
may not have seen the fit drift toward the end of the year. An initial, though nonsystematic,
attempt to modify PlayMate by having each interaction slightly modify the child’s rated attribute
level was not successful (all children drifted toward a single attribute level); further refinements
of mutual influences across children will be explored in the future. Such agent characteristic
modification mechanisms, however, are common in the ABM literature and should be
incorporated (Axelrod, 1997; Conte, et al., 1997; Goldspink, 2002). This shortcoming is
confounded by our lack of temporally relevant data to use in the model. In our current data,
children’s individual attributes were measured in mid-December, and the simulation accurately
modeled play during this time (Periods 1–3); as we attempted to model behavior farther from the
assessment period, model accuracy diminished. In fact, it is possible that with periodic
assessments of attributes throughout the school year, the existing model may not show the drift
found the current analyses.

Second, there are several prima facie assumptions within the code structure of PlayMate
that need to be modified to better capture the ontological complexity of playgroups emerging
from simple homophilous partners. These assumptions can be separated into two areas:
individual children and groups. For children, the assumptions are (1) each has perfect attribute
knowledge about other children; (2) attributes are equally important developmentally, and this
importance does not vary over time; (3) the within-child attribute level is stable and is not
modified by play; (4) no costs are associated with play (e.g., social standing or energy
expenditure); and (5) arousal levels are uniform across all children. At the group level, we
assume that (1) groups form around homophilous attributes and attribute levels, and this
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formative mechanism is not affected by group or class size; and (2) group composition and entry
criteria may or may not evolve. Clearly, these assumptions are untenable, yet at PlayMate’s
initial stages of development, they were necessary to ensure tractability. Ideally, the refined
simulation would address each of the aforementioned assumptions, either singularly or in
a configuration that would allow us to track the dynamics of the groups.

Third, PlayMate is currently configured to systematically simulate a child modifying his
or her interaction with another child contingent on sex, memory, and a single attribute on the
assumption that similarity of attribute level, combined with sex, establishes the requisite
homophily. In effect, each child is represented as a two-dimensional agent. In reality, children
probably evaluate each other in n-dimensional space. Although the length of dimensionality, its
configuration, and possible differential weighting of each dimension are unknown, it is possible
to construct a vector score or an amalgamated index score using the combinatorial methods
developed by Griffin (2000) and then use these scores in the simulation.

Finally, in PlayMate, children play with each other via an algorithm (i.e., random
assignment within a round-robin format). Although the children  as agents  are
heterogeneous across sex and attribute variation, they are not imbued with the ability to evolve
beyond simply reacting and responding to other children on the primary putative factors
(e.g., sex) assumed to foster group formation and adaptation to changing environments. Although
agent diversity is present (Page, 2002), PlayMate fails to maximize it in the service of the
research question. This limitation is not unusual in many ABMs, but in PlayMate, with its basis
in the simulation of socio-developmental processes, lacking a mechanism for intra-agent
recognition, learning, and evolution restricts the validity, robustness, and generalizability of the
model. Two prominent methods are being used in ABMs that would address this lack of intra-
agent communication. The first is Holland’s tagging method (Holland, 1995; Riolo, 1997). Tags
are a form of primitive communication that involve signals. They indicate a property that an
agent has, and other agents can view the tags and take action, making assumptions based on the
information. The second approach is via reputation systems (Alt and King, 2002; Mui, et al.,
2002; Sabater and Sierra, 2002). Within these systems, each agent possesses a reputation based
on group affiliation, direct exchanges with other agents, and information obtained indirectly from
other agents. This setup mimics the plausible process that children may use to determine with
whom and why they play. Moreover, coupling diverse agents with rules allowing variability in
response to each exchange (based on attributes and rule variations) generates better modeling of
the richness and complexity underlying human engagement, reaction, and change. Integrating
this method of intra- and interagent behavior into PlayMate would add realism to our model. In
turn, this capability would allow us to attest to the veridicality of the model.
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ALIGNMENT AND VALIDATION IN AN AGENT-BASED MODEL
OF ON-LINE B2C AUCTIONS
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ABSTRACT

 This paper discusses the development and validation of an agent-based computational
model of the on-line B2C auction marketplace. The model incorporates all of the relevant
elements of the environment (i.e., consumers, retailers, and auctioneers), allowing
investigation of various aspects of B2C auctions. A specific focus is on the development
methodology that ensures alignment of the agent models with previously proposed
analytical models, as well as its subsequent validation against field-observed price
formations. Such alignment is critical to ensure that the agent-based model embodies
known economic and behavioral principles and produces known or field-observable
results, so that it can be subsequently used for studying different aspects of the B2C
auction marketplace and also to aid in the design of such auctions.
 
 Keywords: On-line auctions, agent-based model, alignment, validation

INTRODUCTION

The environment in which on-line auctions operate raises numerous research questions,
ranging from issues dealing with the design of these auctions to issues of social welfare. Taking
into account the complexity of the environment, factors that can influence the participation and
outcome of an auction include the nature of the Internet, prices in the retail market,
demographics and behavior of the participating consumers, and the design of the auction itself.
Development of an “all-encompassing” single analytical model of the market is not feasible
given the level of complexity involved and the degree to which one component may directly or
indirectly affect outcomes in the B2C auction market. For example, the revenue outcome in an
auction could be determined by (1) the consumers’ ability/inability to search the retail market;
(2) the nature of the retail market itself, in terms of the number of retailers offering the product,
the posted prices, etc.; (3) the auction mechanism, in terms of duration of the auction, number of
consumers demanding the product, quantity being auctioned, auction’s format and rules, etc.; and
(4) the demography of the consumers participating in the auction, their search of price-related
information, and their bidding behavior. Although a separate theoretical model could be
developed for each of these specific cases, it would prohibit understanding the potentially
complex interactions between one or more factors that simultaneously could be at work in the
marketplace.

This paper discusses the development and validation of a computational agent-based
model (ABM) of the electronic auction marketplace. Such a model allows investigation of the
various aspects of B2C auctions by incorporating all of the relevant elements of the environment
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(i.e., consumers, retailers, and auctioneers). By undertaking a bottom-up approach to develop
models of individual agents based on existing knowledge and findings, the paper specifically
focuses on the development methodology that ensures alignment of the agent models with
previously proposed analytical models, as well as subsequent validation against field-observed
price formations. Such alignment is critical for two reasons. First, it ensures that the ABM
embodies known economic and behavioral principles and produces known or field-observable
results so that it can subsequently be used for studying various aspects of the B2C auction
marketplace. Second, it aids in the design of such auctions.

A simple validation of output from the ABM vis-à-vis field-observed data is insufficient
to prove the adequacy and appropriateness of models used for modeling agents’ behaviors. We
propose a methodology that ensures an alignment in model selections, correspondence in
conditions for output generation, and final validation by means of output comparisons. A caveat
for the reader: the proposed methodology is for a particular class of problems that aim to build an
ABM of a real-world phenomenon with the objective of utilizing the model for normative as well
as predictive research. Our objective is to use the observable parameters of the real-world
marketplace to model the properties of the agents (i.e., retailers, consumers, and auctions) so that
the computational model essentially provides a “synthetic test bed” for simulating the market,
allowing for future normative and/or predictive studies.

The general nature of the class of problems is best illustrated by using the typologies
outlined in Axtell (2000) and Tesfatsion (2002). Axtell (2000) presents three distinct uses for
adopting agent computation in the social sciences:

1. Traditional simulation of operations research problems,

2. Research areas where mathematical models can be formulated but not
completely solved, and

3. Inability to mathematically model the problem, except at the rudimentary
level in a piecewise manner.

This research fits into the second category of problems, which are in an analytical sense
only partially soluble. In this class of problems, the theory or theories (as the case may be)
informing the problem yield mathematical relationships, but these relationships are not directly
soluble. A problem can resist detailed analysis in various ways, most commonly when no
appropriate solution concept is available; stability of the equilibrium is uncertain; and in an
analytical sense, it is not possible to readily solve for the dependence of the equilibrium on
parameters of interest. Understanding B2C auctions resists full solubility because of each of
these reasons. Tesfatsion (2002) categorizes the agent-based computational economics (ACE)
research into the eight application areas shown in Table 1. In addition to belonging to the
category of problems that resist full solubility as defined by Axtell (2000), in the context of the
ACE application areas described above, the primary objectives of the ABM presented here are to
replicate the real B2C auction market (parallel experiments with real and computational agents)
to provide predictive capability, and to use bottom-up modeling of market processes to enable
future testing of auction design (design of market protocols).
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TABLE 1  Eight application areas of ACE research

1. Learning and the embodied mind
2 Evolution of norms
3. Bottom-up modeling of market processes
4. Network formation
5. Intra-firm organization
6. Use of ACE laboratories to test the design of market protocols
7. Use of ACE laboratories to test the design of computational

agents for an automated market
8. Parallel experiments with real and computational agents

Because research areas that use ABM to tackle complex problems resist solubility,
typically when the agents in the model are heterogeneous, Axtell (2000) suggests first building
an agent-based computational model where the agents can be made heterogeneous. The ABM
then can be docked with the analytical model by imposing constraints in the simulation that are
identical to those in the analytical model (usually homogeneity of agents). The docked ABM
should then reproduce the known analytical results providing the first-order validation of its
agents. Following the validation of the ABM, the assumptions can be relaxed for a systemic
study. In designing agent-based systems intended to mimic the real world, the issue of docking
becomes especially significant. In such scenarios, given the lack of a theoretical model that is
soluble, direct avenues to validate the ABM do not exist. Our ABM falls in this real-world
category of problems, and no earlier research exists in docking the ABMs in such cases.

The ACE research area most relevant for this study aims to mimic the real-world market
through bottom-up modeling of market processes. To the best of our knowledge, no ACE
research has been conducted with the objective of replicating a real-world system. The research
objective for mimicking a real-world system is to understand the underlying dynamics of the
observed emergent phenomenon by modeling an “equivalent” phenomenon in the laboratory
using agents (human or computational) in market conditions equivalent to “real-world” settings.
In contrast, the objective of this research (seeking to mimic the price formation in a B2C auction
market) is not only to aid in the understanding of underlying dynamics, but also to design and
validate an ABM of the B2C auction market that possesses predictive capabilities. This objective
necessitates that we replicate the market (rather than just mimic) to prove the robustness of
models used for agent’s behaviors, allow the system’s use for predictive purposes, and use as
a “synthetic test bed” for evaluating and designing auctions. This objective of replicating the
market raises additional research issues with respect to verification and validation of the
computational model as discussed in the next section.

We adopt a multi-stage approach for constructing the agent-based system and its
validation. A first part of this research proposed (and empirically using field-observed data)
a revenue model for the auctions, based on interaction between the retail and auction market by
way of consumers’ search for price-related information (Mehta and Lee, 2003). This paper
identifies the relevant agents and develops detailed specifications for each of the agent’s
behaviors in alignment with the environment and broad constructs of the earlier model. These
specifications for agent models are obtained through deconstruction and specification of
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lower-level processes, while maintaining the theoretical alignment at the aggregate level, for
example, consumers’ search the posted-price market until expected savings from additional
observations are unlikely to offset the marginal cost of search. The introduction of newer models
at detailed specifications of these behaviors introduces new variables and assumptions that
require further validation. In contrast to the validation of the theoretical model conducted using
the field-observed final revenues, the ABM is validated by using the entire price-formation data
from the auctions and posted-price data from retailers for the same and related products.

RESEARCH METHODOLOGY

Hales (1998) illustrates the methodological frameworks adopted in research dealing with
artificial societies (ASoc). The methodologies illustrated by Hales (1998) include existence
proof, behavior modeling, theory testing, theory building, and explanation finding. Because our
research cannot be strictly categorized as a typical ASoc work but does aim to build an ASoc
equivalent to a real marketplace, we borrow the elements of the framework to develop and
illustrate the proposed methodology (Figure 1).

Research using advanced computer modeling (ACM) can be considered as a set of
theories T informing the formulation of a set of agent-based models M; a set of runs R,
comprising the execution of simulations that embody M; and a set of observations O obtained
from the runs R. Axtell, et al. (1996) align the two computational models based only on
establishing equivalence of their outputs. For modeling some real-world phenomenon, because
of the flexibility accorded by ACM, one risks building an overly complex model, and mere
equivalence of output does not provide a sufficient guarantee of appropriateness or adequacy of
M. An overly complex model under certain settings, however, can produce an equivalent output;
significance established using various statistics from comparison of outputs does not imply
validation of the model. To overcome such pitfalls of building overly complex models and to aid
in selection of M, it is necessary to first engage in the testing of theory T that inform the
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FIGURE 1  Methodology for alignment and validation of ACM
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models M. Theory testing involves translation and/or abstraction of some existing T pertaining to
a set of real-world process R′ into a set of explanations E. To obtain support for E, a set of
hypotheses H is formulated and tested against a set of measurements O′ yielded by R′. Validation
of H thus implies validation of abstraction E and by induction gains support for applicability of T
for understanding R′. Alignment of the ACM to the real world and its validation thus requires:
alignment of theory, alignment of observable processes, and alignment of output. These three
alignments together constitute a successful validation of the ACM.

Alignment of Theory

In alignment of theory, the T used for abstracting E are now used in the construction of
M. To leverage the richness in modeling available in ACM, the T previously abstracted in E can
now be decomposed into multiple models during construction of M while maintaining
corresponding equivalence with E. In this context, traditional numerical simulations involve
direct translation of theoretical formulations, followed by relaxations of assumptions and
constraints that were necessary for maintaining analytical tractability. Such direct translation
implicitly maintains an alignment. In the case of ACM, however, the explicit formulation of
lower-level processes may bring to the surface models that were nonexistent at higher levels of
abstraction, thus making a direct comparison through mapping infeasible.

We adopt the following four approaches for alignment of M:

1. Qualitative approach − A qualitative approach is utilized when no suitable
formulation exists for a given behavior, but evidence of the behavior has been
reported. In such cases, we draw on existing domain knowledge to build the
simplest possible formulation that can adequately represent the known
behavior.

2. Direct mathematical formulation − Direct mathematical formulation is
adopted for proven behavior models.

3. Higher-level theoretical principles − Only higher-level theoretical principles
are maintained because underlying assumptions of T and E have been relaxed,
resulting in some of the lower-level models coming from Approach 1, thereby
making Approach 2 infeasible. For example, consumers’ search of the retail
market yields posted prices not only for the item being auctioned, but also for
items that can be considered as substitutes. Since no known models exist for
incorporating price-related information of substitutes, we introduce a model
based on “degree of similarity” to allow for assimilation of all related
information into formulation of “willingness to pay,” while maintaining the
theoretical principles of search models (i.e., search is costly and consumers
stop searching when expected savings from additional searches cannot be
offset by the cost incurred).

4. Abstraction of models to a level where they are replaced by exact values
(states) observable from the real world − While this approach might seem
counterintuitive considering that the principles of ACM emphasize
decomposition rather than abstraction, it is necessary in cases where
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specification of the actual ABM is not critical to the objective of the research
and introduction of the model can destabilize the alignment process. For
example, in our model, the retailers’ product offerings and pricing models are
abstracted away and replaced by field-observed, product-price offering
information. Though introduction of retailers’ models for product offering and
pricing strategies would lend richness to the overall model, they are not
critical to the objective of this research, and the increase in complexity of the
overall model would prevent proper validation of the model. In fact,
replacement with the actual product price information provides a point of
alignment with the real world and a better comparison environment for
alignment of observable processes and in turn outputs by ensuring that any
convergence/divergence between outputs results from adequacy/inadequacy of
M of primary importance.

Alignment of Observable Processes

Alignment of observable processes requires equivalence in conditions of M to conduct R
such that a meaningful correspondence with R′ allows for the most direct comparison of O and
O′. However, the conditions producing R′ may be only partially observable, and every effort
should be made to replicate the observable conditions in M. For example, as mentioned earlier,
when the retailers’ product offering and pricing models are replaced with actual posted prices,
the settings of the auction in terms of product offered on auction, duration, bidding rules, etc., are
replicated in M to maintain a correspondence between R and R′.

Alignment of Outputs

The comparison of outputs O and O′ constitutes the final step. If an alignment of theory
and process is complete, no significant differences should be observed between O and O′.
However, since the real world is not entirely transparent to the researcher, complete fore-
knowledge of model specifications (values of certain parameters) must be estimated. If the
alignment of the theoretical models and formulations of the processes are deemed adequate, any
observed divergence between O and O′ can be assumed to be a result of an incorrect estimation
of these parameters. The results from comparison of O and O′ can thus be used to revise
parameter values iteratively until an equivalence is established. Since adequacy of formulations
cannot be guaranteed by merely conducting alignment of theory and processes, it is possible for
parameter estimates to compensate for any shortcomings and provide a false sense of
“validation.” As a result, follow-up testing is necessary to establish that parameter estimates
were the only source of observed divergence and the estimates obtained did not compensate for
inadequacies in M. The final validation of the model is thus conducted using independent sets of
R2′ and O2′ and parameter estimates obtained from O′. A successful comparison of O2′ with O2
yielding equivalence constitutes completed validation of the ACM. Additional support for the
validation can also be obtained through sensitivity analysis of the parameter estimates.
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AGENT-BASED MODEL

In the defined context, the relevant agents identified are the retailer, consumer/bidder,
auction, and product. The level of detail specified for each agent is limited to actions that are
directly relevant to the events in a single set of auctions. Thus, auctions are examined in
a somewhat static setting where agents do not learn from one auction to the next. Figure 2
provides an overview of the environment and interactions between agents.

A consumer desires to purchase a product and is willing to accept some perfect and
imperfect substitutes for the desired product. Before making the final purchase, the consumer
must select a channel (auction or retail), seller (auctioneer or retailer), and the product-price
combination offering the best “deal” (utility maximization). To make this decision, the consumer
searches through the retail market to gather price-related information for desired and related
products (perfect and imperfect substitutes), and evaluates product-price observations based on
the similarity with the desired product to form the highest willingness to pay. For example,
assume the consumer desires a product for which the lowest retail price observed is $100. If
a similar product is available, but it provides only 80% of the utility because it lacks some of the
features of the desired product, the consumer will be willing to pay $80 for the similar product.

Thus, upon arrival in the market, the consumer assumes a search state and engages in
search for price-related information from the retail market for the desired product and the
acceptable substitutes. Following the consumer’s search of price-related information, the
consumer “visits” the auction, participating only if the product being auctioned is an acceptable
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FIGURE 2  Schematic of the implemented agent-based simulation model
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substitute for the desired product and continues to participate as long as the required bid for
winning the auction is less than consumer’s willingness to pay for the product. The consumer
leaves the auction if the product being auctioned is not acceptable or the required winning bid
exceeds the consumer’s willingness to pay.

In any time period, when participating in the auction, the consumer assumes one of five
states:

1. Watch − Monitor the progress of the auction,

2. Sleep − Remain dormant,

3. Bid − Place a bid in the auction,

4. Evaluate bid − Evaluate the success of a bid placed in the previous time
period, or

5. Leave − Leave the auction if the willingness to pay has been exceeded.

At each time period, during participation in the auction, the consumer undertakes actions
according to the current state and decides the state for the next period. This process continues at
each time period until either the consumer decides to leave or the auction closes. Depending on
the state assumed, the consumer agent obtains the necessary information to execute actions for
that state and for deciding on the state to assume in the next time period. This decision is
determined by the state transition rules and the state↔behavior relationships model as shown in
Figure 3 (state determines behavior in time t, the behavior in turn determines the state in t + 1).
The dependence of states and actions allows for each consumer to act independently, obtaining
and processing potentially different information in each time period. In a given time period, two
consumer agents possessing identical information and in the same state can also decide
differently owing to differences in their attribute values, such as search efficiency, risk profile,
and desired product.

The retail market, as modeled, consists of various retailer agents, each of whom offers to
sell a product (not necessarily the same product) at a fixed posted price. The only consumers that
observe this price are those whose search for price-related information leads them to this retailer.

The auction (auctioneer) is modeled as an agent who offers to sell q quantity of a product
to the highest bidders. The auction keeps track of the time elapsed and knows when to close the
auction. The auction also advertises the current winning bids and the minimum required bid to
displace the current winners. For each time period until close of the auction, all participating
consumers are invited to submit new bids. After collecting the response from all the consumer
agents, the auction agent combines the list of submitted bids with the list of current winning bids.
The highest q bidders from the combined list are chosen as the new winners of the auction. In the
case of a tie, the tie for the q’th position is broken by using arbitration rules, giving preference to
the bidder whose first bid was placed earlier. If the two arrivals are simultaneous, the tie is
broken by using a random draw with each of the tied bidders having an equal probability of
winning. After completion of bid evaluation, the successful and unsuccessful bidders are
informed of the results.
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FIGURE 3  State transition rules and state actions dependence for the consumer agent

The auction also keeps track of closing time for ending the auction. The closing time is
either static (auction closes at declared closing time) or dynamic (auction closing time
is extended such that a fixed length of time must elapse after the last bidding activity before
closing the auction). In the latter case, the auction does not inform the consumer agents about
either the extension or the duration of the extension.

In their roles, only the auction, consumer, and retailer agents are modeled as “animate” in
the sense that they are able to act autonomously and interact with other agents. Although the
retailer agents interact with the consumer agents (reveal posted price), they do not change their
state; retailer’s price offerings and specific product’s properties do not change for the duration.
The product agents are modeled as “inanimate” because they lack the capacity to initiate an
interaction with other agents. (For the detailed formulations of the individual models, see Mehta
and Bhattacharyya [2003].)

Alignment of Observable Processes: Utilizing Field Observations

As discussed earlier, the alignment of observable processes involves setting conditions in
the ACM such that a suitable correspondence between conditions for simulation runs R and the
real-world conditions that define the context of R′. In this context, Figure 4 illustrates the class
diagram of the ACM and identifies agents whose parameters are directly observable (at the level



122

Analysis Tools
(Observer Swarm)

Marketplace
(Model Swarm)

Retail Market
(Swarm Object)

Retailer
(Swarm Object)

Product
(Swarm Object)

Auction
(Swarm Object)

Bidder
(Swarm Object)

Observed Retail
Offerings

*

1

1..*

1

*

1

*

desires

*

1

1

1

1..*

1..*

1

1

*

Parameters obtained from observable parameters in real world

Parameters are calibrated

Simulation objects – needing no real world parameters

Analysis Tools
(Observer Swarm)

Marketplace
(Model Swarm)

Retail Market
(Swarm Object)

Retailer
(Swarm Object)

Product
(Swarm Object)

Auction
(Swarm Object)

Bidder
(Swarm Object)

Observed Retail
Offerings

*

1

1..*

1

*

1

*

desires

*

1

1

1

1..*

1..*

1

1

*

Parameters obtained from observable parameters in real world

Parameters are calibrated

Simulation objects – needing no real world parameters

FIGURE 4  Class diagram of ACM for B2C auction

of modeled abstraction) and can be used to bring about the needed correspondence. The data
collection for each of these is described in the next section.

Retail Market: Retailer and Product Data

Retail price information was collected for the hard drive market by using two shopping
agent websites: pricescan.com and pricewatch.com. While many other websites offer
comparative prices from multiple retailers, the goal was to collect enough data to model
a sufficiently representative retail market. The search yielded a total of 1,436 posted prices from
various on-line retailers for 183 different makes and models of hard drives. The hard drives were
organized in order of similarity in their technical characteristics: storage capacity, rotation speed
(rpm), and data transfer rate. The technical specifications were gathered from the manufacturer
for each of the 183 hard drives. Hard drives that were technically identical in all respects
(excluding make and model) were assigned the same product ID (integer value), with the IDs
being in increasing order of storage capacity. This process resulted in a total of 77 products.

The final data set used for modeling the retail market in the simulation includes
1,436 retailers offering to sell one of the 77 products at a posted price. The product offered for
sale through the auction is assigned an ID; it is the same as the one used for identifying the
corresponding retail offerings for the product. In absence of any specific information regarding
demand, the consumer agents are randomly assigned a desired product ID with equal probability.
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Auction Market Data

Data were collected from UBid over a 3-day period for more than 40 different auctions
belonging to the “hard drive” category. The auction settings data recorded were (1) product
offered mapped to product IDs used in simulation, (2) duration of auction, (3) start bid, and
(4) bid increment. In addition, the price-formation data were also collected for these auctions for
use in alignment of outputs and final validation of the model (discussed in next section). All of
these were single-unit auctions belonging to the hard drive category and, given the volatility in
retail prices for computer-related components, the data collection period was limited to 3 days to
prevent changes in the retail market from impacting the auction market.

Alignment of Outputs

Price-formation data were collected at 1-minute intervals from the start to the end of the
auction for each of the auctions mentioned above. Collection of data was restricted to single-unit
auctions to prevent inclusion of resellers who tend to participate in multi-unit auctions and bid
for multiple quantities of the same item to reduce the per-unit shipping costs.

The objective was to obtain price-formation data from multiple auctions with identical
settings in terms of auction parameters (i.e., product auctioned, duration of auction, and bidding
increments). To validate the models of the underlying processes in the ABM, it is essential to
replicate the auction market in general rather than replicate the events of a single auction.
Comparison with multiple price-formation series from auctions with identical settings O′
provides us with the price formation in general (mean of these series) along with variations
between auctions because of other environmental uncertainties. For validating the ABMs, the
results O yielded from multiple runs R of the simulation should reflect the price-formation series
observed in the B2C auctions.

From the data collected, the price formation series identified for use in parameter
estimation and validation of the ABM includes three auctions each for two different product
items (three auctions of Western Digital 30 GB hard drive with manufacturer part number
WD300AB and three auctions of Western Digital 40 GB hard drive with manufacturer part
number WDC400BB).

To ensure proper validation of outputs and to avoid an over-fit solution to the observed
price formations, the final validation of output of the ABM is conducted in two stages 
calibration (parameter estimation) and validation. Calibration of the parameters is conducted by 
using the first group of data (three auctions of WD300AB) to obtain the simulated
price-formation series, and parameters are revised to fit the simulated price-formation to the
field-observed data. By using the calibrated parameters along with the auction settings for the
second product (WDC400AB), results from the simulation are obtained and validated against
a second group of data. The two items were selected to ensure that the product IDs were
sufficiently unique to prevent any confounding unobserved effects during parameter estimation
from also affecting the validation runs.
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RESULTS AND DISCUSSION

Parameter Estimation and Validation

During the calibration process, three different random seeds were utilized, and the
outcome of the simulations was compared against the observed price formation series of product
WD300AB. The parameter estimates were refined until the simulated price formation
O converged to field-observed data O′, and statistical tests indicated predictive capability of the
model at a better than 95% significance level. Following the calibration, 10 new random seeds
were chosen, and simulations were carried out for validation against the 3 price formation series
from auction of WDC400BB, which constituted the holdout sample for validation of the ABM.
New random seeds were chosen for the simulation to prevent biases in parameter estimates that
could have been caused by conditions generated by specific random number seeds. The
parameters for auction settings were set to those used by the auctioneer for WBC400BB, and the
product offered ID was set to the ID used in the retail market model to denote WDC400BB. The
retailer agent’s parameters are modeled using the retail market posted prices for various hard
drives and do not change from calibration to validation. The consumer agent’s parameters are
based on the ones obtained from the calibration.

For both calibration and validation, to test for similarity between the simulated and field-
observed price formation data, consider a field-observed, price-formation data from j’th auction,
Rj = {Bjt}, and the simulation results with identical auction settings from i’th run, Ri = {Bs,it},
where Bs,it and Bjt are bid levels at time t in the simulation results and field data, respectively.
Given the nonlinear nature of price formation in auctions, mean bid levels were compared at 0, 2,
4, 6, 8, 10, 20, 40, 60, 80, 100, and 120 minutes. By using the mean bid levels from multiple runs
of the simulation and the mean bid levels from field-observed B2C auctions, a paired t-test is
conducted to statistically test the similarity of the two price-formation series. The calibration
runs of the simulations (for product WD300AB) were only for parameter estimation. These
estimates are then used to model the auction of another product (WDC400BB). The validation of
simulation results thus obtained, against the field-observed, price-formation data constitutes the
final proof of the ABM’s ability to replicate price formation in the B2C auction market. The
average bid levels obtained from the 10 simulations, along with the price formation data from the
3 B2C auctions, are shown in Figure 5.

A paired t-test comparison of the bid levels at the above-mentioned times indicates the
difference between the two price-formation series to be statistically insignificant from 0 at 10%,
proving that the ABM adequately captures the underlying processes at play in the field-observed
B2C auctions. Examination of the residuals from comparison of the price formations (difference
of the two series) also indicated no significant correlation of the residual with the field-observed
price formation. Ideally, one should also test for equivalence of the variance at the same time
periods between the simulated and field-observed data. Because of the paucity of field-observed
data in terms of price-formation series from identical auction settings, we were unable to do so;
however, we examined other aspects of the output to establish equivalence in the dynamics of the
process. The comparison of simulation output with field-observed data and implications from an
analytical model are summarized in Table 2.
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TABLE 2  Comparison of simulated and field-observed, price-formation processes

Aspect of Simulation Output Compared Against Remarks

Mean bid levels at geometric
time intervals

Field-observed data Difference between mean bid levels is
statistically insignificant from 0 at 90%
confidence level.

Range of number of bids
placed in auction

Field-observed data Both data indicate 6 to 7 bids placed.

Number of bidders placing
bids

Field-observed data Field observations indicate 3 to 4 bidders
bidding, whereas simulation indicates
3 to 5 bidders in 9 out of the 10 runs, and
7 bidders in 1 case.

Number of total participants
needed to obtain the
approximately 10% premium
over the lowest posted price for
the item being auctioned

Analytical model
proposed by Mehta
and Lee (2003)

Analytical model indicates approximately
20 participants, each observing more than
5 posted prices for the exact item.
Simulation model indicates an average of
about 17 participants desire the same item
or are willing to accept it as the perfect
substitute and observe 5−11 posted prices
for the desired item and perfect substitutes.
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CONCLUSION

Agent-based models offer a suitable mechanism for developing a realistic,
all-encompassing model of the B2C auction marketplace. Given the flexibility accorded the
modeler, however, one runs the risk of building overly complex models. Such models, even
when generating output identical to that of the system being studied, would not appropriately
represent the characteristics of individual agents and their actions. We propose that obtaining an
agent-based computational model that adequately captures the system under study requires
alignment at each of the following stages: (1) model selection, (2) observable processes, and
(3) final output produced. The application of the proposed multi-staged methodology is
illustrated in the context of the design, development, and validation of the ABM of
B2C auctions.

Results from the agent-based simulation demonstrate the usefulness of this approach for
replicating the dynamics of the auction market. The model is useful for investigating various
aspects of B2C auctions, including the following:

• Examination of market characteristics, such as alternative distributions of
posted prices, demand for items, and degree of product differentiation in the
retail market;

• Consumer characteristics in terms of their search efficiencies and bidding
behaviors; and

• Auction parameters related to the design of the auction, such as start bids, bid
increments, and number of units on auction.

The methodology highlighted here is applicable across a range of areas adopting agent-
based modeling of real-world systems/markets, including network pricing, bandwidth allocation,
and dynamic routing in packet-switched networks.

REFERENCES

Axtell, R., R. Axelrod, J.M. Epstein, and M.D. Cohen, 1996, “Aligning Simulation Models:
A Case of Study and Results,” Computational Mathematical Organization Theory
1(2):123−141.

Axtell, R., 2000, Why Agents? On the Varied Motivations for Agent Computing in the Social
Sciences, Working paper No. 17, Center on Social and Economic Dynamics, Brookings
Institution.

Hales, D., 1998, “Artificial Societies, Theory Building and Memetics,” presented at Memetics
Symposium in Proceedings of the 15th International Conference on Cybernetics, Namur,
Belgium: International Association for Cybernetics.

Mehta, K., and B. Lee, 2003, “A Model of Market Interactions: Auctions vs. Posted Price,”
Working Paper, University of Connecticut.



127

Mehta, K., and S. Bhattacharyya, 2003, “Design, Development and Validation of an Agent-based
Model of Electronic Auctions,” Information Technology and Management (forthcoming).

Tesfatsion, L., 2002, “Agent-based Computational Economics: Growing Economies from the
Bottom Up,” Artificial Life 8(1):55−82.



128



129

A MULTI-MODEL DOCKING EXPERIMENT OF DYNAMIC
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ABSTRACT

 Axtell, Axelrod, Epstein, and Cohen have described a “docking” or alignment process
and an experiment for verifying simulations. By comparing simulations built
independently with different tools, the docking process can be used to discover bugs,
misinterpretations of model specifications, and inherent differences in toolkit
implementations. When the behavior of multiple simulations is similar, verification
confidence increases. North and Macal reported on such an experiment in which they
used Mathematica, Swarm, and Repast to simulate the Beer Distribution Game
(originally simulated using system dynamics simulation methods). This paper presents
the results of docking a Repast simulation and a Java/Swarm simulation of four social
network models of the open source software (OSS) community. Data about the
SourceForge OSS developer site have been collected for more than two years.
Membership in projects is used to model the social network of developers. Social
networks based on random graphs, preferential attachment, and preferential attachment
with both constant and dynamic fitness are modeled and compared with collected data.
Furthermore, this paper describes how properties of social networks, such as degree
distribution, diameter, and clustering coefficient, are used to dock Repast and Swarm
simulations of four social network models. The simulations grow artificial societies that
represent the SourceForge developer/project community. A by-product of the docking
experiment is a set of observations concerning the advantages and disadvantages of the
two toolkits for modeling such systems.
 
 Keywords: Dynamic social network, docking, agent-based modeling, open source
software

1  INTRODUCTION

Agent-based modeling (ABM) has become a popular computational methodology in
recent years because researchers can simulate complex systems in a relatively straightforward
way. Unlike traditional mathematical simulation tools, ABM simulates artificial worlds on the
basis of components called agents and defines rules to determine their interactions. Although
commonly used in simulations, ABM does not guarantee an accurate representation of
a particular empirical application (Axelrod, 1997). In this context, Axtell, et al. (1996) claimed,
“It seems fundamental to us to be able to determine whether two models claiming to deal with
the same phenomenon can, or cannot, produce the same result.”
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An agent-based simulation is validated in several ways:

• Simulation output is compared with the real phenomenon. This method is
relatively simple and straightforward; often, however, complete real data
cannot be obtained on all aspects of the phenomenon.

• Results of agent-based simulation are compared with results of mathematical
models. The disadvantage of this method of validation is that mathematical
models must be constructed, and these models can be difficult to formulate
for a complex system.

• Other simulations of the same phenomenon can be docked. Docking is the
process of aligning two dissimilar models to address the same question or
problem. The objective is to investigate their similarities and differences, but,
most important, to gain new understanding of the question or issue (Burton,
1998).

Axtell, et al. (1996) have described a docking or alignment process and experiment for
verifying simulations. By comparing simulations built independently with different simulation
tools, researchers can use the docking process to discover bugs, misinterpretations of model
specifications, and inherent differences in toolkit implementations. When the behavior of
multiple simulations is similar, confidence in verification increases. North and Macal (2003)
reported on such an experiment in which they used Mathematica, Swarm, and Repast to simulate
the Beer Distribution Game (originally simulated using system dynamics simulation methods).
Ashworth and Louie (2002) performed docking by comparing results of the canonical Garbage
Can Model with those of the NK model. Xu and Gao (2003) used Repast and Swarm to dock
a random network model of the open source software (OSS) phenomenon. Although the above
experiments show the importance and advantages of docking, only a few studies have been
performed, and none has used topological properties of social networks as parameters.

This paper presents the results of docking a Repast simulation and a Java/Swarm
simulation of four dynamic social network models of the OSS community. These results are part
of a study of the OSS by a number of researchers.1 Data regarding the SourceForge OSS
developer site have been collected for more than two years. Developer membership in projects is
used to model the social network of developers. Social networks based on random graphs,
preferential attachment, and preferential attachment with both constant and dynamic fitness are
modeled and compared to collected data. Properties of social networks, such as degree
distribution, diameter, and clustering coefficient, are used to dock Repast and Swarm simulations
of four social networks. The simulations grow artificial societies that represent the SourceForge
developer/project community. As a by-product of the docking experiment, we provide
observations on the advantages and disadvantages of the two toolkits for modeling such systems.

The remainder of this paper is organized as follows. Section 2 provides background on
our OSS study and simulation. Section 3 discusses docking simulations using Repast and Swarm.
Section 4 gives experiment results and comparisons, and Section 5 presents conclusions.

                                                
1 Researchers include Madey, et al. (2002a,b), Madey, et al. (2003a,b), Gao, (2003), Gao, et al. (2003a,b), and Xu

and Gao (2003).
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2  SOCIAL NETWORK MODEL

Social network theory is a conceptual framework through which we can view the OSS
developer movement. The theory, built on mathematical graph theory, depicts interrelated social
agents as nodes or vertices of a graph and their relationships as links or edges drawn between the
nodes (Wasserman and Faust, 1994). The number of edges (or links) connected to a node
(or vertex) is called the index or degree of the node.

Of special interest are the evolutionary processes and associated topological formations
in dynamic growing networks. Early work in this field by Erdos and Renyi (ER) (in Barabasi,
2002) focuses on random graphs, those in which edges between vertices were attached in
a random process, called ER graphs in this paper). The distributions of index values for random
graphs, however, do not agree with the observed power law distribution for many social
networks, including the OSS developer network at SourceForge. Other evolutionary mechanisms
include the following:

• Watts-Strogatz (WS) model (Strogatz and Watts, 1998),

• Barabasi-Albert (BA) model with preferential attachment (Albert, et al., 1999;
Barabasi and Albert, 1999; Barabasi, et al., 2000),

• Modified BA model with fitness (Barabasi, et al., 2001; Barabasi 2002), and

• Extension of the BA model (with fitness) to include dynamic fitness based on
project life cycle (Gao (2003); Gao, et al. (2003a,b); Madey, et al., 2003a).

The WS model captures the local clustering property of social networks and was
extended to include some random reattachment to capture the small world property but failed to
display the power-law distribution of index values. The BA model added preferential attachment,
while preserving the realistic properties of the WS model and displaying the power-law
distribution. The BA model was extended with the addition of random fitness to capture the fact
that sometimes newly added nodes grow edges faster than previously added nodes (the “young
upstart” phenomenon).

The OSS development movement is a classic example of a dynamic social network; it is
also a prototype of a complex, evolving network. Previous research suggests that the OSS
network can be considered a complex, self-organizing system (Faloutsos, et al., 1999; Adamic
and Huberman, 1999; Barabasi, 2002). These systems are typically composed of many locally
interacting elements.

The OSS community can be described as a dynamic social network. Our model of the
OSS collaboration network has two entities  developer and project. The network can be
illustrated as a graph. In this network, nodes are developers. An edge is added if two developers
participate in the same project, and the edge is removed if they no longer participate in that
project. The study of the OSS collaboration network can help us to understand the evolution of
the social network’s topology, the development patterns of each individual object, and the impact
of the interaction among objects to the evolution of the overall network system.
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We use ABM to simulate the OSS development community. Unlike developers, projects
are passive elements of the social network. Thus, we define developers only as the agents that
encapsulate a real developer’s possible daily interactions with the development network. Our
simulation is time stepped rather than event driven (one day of real time = one time step). Each
day, a certain number of new developers are created. Newly created developers use decision
rules to create new projects or join other projects. Further, each day existing developers can
decide to abandon a randomly selected project, to continue their current projects, or to create
a new project. A developer’s selection is determined by a Java method based on the relative
parameter and the degree of the developer.

3  DOCKING OSS COLLABORATION
NETWORK SIMULATION

This section describes the docking of our OSS collaboration network simulation by
two ABM tools  Java Swarm and Repast. Simulation details are compared between these two
models.

3.1  The Docking Process

The docking process is an important stage of the OSS project (Freeh, et al., 2003). The
initial simulation was written using Swarm. Docking is necessary in this project for two reasons:

• Testing the correctness of the Swarm implementation and

• Providing the Repast version of the OSS simulation that we would like to use
in our future research.

Repast has several advantages for this project: it is written in pure Java, which makes
debugging easier; it provides a graphic representation of the network layout; and, most
important, Repast 2.0 provides a distributed running environment (Collier and Howe, 2003).

As shown in Figure 1, both Swarm and Repast simulations are docked for four models of
the OSS network. Our docking process began when the author of the Swarm simulation wrote
the docking specification. The Repast version was then written on the basis of the docking
specification. Simulations are validated by comparing network attributes generated by running
these two simulation models.

3.2  Swarm

Originally developed at the Santa Fe Institute (Minar, et al., 2002), Swarm is a software
package for multi-agent simulation of complex systems. In the Swarm model, the basic unit is
called an agent. Modelers can define a set of rules to describe the interaction of agents.
Furthermore, Swarm also provides display, control, and analysis tools.
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FIGURE 1  Docking process

Our Swarm simulation has a hierarchical structure that consists of a developer class,
a modelswarm class, an observerswarm class, and a main program. The modelswarm handles the
creation of developers and controls their activities. In modelswarm, a schedule is generated to
define a set of activities of the agents. The observerswarm is used to implement data collection
and draw graphs. The main program is a driver to start the entire simulation.

The core of a Swarm simulation consists of a group of agents. Agents in our simulation
are developers. Each developer is an instance of a Java class. A developer has an identification,
a degree that is the number of links, and a list of projects participated in by this developer.
Furthermore, a developer class has methods to describe possible daily actions: create, join,
abandon a project, or continue the developer’s current collaborations. A separate Java method
models each of the first three possibilities. A fourth method encapsulates a developer’s selection
of one of the three alternatives. Here, three model parameters appear. Each represents the
probability of one of the three developer activities. Comparison of a randomly generated number
to these probabilities determines which behavioral method the agent enacts.

3.3  Repast

Created by Social Science Research Computing at the University of Chicago, Repast is
a software framework for agent-based simulation (Repast Home Page, 2003). Like Swarm,
Repast provides an integrated library of classes for creating, running, displaying, and collecting
data from an agent-based simulation (Collier, 2003). In addition, Repast is written in pure Java,
which has better portability and extensibility than Swarm. Furthermore, Repast provides some
different library packages that provide such features as network display, QuickTime movies, and
snapshot.

Our Repast simulation of OSS developer network consists of a model class, a developer
class, an edge class, and a project class. The class structure of the simulation differs from that of
the Swarm simulation, in part because Repast has a graphic network display feature. The model
class is responsible for creating and controlling the developers’ activities. Furthermore,
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information collection and display are also encapsulated in the model class. The developer class
is similar to that in the Swarm simulation. An edge class is used to define an edge in the OSS
network. We also create a project class with properties and methods to simulate a project.

4  EXPERIMENT RESULTS AND COMPARISONS

This section describes docking of Repast and Swarm simulations on four OSS network
models: ER, BA, BA with constant fitness, and BA with dynamic fitness. The results and
a comparison are also presented.

4.1  Docking Procedure

The objective of our docking process was to verify our Repast migration against the
original Swarm simulation. The process began with a comparison of degree distribution between
corresponding models. Upon finding differences, we compared each developer’s actions.

The first attempt at docking compared the degree distributions between these two
simulations. The Swarm simulation used its built-in random number generator. The Repast
simulation used the COLT random number generator from the European Laboratory for Particle
Physics (CERN). From a graphic comparison of degree distribution for projects and developers
over multiple runs of Swarm and Repast, we observed systemic differences between the two
simulations’ outputted data. Over one subdomain of the developer degree distribution, Swarm
had a higher count than Repast. Over another subdomain, Swarm had a lower count. The next
step in the docking process determined that the random number generators did not cause this
difference. We ran the two simulations using exactly the same set of random numbers: each
simulation used the same random number generator with the same seed. The developer and
project degree distributions from these runs, however, revealed similar systemic differences
between the two simulations.

To determine the exact reasons for the differences, we had the simulations log the action
that each developer took during each step. Through comparison of these logs, two reasons
emerged to explain the differences.

First, one simulation occasionally threw an SQL exception (our data are stored in
a relational database for post-simulation analysis). To recover from such an error, the simulation
does not log the developer’s action: it moves on to the next developer. Because the developer’s
previous actions affect its future actions, one error can cause more discrepancies between the two
simulations at future time steps. The cause of this error was a problem with the primary keys in
the links table of our SQL database (this problem is a programming bug). Further inspection of
the data logs showed that a simulation’s data snapshots, which are used in analyzing
macroscopic graph properties, were out of phase by one unit of time. Even if the corresponding
simulation ran identically, this extra time step would prevent the output data from matching. The
Swarm scheduler begins at time step 0, whereas the Repast scheduler begins with time step 1.
Thus, when snapshots were logged at time step 30, Swarm had actually performed one extra time
step.
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With these two problems corrected, the corresponding logs of the developers’ actions
matched. Using the same sequence of random numbers, the Swarm and Repast simulations
produced identical output.

4.2  Comparisons of OSS Parameters

Degree distribution, diameter, and clustering coefficient are frequent attributes used to
describe a network (Newman, 2001a,b) and have been used since the foundation of random
network theory. To study the validity of our simulation, we compared these attributes in Swarm
and Repast simulations. We observed matches of these attributes between corresponding Swarm
and Repast models, which indicate a clean docking.

Degree distribution p(k) is the distribution of the degree k throughout the network. The
degree k of a node equals the total number of nodes to which it is connected. Degree distribution
was believed to be a normal distribution, but Albert, et al. (1999) recently found it fit a power
law distribution in many real networks. Figure 2 illustrates developer distributions in four models
implemented by Swarm and Repast. The X coordinate is the number of projects in which each
developer participated, and the Y coordinate is the number of developers in the related categories.
The figure shows that the ER method does not have a power law distribution. Rather, the
distribution looks more like the mathematically proven normal distribution. Developer
distributions in the other three models match the power law distribution. Slight differences occur
between the Swarm results and the Repast results; however, we believe these differences are
caused by various random generators associated with Swarm and Repast.

FIGURE 2  Developer distribution
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Degree distribution was the diameter of a network or the maximum distance between any
pair of connected nodes. The diameter can also be defined as the average length of the shortest
paths between any pair of nodes in the graph. We use the latter definition because the average
value is more suitable for studying the topology of the OSS network. Figure 3 shows the
evolution of the diameter of the network. We can see that Swarm and Repast simulations are
docked. In the real SourceForge developer collaboration network, the diameter of the network
decreases as the network grows. In our models, we observe that the ER model does not fit the
SourceForge network, whereas the other three models match the real network.

The neighborhood of a node consists of the set of nodes to which it is connected. The
clustering coefficient of a node is a fraction that represents the number of links actually present
relative to the total possible number of links among the nodes in its neighborhood. The clustering
coefficient of a graph is the average of all the clustering coefficients of the nodes represented.
Because clustering is an important characteristic of the topology of real networks, we also
investigated the clustering coefficient, which is a quantitative measure of clustering. Figure 4
shows the clustering coefficients for the developer network as a function of time. All models are
docked very well. We observe the decaying trend of the clustering coefficient in all four models.
The reason is that, with the evolution of the developer network, two co-developers are less likely
to form a new project because their ongoing projects are approaching their limits.

Figure 5 shows the total number of developers and projects relative to the time period in
four models, which describe the developing trends of size of developers and projects in the
network. The size of developers and projects is very similar for Swarm and Repast simulations.

FIGURE 3  Diameter of the network
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FIGURE 4  Clustering coefficient

FIGURE 5  Community size development
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5  CONCLUSION

This paper discusses the validation of agent-based simulation by using the docking
process. It describes four simulation models of an OSS developer network using Swarm and
Repast. Properties of social networks, such as degree distribution, diameter, and clustering
coefficient, are used to dock Swarm and Repast simulations of four social networks. Results
show that docking two agent-based simulations helps to validate a simulation. A docking process
can also be used to validate a migration of a simulation from one software package to another. In
our case, the docking process helped with the transfer to Repast to take advantages of its
features. The Repast simulation runs faster than the Swarm simulation because Repast is written
in pure Java, whereas Swarm is originally written in Object C, which causes some overhead for
Java Swarm. Furthermore, Repast provides more display library packages, such as a network
package, which help users perform analyses.
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DISCUSSION:

APPROACHES TO VALIDATION

(Thursday, October 2, 2003, 5:45 to 7:15 p.m.)

Chair and Discussant: Steve Bankes, RAND Graduate School

Modeling Playgroups in Children: Determining Validity and Veridicality

Bill Griffin: Let me tell you a little bit about what we’re going to talk about for the next
25 to 30 minutes. I’m going to break this into two parts. The first part is just a quick review of
the model that was used. That is not the primary focus of the talk, but now that the model’s a
little older, a little more mature, we’re looking at what’s wrong with it, where does it work,
where does it not work, and how did we come to decide that it doesn’t work?

[Presentation]

Steve Bankes: We have about one minute. Let’s take one question.

Joanna Bryson: I’m very interested in your methodology question, but unfortunately,
since this is the only question [permitted], I actually had a question about your model. You’re
talking about these strong things, but you also said you were missing some of the gaps. So you’re
missing some of the aversions as well as the fondnesses. You said that one of the great
advantages of agent-based modeling, of course, is memory. If you cranked up the memory, you
can’t get replication of that?

Griffin: Well, yes. The length of the memory is easy to modify, obviously. But we’re
trying to decide what is the age-appropriate memory link, because we’re trying to think of these
kids’ cognitive abilities.

Bryson: Well, it’s not only about length, it’s also about importance.

Griffin: Well, I can talk to you about that later. Actually, once there’s a parameter sweep
attached to that, which I ran on both the effects of gender and memory, how much value is
associated with that on the link of the memory? Right now, we’re letting them hold for five
memory places; it basically follows an exponential curve.

Is that what you’re asking?

Bryson: I meant the prioritization. So if every day you’re going in and playing with the
person you saw the previous day, because you had a good time and you saw them yesterday or
whatever, or every day you’re avoiding the other person. That may be more important than their
gender to you, the fact that you played with them last, as long as you can remember you’ve been
playing with them, or avoiding them.

Griffin: Well, yes. In fact, I talked to the individual on our team who’s the gender expert
about that exact same question. At what point does something like memory override, or is there
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some sort of ratio, is there some sort of multiplicative thing going on where you could do
something exactly like that? And she really holds onto gender, and so she wants me to work
memory through gender.

Bryson: Yes, because it sounds like internal state. So you only observed the children in
the playground?

Griffin: Yes.

Unidentified Speaker: Okay, so there could be things going on in the classroom, they
may be neighbors, they may have siblings that are friends, in Sunday school, they may have
assigned seating in the classroom that could influence future actions.

Griffin: One of the things that resulted from the initial model two years ago, then this
one last year is that we changed, or they changed their data collection procedure. We gathered
much of the data in the single data point here in mid-December. Now we’re taking monthly
updates on the teacher attributes, we’re getting the coders to get an attribute rating, plus the
observational data, and we’re looking for any outside connections like you’re referring to,
because they’re the same sort of questions.

I just wanted to get that out, that you’re exactly right. But, see, it’s those kinds of things
that are sort of generating these results. We went into meetings, and I said, “We need more data
than these 2,000 or 3,000 data points per month. We need a different kind of data.”

Alignment and Validation in an Agent-based Model of On-line B2C Auctions

Bankes: The next talk is “The Alignment and Validation in an Agent-based Model of
Online B2C Auctions,” and the speaker is Kumar Mehta.

Kumar Mehta: I’ve been attending talks since the morning, and I didn’t know this world
of agent-based modeling existed. It’s very, very radically different from anything I’ve seen. But
what I’ve seen has been only for three to four years. So it’s been kind of refreshing. I come from
a very quantitative technical background, so this is an incredibly refreshing point of view. What
I’m going to present is a small part of a rather large stream of work. This is part of my
dissertation.

[Presentation]

Bankes: We’ll take a quick question.

Unidentified Speaker: One thing I noticed in the final output results: You showed the
bounds or range of the simulation output and also the average. What about the mean?  I mean,
was it a typical sort of straight curve through there, or did it vary a lot?

Mehta: No, there was a solid line in between, which is the mean of the three.
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Unidentified Speaker: Oh, no, I saw the mean, but I mean like a typical trace. What
would a trace look like, one of the runs?

Mehta: It would look like in the steps, exact step manner, yes.

A Multi-model Docking Experiment of Dynamic Social Network Simulations

Bankes: So the next talk is going to be given by Jen Xu.

Jen Xu: The topic I will be talking about today is “A Multi-model Docking Experiment
of Dynamic Social Network Simulations.” This work was done with Yung-Chi Gao, Jeff Goett
and Gregory Madey. This research was partially supported by the National Science Foundation. I
will first give a brief introduction of our docking experiment.

[Presentation]

Bankes: Questions for the speaker?

Unidentified Speaker: I was curious. I have a vague recollection at Lake Arrowhead that
somebody had an agent-based model of open-source software development. I forgot who it was,
but maybe instead of using the Erdos algorithm, or the Barabasi stuff, if you looked at that and
compared that to the real data from Source … It seems like it would be a neat thing to do. Does
anyone remember?

Unidentified Speaker: That probably was me. I’m a co-author.

Unidentified Speaker: I’d like to hear more about differences between Swarm and
Repast in terms of which was a bigger pain to program in and other differences.

Xu: Actually, the conception is a little bit similar, but Repast has some extra features.

Unidentified Speaker: So Repast is better.

Unidentified Speaker: Yeah.

Unidentified Speaker: I guess what I’m hearing is that a 10% difference in performance
isn’t very convincing. So I’m looking for even more reasons to go with Repast. And as you’re
saying, it’s the features.

Xu: I heard somebody say that in some applications Repast outperformed Swarm, but in
some applications, Swarm is better. But in our simulation, we found that Repast is better. And
we also want to transfer to Repast because Repast implemented a distributed feature that may
improve our performance in the future. We want to increase the speed, the running speed of our
simulations.

Bryson: Just to follow up from what he just said . . . . So there was no difference in
development? It’s sort of an unfair question, because you’d already prototyped and had all the
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hard conceptual work while you were doing Swarm. But do you think it would have been as fast
to rewrite it in Swarm as it was to write it in Repast?

Xu: Maybe Yung-Chi can say how long it took him to write in Swarm, but for me, I used
one week to study Swarm simulation and transfer it into Repast, so I think it’s pretty quick.

Unidentified Speaker: I’m not sure what you asked about comparing Swarm with
Repast based on the programming cost or the running performance.

Xu: Running cost, I think it should be similar, because actually the ideas behind Swarm
and Repast are kind of similar for me. So if you write a program in Swarm already, it will just
take a little jump to migrate to Repast.

Jesse Voss: What metric specifically are you using to make the choice between one or
the other? Is it just run-time speed, or is there something else that you’re using that’s better?
Because I’ve heard it said that some particularly complex kinds of relationships that you’re
trying to model can’t really be modeled in either Swarm, Repast or Ascape. So I just wanted to
know if you looked at that at all?

Xu: Actually, I like the network display. I think Repast provides a better network display than
Swarm. And also it has some distributed architecture that we will use in the future.

Panel Discussion

Bankes: Okay, if we could have all the speakers move forward. As discussant, I’ll go
ahead and ask the first question, or make my comments in the first volley and then open it up.
This is the last session, so as long as you guys have energy and interest, this can go on all night.

You know, our conversations are always shaped by the terminology we’ve adopted, and I
observe that the word “validation” has caused a lot of mischief to a lot of simulation
communities going back many decades. I once did an exercise of going off and trying to find a
definition of “validation” and found four or five in various documents that had an Aristotelian
turn, where they really felt the need to come up with a formal definition. And one thing that’s
remarkably true, anytime anybody or any committee’s tried hard to carefully define their terms,
they end up in the middle of this long legalistic bunch of stuff, saying, “Valid for a particular
purpose.” And one of the ways that validation and the implication of the phrase that “a model is
either valid or it’s not, and if it’s not valid, what good is it?” is this tendency to drop out for what
purpose?

And so what I intend to do is give a challenge and say, “You guys, I did a validation. For
what purpose is your work valid?” And “docking” is a much more modest phrase and not near as
pernicious, but nonetheless, I invite the third speaker as well to talk about the limits of the
exercise and the extent to which it looks like we’ve got two models that are really almost, you
know, a re-implementation more than a document in the hard sense. But is there an edge past
which it wouldn’t work? And to avoid this being a really hard snap quiz, I observe by reading the
papers and listening to the talks that there’s a variety of things that we accomplish by comparing
models to models or models to data, ramping from a kind of verification, where when you see a
difference you bore into your model, you discover places where you goofed up the



145

implementation, or some choice you made produced an artifact that is unwelcome. So you’re
able to get rid of it to the next kind of phrase where you see differences, and it caused you to
think about phenomenology more. So you can climb a hill in model space, you get a better
model.

Then there’s this next tier, and I claim this is a validated model in the sense it actually
replicates the real world, which is an aggressive claim epistemologically for almost any model, I
think. But to the extent one wants to make it, it invites, then, the question, “For what range of
phenomena in the real world have you established validity and where’s the edge past which you
have to say, ‘It’s not validated for data classes or cases that don’t have this characteristic, and so
forth?’” And so, not to make it real hard, but just a brief statement from all the speakers about
what is the edge of your work? What delimits what you’ve accomplished?

Unidentified Speaker: That’s a good question. With ours, I’m much more conservative
about how I would define validity. One definition I have looks just like the previous definition
on verification, all the way from does the code do what it’s supposed to do internally? And the
validity, does the model in some way grossly represent the physical data that you actually
possess? Does a validation, using the very strict sense of the word, capture the data, including the
process, not just the outcome?

At least in our work, I’m much more conservative in thinking we’ve got one run of data
under this particular model that we’ve got running. I’d want several years of data, so that when I
did drill down I was able to capture most of the phenomena most of the time. Now, what is most
of the data most of the time? I’m not sure yet. But where I can say that, in general, as I drill
down, do the data still map onto the simulation? Any variation past where these spontaneous
eruptions, like that one slide I put up? At some point, I’ll have to say that, “How well,” and this
is the phenomenological idea of how well can we capture a dynamical process with a single
model that replicates itself over and over again, but never in the same form.

I don’t know if that answers your question.

Unidentified Speaker: There are quite a few limitations to what we’ve done. What we
are following is more of a spiral development methodology where we are starting with a core in
a sort of a constrained set, as we build more and more behaviors into [the model]. The one
limitation we have right now is we are looking at products which can be collapsed into a series of
integer values. So essentially on one dimension you can map the similarities, and that is the
choice of hard disks comes into the play. It also currently does not take into account any
reputation effects of retailers, which is why we picked hard disks again as a category, because no
matter what I buy from X or Y, I’m going to get the same exact item. It’s the branding which is
the issue.

Memory is the third one, and this is the first thing we have just built in. So essentially
those were the ranges within which [we worked]. And we are looking at only one unit option to
prevent any resellers currently. So as we sort of step one further, we are adding memory to it
right now, then we’ll add the reseller, the guy who’s spotting to buy bargain items and sell it to
you again. Those behaviors are all we are working.
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Xu: The limitations in our work is just to compare one rung of the result. But we can still
see, there’s still some difference between those simulations, so we want to do more statistical
analysis to check if they are really matched, because in theory they should match exactly.

And the second limitation I think is that in both our simulations is the speed of
performance is not very much faster than when we simulate a large number of developers. So …
this will make our documentation very difficult, because we need to wait a long time to finish the
simulation and to compare results. So we want to improve our simulations maybe by some
remote procedure call for migration some part of simulations distributed them on several
machines. So that’s our next plan.

Brian Pijanowski: Actually, I just want to follow up with your question. It seems to me
that whenever you talk about model validation, you also have to consider what the assumptions
are of the model, because you have to make them. I mean, that’s what a model is. And so you
have to have a correspondence between the assumption, the nature of the assumption, and the
validity of the model. So unfortunately, as a modeler, we oftentimes have to communicate our
results to people that think they’re kind of suspicious, they don’t quite understand them, and it
seems to me that oftentimes we kind of stumble in our communication because we don’t state
what our assumptions are.

And so they start pointing to the model and they say, “It’s invalid because of” whatever.
And you think, “Well, I made this assumption over here because I didn’t want to consider it in
my model. I’m trying to simplify a complex system.” So I think that whenever you talk about
validating model, you also have to consider what the assumptions are.

Unidentified Speaker: In fact, I had another whole slide of assumptions, a group level,
but at the individual level I had to make assumptions, for example, that the attributes didn’t
change within a certain window of time, and that the modification of an attribute is the same
across all attributes. And we know that’s probably not true, but we have to get more data to find
out, more multiple data points to find out if they measured at say a 1.5 on an attribute at the
beginning in September, and there at 2.7 in May, is that progression standard across all kids or is
there some unique combination when you see that progression? So, yes, there are assumptions all
over this thing.

Unidentified Speaker: I think there’s expert judgment.

Unidentified Speaker: With all the constraints in your models, you have to validate
them one at a time. But there’s a pitfall to that, in the interaction effects, when two models are
switched on at the same time, you have no way of knowing whether it is still valid or not. But
there is too much synergistic action.

We’ve been running some recent experiments [in which we] keep increasing the number
of units sold. What we found was slightly counterintuitive, which is true in general, but there are
small cases where actually our revenues jump up. We had seen this in the market, and then it
popped up on — I’m going to toss in the name, just for the heck of it — Swarm. It popped up in
Swarm. And we started digging this. We wanted to trace back what was going on. Because there
are more number of seats that people could have taken up before. Instead of one seat, now you
have five, and they would take them in different order. And so there are counterintuitive things
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that pop up which will not come up on your analytical model, because it has abstracted those
concepts away.

So there is a pitfall to talking just to the analytical model. But in absence of real data,
that’s possibly the only option one has.

Unidentified Speaker: Do you think that 23 is enough for your sample size?

Unidentified Speaker: The absolute sample size is 23, but when you get 2,000 to 3,000
observations per month, over a given year, now, of course, as I mentioned a while ago, then you
take the subsequent year’s students and then you take the subsequent year’s students and you do
this over and over again.

Unidentified Speaker: And it seems like you simulated the data and at the same time,
you used real data to compare the visual simulated.

Unidentified Speaker: No. I wrote the model independent of having the data. I just
wrote that by myself in a little booth. And when I just went in and said, “What variables do you
have, what variables does the literature suggest? And what is the assumed relationship?” And I
wrote the code never having seen the data.

Unidentified Speaker: I’d just like to follow up. It seems to me that the thing that is
from a social perspective, the most problematic of the way that you’ve collected the data is the
teacher attributions. And I think it might be interesting, if you do it too much, it could be
intrusive in its own right, but if every day, like the first thing in the morning every day, or maybe
even just once a week, if you kind of reframed those questions so that the children answered
those questions, and you said, “Who is most helpful?” you know, “Who plays rough?” and a
couple things like that and get their perspective, since the teacher’s perspective is quite a bit
different.

Unidentified Speaker: That’s why this year — that’s actually one of the things that they
do with older children. They do what’s called sociometric ratings where you say, “Who’s my
best friend? Who do I like to spend time with?” etc.

And with regard to the teacher data, this year they’re implementing it over each time
period. We’re running into pragmatic problems, because we’re having to pay teachers extra to
fill out all the forms. We’re now using the coders who before were just doing the palm pilots and
doing the behavioral counts. We are now asking them to do similar ratings as the teachers do so
we get two, multi-raters’ data. So we’re trying to expand the width of the data band coming in to
see how it compares. But then, of course, you think, do we have a composite score? Once you do
that you have all these other problems.

Bryson: You’d expect also to get a huge impact — well, maybe not huge with kids that
age, but whenever you make people bring things into declarative, then that totally affects their
behavior.

Unidentified Speaker: That actually came up in the meetings, yes. And these are the
same people who do the data counts. Yes. And one of the things we’re actually asking for in a
present submission to NSF is enough money to have those as independent parties. You know,
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money takes care of a lot of  issues because we could pay our teachers more, they’re more
willing to be helpful, and we have a separate group of coders, one for the attributions summaries
and the other one for the data counts.

Konstantinos Alexandridis: It’s important to make a distinction which, I don’t know
about the other researchers that developing and implementing agent-based modeling, but to make
the distinction that it’s different to ask, for example, if that specific agent at a specific time
makes accurate decisions and another thing to say what are the persistent properties that we
observe? And that’s where people that they’re not familiar with agent-based modeling don’t
easily understand.

I’ve been running a lot of situations where people are asking, for example, “Well, is that
specific farmer there in that parcel?” that simulation implies that he will make that decision at
that specific time. And that kind of accuracy is not a part of agent-based modeling approach. And
that kind of validation is not applicable, I think, and that has to be clear.

Unidentified Speaker: You know, that’s how I started out talking. Ed and I talked about
this at lunch. When I give this talk, people say, “Does that mean Johnny will play with George?”
I go, “No. It doesn’t mean that. It means they have to share the same characteristics of this
cluster that tended to play together, but that doesn’t mean a specific child.” The prediction to a
person or an agent, I just don’t know.

Alexandridis: And that also mean that we have to acknowledge, in terms of validation,
that this kind of validation is not complete validation.

Unidentified Speaker: Well, it’s a validation to the process and not to the person, or to
the agent. It’s a validation — I’m shooting from the hip here. The idea is that we’re validating, or
possibly validating, how an end result came vis-a-vis this process that we’ve coded the rules for.
That’s not all we can say, and it maps on fairly well. That’s not all we can say.

Bryson: Wouldn’t you expect to get — so you wouldn’t be able to say for sure two kids
are going to play together, or that two programs are going to program together, right? But
wouldn’t you expect to get a probabilistic result?

Unidentified Speaker: Yes.

Bryson: So then you could say, “I predict that these two people are likely to, so 60% of
them actually will.

Unidentified Speaker: No, I think you’re right, but the flip side of that is if you’re
wrong, some individuals assume that the model is not valid.

Bryson: Hypothesis sets in, right, so you have a 95% chance of being wrong or
something. Yes.

Unidentified Speaker: Yes, you know. And I was thinking about that. I mean, we want
to put a confidence band around some of the outcomes, yes.
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WELCOME

STEPHEN GABEL, Associate Provost, The University of Chicago

On behalf of The University of Chicago, I want to welcome you to the Agent 2003
Conference on the Challenges of Social Simulation. Since my academic training is in literature
and is entirely non-technical, and since I teach subjects like Homer and Aristotle, my presence
here may require a bit of explanation. For the past year or so, in the Provost’s Office at The
University of Chicago, I have been working with old colleagues in the university and new
colleagues at Argonne National Laboratory — Tom Wolsko, Chick Macal, Mike North, and
others — to help build new collaborations and foster exchanges between the social scientists on
campus and the scientists at Argonne who are active in computational social science. In the
process, I have had to try to understand what a complex adaptive system is and what in the world
folks mean by agent-based simulations. I have to admit that I am still trying.

Yesterday, I made what I think is a small step in understanding agent-based simulations.
I realized that I had read an account of the special value of simulation as a mode of discovery in
the work of an author familiar to all, that is, the Greek philosopher, Aristotle, who lived more
than 2,300 years ago.

Aristotle devoted a treatise to simulations: what they are, how they differ from other
products of the mind, and what the standards are for evaluating them. The treatise is the Poetics,
Aristotle’s analysis of how the human propensity to imitate what we observe can eventuate in
complex symbolic simulations. The simulations Aristotle had in mind were ancient Greek
dramas.

Plato, Aristotle’s teacher, was a philosophical idealist, and tended to see simulations as
merely imperfect images of reality and of no intrinsic interest. This attitude is one that I would
guess some of you have encountered in one guise or another.

But Aristotle understood that simulations — properly performed — offer a unique way of
gaining knowledge about the world. Or, as Aristotle put it: “The poet’s function is to describe,
not the thing that has happened [that is, empirical or historical data], but a kind of thing that
might happen, i.e., to describe what is possible as being probable or necessary (1451a36–40).”1

That is why, he goes on to argue, a simulation such as a drama “is something more philosophical
and of graver import than history, since its statements are of the nature of universals…. By
a universal statement I mean one as to what such and such a kind of man [or agent!] will
probably or necessarily say or do (1451b6–10).”

I could continue with this exercise of discussing Aristotle’s reflections on drama (which
are very much in a scientific spirit) and argue further that his reflections reveal that he
understood drama as essentially a simulation, and that he believed simulations can yield a kind of
knowledge that is available to us in no other way. But if you did not already accept the
proposition, you probably would not be here.

                                                
1 Aristotle, Poetics, trans. Ingram Bywater, in Introduction to Aristotle, R. McKeon, ed., Chicago: University of

Chicago Press, 1973. Citations are to standard line numbers which are the same in all editions.
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My real reason for drawing on Aristotle this morning is twofold. First, it seems that it is
a good thing for all of us to remain aware of the intellectual genealogies of our disciplines.
Today’s science and scholarship — even cutting-edge science — are like a branch of a tree that
is very old, with deep roots. And some of the problems we try to understand today are problems
humans have been thinking about for a long time. Second, it seems quite likely that the tools
discussed will have a great deal of resonance and utility for scholars in fields other than those
represented here today. You should get ready to encounter other visitors like me, aliens from the
library who are intrigued by the work you are doing. Please be patient with us. I wish you all a
stimulating and productive day.







155

IMPROVING THE UTILITY AND THE RIGOR OF AGENT-BASED MODELING
THROUGH ENSEMBLES OF MODELS

STEVEN BANKES,* Evolving Logic, Los Angeles, CA

ABSTRACT

 Agent-based modeling (ABM) has demonstrated great promise, but it also faces
significant challenges. Central among the latter are the need for greater levels of rigor and
of demonstrating important applications. This paper argues that both these challenges can
be met, at least in part, by adopting techniques of reasoning over ensembles of alternative
versions of models.
 
 Keywords: Ensembles, rigor, robust inference, agent-based modeling

 
 

INTRODUCTION: THE PROMISE AND CHALLENGE
OF AGENT BASED MODELING

Agent-based modeling (ABM), and computational science based on simulation more
generally, has demonstrated great promise, but it also faces significant challenges. ABM
provides new representational options to allow inference from theory and data that did not fit
into previous formalisms. It can thus provide important theoretical findings that would not
previously have been possible to achieve. It can augment the literary methods of much of social
science with a more formal framework and simultaneously augment descriptive models with
related dynamic ones.

But, if agent based modeling is to make a significant contribution to science, much
greater rigor in its use will be required. A large fraction of ABM research to date has been
exploratory and suggestive, featuring hypothesis generation with little hypothesis resolution.
Definitive studies that have been validated against data are rare. The need for greater rigor has
been expressed by some leaders in the field as a need for more “prediction.” While predictive
accuracy is a powerful attribute to establish, if it can be achieved, the emphasis on prediction is
somewhat misleading, as I will argue below.

Related to the need for rigor is a shortfall in developing important applications of this
tool. In the 1950s, the newly minted tools of operations research that had proven their value in
military settings were deployed to industry, with substantial documented benefits in cost
reduction and improved profits. To my knowledge, no similar examples of direct financial
benefits of ABM have yet been documented. Similarly, there is not yet any example of a major
public policy problem that has been met through ABM studies. It can be argued that these two
problems, rigor and applications, are very closely related.

                                                
* Author’s address: Steven Bankes, Evolving Logic, 3542 Greenfield Ave., Los Angeles CA 90034; e-mail:

bankes@evolvinglogic.com
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WHAT IS RIGOR?

Standards of rigor vary in their expression across various fields of science depending on
their traditions, and upon both the nature of the problems being addressed and tools that are used
to address these problems. In a new and hybrid field such as computational science, discussions
about rigor sometimes become confused as a consequence. So, it is useful to return briefly to first
principles in analyzing what the actual challenges of rigor are for ABM research.

It is sensible to speak of rigor in the use of models that make no use of data. In particular,
it is important that the claims made by computational research are supported by the modeling
experiments that were conducted. This requirement of internal consistency is similar to standards
of proof in mathematical reasoning, though different in that deductive inference does not have a
central role.

However, most appeals for greater rigor in ABM research are fundamentally appeals for
more studies that compare models to measurements. These appeals often take the form of
insisting that models must be more “predictive.” Unfortunately, the use of the word “prediction”
as a synonym for rigor introduces yet more confusion, as this word again has multiple definitions
in different fields arising from different applications to different types of problems. There are at
least three different definitions of prediction:

1. Correct forecasts of future events

2. Correct model-based inference of new knowledge from available knowledge
and data

3. Sufficient similarity of model outputs to data not used in its construction
(cross validation)

All three forms of prediction are good properties to achieve, but they are not at all the
same thing. In particular, definition #3 is neither necessary nor sufficient for definition #1. And
none of these definitions are necessary for a model to provide utility in solving problems. In
order to sort this all out, we must return to first principles in thinking about how models relate to
data.

The formalism of statistical inference provides us the machinery for thinking about this.
The approach founded by R.A. Fisher is based on distinguishing model specification from model
estimation. Model specification is a step that happens outside the frame of statistical inference. In
model specification, the researcher asserts (assumes) that the available data were generated by
one of a parameterized family of models plus a source of noise. Once this is done, model
estimation is the mathematical problem of computing the parameter vector (picking a single
model from the family) that maximizes the likelihood that the resulting model generated the data.
This is the so-called maximum likelihood estimator (MLE). Thus, in a simple form of statistical
inference, where the model is a linear equation relating several predictors, model specification is
the selection of the predictors to include in the equation, and estimation involved solving for
parameter values that minimized the residual squared error that results from comparing the
“predictions” of this equation to the actual data.
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Within this framework, formal machinery for uncertainty analysis can be erected. For
simple models, it is possible to calculate the probability distribution of estimated parameters
given an assumed noise process. A variety of goodness-of-fit measures (i.e., an F test) can be
been devised to assess how well the model explains the pattern seen in the data. In the culture of
statistical modeling, a good score on an appropriate measure of fit suffices to demonstrate that
the model is “good.” (Sometimes this will be called “prediction” under definition #2.) Typically,
this outcome is used to validate the model specification, though there are other ways to screen
for misspecification, such as correlated residual noise.

These fundamental details are widely known, but it is useful to emphasize their logical
basis. R.A. Fisher’s formal structure does not depend on asserting that the specified model
family contains the correct model. And if it did, this does not mean that the process of estimation
would accurately identify it. Rather, model specification can be understood as an analytic device
that reveals patterns in data. And model estimation, given that the specification is correct, is a
process of minimizing the expected difference between the estimated and true models, given the
limits imposed on our reasoning by the presence of noise. Thus, while often interpreted
idealistically, the framework of statistical inference can be understood as highly pragmatic. That
is, this approach serves the question “How can we best solve specific problems given available
data?” where “best” is defined within the pragmatic constraints of limited information about a
noisy universe. This pragmatic stance can provide important benefits when we turn to thinking
about comparing agent-based models to data.

The framework of statistical inference was developed in a period of computational
poverty, where the computation involved in a single model estimation using linear models could
be significantly expensive. With increasing computational resources, there has been growing
interest in doing lots of estimation experiments, automating specification search, as well as using
more complex non-linear models. This trend is fundamentally virtuous, as it brings the
previously ad-hoc process of exploring across model specification into an analytic framework. It
also has entailed various problems, as the assumptions behind model estimation can be easily
violated with naïve specification search (Miller, 1990).

Initially, attempts at specification search received the pejorative label of “data mining”
for the bulk of the statistical community, and any procedure that tried out lots of model variants
was viewed as highly suspect. Simply searching through many alternative specifications and
keeping the one with the best goodness of fit is a practice that can lead to very bad results. If it is
done without penalizing complex models, the result can readily be a procedure guaranteed to
select a highly complex model that over-fits the data. This will usually result in a highly biased
model. Even where model complexity is properly penalized, a specification search can still
manage to “model the noise.” To make matters worse, many of the elementary goodness-of-fit
statistics cannot be properly used to compare models from different families.

While these problems were used to condemn automated specification search in the early
days of computational statistics, the same problems can occur in connection with the ad hoc
specification search that occurs when researchers revise their modeling approach iteratively by
hand, seeking “good” results. Automation can make foolish mistakes more likely, but can also
more readily reveal the misspecification of first guesses that had acceptable goodness-of-fit
statistics. And with growing computing power, specification search by some means or another
was inevitable.
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During the past few decades, a broad stream of research in the statistical community has
provided a variety of tools for addressing these problems (Draper, 1995; Hastie et al., 2001;
Mendes and Billings, 2001). While considered advanced and less widely taught than classical
methods, they are centrally important to the use of highly complex computational models such as
ABM.

Most fundamentally, cross entropy or relative entropy, also known as the Kullback-
Leibler (KL) metric (Hastie et al., 2001) can be used to compute an effective distance between
models drawn from different families. Further, it can be proved that even in the case where there
is misspecification, where the family of models does not include the true model, the member of
that family that is maximally likely given the data, is also the member of that family with the
minimum KL-metric to the (unknown) true model. This provides a theoretical justification for
using maximal likelihood as a criterion for model estimation given that model misspecification is
nearly inevitable for complex models.

The Akaike information criterion (AIC, Akaike, 1973) combines the KL metric with a
penalty for the number of parameters employed, and provides a measure by which specification
search can be pursued with greater care. Subsequent work has extended these initial steps, for
example by combining the AIC with hypothesis testing to establish whether the difference
between two models is statistically significant.

The comparison of ABM to data requires the sophistication of the portfolio of statistical
tools. But agent-based models are much more complex than are the data models of essentially all
statistical practice. They thus present special challenges that merit yet further consideration.

FITTING ABM TO DATA

Statistical practice first developed using linear models with a small number of predictors.
As our sophistication and computational resources have grown, ever more complex and
nonlinear models are being used. Currently, Bayes Nets are an example of some of the most
complex models being routinely fit to data, and the most complex of them have parameter
complexity equal to many simulation models. That said, any simulation that has a non-linearity
at a given time step will present a highly non-linear response surface due to the iteration of that
non-linearity through time. And of the simulation models, ABM is perhaps the most deeply non-
linear due to the combination of rule-based descriptions of agent behavior and complex
trajectory bifurcations driven by agent interaction. Our instincts regarding data analysis are
informed by experience with linear, generalized linear, or linearizable models. Highly non-linear
models present problems in data analysis that these instincts do not serve well.

For linear models modeling a data table with a limited number of columns, model
specification is a relatively contained exercise of deciding which predictors to include in the
model. When the phenomenon being modeled is indeed relatively linear, model specification is a
simple determination of the most important predictors to include. Here model misspecification
amounts to a modest amount of unmodeled pattern in the data. Further, model estimation is
framed as an optimization problem. For linear models, the likelihood surface is smooth and
unimodal.
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For highly non-linear models such as ABM, the situation is very different. The universe
of alternative model formulation, varying agent attributes, and behavioral rules is vast. Thus,
some amount of model misspecification is highly likely, and experimentation with alternative
model structures is inevitable. More crucially, the high degree of non-linearity means that the
likelihood surface will be multi-modal, and it may be quite rugged. In general, there can be many
models whose ability to explain the data cannot be distinguished, and these models can differ
greatly in both structure and parameter values.

While the literature is not large, there are examples of studies that have estimated
simulation models from data, fit these models to data, or perhaps “calibrated” their models to
existing data (Chang and Delleur, 1992, for example). The techniques for doing this vary in
detail, but they amount to sensitivity analysis combined with hill climbing to find a vector of
model parameters that are locally maximal. The technique is useful, but as the landscape
becomes increasingly rugged, the strength of claims made for the outcome of a hill-climbing
exercise must be correspondingly weakened. And for many agent-based models, the likelihood
landscape may be quite rugged indeed.

For those experienced with ABM, the assertion of rugged landscapes may appear quite
reasonable, but for others an example may be useful. Figure 1 displays a response surface from a
quite simple agent-based model. The model in this case is a reimplementation of a classic work
in the combat modeling literature, the demonstration by Dewar et al. (1996) of the possibility of
chaos in combat models. Here there are two combatants, Red and Blue, each with an initial
number of troops that commit a fraction of their forces to a battle where losses occur according
to a Lanchester formula (Engel, 1954). The commanders of the two sides reinforce their forces in
this battle out of their reserves according to a rule with two parameters, one for the force level at
which to reinforce, the other the size of reinforcement to send. The resulting model has several
other parameters, including the initial force levels of the two sides. Figure 1 displays the ultimate
winner of the war, as a function of two of the parameters that determine the behavioral rules used
by the two combatants. There is a region in which the outcome is quite nonmonotonic, and
indeed is nonmonotonic along nearly every parameter. In particular, leaving all else constant, but
adding incrementally more Blue forces, the outcome flips back and forth many times. There are
thus counterintuitive situations where giving Blue more capabilities causes Blue to do worse.
This phenomenon is a product of the delicately balanced (indeed formally chaotic) dynamics
emerging from the interaction of the two reinforcement rules. This particular model was crafting
as a theoretical demonstrator. But consider the problem of fitting or tuning it to match data from
an actual war, should we choose to do so. As Figure 1 suggests, there may be numerous different
parameter combinations that could explain the observed behavior equally well. And in general,
alternative explanations of data regarding an emergent phenomenon can easily interact to create
complex borders such as this one.
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FIGURE 1  Complex borders can emerge from agent interactions

Indeed, the landscape can easily be so rugged that the discovery of the global MLE is
computationally intractable. As a consequence, the large corpus of theorems regarding desirable
properties of MLEs are not relevant, as the MLE cannot be determined, and even if one had the
MLE in hand, one might not be able to prove it maximally likely. Estimation of non-linear
models must involve some sort of non-linear optimization algorithm, which may return an
answer that is only locally maximally likely. Even if the global maximum was discovered, there
may be “second place finishers” whose likelihood is essentially equivalent to the MLE but whose
structure or parameter values are very different from the MLE.

When multiple alternative models or parameter vectors are effectively equivalent in
explaining the data, and the global maximum likelihood may not be effectively computable, it is
questionable what significance should be attached to the most likely model that can be
discovered. Instead, we may define a threshold in likelihood that is sufficient that any model of
greater likelihood has explanatory power, and investigate the set of models with this property.
For a linear model, such a “level set” on the likelihood surface is an ellipsoid that is completely
characterized by its center (the MLE) and the variances that characterize its axes. But for highly
non-linear models such as agent-based models, the level set may tend to be non-convex and
perhaps non-contiguous. For such a set, identifying a single point, even if it is a local maximum
in likelihood, does little to characterize the properties of the set as a whole. In this context,
neither non-linear optimization of parameters interpreted as model estimation nor specification
search across alternative models can be thought of as discovering the “correct” interpretation of
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the data. Instead, it is reasonable to think of experiments that sample from the likelihood surface
as data-driven inference, where multiple alternative models can capture more information from
the available data than can any single model.

Thus, in reasoning jointly about ABM and data, we may learn more by viewing the data
as constraining the range of plausible model variants (including constraining that range to be the
null set when data are disconfirming). Non-linear optimization of likelihood is challenging, and
may in the end provide nothing more than another type of hypothesis generation.

This line of reasoning leads us to approaches to understanding data using ensembles of
models rather than single models. This has a clear connection with recent developments in the
field of data mining, where various approaches to developing and using ensembles of models
(albeit much simpler models than ABM) have been under investigation for several years.
Examples include the practice of bagging (bootstrap resampling of the training data set to
generate an ensemble of alternatives, followed by model averaging), boosting (iteratively
modeling the residual of previous modeling steps), and techniques specific to a given modeling
approach, such as random forests (Breiman, 2001).

The techniques used by the data mining community do not directly solve the problem of
fitting ABM to data. But all of the foregoing suggests the feasibility of developing ensembles of
agent-based models that reflect knowledge and assumptions about the structure of the model and
data from the system being modeled. The most important property that techniques for doing so
should have is that the collection of models generated to represent the actual (typically infinite)
ensemble be as diverse as possible while being constrained by the data.

While most applications of ensemble approaches have used model averaging to combine
model predictions, ensembles of models can have many other uses. This topic will be explored
next.

ROBUST INFERENCE FROM ENSEMBLES OF MODELS

Once an ensemble of models is created that represents the combination of our knowledge,
theories, hypotheses, and data, there are a diversity of ways this ensemble can be used.
Fundamental to all these uses is the assertion that all these models are plausible, that is, they are
all consistent with what we know. Thus, the diversity of models is a resource for uncertainty
analysis. Further, while it is difficult or impossible to establish that nothing has been left out,
those properties shared by all members of the ensemble do represent a derived fact (albeit one
conditioned upon assumptions inherent in the method for generating the explicit members of the
ensemble).

Thus, an ensemble of models generated from data can be used as a challenge set to
support robust inference. A hypothesis can be assessed against the ensemble to see whether it is
true for all members, or whether there is a minority that contradicts it, meaning that it must
remain a hypothesis. Even in that case, the hypothesis has been informed by the discovery of the
circumstances under which it would fail. Averaging the responses from all members of the
ensemble is sometimes a useful way to summarize (and can be viewed as an expectation if the
ensembles are thought to be drawn from a probability distribution over our knowledge), but this
approach does not exploit all the information available.
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I and my colleagues have been particularly interested in applying this framework to
policy analysis, where it can be very useful to identify plausible models that, if they were true,
would make a policy fail (Bankes, 1993, 2002; Lempert et al., 2002 2003). An example will help
to make this clear.

Figures 2 and 3 display results from previously unpublished research in which we
explored the use of neural networks to model patterns of terrorist activity. Data on precursors of
terrorist activity and corresponding terrorist acts had been collected from public sources, coded,
and modeled using a classical two-layer feed-forward neural net, with promising results.1 We
replicated the neural net modeling, but with the twist that we performed bootstrap resampling on
the training data in order to create an ensemble of neural net models. Each of the models trained
on resampled data predicted the cross-validation data nearly as well as the original neural net.
Further, model averaging demonstrated that the ensemble contained more information in the
sense of making forecasts that are equal or better than those of the original model. More
importantly, the ensemble provided an indication of the certainty in this prediction across the
ensemble. Figure 2 shows the percentage of members of the ensemble forecasting each of four
categories of terrorist action for three different test cases. As can be seen, in one situation there is
100% uniformity in predicting an assassination attempt, while in another each category of
terrorist activity receives at least a small amount of weight from some model using some
protocol for making predictions.

The agreement or divergence of predictions across the ensemble gives some sense of the
certainty of the forecast, which is clearly more useful than a single forecast would be. Moreover,
we can take a next step and use the ensemble of models we have developed from the data as a
challenge set to use to develop robust policies. For demonstration purposes, we asserted a payoff
matrix that gives a utility associated with the combination of a terrorist act and an associated
counter-terrorism strategy, shown in Figure 3. This allows us to explore issues of type 1 vs. type
2 errors, the desirability of portfolio strategies, and so forth. (A full description of this mock
analysis is beyond the scope of this paper.) Figure 4 displays a landscape in which the color-
coded expected outcome is displayed against two dimensions of uncertainty or choice.

FIGURE 2  Responses of an ensemble of neural nets to three new terrorism test
cases (The three colored bars represent different rules for using the ensemble
of networks to make a forecast, e.g., winner take all versus ensemble average.)

                                                
1 The collection of data, its coding, and the original neural net modeling was performed by colleagues at the

American Institute for Research as part of DARPA-sponsored research.
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FIGURE 3  Assumed payoff matrix for terrorist acts
versus counter-terrorism measures

FIGURE 4  Expected outcomes of possible strategy as function of two uncertainties
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In more recent work, we have explored decision theoretic approaches to compensating
for the risk that the method for constructing a given ensemble may have biased the following
analysis. In Lempert et.al. (2003), we made the process of ensemble construction an iterative
one, in which a tentative conclusion is used to seek additional plausible models that might
invalidate it. The result is a co-evolutionary dynamic in which computer and human resources
are used in parallel to seek (1) strategies that are robust across the ensemble being used as a
challenge set and (2) members of the ensemble that will be more challenging for the leading
candidates. This approach appears to be very promising.

CONCLUSIONS

The state of ABM reflects both significant promise and significant challenge. Research
strategies based on developing and exploiting ensembles of alternative model instances can help
meet the challenge of both incorporating data in the construction of agent-based models and in
making them more useful in problem solving. The two problems confronting the fitting of ABM
to data, likely specification error and the computational complexity of estimation, can both be
met in part by pruning ensembles of models to be consistent with the data instead of seeking the
single best model. And ensembles can readily serve as a challenge set against which to ask
questions. For science, one can seek statements robust (invariant) across the ensemble. And for
policy analysis, one can search for policies that perform well for any member of the ensemble,
that is, any plausible model.
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DYNAMICS OF EXPERTISE IN ORGANIZATIONS:
AN AGENT-BASED MODELING EXERCISE

K.C. DESOUZA,∗ S. BHATTACHARYYA, and J.R. EVARISTO,
University of Illinois at Chicago, Chicago, IL

ABSTRACT

 Organizations are rational entities and only enlist individuals (as employees) as long as
they provide some resources of interest. Such resources are in the form of the tacit
knowledge that employees bring to the organization. The integration and synthesis of
such expertise for the collective good of “the organization” is not yet fully understood.
This paper takes a first look at understanding the dynamics of the allocation of expertise
and movement among agents in the organization. Of specific interest is the way that
expertise moves in the organization through the process of socialization.
 
 Keywords: Socialization, tacit knowledge, expertise, crossover

INTRODUCTION

Organizations are rational entities and enlist individuals (as employees) only as long as
they provide some resources of interest. These resources are in the form of the tacit knowledge
that employees bring to the organization (Nonaka and Takeuchi, 1995; Davenport and Prusak,
1998). An organization’s most valuable asset is the knowledge that resides in the minds of its
employees (Nonaka, 1994; Grant, 1996). As often noted, organizations have a great deal of
individual expertise; however, the integration and synthesis of such expertise for the collective
good of “the organization” are not fully understood (Tiwana, 2003; Tiwana and McLean, 2002).

In this paper, we take a first look at understanding the dynamics of the allocation of
expertise and movement among agents in an organization. Of specific interest is how expertise
moves in the organization through socialization. Socialization is a key process in bringing tacit
knowledge and expertise to bear on projects (Nonaka, 1994). Because of the lack of literature in
the area of the dynamics of expertise, our model is simplistic and was developed as a result of
our observations of behavior in organizations.

Our initial experiments garnered an interesting set of results. For instance, we found that
an increase in the percentage of experts to nonexperts does not always lead to an increase in the
overall knowledge of the organization. After a given point, increasing the number of experts
results in a decline in overall knowledge in the organization. Similarly, we found that the initial
disposition of experts on domains of knowledge affects the number of new agents that will
become experts in these domains. These experiments have applications for work in
organizational theory and strategic management. Specifically, we feel that uncovering the
dynamics of expertise in organizations will help to set policy and better manage knowledge and
expertise in these organizations.
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MODEL

We conceptualize our organization as having an interest in a set of domains of
knowledge. These domains can be areas in which an organization conducts activities, such as
accounting, finance, legal, human resources, marketing, and operations. Each agent has a level of
expertise (a score) in these domains ranging from 0 to 9. A score of 0 means that the agent has
no expertise in that domain, whereas a score of 9 indicates that the agent possesses maximum
expertise in that domain.

Agents are restricted as to the total amount of expertise they can possess across all
domains of knowledge. The sum of all scores on the domains of expertise must be less than the
limited cognitive capacity. As many studies have shown, agents have a cognitive capacity that
governs how much they can store and recall at any point in time. In our model, the cognitive
limit capacity is set at 50; thus, the sum of an agent’s score on the 25 domains cannot exceed 50.

Two classes of agents are included in the organization  experts and nonexperts.
Initially, experts have a higher level of expertise in selected domains of knowledge. Experts are
defined as those who have high scores (>7) in five or more domains, while nonexperts have no
score greater than 5 in any domain. Initially, we segmented our pool of agents into 20% experts
and 80% nonexperts. Except for the initial endowments of scores in domains, no difference
exists between the two classes of agents.

Agents increase their expertise through learning. Learning is defined as the acquisition of
new knowledge or expertise within a given domain of specialization (Tiwana and McLean,
2002). This new knowledge can either decrease or increase the agent’s level of expertise in the
domain. People learn while interacting with their peers and working on tasks. Members in
organizations need to exchange knowledge to accomplish tasks (Kaplan and Miller, 1987). We
model two types of learning. Interaction-based learning is akin to the traditional crossover
operator in genetic algorithms (Holland, 1975). Communication-based learning occurs when two
agents interact. Once two agents are selected, they follow the rules of engagement. First, each
agent determines its top three domains of expertise. Second, we select an agent and go through
the top three domains as follows:

• If the current expertise is an expertise of the other agent: Have each agent
perform observation noise checks on each other’s value at the selected
domain. Once these checks have been completed, each agent observes the true
score or an artificially inflated or deflated score in the domain of expertise if
observation noise was applied. The agent with the higher observed value
retains its value at the selected domain, while the other agent copies the higher
value from his peer subject to the copy noise. If two agents have the same
observed value at the selected domain of expertise, each agent exchanges
values at a random domain that is an expertise of neither. This case is also
subject to copy noise.

• If the agents do not have matching domains of expertise: Conduct the
exchange on a random domain that is an expertise of neither. Copy noise is
applied to the exchange.
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Some of the rationale for choosing the rules engagement are based on the literature.
Stasser and Titus (1985, 1987) found that groups were much more likely to discuss information
that had been previously shared than to talk about unshared information. Hence, when two agents
are chosen for communication, they first look for commonalities in their domains of expertise.
As asserted by Stasser, et al. (1995), members with expertise (experts) try to focus their search
on other domains so that they can obtain relevant information rather than improve their areas of
expertise. When members of the organization do not share the domain of knowledge, there is
a potential for members to seek out and acquire new knowledge (Stasser, et al., 1995). Moreover,
even when domains of knowledge are shared, members can acquire information that they have
temporarily forgotten or cannot recall (Kaplan and Miller, 1987; Stasser, et al., 1995). This fact
is captured via the rule that if two agents have similar scores in areas of expertise, they attempt to
conduct an exchange in other domains.

Each agent also learns independently, which is modeled via a mutation operator. At every
time step, an agent with a probability of 0.005 mutates five domains of expertise. Mutation can
cause an agent to either increase or decrease its expertise in a given domain. The rationale is that
an agent might either learn something new, thus increasing its expertise, or realize that its
knowledge in a domain is outdated or obsolete, meaning its score declines.

It is difficult to observe what knowledge and expertise an agent possesses and to transfer
such knowledge perfectly (Nonaka, 1994; Van den Bosch, et al., 1995). To account for those
factors, we incorporated an observation noise and a copy noise. An observation noise is defined
as the imperfection in an agent’s perception of his/her peer’s expertise in a given domain. A copy
noise is defined as the imperfection in imitating or transferring expertise between two agents.
Observation noise is the probability that each agent’s score will be artificially inflated or deflated
by a probability of 0.25. Observation noise stays consistent throughout any number of exchanges
and the life of the simulation. Copy noise, however, decreases on the basis of the frequency of
interactions between agents. The first time two agents meet, they are essentially strangers, with
varied backgrounds and contexts, and hence copy noise will be high. If they meet for the second
time, however, they have developed some aspect of a share context that will help to decrease the
difficulty in the transfer of expertise.

In their study of the process of the socialization, Nonaka and Takeuchi (1995) have
ascribed to some of the above phenomena. Many studies have also attested to the fact that
members bring unique knowledge and expertise to a group or organization (Stasser, et al., 1995),
but it is difficult to identify these unique knowledge areas (Stasser, et al., 1995). The copy noise
is modeled as follows. If two agents interact for the first time, there is a 0.8 probability that copy
noise will occur, which reduces the expertise transferred by 0.75. If two agents are
communicating for the second time, the chance of copy noise is 0.5, which reduces the expertise
transferred by 0.5. Agents that interact more than twice have no copy noise and can transfer
expertise perfectly. Wegner (1986) asserts that groups who have a long history of working
together can pass knowledge more easily and also value each other’s areas of expertise.
Moreover, communication and interpretation among members of such groups are very fluid.
Wegner (1986) and Wegner, et al. (1985) articulate the role of transactive processes and
memories. They argue that individuals working in groups construct and reconstruct separate
memories to determine smoothness in information transfer over time and develop shared
knowledge spaces. Wegner states, “The transactive memory system begins when the individuals
learn something about each others’ domains of expertise” (1986, page 191).
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People work in groups or around projects in organizations, which implies frequent
interaction with a few peers and rare but necessary, interaction with members from the rest of the
organization. To model these interactions and associated intricacies, we selected the following
approach. Each agent interacts for a given percentage of time with agents who are in its
neighborhood; the remaining percentage of time, the agent interacts with agents in the
community at large. Each agent interacts 60% of the time with agents two Euclidean distances
from its placement on the grid. During the remaining 40% of the time, the agent interacts with
anyone from the rest of the organization. Agents are placed on a grid on the basis of the affinity
of their expertise. Agents with similar domains of expertise are placed close together.

RESULTS

Table 1 details the parameter setting for
the simulation. Figure 1 displays the number of
domains with nonzero scores and the number
of domains with high scores (>7) for all agents in
the simulation, for a total number of domains of
6,400 (256 × 25). Initially, we see that the number
of domains with nonzero scores falls sharply, and
the number of domains with high scores rises. In
other words, agents initially increase their
expertise in domains at the cost of having no
knowledge in other domains. Because an agent’s
total expertise is constrained by the cognitive
capacity (50), agents must move expertise
between domains.

Figure 2, which is a continuation of Figure 1, depicts the state of simulation up to
2,250 cycles. As can be inferred, the rise in the number of domains with nonzero scores occurs at
a faster rate than the rise in the number of domains with high scores. This result can be due to the
fact, that by this time, agents have fixed domains with high expertise, and when exchanges occur
between peers, they would rather focus on domains that are unknown to them. This artifact also
occurs because agents interact more closely with their peers in the neighborhood. Many share
their areas of expertise; hence, a level of expertise saturation is reached. As a result, they explore
areas where they know nothing and learn new domains because all share common areas of
expertise with very similar scores on the domains.

We also generated six maps to uncover patterns of spatial expertise. Each agent’s position
on the grid was highlighted with a color that represented its score on various attributes of
interest. Table 2 depicts the coloring scheme along with the associated scores for each of the
maps; Figure 3 depicts the maps at various time cycles.

In Map 1, we looked to see how an agent’s top three scores faired, with a minimum of
0 and a maximum of 27. The top three scores of most agents ranged from 16 to 20 at the start of
the simulation (t up to 200); a few agents’ scores ranged from 25 to 27. Of interest is that by
cycle 2,250, all agents’ top three scores ranged from 16 to 20. Thus, even agents that had high
scores or were very knowledgeable in their three domains of expertise, lost some of their

TABLE 1  Model parameters

ORG_KNOW_SPACE 25

EXPERTISE_RANGE [0−9]

NUM_OF_DOMAINS 25

MAX_COGNITIVE_CAPACITY 50

MAX_SKILL_VALUE 9

MIN_EXPERT_SKILL_VALUE 7

MAX_AVERAGE_SKILL_VALUE 5

NUM_AGENTS 256
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FIGURE 1  Number of nonzero scores (blue) and high scores (green), up to t = 100

knowledge. The reason for this behavior is the presence of a mutation operator, and the fact that
over time agents learned in areas other than their domains of expertise and sacrificed some of the
high scores to account for the cognitive limit.

In Map 2, we looked at the total domain knowledge an agent possessed, with a maximum
of 225 (25 × 9) and a minimum of 0. Since we imposed a cognitive capacity, however, no agent
could have a score greater than 50. In the beginning of the simulations, agents were widely
distributed based on the total domain knowledge possessed. As time passed, however, all
converged at their maximum capacity of 50.
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FIGURE 2  Number of nonzero scores (blue) and high scores (green), up to t = 2,250

In Map 3, we looked at the number of domains in which zero scores appear for an agent,
with a maximum of 25 and a minimum of 0. At the start of the simulation, a large proportion of
agents had more than 20 domains with a score of 0; few agents ranged from 16 to 20. As agents
interacted with their peers, expertise was generated, and a form of exploration emerged in which
agents started learning knowledge not in their domains of expertise. As expected, over time (up
to 1,000 and 2,250 runs), most agents had from 4 to 7 domains with 0 scores. In addition,
a significant number of agents had one-half or more of their domains with 0 scores (12−14).

In Map 4, we looked at the number of domains with scores less than or equal to 3 for an
agent. A vast majority of the agents had low scores on 21 or more domains in the initial runs of
the simulation. Over time, this pattern persisted with a marginal improvement, where around
40% of the population had lowered the number of domains with a score of less than 3. At time
step 2,250, most agents had scores of less than 3 in 1,220 domains. This fact indicates that agents
have started to develop their core areas of expertise. It is interesting to note that a sizable group
of agents have low scores in 15 or 17 domains. We can argue that this score is indicative of
agents choosing domains of areas of specialization at the cost of these domains.
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TABLE 2  Spatial maps

Maps

No. Color 1a 2b 3c 4d 5e 6f

1 Blue – 0–10 0–2 0–2 0–2 0–2
2 Cyan – 11–15 3–5 3–5 3–5 3–5
3 Gray 0–3 16–20 6–8 6–8 6–8 6–8
4 Green 4–7 21–25 9–11 9–11 9–11 9–11
5 Magenta 8–11 26–30 12–14 12–14 12–14 12–14
6 Orange 12–15 31–35 15–17 15–17 15–17 15–17
7 Pink 16–20 36–40 18–20 18–20 18–20 18–20
8 Red 21–25 41–45 21–23 21–23 21–23 21–23
9 Yellow 25–27 46–50 24–25 24–25 24–25 24–25

a Sum of three highest scores.

b Sum of domain knowledge.

c Number of domains with scores of 0.

d Number of domains with scores less than or equal to 3.

e Number of domains with scores less than or equal to 6.

f Number of domains with scores greater than 6.

In Map 5, we looked at the number of domains with scores less than or equal to 6 but
greater than 3 for an agent. During the initial runs, most agents had few domains with an
average level of expertise (most have only 0 to 2). This pattern persisted for most of the
simulation. If the simulation runs to infinity, domains with average patterns rise only slightly 
to between 6 and 8 (see Step 2,250); a select few have between 9 and 11 domains with average
knowledge. This pattern shows that agents have a high degree of variance in their expertise.
They are very strong in certain areas (as shown in Map 6) or have a large number of domains
with below average knowledge. We can also argue that this pattern is due to the emergence of
core competencies.

Finally, in Map 6, we looked at the number of domains with scores greater than 6 for an
agent. Most of the agent population had from 0 to 5 domains of expertise during the initial
period. As time progressed, most of the population converged and had between 3 and 5 areas of
expertise. What is interesting to note is that if the simulation runs to 2,250 steps, one-half of the
agents increase the number of domains with expertise to between 6 and 8, while at the same
time, many preserve their original number of domains.

Figure 4 displays the evolution of expertise among average and expert agents. All else
being equal, expert agents have a slower learning rate than the average agents. We ran various
simulations changing the proportion of experts in the population to see if the proportion of
experts played role in the evolution of expertise in the organization. As seen in Figure 5, varying
the proportion of expertise did little to change the overall level of expertise in the organization.
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Up to t = 200 Up to t = 600 Up to t = 1,000 Up to t = 2,250
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FIGURE 3  Maps used to uncover spatial expertise patterns at various time cycles (see Table 2 for explanation of colors)
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FIGURE 3  (Cont.)
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CONCLUSION

This research investigated the dynamics of expertise in organizations. Our results are
preliminary and must be viewed in that light. Much work can be carried out to study how
different network topologies might affect expertise in organizations. Researchers are also well
advised to carry out studies in which agents enter and drop out of the organization. This factor
would enable us to capture a more realistic setting in which experts leave and join organizations.
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ABSTRACT

 The major unsolved problem of social interaction, studied with social psychology from
the 1920s and game theory from the 1940s, is to distinguish a group of individuals from
its disaggregate. Apparently, social interactions cannot be simulated efficiently with
traditional methods. The failure to solve this problem efficiently likely will preclude
agent autonomy, especially with multi-agent systems using reinforcement or adaptive
learning for control. In contrast, the quantum perturbation model has made progress in
understanding social interaction with field evidence and a mathematical model of the
two factors of action and observational uncertainty based on the entangled members of
a group. We have extended our findings to organizational and argument theory. We begin
to extend our work, a work-in-progress, to control theory.
 
 Keywords: Quantum agents, perturbations, organizations

INTRODUCTION

Computational social models predicated on traditional social learning theory (e.g., game
theory) assume that action information I and observation I are equivalent — similar to the
assumption of perfect I in game theory, where interdependence is crafted through the
configuration of arbitrarily valued, forced choices. The general result of these models
underscores the value of cooperation (Axelrod, 1984; Nowak, et al., 2000) to forcibly seek
consensus in decision making; the greater value of an individual compared with a group rational
perspective (Stroebe and Diehl, 1994); and the lack of trust from the competition or conflict
inherent in the majority rule of democratic decision making (Worchel, 1999). Yet, traditional
models have been contradicted by the persistence of, or even the necessity for, tension from
competition to uncover hidden I to solve ill-defined problems (idps), recognized by Kuhn (1977)
as the essential ingredient for scientific inquiry (see also Von Neumann, 1961). Luce and Raiffa
(1967) concluded that the rational individual perspective mathematically was likely unable to
comment on social processes, and Wendt (1999) concluded that paradoxically, trust did not arise
from cooperation. Further, over the years, consensus decision making has been criticized for
political (European Union, 2002), experimental (Janis, 1982), and theoretical reasons (Lawless
and Schwartz, 2002).

For example, the European Union justified its recent switch to majority-rule decision
making by noting that consensus-seeking in a political context can hold hostage the solutions to
difficult problems of governance (European Union, 2002, p. 29). In other words, the more
ill-defined a legislative problem, as the number of participants (here as nation-states) who must
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forcibly cooperate to achieve a solution agreeable to all increases, the weaker the solution
becomes.

At a regional level, Lawless (2004) studied these two decision processes by contrasting
citizen groups making decisions to accelerate the U.S. Department of Energy’s (DOE’s) nuclear
waste cleanup at its Savannah River Site (SRS) in the State of South Carolina, where majority-
rule decisions were used, with its Hanford Site in the State of Washington, where consensus
decisions were used. He found that citizen decisions for SRS were quicker (based on interviews,
about 1:4), more specific to site cleanup, and more helpful in accelerating cleanup than similar
decisions made for Hanford (specifically, decisions regarding transuranic and
high-level radioactive wastes). Unexpectedly, he also found that decisions for SRS were made
with less conflict among participants (citizens, scientists, and managers) and were more
broadly based than those made for Hanford, which apparently generated more conflict and were
more aligned with special interests.

A model of the time to reach a decision, and tentative support for the quantum
perturbation model (QPM), is estimated by time t ����������	
, where �	���	��0) – V(B1 or 2) is
a potential energy E “barrier” to be overcome, B the choice that represents the attractiveness
of either alternative 1 or 2 to neutral agents, and N the minimum number in each group required
to reach a decision. Lawless found that the group using consensus (the Hanford Advisory Board
in Washington State, with N = 31 – 4 as their minimum consensus) struggled to reach
environmental cleanup decisions in about 2 hours, giving �	 ����������	
���������	����������
from a second group using majority rule (Savannah River Advisory Board in South Carolina,
with N = 25/2, rounded to 13), with an average t of 1/2 hour to reach majority-rule decisions,
giving �	�����������	
������������������������	������������
�
��	��� ��������!"!�����#������
its potential E barrier for majority-rule decisions was significantly lower than the barrier imposed
by the citizens at Hanford with its consensus-rule process.

QUANTUM PERTURBATION MODEL VS. GAME THEORY

On the basis of the above phenomena, we make a strange proposition. The traditional
view of cooperative decisions derives a consensus solution to problems, but this cooperation
makes use of competition to forcibly squelch dissent and drive sequential I transfer. Further, in
QPM, cooperation among neutral agents is maximized when agent “operators” compete fiercely
to win, but as a consequence, driving the group of neutral states into a special state of
cooperation (superposition, characterized by the lowest entropy state possible among agents) to
randomly explore the landscape of alternative solutions. These two counterintuitive insights
allow us to propose that consensus seeking disguises an underlying competitiveness, while overt
competition between two agent operators drives neutrals into an enhanced state of cooperation.

Game theory has never been validated for any social, psychological, or economic
phenomenon, including its use as a model of the social interaction, its raison d’être (Lawless and
Chandrasekara, 2002). Nonetheless, we find many agreeable points of contact between game
theory and QPM (Lawless and Chandrasekara, 2002). Our most serious contention with game
theory is its identification of forcible cooperation with social welfare. (Both Hardin [1968] and
Axelrod [1984] believed that the value of cooperation to social welfare outweighed the need to
coerce it.) In our view, social welfare should not be a goal, but rather, the end product of
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operators driving neutrals who in turn provide feedback to forge a limit cycle that controls both
society and operators.

Game theory is based on social learning theory. However, social learning theory, which is
based on the individual rational perspective and static in the interaction, has been unable to
establish the fundamental shift from a disaggregated collection of individuals to a dyad, group,
business organization, political faction, culture, or nation (Allport, 1962; Jones, 1990). This shift
is fundamental to “emergence” processes, the existence of which is rejected by traditional
modelers (Epstein, 1999, reviewed by Sallach, 2003). And by concentrating on the positive
aspects of social learning theory (specifically, to reinforce “cooperation”) to avoid the negative
imputation of cognitive or social dissonance, but which Kuhn considered essential for the
practice of science, computational agent models based on social learning theory have been
mostly restricted to reinforcement learning among nearest and next-nearest neighbors in order to
reduce communication costs between agents, consequently producing computational agent
systems with power too low to solve idps. As Tambe and his colleagues discovered with their
computational agent system designed to simply manage the schedules of faculty and graduate
students (Pynadath, et al., 2001), current agent models are unable to achieve sufficient autonomy
even for the solution of well-defined problems (wdps).

In contrast, QPM brings formal methods to the study of social interaction and
perturbation in agent systems across a broad spectrum of social, psychological, and economic
phenomena. While game theory usefully introduced an interdependence between the choices
participants are forced to make in a given game configuration, there has been no theoretical
justification offered by game theorists for its static independence between action and the
observational uncertainty involved in these choices. By comparison, our QPM begins with the
interdependence between action uncertainty � and observational uncertainty �� to link
within our model the uncertainties that occur naturally in an interaction (from Bohr, producing
� ����������� ��; Lawless, et al., 2000). In addition, as humans manage interaction uncertainty,
feedback cycles arise with outcomes that at best can be roughly predicted, initiating a limit cycle.
Instead of the narrow feedback from forced choices between cooperation and competition, we
have focused on how initial and subsequent decisions generate a limit cycle. Following the lead
of conflict theorists (e.g., Simmel, 1964), with this model we were able to establish
mathematically the problems created by cooperation (e.g., the corrupting influence of hidden I;
Lawless and Schwartz, 2002), still not a consideration with traditional models (e.g., Wright,
2000). With our mathematical model, we have also studied organizational growth; business
mergers during economic instability that resemble ant and slime-mold mergers during
environmental instability, suggesting a scale-free model (Lawless, 2003); terrorism (Lawless and
Chandrasekara, 2002); social responses to environmental disasters; and recently, with coupled
Kolmogorov nonlinear equations, the wax and wane of knowledge K (e.g., expectations,
predictions, beliefs, and algorithms; Lawless and Grayson, 2004).

QPM FOR CONTROL OF MULTI-AGENT SYSTEMS

Our quantum model is not meant to copy reality. In the sense that the atom constructed
by quantum physicists is an abstraction that permits exact predictions to be calculated and
validated, it matters less that the QPM we propose matches social reality than that it leads to new
discoveries that can be validated, such as the control of multi-agent systems (MASs) (for reviews
of model validation and social phenomena, see Carley [2002] and Bankes [2002]).
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Generalizing our earlier conclusion that social debate among discussion leaders
defending orthogonal positions produces superior decisions (e.g., in science, Bohr versus
Einstein on quantum theory; in the courtroom, a defense attorney versus a prosecutor; and in
business, the recently settled web-browser wars between America Online and Microsoft), we
propose that a large computational parallelization derived from entangling N agents with pro-con
beliefs simultaneously superposed during debate is a condition sufficient to control an MAS to
resolve an idp and achieve a solution. (See Zlot, et al. [2002] for an example of the superposition
of multiple robot interpretations employed to construct a single map to navigate the
environment.)

In the traditional view of human or agent computations, computations can occur in
parallel. Traditionally, I is shared sequentially among agents or broadcasted from a central
command point, both slowing the computational process. In this view, evolution occurs
(e.g., genetic algorithms) from the random transfer of I, generally by agent reproduction and
within the constraints of a well defined problem (wdp). In contrast, Feynman (1996) showed that
quantum-mechanical states could evolve from the action of operators. Then Deutsch (1989)
showed that a superposition of quantum states could be explored simultaneously, producing
parallel computations more powerful than digital ones.

Digital logic states can be either | 0 >  or  | 1 >, with each known as a “bit.” Digital logic
gates can sequentially transform single bit inputs to output values. For the most part, digital
computers can solve the same problems proposed for quantum computers. However, an
exponential increase in classical information processing requires an exponential increase in
the number of digital computers and physical space (i.e., n × n = n2). In contrast, quantum
information processing logic states can be in a linear combination of ground | 0 > and excited
states | 1 >, known as a “qubit,” with each qubit producing 21 values. Thus, with N agents in
a superposition of 2 N states, an exponential increase in quantum computation occurs with only
a linear increase in agents and physical space. These simultaneous states are a superposition,
allowable for quantum information processing but without analog in classical digital computing.
This difference has important implications for the time it takes to complete a computation, the
relative and absolute power of quantum parallelization, the physical space occupied by the
computer processors, and the heat generated by the respective processors. Additionally, quantum
information processing opens new aspects of nondeterministic random executions of
computations, producing a direct link with the Fourier elements in the biological computations
proposed by May (2001) — efficient (fast) digital algorithms exist for addition, for example, but
not for factoring, where an efficient algorithm has been discovered for quantum processing
(i.e., Shor’s fast quantum Fourier factoring algorithm).

Three traditional computational agents exist in three of eight possible states. To explore
randomly these eight states, a traditional parallel model of an MAS would probe each possible
agent group state sequentially. In contrast, three human agents (or three quantum qubits) exist in
23 or eight states simultaneously, and can be probed at once. Further, traditional agents do not
rely on emotion per se. But human and quantum agents exist in ground and excited states. To
extend this analogy to a quantum agent model of an organization (Lawless and Grayson, 2004),
we propose that aspects of a quantum agent organization or system are in a superposition of
ground and excited states. In our view of an MAS, at least two organizations are operators that
drive the remainder of the system as superposed neutrals across a fitness landscape.
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Many ways are possible for quantum information processing to attain an answer
described by the amplitude of a quantum state (complex numbers that mostly cancel each other).
Quantum information processing is efficient when only the correct answer survives with high
probability and wrong answers cancel (Berman, et al., 1998, p. 21).

Compared with traditional computational states where one bit represents either 0 or 1,
a single qubit is in a superposition of 0 and 1, with a register of N qubits being in a superposition
of all 2N possible values. Briefly, with |↑> representing the “pro” ground-state proposition
and |↓> the “con” excited-state refutation, a single basis state can be represented as
|Ψ> = a|↓> + b|↑>, where a and b are complex numbers such that |a|2 + |b|2 = 1. Parallelization
for two agent qubits, each with the same single basis state, can be symbolized as {|↓↓>, |↓↑>,
|↑↓>, |↑↑>}. This simple example illustrates the exponential growth of the state space with
a linear increase in the number of agent participants. Superposed or entangled states have no
classical analog and cannot be decomposed (supporting the notion of “emergence”); however, in
that social dissonance is characterized by small numbers of strongly held but polar opposite
positions witnessed by a larger group of mostly neutral participants, we characterize the strongly
held positions as traditional social forces — Feynman’s operators — driving the neutral agents to
a solution, but with neutrals reflecting Deutsch’s notion as the register of superposed states that
are being driven to randomly explore the space of alternative solutions (Lawless and Schwartz,
2002). (For indirect support of our position regarding the general existence of neutrals among
humans, the review by Eagly and Chaiken [1993] concluded that surveys can be worded to
obtain almost any desired result; similarly, Tversky and his colleagues observed that the
correlation between decisions and their subsequent justifications is negligible [in Shafir, et al.,
1993]. Most experimental subjects have weak connections between their beliefs and the actions
they enact, but in general, this is not true for the experts or operators who drive a system or
debate for the benefit of neutrals, as in courtroom attorneys or scientists like Bohr and Einstein.)

Control extends the decision-making process: Predictions from the results of decisions
produce an outcome with an error component, a larger error occurring during times of economic
expansion or environmental stability (i.e., stable environments promote competition and, as
a consequence, volatility and social evolution). Consequently, feedback about discrepancies has
an effect on earlier decisions by causing another decision to be made to reduce the error or
discrepancy, establishing an iterative process, the end result being a limit cycle to regulate
or control a system (May, 2001). Three predictions from this model contrast with more
traditional computational approaches: The optimum limit cycle occurs with an increase in the
number of participants in the decision-making process (the best fit from increasing the number of
“neutral” participants or Fourier components occurs once a solution is reached); attacking
a group at a rate faster than its natural feedback response rate will produce panic (see Figure 1);
and if the number of fluctuations across a social system is constant, when the overall system
environment is stable the community becomes easier to control (a larger community matrix
eigenvalue, representing a quicker return to stability) even as an increase in competition between
constituent groups produces more unstable groups (and social evolution), increasing the
innovation rate (where technology reduces the size of environmental fluctuations and gives
a competitive edge to a group; see Ambrose, 2001).

For example, assuming in 2003 that the recession and aftermath of the al-Qaeda attacks
in 2001 made 2002 more unstable than 2003, a recent PricewaterhouseCoopers survey
(online.wsj.com) compared the change from 2002 to 2003 in risk-taking among corporate CEOs.
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FIGURE 1  Quantum Perturbation Model
for Organizations

The survey found that in 2003 48% of CEOs reported being more aggressive, 31% reported no
change, and 20% reported being less aggressive. Thus, during stable times, organizations and
individuals take on more idps than in unstable times, when they consolidate and retreat to wdps.

QPM for Organizations

In Figure 1, if we assume that an organization exists in a ground, excited, or combined
state, then perturbations provide invaluable I about the structure and competitiveness of an
organization (from Lewin, 1951), with each “measurement” limited by an uncertainty in action
(�) and observation (��). After a perturbation (from Lawless and Grayson, 2004), an
organization’s goal is to respond with endogenous feedback to dissonant I by creating new
knowledge K to design new innovations, strategies, or technologies to defend the organization.
(In general, K arises when ���→ 0; here, Knew = Kalg + Kχ, where Kalg is algorithmic knowledge
and Kχ, is interaction knowledge, such as beliefs or expectations.) Conversely, using exogenous
feedback, a competitor’s goal is to devise innovations, strategies, or technologies to defeat the
organization. In general, the quicker respondent determines which organization wins and evolves
(in 2003 in the war with Iraq, for example). Coalition decision-making and implementation of
those decisions occurred faster than that of Iraq’s Defense Forces, causing the latter to panic and
its organization to dissolve (i.e., in engineering control theory, late feedback is destabilizing;
May, 2001, p. 5).

The Quantum Perturbation Model of Organizations offers a ready explanation for the
premium on deceiving or bluffing opponents into thinking that intentions for an action or
strategy may or may not be the one implemented, the tendency for terrorists to cooperate to hide
their intentions (Lawless and Chandrasekara, 2002), and the greater ability of democracy to
uncover hidden intentions, thereby reducing corruption in comparison to consensus or command
governments (Lawless and Schwartz, 2002). This model also accounts for some of the
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underlying forces in mergers: Should an organization’s execution of technology falter, producing
weak operational results (e.g., AT&T Wireless’s difficulties with enacting phone number
portability in early 2004), the organization becomes the prey or acquired organization instead of
the predator. In this model, power accrues to the winning organization and its chief strategist.

In general, from mathematical control theory (May, 2001), the stable control of an MAS
should occur when its responses to error are faster than its natural response rate, which is much
more likely under majority-rule decision-making than under consensus decision-making (Lam
and Suen, 1997; Lawless and Schwartz, 2002). The quantum agent approach should assist in
achieving optimum control by regulating the system to seek the best fit between a problem and
its solution as neutral participants are added to the decision-making process (i.e., Fourier
components) until a solution is found.

WORK IN PROGRESS

We are considering two possible approaches to operationalize, test, and explore the QPM
of organizations shown in Figure 1: agent model and modified Markovian.

First, we consider the effect of uncertainty on decisions made in dynamic social
structures. Axelrod and Cohen (2002) recognized that strategy space in the prisoner’s dilemma
game is stochastic, and not noiseless or error-free, leading them to incorporate noise into their
experiments. Similarly, we recognize that the nature of our model depends on I that is not noise-
free, but is subject to errors in receiving and processing.

The benefit of entangling multiple independent actors is that collectively, they can reduce
the noise (or variance) of the central tendency of the information. This is analogous to the
beneficial effect of obtaining multiple independent samples in estimating the mean of an
unknown population. The variance estimate of the unknown mean is reduced by a factor of
1/($n) as the number of independent assessments is increased, giving a sampling distribution of
the mean with variance/n. Since neutral actors are independent but entangled in their
assessments, there is an analogous benefit of more actors (N) reducing the variance of the
unknown “mean” of the reality of an idp. We expect to find that entangled agents will be in
a lower state of variance or entropy than correlated agents, who in turn have lower variance than
independent actors in games.

We will use an agent model to test our theory. Initially, we will validate our model
against the analytic solutions of quantum game theory by Arfi (2003). Specifically, in the “Battle
of the Sexes” game, analytic game theory solutions should be less correlated than quantum game
theory solutions. Afterward, we will model and analyze MAS organizations and mergers to
establish the costs and extent of interactions necessary between agent systems and humans to
facilitate autonomy.

Second, we propose to test the concepts in Figure 1 with an MAS model of the
competition between an agent model of GM, Toyota, and all other car manufacturers (as
a group). We assume that the primary focus is from the perspective of GM. Then:

1. GM observes its current state and its context. Estimate the percentage of
buyers who choose GM cars, Toyota cars, or other cars.
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2. GM proposes a plan to capture more of the market. (GM’s plan will contend
with internal factors such as structure, personnel, talent, and costs, as well as
external factors such as competitiveness, markets, price, and technology
leadership.) Estimate the Markov transition matrix. GM implements its plan.
Estimate the percentage of buyers who stay with GM or switch to Toyota or
others.

3. Obtain feedback. Update the transition matrix.

4. Build a binomial tree: Determine the probability p of having correctly
estimated the transition matrix and probability (1–p) of the current state
continuing unabated. (GM does not know for sure whether its plan will work,
but perhaps with an estimate of p the company’s plan will work, meaning
a target progression of customers to GM according to the transition matrix.)

5. Some probability exists on the number of stages that the company progresses
through on the way to a steady state until a counterattack by opponents. (Even
if GM’s plan is successful, some number of steps/stages/time periods occur
before the market reaches steady state. Toyota will not wait, but will
counterattack as soon as it can, possibly before the market reaches a new
steady state. If so, then the new market status will either be the ground state
— if there was sufficient time — or some intermediate excited state,
depending on the number of stages completed before a counterattack occurs.)
[Note: GM and Toyota are operators, driving the car-buying public of neutrals
to randomly explore the alternative space of solutions by determining the
optimum choice of, in this case, a car.]

6. At the point of counterattack the progress stage of percentages becomes the
new current state.

7. Simulate Steps 1 through 6 to estimate the probability of success in reaching
a minimally acceptable new state for GM.
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ABSTRACT
 
 This paper describes an agent-based approach for constructing a model of criminal justice
system operations in England and Wales. The primary purpose of the model is to assess
the impact of policy variants across the entire criminal justice system. Because of the
structure of this system, three separate government departments interact and deliver
services. Decisions in one area of the criminal justice system can be crucial in
determining what happens in another area. Our purpose was twofold. First, we needed to
contribute to the Treasury’s spending review by working with different groups in
criminal justice agencies to reach a consensus on how things actually occur (i.e., linking
behavior and actions of one group with another and with resources). Second, we needed
to produce a model of the entire criminal justice system that would provide insights into
questions related to capacity, case flow, and costs. We also needed to model the ways in
which individuals go through the system. The result is a hybrid model that combines
a simple system dynamics approach with an agent-based model. The distinctive approach
used in this work integrated modeling with practical ways of enabling people to engage in
strategic policymaking, while taking into account the complexities of the criminal justice
system. The agent-based framework developed to meet these needs models the criminal
justice system, provides the ability to assess policy across the system, and allows sharing
of model output to improve cooperative efforts among departments.
 
 Keywords: Agent-based modeling, criminal justice system, visualization, policy
appraisal simulation

1  INTRODUCTION

This paper reports on an agent-based approach for constructing a model that shows the
operations of the criminal justice system in England and Wales. The primary purpose of the
model is to be able to assess the impact of policy variants across the entire justice system.

Because the model is designed to help people to think about what happens when things
are changed in a deliberative manner, we provide some examples of policy changes for which the
model is designed to provide help. We also discuss a visualization that represents what the model
can do for different policy views. With a view of “model as icon for change,” the reality of the
visualization is not as important as how it looks.
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Section 2 describes the context for the project — the structure of criminal justice in
England and Wales. Section 3 discusses the purpose of the project, which goes beyond the mere
construction of a model. Construction of the model included at least two aspects of interest: the
way in which the problem was approached and the physical representation of some kind of
solution, which we define as the model. These aspects are discussed in Sections 4 and 5.
Section 6 provides concluding remarks.

2  CONTEXT

The criminal justice system in England and Wales is delivered by diverse government
bodies; the same is true in many other countries. In England and Wales, these are not part of a
single government department. Three departments are involved: the Home Office, which is by
far the biggest financially and in terms of human resources; the Department of Constitutional
Affairs; and the Crown Prosecution Service. Each of these departments has its own government
minister, and in the case of the first two, has a range of responsibilities outside those considered
in constructing a model of the criminal justice system. Thus, the Home Office is also responsible
for immigration and for homeland security, whereas the Department of Constitutional Affairs
also has the responsibility for civil and family law.

The Home Office criminal justice responsibilities include the Police Service, the Prison
Service, and the Probation Service, but it is not a direct operational responsibility. Other agencies
are responsible for delivering each service. Little direct financial accountability occurs (although
all rely on central government funds), and there is only limited operational interference.
Top-level targets are set for each service, but the utility of these is uncertain. Because operational
control is divided across 42 areas of the country, determining what happens is a local matter.

The Department of Constitutional Affairs is responsible for both the courts and, via an
executive agency, the provision of free criminal defense services (known as Legal Aid). The
courts are divided between lower and higher courts: the former are called magistrates’ courts and
deal with lesser offenses; the latter are called the Crown Court and generally deal with more
serious cases.

The Crown Prosecution Service is responsible for prosecuting criminal cases. It is the
least complex of these bodies.

The functionality of the criminal justice system depends crucially on the way in which
each of these bodies delivers services and on the interactions among them. Each part of the
system has thousands of individual agents who act according to sets of rules. Some rules are
fairly prescriptive, and others are rules of thumb, often undescribed.

Most of the funding for these service providers comes through the U.K. Treasury. Some
other money flows through either local government sources or are private funds. For every
government department, the U.K. Treasury has a system of spending reviews; these take place
every two years and look three years ahead, therefore overlapping by one year.

Decisions in one area of the criminal justice system can be crucial in determining what
happens in another. For example, how well the police functions may make the life of courts
easier or more difficult, the workload of prisons more or less. This has been recognized by the
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Treasury. Thus, in the 1998 spending review, the government undertook the first-ever review of
the performance and management of the criminal justice system as a whole, cutting across all
three government departments.

The 2002 spending review saw a cross-departmental review of the criminal justice
system, which built on the work begun in 1998. However, the Treasury did not feel that the
collective criminal justice system elements presented were sufficiently “joined up.” Thus, for the
2004 spending review, the Treasury has required further development of the way in which all
agencies bid, so that bids take into account what the other agencies are doing. The Treasury also
requires that the bidding process be mediated through a model of the entire system. Our work is
designed to address this need.

3  PURPOSE

Our primary task was to do something that would contribute successfully to the
Treasury’s spending review for 2004, and, beyond this, that could be used for assessment of
future policy development across the whole of the criminal justice system. To achieve this goal,
we worked at two levels. First, to establish a consensus about how things actually happen in the
system, we worked with groups of people from different agencies in the criminal justice system.
We gathered evidence of links between the behavior and actions of one person or group of
people and another and through this process made arguments for the best use of resources. This
new process was essentially about encouraging a change in the style of working of these core
government agencies (see Pratt, et al. [1999] for a discussion of some ways of achieving this).

Second, we needed to produce a model of the entire criminal justice system that all actors
in the system would recognize. To achieve this task, we worked with modelers and statisticians
in the various government agencies and departments who were technical people interested in
building better models. We acknowledge the extent of the contribution of the Criminal Justice
Performance Directorate in this respect as well as various individuals in each of the departments
and agencies of the criminal justice system. Our aim was to build on existing models of the
system to produce an end-to-end computer model of the criminal justice system to provide
insights, in particular into questions of capacity, case flow, and costs. This has the feel of a
standard modeling problem, although ours was not a standard solution.

We needed to model how individuals — criminals or cases — move through the criminal
justice system from the initial crime event to final disposition, culminating in receiving either
a prison or a community sentence (including various forms of post-prison supervision), or in
being released as a free member of the population. Moreover, these flows needed to be mapped
against costed resources to meet Treasury requirements.

There was a third level of approach that we were only able to engage in tangentially. This
involved the people doing the job, who are in fact those represented as agents in our model.
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4  CONSTRUCTION OF THE MODEL

The project had two distinctive parts: (1) working with the people involved in making
and delivering policy in the criminal justice system and (2) developing an adequate model of
what the system does.

Working with people involved a range of activities:

• Determining user requirements through individual interviews and workshops,
which culminated in the production of a user requirements report;

• Developing ways to assure the client that the model was really “them,” again
through interviews and workshops, and culminating in a test suites report; and

• Recording what the system does and why in terms of processes, activities, and
resources, again through interviews and workshops, and resulting in the
production of what was called a modeled processes report.

Each of these activities was also of fundamental importance in delivering a successful model,
which comprised the second part of our task. The model developed was based on agent
behaviors.

4.1  Inputs

To provide inputs to the model, we asked each agency to consider the following types of
questions:

• What resources are used in providing services (i.e., what police and types,
courts, custody suites, etc.)?

• What does each resource do, how does it makes choices, and are there
different rules that can be selected in making those choices?

• What happens when capacity limits are threatened; how does prioritization
take place?

• What are the costs of each resource, and how does this vary as decisions are
made?

4.2  Outputs

The model represents the flow of activity through the criminal justice system, which can
be analyzed in terms of, for example:

• Number of crimes reported,

• Number of cases tried in magistrates’ courts,
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• Cost of various types of resources, and

• Numbers waiting at different points in the system.

Each of these activities can be viewed at the minimal level of disaggregation (i.e., one agent
doing one activity in one time slot), but each also can be aggregated over time, people, and
activities to any required level.

5  AGENT-BASED HYBRID MODEL

We set out to produce a model that would engage people in the system. To meet this
need, we adopted an agent-based approach. In the time allotted, however, it would not be
possible to build an agent-based model for every part of the criminal justice system. The key
question was, could we produce a model that would satisfy the needs of the client, while at the
same time, take the client-system down the agent-based road by providing a model that the client
could readily build on, and most important, would want to build on.

The result is a model that is a hybrid. It combines a simple system-dynamics model of
flows through the criminal justice system — albeit with relatively complex interactions at each
stage or node — with an agent-based model of
individual agents that behave in ways that
produce results that cannot be predicted from
looking at the behavior of groups of the same
agents.

Figure 1 represents the hybrid model
concept. In some parts of the system, our
model is more like process descriptions
with high levels of agent homogeneity
(superagents). In other parts, we have good
descriptions of activities of individual agents
with significant interaction among agents.
Ultimately, the process and activity
descriptions are mutually consistent
(Bonabeau, 2002).

The model is structured in a way that
allows the user to examine simple questions
or more complex policy issues. “Simple”
questions, however, are often only simple
because the more complex issues they imply
are ignored in that instance. Some typical
policy issues are described in Box 1.

Increase the number of police by 10,000
(currently 130,000). Determine the impact
on the system.

The impact depends on what activities the new
police choose to do  more patrolling, more
investigation, better case preparation, etc. All of
these activities will have effects down the line for
other service providers, and all will also affect
how the agents themselves work.

Increase sentencing powers, for example,
from 6 to 12 months, for certain offenses.

It may seem obvious that this policy will increase
the prison population, but sentencers may
choose to use the power differently. Moreover,
defendants may react to longer sentences by
appealing more or choosing a different court for
the hearing. Any of these may result in different
consequences from those that might have been
supposed when the policy was first devised.

Box 1  Typical policy issues
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FIGURE 1  Hybrid modeling: process and activity-based descriptions

6  CONCLUDING REMARKS

At the end of the project, we have delivered an agent-based framework with the potential
to model the impact of government policy on the criminal justice system. In addition to
developing the model, we delivered the free-standing policy “tools” listed below. Each tool
enables a practical application of systemwide thinking.

Thus, as part of the creation of the model we:

• Set up and facilitated a group known as the Spending Review 2004 Group,
which helped to give ownership across government departments.

• Supported and developed the role of the Project Steering Group, which
spanned agencies across the whole system.

• Developed a template for systemwide policy formulation called the Systemic
Impact Statement.

• Offered a high-impact demonstration of flows across the system through
computer visualization developed with the model, which is especially useful
for nontechnical policy people. Box 2 provides further discussion of our use
of visualization.

Another key aspect for the client was that all government departments and constituent agencies
were signed up to the outcomes of the project. We interpreted this as meaning that each player
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had to be involved in the development of the model, and the method of working. This was
certainly achieved.

7  REFERENCES

Bonabeau, E., 2002, “Agent-based Modeling: Methods and Techniques for Simulating Human
Systems,” Proceedings of the National Academy of Sciences of the United States of
America 99 Suppl. 3, 7280−7287.

Pratt J., P. Gordon, and D. Plamping, 1999, Working Whole Systems, London: Kings Fund.



200

We felt it was important to provide a visualization of the system that a wide range of users could relate to
— to reach beyond those with a technical interest in the model to those who determine policy, such as
high-level public servants and politicians.

Our use of visualization also allows the different service providers to see themselves as integral parts of a
large whole. In a way, the visualization comes to represent the model as icon: it is almost as if people have
something that they can touch while making their decisions.

This diagram shows a screen capture from the visualization. Our aim is for users to become more aware of
the system and its parts, at the same time they see the size of flows along edges between nodes (e.g., the
proportion of capacity used, timeliness between two nodes, or costs of providing services at each node.

The visualization is decoupled from the model where the visualization reads the log files produced by the
model. This approach allows us to easily switch between different scenarios produced by multiple-scenario
runs. A second benefit is that it allows us to do early rapid prototyping to establish the scope of the project
while the model is being constructed. We are able to use the same visualization for outputs of “scratch-pad”
throw-away prototypes in various programming languages, then plug-in the actual model data when
available. A third benefit to this approach, which cannot be overstressed, is the ability to more rapidly
diffuse the model and its insights throughout the organization (because visualization with log files involves
a much smaller memory footprint than deploying the model and all of its dependencies). The above benefits
notwithstanding, one disadvantage of having a decoupled view is the inability to modify model parameters
on the fly for interactive exploration by the user.

Box 2  Visualizing the system
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AGENT-BASED SUPERVISION AND CONTROL OF COMPETITORS
IN A HETEROGENEOUS ENVIRONMENT

E. TATARA, I. BIROL, F. TEYMOUR and A. CINAR,∗
Illinois Institute of Technology, Chicago, IL

ABSTRACT

 Much of the research in the area of agent-based modeling focuses on replicating observed
behavior of the system of interest. The purpose of this paper is to illustrate how a multi-
layered agent-based supervisory control system can interact and influence a physical
model that is based on first-principles, an agent framework, or a combination of the two.
A knowledge-based control strategy is implemented based on what is known about the
behavior of the system. The command and control structure resembles that of a social
organization. Local command agents determine the most appropriate course of action and
the subordinate control agents execute the commands. Autonomy allows each level to act
independently of others to some degree. Agents at the lowest level of the command
structure can identify which techniques work best for solving different types of problems.
The control agents must therefore adapt through trial and error. The degree of autonomy
granted to individuals permits the emergence of highly complex behavior that cannot be
anticipated. The primary focus of analyzing complex emergent behavior is demonstrating
methods or combinations of methods that influence the behavior and capabilities of the
agent-based control system. Simulation studies will illustrate scenarios of interest,
especially those conditions that lead to emergent behavior. The behavior of competing
autocatalytic chemical species in a continuous stirred tank reactor (CSTR) has been used
as a model for more complex phenomena such as competing biological populations. This
framework will be used to illustrate the structures and tools described.
 
 Keywords: control of distributed systems, intelligent supervision, industrial process
control

INTRODUCTION

Much of the research in the area of agent-based modeling focuses on replicating observed
behavior of the system of interest. Often, the agents are designed to operate autonomously of
each other and free from any type of external supervisory control structure. While software
agents can be used to simulate physical systems, they can also be used to simulate hierarchical
regulatory structures, such as the management of natural resources, where the fundamental
equations governing the ecosystem may be known, but the overlying control mechanisms
(human management) in place are far too complex to simulate with traditional methods.
Additionally, agent-based control systems can be used to monitor and control real-world physical
systems such as computer networks or industrial production facilities (Monostori and Kadar
1999; Jennings 2003).
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Multi-agent control systems have several properties that make them particularly attractive
for use with large, complex systems (Lesser 1999). The first, and usually most important in
critical systems, is a high level of reliability. Modularity and scalability also play an important
role in multi-agent systems. Agent-based monitoring and control systems often produce several
different solutions to the same problem. Solution multiplicity arises when several agents, using
completely independent methods, arrive at different conclusions based on the presented data.
Negotiation between agents is therefore required to resolve the situation. Additional agent layers
may be used to evaluate information and conclusions produced by diagnosis agents. Criteria such
as performance history are used to determine the validity of agent diagnosis when solution
conflicts arise.

The behavior of continuous stirred tank reactors (CSTRs) has been studied extensively
over the past several decades. Fascinating static and dynamic phenomena have been observed for
many classes of reactions including autothermal reactions, autocatalytic reactions, and
polymerization reactions (Uppal and Ray 1974; Bilous and Amundson 1955; Uppal et al. 1976;
Farr and Aris 1986; Lin 1981; Gray and Scott, 1983, 1984). Birol and Teymour (2000) have
studied isothermal autocatalysis when two competing chemical species are introduced to the
system. It was shown that with N species, although there may be as many as 2(2N-1) steady states,
only one species can exist stably in the reactor as ∞→t .

If several identical CSTRs are connected, such that material is exchanged between them,
the system becomes spatially heterogeneous, compared with a single larger CSTR. The degree of
heterogeneity can be varied by manipulating the interconnection flow rates between reactors.
Taylor and Kevrekidis (1993) have studied the effects of reactor coupling. Oscillatory states tend
to synchronize as long as the frequency of the oscillations in each reactor are not too different.
Weak coupling of the reactors is usually employed, since strong coupling of a reactor network
causes the network to behave as one large reactor.

Recent work on two- and three-reactor configurations with cubic autocatalytic reactions
has demonstrated that spatial heterogeneity enlarges the boundaries of chemical species survival
(Birol et al. 2002). Furthermore, detailed analysis has shown that networks of reactors with
autocatalytic replicators produce highly complex bifurcation structures and that the number of
steady states increases exponentially with size of the system (Tatara et al. 2003). With the
autocatalytic reaction scheme, larger networks permit more steady states and spatial
combinations thereof than smaller networks. In addition to the single-reactor states, which are
omnipresent in larger networks, networks exhibit states that are unique to configurations of more
than one reactor.

The high degree of nonlinearity provides a challenging obstacle in the control of
autocatalytic reactor networks. In the case of a single CSTR with competing autocatalytic
species, a nonlinear control scheme is necessary to first remove the invading species and then
return the host species to the original steady state (Chaivorapoj et al. 2002, 2003). This concept
is extended to control autocatalytic species in a network of multiple reactors. Systems of more
than one reactor require multiple controllers and may require transients through several operating
regimes to achieve the desired operation. Furthermore, when the system contains multiple
reactors, situations arise such that a global control objective can be satisfied by several different
combinations of local control objectives. This leads to the requirement of a hierarchical control
structure whereby local control objectives can change dynamically in order to achieve the global
control objective of the system.



203

AGENT-BASED CONTROL SYSTEM ARCHITECTURE

Networks pose a tough challenge from a control perspective because multiple control
strategies may be necessary to achieve the desired operational or organizational goal. Intelligent
supervisory control systems (Kendra et al. 1994) provide adaptive capabilities that facilitate the
control of such systems. Furthermore, the operation of highly nonlinear systems like
autocatalytic replication networks benefit from evolutionary control because the optimal
operating regime or control strategy may not be known a priori. Agent-based control systems
(Jennings and Bussmann 2003) provide the capability for localized and global control strategies
that are both reactive in controlling disturbances and proactive in searching for better operational
solutions.

The agent-based control system architecture consists of several sub-systems, each of
which is highly modularized (Figure 1). The network layer comprises interconnected nodes that
represent a discrete physical entity. Each node in the network is monitored by an observation
agent that is responsible for maintaining a communication channel to the node and acquiring
data. These agents are also responsible for sampling data requested by other agents, as well as
storing the data in a history for some specified time. Manipulation of the interconnections
between nodes is handled by an actuation agent which receives commands from superior control
layers.

The next layer in the control hierarchy is the local decision layer. Local decision agents
are responsible for monitoring control functions and proactively improving the overall
performance of the network. Due to the number of control responsibilities of decision agents,
each agent may be further modularized into several sub-agents and so on. For example, the local
control decision agent requires information regarding the state of the network. A sub-agent is
therefore tasked with checking whether the network is at steady state or if the network is
oscillating or behaving chaotically.

During network operation, local decision agents will attempt to improve the performance
of the node they are controlling at the expense of another node’s performance. Thus, disputes will
arise as to the value of the interconnections between neighboring nodes. Arbitration agents are
tasked with negotiating disputes between neighboring agents. Without a means to negotiate, the

FIGURE 1  Control agent architecture
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decision agents would not have an open communication channel between them. The arbitration
agents receive requested operational procedures from the local decision agents and then presents
a solution to them. Supervision agents function as the topmost layer in the control system
hierarchy. This layer is responsible for setting the desired global operating conditions for the
entire network.

SOFTWARE IMPLEMENTATION

The agent-based supervision and control system development and deployment are
performed using G2 software (Gensym 2003). G2 is a graphical knowledge base (KB)
development environment for creating intelligent real-time applications. It has a hybrid KB
paradigm with classes and objects for knowledge presentation and rules for inferencing.
Applications developed in the G2 environment are called knowledge bases (KBs) and contain
graphical workspaces upon which object code is organized. Workspaces are arranged in a
hierarchical structure such that the source code can be easily managed. Workspaces contain all
the rules, variables, and objects that constitute a KB. Furthermore, workspaces can be organized
further into modules for increased reusability and scalability. The G2 programming language is
very similar in structure to the English language, allowing for rapid software development.
Graphical representation of data in G2 is performed through several different types of real-time
charts that are customizable by the user. The displays may be placed on any workspace, and the
shape, position, and colors of the display may be modified as needed by the user. Customizable
graphical user interface (GUI) controls such as buttons and text entry boxes are available in G2.

G2 provides an excellent platform for the development of supervisory KBs. However,
complex numerical calculations, such as process simulations or the matrix manipulations needed
for analysis, cannot be efficiently implemented in G2. One may take advantage of more
sophisticated programs for numerical analysis and simulation by linking those programs to G2.
Several options for networking and passing data to and from external programs are available.
The G2 Standard Interface (GSI) bridge allows the KB to access remote procedures written in C.
The functions contained in the C files are callable by GSI bridge code that communicates with
G2 via TCP/IP.

The network node class definition in G2 contains basic specifications for network objects
including instantiation, deletion, cloning and connections. Node attributes and methods are
specified by the user for the particular system of interest. A software bridge links the G2 node
objects to a numerical ordinary differential equation (ODE) solver (Figure 2). CVODE (Cohen
and Hindmarsh 1994) is a numerical ODE solver package written in C and is capable of solving
stiff large-order systems very efficiently. The solver code is linked to the system via a custom
GSI bridge. With a high-level object based language like G2, it is possible to construct an
interface between the solver and software agents in order to produce a highly flexible
communication pathway between the nodes and the simulator. The executable bridge code does
not need to be executed on the same CPU on which G2 is also currently running. This allows the
KBS to run on one machine while the bridge code can be executed on a remote machine.

Node attributes are mapped to the specific array location in the ODE solver. When the
simulator is initialized, the user may specify the size of the network, parameters such as the
connection values between nodes, and initial conditions. The appropriate number of nodes are
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FIGURE 2  Software architecture

FIGURE 3  Graphical representation of reactor network nodes

automatically created by the agent-based system and the node objects are modified to include the
initial conditions. Figure 3 shows the graphical representation of reactor nodes in G2. The
CVODE solver simply requires the initial states and parameters to describe the system. The
solver then dynamically creates the appropriate equations internally and returns the output to G2,
where the states are then mapped back to the node objects. The benefit of using this type of
architecture is clear when considering the natural language programming syntax of G2. Software
agents can interact with the node objects by invoking methods and procedures using such syntax
as "change the connection between node-1 and node-2 to 3."
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NETWORK MODEL EQUATIONS

A network of I interconnected reactors is modeled by specifying the mass balance for an
individual reactor at position i in the network, where i = 1…I. Figure 4 shows the schematic for a
system of four CSTRs. The cubic autocatalytic reaction for a single autocatalytic species is

PPR k 32 →+

DP dk→

R is the resource concentration, P is the species concentration, D is a dead (inert) species, k is the
species growth rate constant, and kd is the species death rate constant.

The production rates of the resource and species concentrations for a network of size I are

( ) ( )iiiiii
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where R0 is the resource concentration in the feed, Ri is the resource concentration in reactor i , Pi

is the species concentration in reactor i, F is the feed flow rate, G is the interconnection flow rate
and V is the reactor volume. The feed stream contains only resource. The state equations can be
written in dimensionless form as
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by redefining the variables as ri =Ri/R0, pi=Pi/R0, f=F/(VR0
2), g=G/(VR0

2), d=kd/R0
2, and t=R0

2t'.
For i > 3, analytical solutions become intractable, although it should be noted that a single trivial
steady state (ri=1, pi=0) exists for all i for every combination of model parameter values. This
state represents total extinction in the system. The feed flow rates and interconnection flow rates
are treated as manipulated variables. Constraints on the reactor flow rates ensure that material is
conserved.

EFFECTS OF CONTROL STRATEGY

Since nonlinear systems like reactor networks are capable of producing highly complex
static and dynamic behavior, the system behavior cannot be easily predicted when coupled with
typical control strategies. Within a multi-agent control system, decision agents are given the task
of increasing the concentration of the autocatalytic species in their reactor by manipulating the
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FIGURE 4  4-CSTR network schematic

interconnection flow rates between neighboring reactors. This can be achieved by local
exploration of the parameter space. Without a cooperative control strategy, this task is nearly
impossible to accomplish because the decision agents will aimlessly search the entire parameter
space, frequently resulting in inferior reactor performance.

The result of using a purely competitive strategy on neighboring reactor concentrations is
shown in the time series charts of Figure 5. The competitive control strategy used by the local
decision agents allows each to agree on a new operating regime only if both agents see a
improvement in their reactor. As shown in Figure 5, the agents are able to improve the operating
conditions (increase in species concentration) only slightly before the performance begins to
degenerate once again. The control strategy gets stuck in the parameter space and will
oscillate indefinitely unless halted by the supervision agents.

A more robust approach to this problem is to permit the local decision agents to suffer
some performance loss, but only for a small number of control moves. Figure 6 shows the
concentrations in neighboring reactors when the decision agents are designed to cooperatively
optimize the network performance. The rules governing the arbitration agent permit a decision
agent to make a control move that is detrimental to its neighbor for only one iteration, otherwise
it must return to its previous state. This strategy proves to be very effective at improving the
network performance. Although the performance of CSTR 2 occasionally suffers while the
performance of CSTR 1 improves continuously, this loss is only relative to the previous move
and ultimately results in a net gain in performance for the whole network.

CONCLUSIONS

Nonlinear physically distributed systems like reactor networks may produce complex
dynamic and static behavior. System behavior and performance cannot always be determined a
priori, making selection of control variables and procedures very difficult. These uncertainties
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FIGURE 5  Non-cooperative agent control strategy performance

FIGURE 6  Cooperative control strategy performance
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naturally result in complications in controlling the system, either in disturbance rejection or
changing the operational regimes of the system.

A multi-layer agent-based control system has been developed and applied to a reactor
network to improve the overall performance of the system. The multi-agent control system is
able to explore the parameter space of the network and intelligently manipulate the network
interconnection flow rates such that the specified goal is achieved.

Furthermore, it was shown that cooperative relationships between the decision agents
provide a more effective paradigm for improving the network performance than selfish
relationships for networks of autocatalytic replicators. While individual reactors may temporarily
suffer a performance degradation, the overall performance of the reactor network is improved.
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ASSURANCE OF SOLUTION CORRECTNESS IN TASK ALLOCATION
WITHOUT STIPULATION IN AN AGENT SOCIETY

HAMID HAIDARIAN SHAHRI, Amirkabir University of Technology, Iran*

ABSTRACT

 A common problem in multi-agent systems is finding a way to assign tasks to other
agents. It is very desirable to be able to guarantee the error rate of a solution in a multi-
agent system. This paper introduces a novel approach for solving this problem. We prove
that the multi-agent system can achieve any desired and predetermined threshold of
correctness for the final solution, regardless of the performance of selfish and unreliable
agents in the society or any stipulation about their honesty, which is extremely critical
and problematic in the design of open and real-world, multi-agent systems.
 
 Keywords: Multi-agent system, fault tolerance, agent-based simulation, agent society

1  INTRODUCTION

In today’s complex and distributed systems, the fitting solution for development of
a practical application is to effectively use a flexible multi-agent system (MAS). An MAS
is a system in which a large number of self-interested autonomous agents with different design
objectives take advantage of other agents’ skills to solve a problem. Many issues are involved in
engineering an agent society and integrating separately designed agents so that they can work
together in an unreliable and distributed environment.

An important point that must be considered in a large agent society is how to choose
among the huge numbers of options available in the allocation of tasks to agents. Selection of
options is of particular interest in an environment where agents are totally unknown, and there is
no central agent or general source of information, such as a directory for querying and learning
about the characteristics of agents in the system. To date, this case has not been addressed
thoroughly because, in most real-world applications, the agents in an MAS have been designed
and implemented by the same group of people. For example, in the production of an MAS for
discovering an unknown planet, the designers are aware of the capabilities and the honesty of
agents working in the system. With the growth of geographically distributed agents, however,
which communicate through a wide area network like many e-commerce applications, there
is a very urgent need to build mutual trust in agents’ societies.

This paper presents three different fault tolerance mechanisms devised for assuring
a correct result in an MAS. An allocating agent is totally unaware of the society in which he
lives. The agent learns about the honesty of his partners gradually. Nevertheless, he can
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guarantee any level of accuracy for the final solution, which consists of accumulating
intermediate results from untrusted and self-interested agents in the environment.

Section 2 provides the mathematical model used for creating an agent society. Section 3
explains the three different fault tolerance mechanisms. The third method provides a general and
flexible framework for modeling agent behavior. Section 4 presents the related work of ensuring
correctness. Section 5 consists of the conclusion and a discussion of some directions for future
work.

2  MATHEMATICAL MODEL

Consider that the agent is going to solve a large problem. The problem is divided into
batches; each batch is made up of tasks. The problem-solving agent starts to distribute the tasks
of one batch from the pool of tasks, between untrusted agents in the environment, until no tasks
remain. Once the results of tasks from one batch have been gathered, the agent begins to
distribute the next batch. Distribution of the second batch can use the results of the previous
batch. The final solution of the large problem consists of the total of these results.

Error rate, e, is the ratio of the incorrect results accepted to the total number of results.
For simplicity, it is assumed that batches are independent, and the results of one batch do not
affect the next one. The aim is to design a mechanism that will ensure a predetermined nonzero
acceptable error rate, e, for the solution of the large problem. This rate depends greatly on the
type of application for which the system is used. For example, if the acceptable error rate for
a problem is 1%, and the problem consists of 10 batches with 10 tasks each, the probability of
one result failing is e/(10*10) = 0.0001. Although this number might seem small, Section 3
shows that it can be achieved with a minor increase in redundancy.

A fraction of malicious agents, m, of the total agent population returns wrong results
without actually doing the assigned tasks. The master agent that allocates tasks might know m or
can assume an upper bound for it. If m is higher than the assumed upper bound, the master does
not guarantee any degree of correctness for the final solution. Because no assumption is made
concerning the speed or computational power of other agents, each result could come from any
of the agents with equal probability. Therefore, the original error rate would be m, without using
any preventive mechanism.

The malicious agents are modeled as Bernoulli processes having a probability of s
(sabotage rate) for producing a bad result, which is constant in time and the same for all
malicious agents. It is assumed that the worker agents do not communicate with each other and
cannot agree on when to give a bad result. When malicious agents return wrong results, however,
they agree on the incorrect result to allow voting for malicious agents. If this assumption does
not hold, we would expect a number of correct results that are better than the guaranteed rate.

The criteria for comparing the efficiency of different preventive mechanisms are
redundancy and slowdown. Redundancy is the ratio of the total number of tasks assigned to the
original number of tasks. Analogous to that, slowdown is defined as the ratio of the execution
time using the mechanism to not using the mechanism. Although the two criteria are related, if
agents can leave the computation or become blacklisted in the middle of a batch, the slowdown
would increase, but the redundancy would be the same. Fault tolerance mechanisms should
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generally minimize or reduce the final error rate to an acceptable level, as well as minimize
redundancy and slowdown.

3  FAULT TOLERANCE MECHANISMS

3.1  Voting

The agent allocates the tasks from a pool using eager scheduling in a “round robin”
fashion. Tasks could be reallocated to different agents redundantly. As soon as v equal results
(votes) for one task are returned, the task is marked “done.” When all the tasks in a batch have
been completed, the master accumulates the results and begins to distribute the next batch. The
redundancy in this method is v/(1 – m), where m is the fraction of malicious agents. By
approximation, the error rate is c ⋅ mv, which shrinks exponentially with v. This method performs
well if the fraction of malicious agents m is low, and malicious agents cannot form a majority. In
this case, the error rate can be reduced to very low levels with a small increase in redundancy.

The weakness of this method is that m can be high, which can occur in an agents’ society.
More important, redundancy cannot be reduced to less than two, even when m is zero
(no malicious agents). Therefore, it can only be used in cases in which we have an honest society
and the population is very large (i.e., we have many trustworthy resources).

3.2  Verification

In the method we call “verification,” rather than asking for the result of a task from at
least two agents, we might ask them to solve a task for which the result is known. The agents,
however, are not aware that at some time they will be tested with a task that has a result known
to the master. This method can be compared to the following analogy: the teacher scares students
with the possibility of a quiz but does not always plan to give one. In this way, the teacher
ensures that the students are working correctly, without incurring much slowdown in class
progress. If a malicious agent replies with a wrong result to a known task, its results would be
backtracked to the beginning of the batch. It could also be blacklisted, and no more tasks would
be assigned to it. In this case, if the probability of verifying an arbitrary agent is p, redundancy
will be 1/(1 – p), which has a lower bound of one rather than two as in the previous method.

Through blacklisting, only agents cause errors; these agents survive until the end of the
batch. If the agent can change its sabotage rate s in time, the error would decrease inversely with
the length of the batch and in time. Nevertheless, that is a worst-case scenario, and the malicious
agent does not have the required information to set s in such a way that maximizes the error rate.
Generally, it is advantageous for the master to make the batches longer.

It is not always possible to enforce blacklisting because the malicious agent might hide or
forge its identity and IP in a network. In this situation, the error rate would decrease inversely
with the length of time l that the agent participates in the computation and would be significantly
higher than with blacklisting. The reason is unreliable agents, which contribute to performing the
tasks and leaving the computation early before getting caught. Therefore, they increase the error
rate, and it would be desirable to somehow increase l. Malicious agents could return in the same
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batch, and the situation would then worsen. To prevent the return of malicious agents, sign-in
delays could be enforced. If the sign-in process were delayed until the next batch, the malicious
agents would not benefit from leaving the computation early.

3.3  Honesty

In addition to verification, voting could be used to exponentially reduce the already
linearly reduced error rate and to achieve more accurate results for the same redundancy. This
section explains an effective framework for fixing the problem of blacklisting and combining
any other fault tolerance mechanism similar to the two mentioned above.

A parameter called “honesty” is assigned to every agent in the society, analogous to
human societies. If the result of a task is only accepted when the conditional probability of that
result being correct is higher than p, the probability of accepting a correct result, averaged over
all tasks, is at least p. That is, accepting results from agents who are honest ensures a correct
final solution for any desired nonzero error rate. The honesty of an agent is determined by
monitoring behavior and administering tests. Obviously, newly arriving agents are unreliable and
have a low degree of honesty. Honesty might also depend on the agents’ society and the master’s
prediction about the fraction of malicious agents in the population.

The honesty of an agent determines the probability of whether the result passed by that
agent is correct. The master might receive different results from agents in the society, and
a result group consists of all matching results for the same task. Each task could have several
result groups. The highest probability of accuracy for the result groups determines the probability
that the result will be accurate for a particular task. The result group will be accepted only when
we have reached a desired threshold for correctness of the result.

Four types of objects are in the system: agent, result coming from an agent, result group,
and task. While the master is assigning tasks in a batch, the probability of accurate results in the
system increases if the agent passes verification tests, if a matching result arrives from another
agent (vote), or both. In time, the probability of correctness for a task will reach the desired
threshold and is marked “done”; the master will not reassign it. This method is very efficient
because if the answer comes from an honest agent, it will not require voting or verification
(i.e., it reduces the redundancy in the system).

4  RELATED WORK

Research on the conceptual and practical tools needed for building dependable agent
systems, resilient to errors and other unexpected situations, is at an early stage. Better methods
are needed to develop multi-agent systems that can guarantee correctness, reliability, and
robustness in an agent society. This fact has given rise to the arrangement of specialized agent
conferences with the theme of agent societies; for example, see Proceedings of the Agent 2003
Conference on Challenges in Social Simulation and Proceedings of the Fourth International
Workshop on Engineering Societies in the Agents World.

Turner and Jennings (forthcoming) recently initiated a project on agents for mobile
communication environments and are currently exploring integrity and correctness issues. Using
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formal transformation systems for multi-agent system synthesis is one way to meet this growing
need (Sparkman, et al., 2001). Defining boundaries in the behavior space by leveraging the goal
hierarchy has also been used for validating complex agent behavior (Wallace, 2003).
Ramamohanarao and Bailey (2001) discuss the development of an agent system with
a computational model with correctness criteria. Rather than hardwiring robustness and
fault-tolerant behavior into agent plans, notions of correctness are embedded at the semantic
level. Verification can then be undertaken at the desired level of abstraction. Overeinder, et al.
(2003) describe a design for the integration of AgentScape, a multi-agent system support
environment, and DARX, a framework for providing fault tolerance in large-scale agent systems.
Although these works are related to fault tolerance, they have all used different approaches for
achieving it and do not capture the spirit of a real multi-agent community (i.e., they do not try to
model the agent society).

5  CONCLUSION AND FUTURE WORK

In an open and geographically distributed multi-agent system, malicious agents might
exist. There is no way to guarantee that they actually perform the tasks allocated to them because
the agents have made no stipulations regarding this issue. They are usually autonomous,
self-interested, and selfish; even worse, they could have spiteful intentions. It is very critical to
use fault tolerance mechanisms to make the error rate tractable. This paper introduces setting up
the assumption for producing an open multi-agent system, modeling the society of agents
without any stipulation on agent reliability, and introducing the generic and effective honesty
framework for modeling a society.

The first mechanism introduced is voting: the more agents that return the same result, the
more likely it is to be true, assuming that the good agents form a majority. The assumption limits
the use of this mechanism, and it is highly redundant and inefficient. The second mechanism is
verification. The agents are sometimes tested to see that they are working properly. In this way,
redundancy is mitigated, and, in effect, agents are scared into doing the right thing. The human
society acts in an analogous fashion.

Finally, the generic honesty mechanism is proposed to create the required infrastructure
in a society so that agents can act legitimately. The honesty attribute is neither stipulated in
advance, nor is it a characteristic of the agent. Rather, it is computed gradually on the basis of the
agent’s behavior in society. It represents the faith of others toward the agent. The generic
approach of solving this problem culminated in the acquisition of a better understanding of the
agents’ interactions in an inaccessible environment.

These mechanisms are essential, and some of their applicability is for software agents
living in a competitive society like the web environment; agent simulation applications (Winoto,
2002) for research related to sociology, political science, economics, business, and ecology; and
creation of a framework for negotiation and collaboration among agents. Considering the many
possible real-world applications that can harvest these fault tolerance mechanisms, there is a
need for a more detailed mathematical and simulation analysis of these mechanisms, and we are
following this idea with promising results. The next logical step, and future direction for
research, is to deploy the mechanisms in a real-world application similar to the ones mentioned
above.
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DISCUSSION:

COMPUTATIONAL ORGANIZATION THEORY

(Friday, October 3, 2003, 10:00 a.m. to 12:30 p.m., Session 1)

Chair and Discussant: Noshir Contractor, University of Illinois at Urbana-Champaign

Dynamics of Expertise in Organizations: An Agent-based Modeling Exercise

[Presentation]

Noshir Contractor: Thank you. Questions, comments, clarifications? Yes.

Joe Jeffrey: Have you had a chance to look at whether anything interesting results from
the modelling of experts and domain acquisition. There might be things like a given expert, say
in computer science, might easily acquire knowledge in mathematics, but have a much more
difficult time acquiring knowledge in English literature or accounting or software management.
So on a more complex map and profile of expertise …

Desouza: We have not tried that. It would be a good thing to try, but as of now we have
not tried this. But, yes, that’s an interesting thing to try, where we can give agents capabilities to
learn.

Unidentified Speaker: Something else that would be interesting to see would be what
happens with varying degrees of receptivity. We all know experts who are not interested in
learning anything new, new domains; whereas, other experts are always eager to branch out.

Desouza: Yes. We actually thought about changing the expert capabilities, but one of the
problems we ran into is that the experiment becomes so complex, exponentially difficult. That’s
why right now we are just at a first step of changing parameters.

Other questions?

Contractor: When we get time, we’ll come back and revisit some of these papers later
on.

A Quantum Model of Control for Multi-agent Systems

[Presentation]

Lawless: And the conclusions I won’t go through. And if there are any questions about
future research, I can address those. And that’s it.

Thank you very much.

Contractor: Okay. So why don’t we go ahead and take some questions here.
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Lawless: Well, one of the things that Mike North, who’s speaking in the other session
right now, mentioned at a conference we were at last weekend was that they’re considering
revising Repast from its current Swarm model to a quantum model, and that’s in my final slide
here.

One of the problems that I mentioned to him is that if you come up with a quantum-based
model, how in the world are you ever going to go out and test it? And so that’s pretty much
where we were. And I thought about it on the ride home, and I’ve come to a different conclusion.

If you look at that last slide, you’ll notice that Badredine Arthey, who used to be at the
University of Illinois, and I think he’s recently moved to Southern Illinois, and others have come
up with quantum game solutions already. Quantum game theory has been out since about 1996,
and in Badredine’s paper, and in others, he has a full solution for, say, a game, Battle of the
Sexes. He’s got a solution for game theory, he’s got the best, the optimum solution for correlated
games, and they’ve also got already analytical solutions for quantum games.

So it seems to me that this should be a logical next step, a really good step, if we’re going
to create quantum games or quantum agents [where] you could actually use these analytical
solutions and establish that the agents can equal those exact proofs and then go from there. The
work from there is a very difficult next step. I’m not sure how that will be done.

Application of Agent-based Simulation to Policy Appraisal in the Criminal Justice
System in England and Wales

Contractor: Our next presenter is Stephen Guerin, armed with a bunch of colleagues that
I’m sure he will introduce. The title of the paper is “An Application of Agent-based Simulation
to Policy Appraisal in the Criminal Justice System in England and Wales.”

Stephen Guerin: Great, thank you. This is looking at the criminal justice system in
England and Wales. It was a collaboration with the London School of Economics and Redfish
Group. We’re a small consulting company down in Santa Fe. And Daniel Kunkle’s with me
today, as well as two joint authors, Sean Boyle and Julian Pratt.

The talk’s going to be broken into two pieces. One is just kind of a case study of the
criminal justice system. It’s kind of agent-based modeling in the wild, some of the issues that
come up. I can give you a little background there. And then, given the context of this workshop,
a little bit more theoretical on modeling organizations and some of the research we’re doing.

[Presentation]

Contractor: We have plenty of time for your comments and questions …

[No discussion was recorded.]   
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Agent-based Supervision and Control of Competitors in a Heterogeneous
Environment   

Contractor: Eric Tatara and his colleagues are talking about agent-based supervision and
control of competitors in a heterogeneous environment.

Eric Tatara: Thank you. I just wanted to point out initially that the URL for our group is
at the bottom, and we’ll put the slides up shortly. As things go, you’ll probably copy half of it
before I go to the next slide. So it’ll also show at the end.

[Presentation]

Unidentified Speaker: My question is whether in reality that is possible to keep the kind
of guarantee you referred to.

Unidentified Speaker: Well, there’s also a number of constraints on the system that take
this into account in the arbitration. For example, if you look at these flows into the reactors, we
have to balance it. You can’t send out more than you’re getting in. And if one guy closes his up a
little bit, he can take in more from a neighbor, and he may restrict what’s coming in from the
other neighbor. So they will make a move, and then maybe going back to the previous move is
less favorable than staying where they are.

Unidentified Speaker: In some models you also have interspecies relationships, correct?

Unidentified Speaker: Right. In this model, there is one species only, and they do have a
relationship through the resource. But one does not eat the other or take another one’s land or
something of that nature. It’s just simply through the resources.

Contractor: One of the issues to think about is that this session was focusing on
organizational issues, but it has also, in my mind, and perhaps [in my] somewhat biased opinion,
also focused quite a lot on various aspects of networks of one kind or another, whether it was
looking at networks where you’re trying to address getting expertise of other people or in a very
dyadic sense the networks of cooperation and conflict that you talked about, as well as, in the
case of the Redfish presentation, if I could call it that, and the London School of Economics
presentation, it was actually multi-level networks, where it was networks at the
interorganizational level, but also lower down, amongst the individuals involved in it, etc. And,
of course, certainly the last presentation was also looking at networks.

One should not automatically equate computational models as being necessarily network
models. But one theme that I’ve found today, and I think it’s sort of gratifying, is to see that
interest in looking at computational network models in particular.

That being said, I think one of the issues that my own background as a social scientist,
even though my undergraduate is from a different IIT — not the Illinois Institute of Technology,
but the one from India, the Indian Institute of Technology — but one of the things to think about
when we start thinking about looking at this network computational models is there’s a
tremendous amount of literature in more the traditional social sciences that actually have a lot to
say about the different motivations for why we create, maintain, dissolve network linkages.
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And one of the things that’s I’ve been involved in during the last couple of years, and this
is of course a shameless plug for a book we’ve just completed — a colleague of mine, Peter
Mongey, and I — on theories of communication networks. And one of the things we do in it is
talk extensively about the use of computational models for this purpose, but specifically about all
the different families of traditional social science theories that we could look at. Most people
think of networks in terms of a contagion model, and that is the infection sort of notion, the
epidemiological metaphor for networks, which says that if I have a certain opinion, through
contagion it will flow through my network, or a disease would flow through the network or a
behavior would flow through the network.

But in fact looking at also provides theoretical explanations based on theories of self-
interest. So a lot of the economic models can be looked at as, say, I want to create a network link
with Eric because it is in my self-interest to create it. There’s something that Eric has that I want.

A separate mechanism would focus on exchange, which says, “Well, it’s not likely that
I’m going to have a sustained interaction with Eric if I simply go to Eric on the basis of self-
interest.” So a second mechanism is to say, “I’ll go to someone where I have something, where I
need something that person has, but in exchange that person wants something that I have,” and
so it sets up a social exchange mechanism, and there’s a huge body of literature that many of you
are familiar with in social exchange literature.

A third distinct mechanism is in terms of collective action, which says, “We’re not going
to go to each other because we need something from one another, but collectively we can get
something from a third party.” And so a lot of the models of collective action are in fact based on
that particular mechanism. Each of these provides sort of different mechanisms that we could
look at together or separately when we’re trying to model these. So there’s a family of about 10
mechanisms that we’ve described in our own work in this area.

There’s a very interesting body of literature which they [Eric Tatara et al.] do cite in the
paper on transactive memory systems, in a theory of transactive memory and social psychology,
which says, looking at how experts are distributed in groups is largely being shaped by whether
there is one expert and whether other people in the group can say, if they know who the expert is,
no one else needs to be the expert. So you don’t necessarily have the simple combination models
that were described today, but instead to say, “If I am the expert on this topic, no one else in the
group needs to be the expert, because it’s a waste of their time. If they need help, as long as they
know I’m the expert, they’ll come to me. If they find something that is of interest, as long as they
know I am the expert, they will give it to me.” Likewise, if you are the expert, Bill, on a
particular topic, the same would apply to you. And so you get this specialization of experts
within groups, which works on the basis of each one being an expert on a particular topic and the
rest of the people knowing who the experts are and then using that logic as a way of creating
knowledge networks within these communities.

In any case, I just wanted to sort of again encourage all of you who have very
sophisticated mathematical treatments to consider going back to some of these traditional social
science theories and seeing ways in which a lot of what they have to say can be formulated in
ways which they can’t fathom, but we as people interested in computational modeling will be
able to deploy in many of these contexts.
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Unidentified Speaker: When we talk about democratic decision-making, it’s different.
I’ve seen this in many decision-making groups, where the scientist or the experts actually hide
from democratic decision-making.

Contractor: Right.

Unidentified Speaker: But, on the other hand, I have seen experts who disagreed with
each other in public, like a prosecutor and the defense attorney, serving valuable functions,
where their expertise is used to educate neutrals to that decision-making. And they actually make
the decision. So that’s an alternative.

Contractor: So this is actually the point that I’m making, and that is, you cited Dick
Moreland and Levine’s work on small groups. Dick Moreland is sort of the big proponent of
transactive memory. But the larger point here is that there are different theoretical mechanisms,
and part of what is such a wonderful advantage of working with computational models is that
you can juxtapose multiple theories and look at these differences in ways that allow us to decide
whether they are context-dependent models that apply to a jury situation, as opposed to some
specialized medical treatment, etc. And, again, who’s to say that transactive memory systems are
in fact the most effective. It’s simply a theory. And all the work that’s been done empirically in
this area is typically done at the dyadic level. There are very few people who are even looking at
it in terms of larger networks, which we have the ability to do out here.

So it is exactly the sort of multi-theoretical, multi-level approaches that I think would be
so valuable, given the kind of computational modeling that we do.
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AGENT-BASED MODELING OF LOTTERY MARKETS

SHU-HENG CHEN and BIN-TZONG CHIE1

AI-ECON Research Center, National Chengchi University

ABSTRACT

 The lottery market modeled in this study cannot be explained by the conventional rational
expectation approach. Clarifying lottery market behaviors is a daunting task. We apply an
agent-based computational modeling technique in which each agent is modeled as
autonomous with his or her own perceptions and actions. The objective is to use three
empirical observations in lottery markets  the halo effect or lottomania, conscious
selection of betting numbers, and aversion to regrets  to examine the effects of the
lottery takeout rate on its revenue. Initial results show the Laffer curve, which indicates
the existence of an optimal lottery takeout rate or range. This finding provides some
insights to the empirical averaged rate for the 25 lottery markets examined.

 Keywords: Lottery markets, agent-based computational modeling, Laffer curve, fuzzy
system, genetic algorithms

1  INTRODUCTION

Economists find lottery market behavior to be an interesting subject. Many studies have
used demographic and socioeconomic data to estimate lottery sales or demand. The standard
econometric approach, however, primarily treats the demand decision as an individual rational
choice problem. Within this framework, the number of tickets purchased by an individual is
determined only by his or her personal profile; this choice has nothing to do with how other
people would act. To model this aspect, an agent-based computational modeling approach is
used to capture some aspects that cannot be described by using an analytical model.

Modern agent engineering techniques offer more advantages for capturing the idea of
autonomous agents. Over the past years, these insights have extended to the economics analysis
arena in some areas, such as the artificial financial market. As an extension of our earlier studies
with an artificial stock market (Chen and Yeh, 2001; 2002), this paper addresses an agent-based
model of lottery markets.

We survey the takeout rate of some lottery markets, which shows a wide distribution.
This rate ranges from a low of 40% in Taiwan to a high of 68.4% in Brazil. Although these data
are helpful in reaching a design, we observe that the takeout rate is only one dimension of the
complex lottery design. Scoggins (1995), Hartley and Lanot (2000), and Paton, et al. (2002) have
discussed this issue.

Empirical observations of psychological studies of the lottery market have motivated us
to use an agent-based modeling approach. Actually, we find that gamblers are not so concerned
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with the probabilistic calculation of the odds of winning, because they often rely on heuristic
strategies for handling situations. Even though the generation of the winning number is totally
a random mechanism, gamblers still tend to pick nonrandom numbers; this process is called
conscious selection. Griffiths and Wood (2002) reviewed various heuristics and biases involved
in the psychology of the lottery market, such as hindsight bias, representation bias, and
availability bias. It is not easy to capture such heuristics and biases by using standard rational
models.

This paper is organized as follows. Section 2 briefly describes an agent-based model of
the lottery market. Section 3 shows how the genetic algorithm is used. Section 4 outlines the
experimental designs and Section 5 gives the results of the simulation. Finally, Section 6
provides concluding remarks.

2  AN AGENT-BASED MODEL OF THE LOTTERY MARKET

2.1  The Lottery Market and Its Design

In general, agent-based models consist of two essential parts  the environment and the
agent. In this study, the environment comprises the rules or the design of a lottery game and the
states of the market. Walker and Young (2001) conducted a well-known study of the design of
the lottery game. Typically, the game is expressed by two parameters, x/X. In this game,
gamblers pick x numbers from a total of X numbers without replacement; different prizes then
are set for the various numbers that are matched on the drawing day. In a simple description of
this process, let y denote the number matched. Clearly, y = 0,1, …, x. Let Sy be the prize pool
reserved for the winners who matched y numbers. The special term for the largest prize pool is
called Jackpot, Sx.

A common feature of lotteries is that, if
a given draw does not generate winners, the jackpot
prize pool from that draw is added to the pool for the
next draw; this is referred to as a rollover. Rollovers
usually make the next draw, called the rollover draw,
much more attractive. The prize pool is defined by
the lottery takeout rate, , which is the proportion of
sales that is not returned as prizes. Thus, the overall
prize pool is (1� )S, where S is sales revenue and
1�  is the payout rate. Therefore, a lottery game can
be represented by the following x + 4-tuple vector:
L = (x, X,� , s0,..., sx), which is shown in the control
panel of our agent-based lottery software (Figure 1).

One of the objectives for using agent-based
simulation of the lottery market is to examine the
effects of changes in the design L on lottery sales,
and more important, on charity fund revenue. The
literature shows two approaches for analyzing agents’
participation in the lottery markets. In the first

FIGURE 1  Control panel of
parameter settings and lottery rules
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approach, the empirical data are used to model the principal features of the observed aggregate
behavior (Farrell and Walker, 1999; Farrell, et al., 1999). In the second approach, a rational
model of representative agents is used to aggregate these representative agents (Hartley and
Lanot, 2000). The agent-based model is closer to the latter but does not use the attributes of
rationality and homogeneity.

2.2  Agent Engineering

Since we do not know why people gamble, we do not think that a unique answer can be
found to explain this issue. Therefore, many possibilities can be examined by using agent
engineering. The basic principle is to ground agent engineering with theoretical and empirical
observations. In this way, we minimize the degree of arbitrariness. In our agent-based model, we
capture the following stylized facts of the lottery market: lottomania and the halo effect,
conscious selection, and aversion to regret.

2.2.1  Lottomania and the Halo Effect

First we observe that lottery sales seem to be positively related to the size of the rollover
or jackpot prize. By examining lottery market data, we find that this phenomenon is statistically
significant. This phenomenon, called halo effect (Creigh-Tyte and Farrell, 1998; Walker and
Yang, 2001), can create a bout of “lottomania,” which is propagated by the media. Therefore, we
initially build the agents from a participation function, which is a measure of the participation
level compared with the size of jackpot. In the standard rational analysis, the change between
these two variables is in the expected value, or more generally, the expected utility, of the lottery
ticket (Hartley and Lanot, 2000). However, we take a heuristic approach and assume that
gamblers base their decisions on some heuristics rather than on the possibly demanding work on
the computation of expectations.

The heuristic approach allows approximation of the relation by a few simple if-then rules.
We represent the function of participation level by a set of fuzzy if-then rules, which are
manipulated by the standard mathematical operations of the fuzzy sets as prescribed by fuzzy set
theory.

2.2.2  Conscious Selection

The second important observation related to lottery markets is that gamblers are generally
ignorant as to how probability operates. The phenomenon known as conscious selection refers to
nonrandom selections of the combinations of numbers. Even more interesting is that there is
a market for “experts,” who advise gamblers regarding which numbers to choose. To take
conscious selection into account, let a vector be an X-dimensional vector, whose entities take
either 0 or 1.
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2.2.3  Aversion to Regret

The last feature of our model of agents is the utility function. For simplicity, most
advanced-computing-environment models assume an exogenously given utility function that is
homogeneous among agents. We have slightly departed from this tradition primarily because of
the observation of aversion to regret. In the lottery market, regret simply refers to the utility that
the decision not to gamble is based on whether there are winners. If nobody wins, gamblers do
not feel regret; however, if somebody wins, they might feel regret (i.e., the prize could have been
theirs if they had played the lottery).

In spirit, this consideration is in line with the regret theory proposed by Bell (1982) and
Loomes and Sugden (1982). The regret theory offers explanations for numerous evident
violations of the expected utility theory axioms. In regret theory, agents, after making decisions
under uncertainty, may feel regret if their decisions prove to be wrong even if they seemed to be
correct given the information available ex ante. This very intuitive assumption implies that an
agent’s utility function, among other things, should depend on the realization of alternatives not
chosen and, in this sense, irrelevant.

3  GENETIC ALGORITHMS

3.1  Representation

Genetic algorithms (GAs) are motivated from the spirit of natural and are coded with the
chromosomes, which is the unit of GAs. In our model, the chromosome is coded as the bit string,
which is the vector (a ,t, b ,t, i,t). It fully characterizes an individual at time t. Since each
component of the vector is associated with a different function, however, the coding and
decoding schemes would be different. Figure 2 illustrates a fuzzy inference system with the
corresponding binary string of a, decoded as a = (0.2, 0.6, 0.8, 1.0) of real numbers. The input J

FIGURE 2  Betting heuristics based on the Sugeno fuzzy inference system
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is perceived by the agent, and the membership degree of each fuzzy set is calculated as follows:
[ A1 (J), ..., A4 (J)] = [0, 0, 0.75, 0.25]. Therefore, the agent invests

 = ∑ =
4

1i Ai(J)ai = 0.95

of his or her income to purchase lottery tickets.

It is straightforward to code b, which is the number-picking vector. As mentioned earlier,
b is simply an X-bit string. An example of the case X = 20 is shown in Figure 3.

FIGURE 3  Example of numbers chosen by agents

Finally, the regret parameter , which also lies between 0 and 1, can be encoded in a similar
fashion as binary coding by a l -string bits. Therefore, the full characterization is encoded by a
string with a total of 4 × la + lb + l  bits.

3.2  Evolutionary Cycle

Genetic algorithms have two major selection schemes: roulette-wheel selection and
tournament selection. Although these two selection schemes have been well studied in the GA
literature, the scheme more suitable for agent-based economic modeling remains an open issue.
The reason is because some of the advantages or disadvantages that are known to GA theorists
may not be of relevance for social science-oriented studies. Chen (1997) argued that, for social
scientists, the network behind the social dynamics is the primary criterion of the selection
scheme. Generally, the roulette-wheel selection scheme implicitly assumes the existence of
a well-connected global network, whereas the tournament selection scheme requires only the
function of local networks. Lacking further evidence on which network assumption is
appropriate, it would be beneficial to try both selection schemes to test for robustness. To narrow
our focus here, we apply only tournament selection. We plan to include the other selection
scheme at a later stage. The following describes the pseudo program of the evolutionary cycle:

1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0

Selected

Numbers

Total

Numbers

Char. 2

 01    02    03    04    05    06    07    08    09   10    11    12    13   14    15    16

01            03            05    06            08                           12           14
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begin

Gen := 1;

Pop := Population-Size;

initialize(POP(Gen, Pop));

evaluate(POP(Gen, Pop));

while not terminate do

begin

for i := 1 to Pop step 2

Parent1 := Tournament-Select-1st(POP(Gen, Pop));

Parent2 := Tournament-Select-2nd(POP(Gen, Pop));

OffspringPOP(Gen, i) := Crossover-Mutation-1st(Parent1, Parent2);

OffspringPOP(Gen, i+1) := Crossover-Mutation-2nd(Parent1, Parent2);

next i

evaluate(OffspringPOP(Gen, Pop));

POP(Gen+1) := OffspringPOP(Gen, Pop);

Gen := Gen+1;

end

end

4  EXPERIMENTAL DESIGNS

This paper studies the possible relation
between the lottery takeout rate and the lottery
sales by hypothesizing the existence of a Laffer
curve and hence an optimal interior T. To do so,
different values of T  ranging from 10% to 90%
are attempted. The remaining market parameters
are treated as constants throughout the entire
simulation. Figure 4 shows the parameter settings
of the agent-based model of the lottery market.

The second set of parameters concerns the
control parameters of the genetic algorithm. The
parameter T (i.e., the tournament size) is unusually
large (T = 200), which allows for greater
interaction among gamblers; this approximates the
intensive attention drawn to lottery results
reported by mass media. In the future, we plan to
apply this agent-based lottery market to some
sensitivity issues that pertain to the choice of various selection schemes, market sizes, crossover
styles, etc., including their economic significance and the effect on the simulation results.

FIGURE 4  Parameter settings of agent-
based lottery market
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5  RESULTS

5.1  Takeout Rate and Tax Revenue

Figure 5 shows that initially, the normalized lottery revenue (effective takeout rate)
increases with the lottery takeout rate   and finally decreases with it. The highest revenue
appears at  = 40% with an effective takeout rate of 1.1%. However, the revenue curve is not
unimodular; in addition to  = 40%, it also peaks at  = 60%. Hence, it is not a typical Laffer
curve as one might suppose. The revenue does not monotonically decrease after  = 40, and the
jump at  = 60% is not surprising. Certainly, this finding does not mean that the complex system
used can have only one unique solution:  = 0.40. Is it possible that different settings of the
parameter values can lead to different results? Or are we by luck, for example, simulating a
system with a set of parameters that has an optimal solution consistent with the empirical
observation? This is indeed the robustness issue that must be addressed in agent-based
computational modeling.

FIGURE 5  Effective tax rates statistics for 30 runs
for each tax rate

5.2  Rollovers and Sales

Generally, large-sized rollovers tend to enhance the attractiveness of the lottery game.
Statistics show that the mean sales that are conditional on the rollover draw are normally higher
than those of the regular draw. For example, on the basis of the time series data for the U.K.
lottery from November 19, 1994, to March 5, 2003, which comprises a total of 751 draws, the
average sales are £56.0 million over the rollover draws, whereas they are £41.4 million over the
regular draws. However, from a total of 112 rollover draws of the U.K. lottery, sales actually fell
25 times. On the basis of these statistics, it is interesting to see whether the patterns will be
similar for our artificial lottery markets. Therefore, we use the same statistics for the simulated
data.

The disappearance of the halo effect and the appearance of the anti-halo effect are
certainly astonishing, especially because our agent engineering is based on the consideration of
the halo effect. However, a comparison of the real data with the artificial data provides us the
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opportunity to reflect on something that we may take for granted. In particular, what is the
essence of the phenomenon of the halo effect? Why did the agent-based system built on GA fail
to deliver this feature? Is there a reasonable explanation for this?

5.3  Conscious Selection

In the real market, many “experts” who advise people on selecting numbers have
analyzed the patterns of lottery numbers. In our simulations, the numbers favored by each agent
are observable. The profile provides us with the opportunity to examine the behavior of
conscious selection. In particular, it enables us to address the question as to whether the agents
essentially believe that winning numbers are randomly selected.

5.4  Aversion to Regret

We examine the values of θ, which intensifies agents’ suffering when they do not bet in
the last period, and take an average from this sample. We call the average ¯ θ. We see that
a culture in which people are sensitive to what others have is nursed in this lottery in this
environment. The statistic nearly reaches its maximum and is independent of the takeout rate.

6  CONCLUSIONS

We introduce an agent-based model of the lottery market. This market is composed of
many highly interacting agents whose decisions are inevitably interdependent. A model must
allow for imitation, fashion, and contagion. In general, an agent’s preference for the lottery
should be adaptive and evolving rather than fixed. Agents should be modeled as a adaptive
agents who, based on their past experiences, are continuously updating their anticipation of the
value of lottery tickets and revising their decisions accordingly. By using GAs, we capture the
decisions of lottery demand made by adaptive agents in a highly interactive environment and
simulate the time series of the aggregate sales of a lottery tickets.

In this paper, the agents are primarily designed on the basis of two empirical phenomena
known as the halo effect and the conscious selection of numbers. We also consider the agent’s
utility function. The empirical observations of the aversion to regret motivated us to find an
interdependent utility function for agents. These aspects, which included unsophisticated
heuristic behavior, conscious number picking, and preference, are evolving over time via the
canonical genetic algorithms.

This model is a starting point for conducting some initial evaluations of the impact of the
lottery takeout rate on the lottery revenue. Two observations are made in this paper. First, the
Laffer curve suggests an optimal lottery takeout rate *. Second, the * can be sensitive to how
agents are modeled. Simulations show that when the regret effect is moved from agents’
preferences, the * can go up. If so, the appearance of the interdependent utility function has an
implication on the design of the lottery game. Empirical data from Taiwan, U.K., and South
Africa national lotteries will be used to examine the performance of our agent-based model.
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EFFECTS OF GLOBAL INFORMATION AVAILABILITY
IN NETWORKS OF SUPPLY CHAIN AGENTS

C.M. MACAL∗ and M.J. NORTH, Argonne National Laboratory, Argonne, IL

ABSTRACT

 Supply chains are systems that touch all aspects of production, distribution, and retailing
of goods and services, linking suppliers to manufacturers, to distributors, to wholesalers,
to retailers, and finally to consumers. Supply chains can be thought of as collections of
autonomous, interacting decision-making units (agents), such as organizations, business
units, and individual decision-makers. This paper discusses the modeling of supply
networks as collections of interacting social agents using agent-based simulation. A
computational model is developed that captures the salient features of supply chain
dynamics and system behavior. The simulation is used to study the effects of information
accessibility on supply chain dynamics and the implications of agent decision rules on
supply chain performance. We provide a method for quantifying the value of information
from both the agent and systemic perspectives. When supply chain agents have access to
only locally available information (for example, their own inventory and outstanding
orders) and information visibility is minimal, supply chains may operate far from a cost-
minimizing state. Attempts to control system behavior by agents who use only locally-
optimizing decision rules may be highly ineffective. The value of additional information
is found to increase only up to a point beyond which no further gains can be identified.

Keywords: agent-based modeling and simulation, supply chain, supply network, value of
information, Beer Game

INTRODUCTION

Supply chains are everywhere in today’s modern society, involving every aspect of the
production and provision of goods and services. Supply chains are systems that touch all aspects
of production, distribution, and retailing of goods and services, linking suppliers to
manufacturers, to distributors, to wholesalers, to retailers, and finally to consumers (Figure 1). A
supply chain is actually a complex network with a diverse set of members and relationships that
are constantly changing over time. We use the terms supply chain and supply network
interchangeably in this paper depending on the context of the discussion. A supply chain is
dynamic. Goods flow down the network from primary producers to consumers in response to
information, in the form of orders, which flows up the network from consumers to the
production. Supply chains are an example of a system in which the complex, macro-level system
behaviors can be directly traced to the behavioral decision rules of the individual agents. Even
simple supply chains can exhibit complex behaviors that make them difficult to manage and
control (Lee et al. 1997). The “bullwhip effect” is the name given to the tendency of a supply

                                                
∗ Corresponding author address: Charles Macal, Decision and Information Sciences Division, Argonne National

Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439; email: macal@anl.gov.



236

FIGURE 1  Supply network

chain to exhibit unstable behavior characterized by oscillation (orders and inventories are
dominated by large amplitude fluctuations), amplification (the amplitude and variance of orders
increases steadily from customers to upstream stages), and phase lag (the order rate tends to peak
later as one moves upstream from the retailer to the factory stages). It is well-known that cyclic
(boom and bust) behaviors and chaos can arise in even the simplest supply chains as a result of
decision rules that are based on only locally available information, as is the case in most modern
supply chains (Rasmussen and Mosekilde 1988, Mosekilde et al. 1991, Sterman 2000).

Supply chain agents are necessarily social agents, having many dimensions of interaction
and exchange beyond those that are routinely modeled. They seek sources for their supply from
others; they seek outlets for their products; and they negotiate on pricing, delivery, and
information sharing. The value of information and the benefits of information sharing in supply
networks are particularly important aspects of planning and managing dynamic supply chains.
Advances in information technology allow for rapid dissemination of supply chain data. In many
business relationships, data are now being shared between cooperative supply chain partners to
improve overall supply chain performance and allow parties to rely less upon forecasting to
make decisions. Understanding the value of information for supply chain agents and the effects
of having various degrees of information on macro-level supply chain performance is an active
research area and the focus of this paper. In this paper, we take an agent-based simulation
approach to modeling the supply chain and investigating the value of information. Agent-based
simulation is a new type of simulation modeling that focuses on modeling the diverse behaviors
of individuals in a system and emphasizes the emergent properties of the system that result from
the agents’ interactions (Epstein and Axtell 1996, Gilbert and Troitzsch 1999, Bonabeau 2002).
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Some have even made a case that computational, agent-based modeling is a third way of
conducting science (Axelrod 1997) in addition to deduction and induction.

This paper is organized as follows. The second section describes the agent-based
approach to modeling supply networks. The third section describes the set-up for experiments to
understand the value of information to supply chain agents. An important aspect of studying
information in a controlled, experimental setting concerns the effects of agent diversity and how
slight variations in agents’ accessibility to information can lead to larger differences in supply
chain performance and emergent system effects. The fourth section presents experimental results
on the role of information and diversity. The last section draws some conclusions and
implications for studying real-world supply chains.

AN AGENT-BASED APPROACH TO MODELING SUPPLY NETWORKS

Supply chains lend themselves to agent-based simulation in which agents are the
“decision-making members” of the supply chain. Supply chains can be thought of as collections
of autonomous decision-making units (agents), such as organizations, business units, companies,
and individual decision-makers. Agents are also heterogeneous, each agent having its own
individual characteristics, objectives, and constraints, yet constrained in decision-making by the
results of the decisions of other agents and by its environment. The essential aspect of agent
simulation − the ability to represent individual agents and complex interactions between agents –
allows for the possibility of developing a more complete, realistic, and recognizable model of
supply chains and agent behaviors than has been previously possible.

Supply Chain Simulation Model

The starting point for the supply chain simulation is the so-called “Beer Game,” (Sterman
1987, Sterman 1989, Sterman 2000), designed to illustrate the complexities of planning and
operating supply chains. The “Beer Game Simulation” (BGS) is a systems dynamics simulation
model (Forrester 1961) that has been used extensively to study supply chain behavior. The BGS
is well-known, well-studied, and well-published. The BGS consists of a linear supply chain with
five levels or stages: customer, retailer, wholesaler, distributor, and factory. One commodity is
ordered and shipped between successive stages. At each time in the simulation, the customer
places an order with the retailer who fills the order if the retailer’s inventory allows. If the
retailer cannot fill the order immediately from inventory, the order is placed in backorder, to be
filled at a later time when stock is replenished. The retailer orders additional items from the
wholesaler as needed to meet expected demand for the next period and to meet stock-level and
“pipeline” goals. The pipeline consists of orders placed but not received. The wholesaler fills the
order if the wholesaler’s inventory allows. If the wholesaler cannot fill the order immediately
from inventory, the order is placed in backorder to be filled when stock is replenished. The
wholesaler orders additional items from the distributor, and so on, for the distributor and factory
stages. If the factory cannot fill an order, it places an order for items into production. The
sequence of supply chain stages from manufacturer to final customer is termed the downstream,
and the sequence of supply chain stages from final customer to manufacturer is termed the
upstream.
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Standard assumptions include a one-period delay between orders being sent and received
throughout the supply chain, a two-period shipping delay between the time items are shipped and
received, a three-period production delay (equivalent to the sum of the one period ordering delay
and the two-period shipping delay for the other stages) for items ordered by the factory. Other
assumptions are easily incorporated into the framework, but it has been observed that the same
systemic supply chain behavior results no matter what values of delay parameters one selects. A
simulation consists of repeating these processes for several periods. At each time period, each
agent updates its stock, backorders, inventory, and the number of items in the pipeline, according
to the following flow equations:

Stockt = Stockt-1 + Receivet – Supplyt, for Stockt  ����

Backordert = Backordert-1 + Demandt – Supplyt, for Backordert  ����

Inventory is defined as the difference between stock and backorder:

Inventoryt = Stockt – Backordert

The backorder is always non-negative by definition, since one of the assumptions of the BGS is
that an agent never supplies more than the current demand plus the backorder at any time. Stock
is always non-negative by assumption in that an agent never supplies more than an amount equal
to the current stock on hand plus the incoming shipment just arrived. In effect, this is the setup is
for a “demand pull” supply chain.

At each time t, agents place an order to the upstream agent, or to manufacturing in the
case of the factory. In effect, the main decision variable for each agent is how much to order
from the upstream agent at each time. Ordering rules are described below. Agents also track
orders in the pipeline, that is, how much they have ordered but not yet received, given by:

Pipelinet = Pipelinet-1 + Ordert – Receivet, for Pipelinet  ����

The pipeline is always nonnegative by assumption in that an agent cannot receive more than the
cumulative amount they have ordered.

Cost enters into the simulation as an inventory charge for stock at $0.50 per item per
period (in effect an inventory holding charge) and a charge for orders that are received but
cannot be met immediately. A backorder charge is incurred of $2.00 per item per period. The
exact values of the costs for stock versus backorders are of less importance in determining
system behavior than the assumption that it is more costly to have an item out of stock than to
carry an item in the inventory. These relative costs drive the agent goal of maintaining a positive
stock level as a safety buffer.

Supply Chain Agent Model

We formulate the BGS as an agent-based simulation model, which is much different in
form than the original SD model but yields mathematically equivalent results to the SD
formulation. Supply chain agents vary along several dimensions, including their general
characteristics, the resources they control, and the sophistication of the decision rules they
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employ. In general, there are several important aspects of modeling supply chain agent behavior.
These include the (1) sophistication of the agents’ decision models, (2) extent of information
considered in making decisions, (3) the amount of information stored in memory about previous
decisions and events, and (4) whether agents have internal models of how the supply chain works
in the whole, including whether agents have models of other agents’ decision processes and
behaviors. Agents must make decisions within a limited amount of time and resources so they
often use simple heuristics or “rules-of-thumb” upon which to make decisions.

Supply chain agents have a limited amount of attributes, memory, and decision-making
capability. An agent carries the following minimal set of information about itself (Figure 2):

• Inventory at time t and desired inventory level (assumed to be constant),

• Orders in pipeline at t and desired pipeline level (assumed to be constant),

• Demand at t (from downstream agents) and expected demand (demand
forecast) from downstream agents for the next period (t + 1) made at t, and

• Previous decisions made by the agent and the expected demand from
downstream agents for the current period t which they made during the
previous period (t – 1). In effect this is used by the agents to determine their
demand forecasting error.

By assumption, the desired inventory and pipeline levels are decided upon and fixed for each
agent through all simulation periods.

FIGURE 2  A supply chain agent
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Agent Rules

Agents in the supply chain manage the flow of goods and orders for goods. Agents
manage inventory (and costs) by placing orders using ordering policies in each period. Supply
chain agents are faced with several difficult questions in each time period: What will be
tomorrow’s demand? How much should I order? How much should I ship? How should I
organize these decisions? In the standard BGS, at each time period, each supply chain agent
carries out the following four functions:

1. Receive shipment: When an agent receives a shipment from an upstream
agent, it adds the shipments to its inventory.

2. Receive demand: An agent receives the order (demand) from the downstream
agent.

3. Decide on shipment: In response to demand from the downstream agent and to
fill any backorders that exist, an agent ships as many items as it can from its
inventory to meet the current and previous demand. In effect, the shipment
amount is equal to the minimum of the agent’s inventory and the recent
demand plus backorder. Demand that cannot be met is recorded as a
backorder, or negative inventory, to be satisfied in the future. The decision
made by the agent at this point is how much to ship to the downstream agents.

4. Decide on order: Finally, the agent decides how much to order from the
upstream agents.

Initially, only locally available information is available to the agents for them to use in making
their decisions. Information is obtained through (and created from) local interactions with other
agents.

Agents have the goal of achieving desired inventory and pipeline levels. To meet these
goals agents seek to close simultaneously close the gaps between the desired and actual
inventory levels and the desired and actual pipeline levels. Stock adjustments to inventory are
determined by:

Stock Adjustment to Inventoryt = αS (Desired Inventory – Inventoryt) (1)

Stock adjustments to the pipeline are determined from:

Stock Adjustment to Pipelinet = αSL (Desired Pipeline – Pipelinet) (2)

where the ordering parameters, αS and αSL, represent the fractions of the gap to be closed
between desired and actual inventory and pipeline levels, respectively, in one time step. Ordering
parameters are assumed to be in the range zero to one (0  �� �αS  �� ���  0  �� �αSL   �� �����	

additional ordering parameter is often defined, β = (αSL / αS), which is the relative weight
attached to the pipeline versus the inventory gaps. The behavioral decision rules in Equations 1
and 2 are the standard form for modeling behavior and are referred to in the literature as
“anchoring and adjustment” rules (Sterman 1987). The agent decision framework consists of
three types of agent rules corresponding to the four steps in the agent decision process.
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Supply Rule: In the standard BGS, each agent decides on how much to supply based only
on locally available information, consisting of the stock available and the incoming orders from
the downstream agent. The amount supplied by an agent is equal to the lesser of the stock (if
any) and the incoming order and backorder. That is:

Supplyt = Minimum[Stockt, Incoming Demandt + Backordert]

In effect, the agent supplies the complete inventory (if there is any stock) or supplies up to the
order plus backorder.

Ordering Rule: Each agent makes an ordering decision based only on locally-available
information. The information consists of the expected demand for the next period (demand
forecast) and adjustments to the stock and the pipeline. Agents use an adaptive behavioral
decision rule to determine orders

Indicated Ordert = Expected Demandt + Stock Adjustment to Inventory

+ Stock Adjustment to Pipeline

Finally, by assumption negative orders are not allowed, and the order the agent places to its
upstream agent at time t is:

Ordert  =  Max[0, Indicated Ordert]

This form of the ordering rule is the classic one used in the original BGS.

Demand Forecasting Rule: Agents adjust their expected demand for the next period by
weighting the current demand and the previously expected demand for the current period to
estimate the demand for the next period:

Expected Demandt = θ Demandt + (1 – θ) Expected Demandt-1,

where Expected Demandt is the demand forecast for the next period that is made during the
current period. The weighting factor θ is assumed to be in the range zero to one (0 ��θ �����
These two rules are arguably, a good, descriptive, behavioral decision model for agent behavior
in the linear supply chain (Sterman 1987, 1989).

The Network Supply Chain Model

The original BGS was formulated as a linear supply chain model. Here, to add realism to
the supply chain model and to study the effects of agent diversity, we extend the linear supply
chain model to a fully connected supply network. The “Network Beer Game Simulation”
(NBGS) introduced here consists of the five stages in the original BGS but connected in a dense
network configuration. Each agent is connected to all the agents at the next upstream stage
(excluding factory agents, who do not have an upstream) and to all the agents at the next
downstream stage (excluding customer agents, who do not have a downstream). Additional agent
decision rules are needed for the network version of the supply chain simulation to account for
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additional decisions that have to be made in going from a chain to a network. These consist of
rules for allocating supply to downstream agents and for allocating orders to upstream agents.

Supply Allocation Rule: In the network, an upstream agent has shipment decisions to
make. The upstream agent has to decide (1) how much to supply to all downstream agents and
(2) the share of the supply (allocating shipments) that should be made to each downstream agent.
There are several alternatives for allocating supplies. For example, one rule is to fill the largest
backorder first (LBF) until all backorders are filled or the supply runs out, whichever comes first.
An alternative is to prioritize the downstream agents on the basis of smaller backorder and
supply the downstream agents in order of the smallest backorder first (SBF); this scheme would
seek to supply as many downstream agents as possible. For the LBF rule, the supply shipped to a
downstream agent in period t is proportional to the existing backorder plus the order just
received from the agent:

newSuppliesd  =  newSupply × (backorderd + orderd) / �d (backorderd + orderd),

where newSuppliesd is the portion of the supply (newSupply) shipped to downstream agent d. If
(backorderd + supplyd) is zero, no supply is allocated to the downstream agent.

Order Allocation Rule: In the network, a downstream agent has to decide how to allocate
orders among upstream agents. The agent has to decide (1) how much to order in total from all
upstream agents and (2) the share of the order that should be placed with the various upstream
agents. There are several plausible alternatives for allocating orders. One alternative is to order
less from upstream agents with relatively larger backorders and order more from upstream agents
with relatively fewer backorders. Using this rule, the order placed to an upstream agent in period
t is inversely proportional to the existing backorder, less the shipment just received from the
agent:

newOrdersu = newOrder × 1/(backorderu – supplyu)  /  �u 1/(backorderu – supplyu)

where newOrdersu is the portion of the order (newOrder) ordered from upstream agent u.
Appropriate adjustments are made in calculating the order share if (backorderu - supplyu) is zero.
Many plausible ordering and shipping rules can be postulated based on the operations
management literature.

The agent-based modeling approach is particularly conducive to modeling and exploring
alternatives for agent decision rules. In the NBGS experiments reported here, we assume agents
use the “largest backorder first” rule for allocating supplies and the “order less from larger
backorders” rule for allocating orders, as described above.

EXPERIMENTAL DESIGN FOR VALUE OF INFORMATION IN THE SUPPLY CHAIN

We study the effects of expanding the scope of the information available to an agent from
the strict local domain of the agent to the broader domain extending to the entire supply network.
We study the effects that access to more information can have on supply chain behavior and
performance (system costs which is the total of costs incurred by all agents). We further seek to
establish a framework for quantifying the value of information, or conversely, the costs
associated with incomplete information.
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Experimental Design

We set up two experiments to study the effect of uncertainty or imperfections in the
information available to agents. Both experiments rely on the fact that an agent forecasts demand
(incoming orders) for the next period as part of its ordering rule. As in the BGS chain model, in
the setup for the NBGS, expected demand is based on the moving average of previous demand
and current demand weighted by a user-set control parameter θ, but we replace the expected
demand as computed by the weighted average formula, with the actual demand that will be
incoming to the agent (Experiment 1) and with the actual final customer demand (Experiment 2).
The hypothesis for both experiments is that if agents have more information, they can use the
information to counter the chaotic nuances of the dynamics of the supply chain, in effect
smoothing its own behavior to counter the radical dynamics of the supply chain. Specifically, we
study the value to an agent of considering information beyond its immediate local neighborhood
upon the agent’s cost and the system behavior.

Experiment 1: Information Visibility

In Experiment 1, we study whether accurately predicting the incoming order (demand),
could avoid the amplification effects of the intervening downstream stages. We have the
following hypothesis:

Hypothesis 1: If an agent is able to correctly forecast incoming demand each period no
matter where it is located in the supply network, using this information in its ordering
process will smooth the dynamics of the supply chain.

We parameterize the extent to which an agent can see into the future in terms of its incoming
supplies (that is, how far it can see down the supply chain). We term the ability of an agent to see
readily obtainable information (orders already in the pipeline) as visibility. We define visibility
as the number of stages an agent is able to see beyond its local neighborhood. Visibility is a
discrete parameter that ranges from 0 (local information only) to 5 (the ability to see 5 time
periods up and down the supply chain). See Figure 3.

Experiment 2: Imperfect Information

In Experiment 2, we study whether if all agents were able to accurately predict final
customer demand, it could avoid the amplification effects of the intervening downstream stages.
In this experiment, each agent uses the actual customer demand at any time as the basis for its
demand forecast for the next period, rather than basing orders on incoming demand from the
downstream agents. This leads to the second hypothesis.

Hypothesis 2: If an agent is able to immediately see the final customer demand each
period, no matter where it is located in the supply network, using this information in its
ordering process will smooth the dynamics of the supply chain.

Although in this experiment, agents may know exactly what final customer demand is, they do
not know necessarily what portion of that demand will be ordered from them by the intervening
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FIGURE 3 Setup for information visibility experiments



245

downstream agents that separate them from the final customers. There is necessarily some
uncertainty regarding what intervening agents will decide to do, which is modeled in the
following way. We introduce a parameter that indicates the degree to which the upstream agents
are able to forecast the portion of the incoming demand from the downstream that is going to
��������������������������������
����������������������
����
��������� c be the portion of the
customer demand that is received by agent c of all the agents in the same level of the supply
network. Then,

ExpectedDemandat��� c CustomerDemandct / (Number of Customers),

where:

ExpectedDemandat = Expected demand estimated by agent a at time t and

CustomerDemandct = Customer demand for customer c at time t.

An agent is able to forecast demand correctly for the downstream stage as a whole, and assumes
that the shares of orders will be equally distributed across all of the upstream agents at its level.
The only difference between the actual demand and the demand the agent faces is due to the
possibility that the shares of orders from each of the downstream agents will not be equally
distributed across the upstream agents.

Agent Diversity

For the case of the supply network as opposed to the linear chain, the “diversity” of the
agents within each stage becomes an important aspect of the study of information. For if all
agents within a stage are identical in terms of their attributes, their decision rules, their
interactions with upstream and downstream agents, their initial resources, the incoming supplies
being received from the upstream, and the orders (demand) being received from the downstream,
then all the agents within the stage will have identical behavior for each time step in the
simulation, i.e., they will place exactly the same orders to upstream agents and make exactly the
same shipments to downstream agents. Therefore, the study of information requires the
introduction of some notion of diversity among the agents. To this end we parameterize the
diversity of the agent characteristics in terms of the possible range of error that each agent could
experience in predicting its portion of the current final customer demand that it will receive from
downstream agents.

The amount of deviation of the shares from equality is the source of the imperfections in
the information. We quantify the degree of information deviation in terms of the error between
the expected demand as computed above and the actual demand that the agent receives. Further,
we parameterize the degree of information deviation on a scale from 0 to 1, with 0 signifying that
information is perfectly correct (no deviation), and 1 signifying that information is incorrect (the
deviation of information from perfect ranges up to ±100%). Considering actual customer demand
in place of the incoming order in the pipeline for each agent is thought to be a strategy for
dampening the amplification and dynamic aspects of the supply chain (Wikner et al. 1991).

An example will illustrate the calculation. Assuming perfect information (equal shares
assumed and equal shares results), distributor1 estimates expected demand to be 8 (average
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customer demand is 8), and distributor1’s actual demand from the downstream agents, that is,
wholesalers 1 through 5, is indeed 8. Here, 8 = 5 × (8 / number of customers) = 5 × 8/5 and the
distribution across the wholesalers is equal: (1.6, 1.6, 1.6, 1.6, 1.6) – see Figure 4. For the case of
imperfect information (equal shares assumed but variation in the shares up to ±10% result),
distributor1 estimates expected demand to be 8 (distributor1 correctly estimates total demand but
incorrectly assumes it will receive the average customer demand), and distributor1’s actual
demand coming from the downstream agents, wholesalers 1 through 5, is, for example, in one
realization, (1.76, 1.50, 1.62, 1.44, 1.68), where the sum is 8, but the share components deviate
from the equal shares assumption of 1.6 by ±10%.

The experimental design setup is shown in Table 1.

FIGURE 4  Model for imperfect information affecting agent

TABLE 1  Setup for information experiments

Experiment Assumptions

Base Case Expected demand based on weighted moving average

Experiment 1 Expected demand based on visibility on incoming orders
Visibility extended over 1 to 7 periods

Experiment 2 Expected demand based on visibility of customer demand
Variations in incoming order shares range from 0 to 100%

Parameter specifications for NBGS simulation: αS = 0.5, αSL = 0.25, θ = 1,
Q = 17 (implies Desired Pipeline = Desired Inventory = 12 for all agents)
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EXPERIMENTAL RESULTS: VALUE OF INFORMATION IN THE SUPPLY CHAIN

We simulate the NBGS for 1,000 periods for a network consisting of five agents at each
stage. Figure 5 illustrates the agent supply network simulation at typical point in time, showing
the strength of agent interactions in terms of orders and shipments. Figure 6 shows results of a
single typical simulation run for the base case – inventory variation over time for agents at the
distributor stage. These results are typical of the beer game simulation, showing chaotic behavior
over large regions of the decision rule parameter space. Indeed, if the NBGS was reduced to a
single column, from a supply network to a supply chain, the base case results would be identical
to those produced by the original BGS set of simulation results.

Results of Experiment 1– Information Visibility

Figure 7 shows that the results of Experiment 1 support Hypothesis 1 but only to a
limited extent. We can make the following observations:

1. As the scope of the information visibility grows larger and more information becomes
available (as compared to the local information case) to the agent, there is an initial
improvement as the system becomes more stable, and costs are reduced. The agent is
able to buffer the incoming orders and shipments and quell the variability in its own
ordering decisions.

2. The benefits of information visibility only accrue up to a point. At some point, the
value of the next increment of information (marginal benefit) decreases and becomes
negligible. This is due in part to the fact that as an agent looks further up- or
downstream, agents intervene and transform the shipments and orders via their own
ordering and shipping rules, and these transformations are not known to the other
agents. For example, by the time an order is three periods away in the pipeline, that
order has been processed by an agent in ways that could not have been anticipated by
the agent originating the order. In effect, the transformation of the intervening agent
devalues the value of the information. Several exploratory simulation runs not
reported here have shown that this effect is exacerbated in supply chains that are
highly dynamic to begin with, but is less problematic in stable supply chains. In stable
supply chains, by definition, the transformations by agents are less volatile and more
predictable. As Figure 7 illustrates, if we posit a cost for obtaining information, total
information costs actually increase as more information is obtained.

We conclude that it is not enough to have access to more information for improving supply chain
performance. It is a matter of how effectively the information is used. In this experiment, we
used the original behavioral decision rules by simply feeding more information into them.
However, it is likely that further gains could be made in supply chain performance by adjusting
the decision rules or adapting the original decision rules to better exploit the additional
information available.
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FIGURE 5  Snapshot of supply network simulation

FIGURE 6  Simulation results: inventory levels over time for c = 0.75
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FIGURE 7  Cost vs. information reach,
Experiment 1 – visibility

Results of Experiment 2– Imperfect Information

Figure 8 shows the results of Experiment 2 support Hypothesis 2 but only to a point. We
make the following observations:

Perfect information, such as complete knowledge of final customer demand and the
shares of customer demand accruing to each agent in a stage (δ = 0), stabilizes the
dynamics of the supply chain. Stabilizing the supply chain at positive inventory levels has
the effect of greatly reducing costs.

1. As information becomes imperfect, that is, as δ → 1, in regions of the solution space that
are close to critical behavior boundaries, supply chain costs tend to increase as
information becomes more imperfect. In effect, the value of the information is
overwhelmed by the larger features of system-wide behavior.

SUMMARY AND CONCLUSIONS

We have explored the value of information in the context of an agent-based model of a
supply network. We relaxed the standard assumption in agent-based models that agents have
access to only strictly local information. The first experiment showed that extending the
“visibility” that an agent has over a broader range of the supply chain/network results in
improvements but only up to the point that other agents’ decision process (transformations)
intervene in the processing of the information. We conclude that it is not enough to have access
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FIGURE 8  Cost vs. information accuracy, Experiment 2 – imperfect
information

to more information for improving agent or supply chain performance. It is a matter of how that
information is used. More information requires better decision rules that use the information
most effectively. The second experiment showed that relatively small imperfections, or
variations, in the information available to the agents can have drastic effects on supply chain
dynamic behavior and costs. We conclude that the study of information in supply chain networks
should necessarily include the study of how that information is used in the behavioral decision
making processes employed for the agents. If more information becomes available, it is to be
expected that this will motivate a co-evolutionary process of sorts between the adaptation of the
information available and the behavioral decision rules that use this information.
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ABSTRACT

 Electricity markets are physically complex systems with interconnected pieces of
equipment, such as generating units, transformers, and transmission lines. Deregulated
markets, where the generation, transmission, and distribution functions are unbundled,
create additional complexity. In traditional electricity markets, there is a centralized
decision-making process, which will optimize the system. In deregulated markets, the
market participants have conflicting interests and behave economically and strategically
to enhance their objective such as profit, market share, etc. To understand and gain
insight into how these markets participants behave, an agent-based modeling and
simulation (ABMS) tool, the Electricity Markets Complex Adaptive System (EMCAS)
has been developed. EMCAS is based on Repast, a software framework for agent-based
simulation. Proper price forecasting is the key to successful implementation of the
agents’ strategies, which enables them to learn and adapt to changing market conditions.
This paper presents the use of an agent-based modeling approach to simulate restructured
power markets and demonstrate the agent learning mechanism.

Keywords: EMCAS, Repast, agent-based modeling, complex adaptive systems,
electricity markets

1  INTRODUCTION

Several states in the United States and countries around the world are moving toward
deregulating their electric utility systems. These electricity markets are physically complex
systems with interconnected pieces of equipment, such as generating units, transformers, and
transmission lines. Deregulated markets, where the generation, transmission, and distribution
functions are unbundled, create additional complexity. In traditional electricity markets, there is
a centralized decision-making process, which will optimize the system. In deregulated markets,
the market participants have conflicting interests and behave economically and strategically to
enhance their objectives, such as profit, market share, etc. To understand and gain insight into
how these markets participants behave, an agent-based modeling and simulation (ABMS) tool,
the Electricity Markets Complex Adaptive System (EMCAS), has been developed. EMCAS is
based on Repast (Repast 2003), a software framework for agent-based simulation.

Deregulation creates several new market participants, including power brokers,
marketers, and load aggregators or consolidators. As a result, a large number of entities will
compete with each other. It is believed that the open markets create economic efficiency and lead
towards lower consumer costs. These market participants have their own unique business
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strategy, risk preference, and decision model. Decentralized decision-making is one of the key
features of the new deregulated markets. To model these agents, EMCAS agent-based modeling
techniques do not postulate a single decision-maker with a single objective for the entire system.
Rather, agents are allowed to establish their own objectives and apply their own decision rules.
The complex adaptive systems (CAS) modeling approach simulates agents that learn from their
previous experiences and change their behavior when future opportunities arise. That is, as the
simulation progresses, agents can adapt their strategies based on the success or failure of
previous efforts. This paper first provides some background information on agent-based
modeling. It then introduces EMCAS as a long-term deregulated market simulation tool and
describes how agents are learning within EMCAS.

2  OVERVIEW OF ABMS

ABMS systems consist of a set of agents and a framework for simulating the agents’
decisions and behaviors. These agents are allowed to interact with each other within the rules
imposed by the modeling system under consideration. In a simple system, all agents may follow
the same set of rules. In a complex system, such as electricity markets, the rules may vary by
agent type. These agents have some global knowledge about the system and some private
knowledge. The agents often make their decisions with incomplete and imperfect information
and learn from their previous interactions with the system and other agents. Even in a simple
system where all agents follow same set of rules, an aggregate system behavior can emerge.
Such emergent behavior is difficult to predict with other simulation techniques such as discrete
event simulation, game theory, artificial intelligence etc. An ABMS system lends itself to
simulating and understanding complex systems with interacting agents. Several electricity
market models have been developed (Bower and Bunn 2000; Bunn and Oliveira 2001; Petrov
and Sheblé 2000). These models indicate the potential of ABMS for simulating electricity
markets.

3  EMCAS APPROACH

The EMCAS framework consists of agents, interaction layers, and planning periods. The
agents are market participants including generating companies (GenCos), transmission
companies (TransCos), distribution companies (DistCos), demand companies (DemCos),
consumers, and independent system operators (ISOs) (Figure 1).

These agents are highly specialized to perform specific tasks (Table 1). The physical
equipment, such as generating units, transmission lines, and transformers, are owned and
operated by these agents to maximize their own objectives with out any concern towards the
overall system optimization.

The interaction layers are the several markets in which the agents interact with each other
(Figure 2). Currently, EMCAS models (1) bilateral markets where GenCos directly interact with
the DemCos for energy contracts and (2) day-ahead pool markets where they interact with the
DemCos indirectly through an ISO by submitting bids. The pool market includes energy and
ancillary services such as spinning reserve, non-spinning reserve, and replacement reserve.
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FIGURE 1  EMCAS agents

TABLE 1  Agent functions and interactions

Agent Function

ISO Independent system operator operates day-ahead market and dispatches the generating units

GenCo Generating companies are unregulated owners of generating units; GenCos bid into the pool
market and engage in bilateral contracts with the DemCos

DemCo Demand companies are unregulated entities that act as load aggregators; they bid into the pool
market and engage in bilateral contracts with the GenCos

TransCo Transmission companies are passive owners of the high-voltage lines connecting the
generating units and transformers

DisCo Local distribution companies are passive owners of the low-voltage lines connected to the
consumers.

Consumer Consumers are the final recipients of electricity; they interact only with the DemCos

Regulator The regulator sets the market rules under which the market participants operate

 

FIGURE 2  EMCAS layers (markets)
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The planning periods are the range of time scales over which the agents make their
decisions (Figure 3). The planning periods include hourly dispatch, day-ahead, week-ahead,
month-ahead, year-ahead, and multi-year. Over longer time scales, economic behavior decisions
dominate and over shorter time scales, physical laws dominate. For a detailed description of the
EMCAS modeling approach, see North et al. (2002a,b) and Veselka et al. (2002).

 

FIGURE 3  EMCAS planning periods

4  AGENT LEARNING

In electricity markets, the agent learning occurs through unit commitment; forecasting
load, generation, and locational marginal price (LMP); and the bid outcome. Proper price
forecasting is the key to successful implementation of the agent’s strategies. The GenCos commit
their units for the next day and determine the bid price based on forecasted prices. If the
forecasted prices are below the marginal costs, the GenCo may withhold the generating units; if
the forecasted prices are too high, the GenCo might bid too high into the market. Both actions
may result in the loss of market share and profits. In EMCAS, the GenCos are provided several
price-forecasting techniques. In a simple technique, agents forecast the next day’s price as an
average of the previous five-day LMPs (adjusted for weekday and weekend).

Recently, an adaptive regression forecasting technique has been implemented using an
open-source package, OpenForecast (2003). With the adaptive regression, agents have access to
several regression models, such as single variable linear regression, single variable polynomial
regression, multi-variable linear regression, and moving averages. This adaptive regression
enables the agents to dynamically select an appropriate model and update the regression
coefficients based on the input data. In EMCAS, the agents are enabled with the 30-day rolling
historical system reserve margins and bus LMPs for use with adaptive regression. The actual and
forecasted prices based on adaptive regression and five-day averages for a bus are shown in
Figure 4 and listed in Table 2.

As can be seen from Table 3, the higher R-square value (0.96) from adaptive regression
significantly improves the learning capability of the agents. In this example, only system reserve
margin is used as a predictor of prices. Additional testing is planned for using other variables as
independent variable for adaptive regression price forecasting.
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FIGURE 4  Agent learning using adaptive regression
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TABLE 2  Example data used to illustrate adaptive regression
price forecasting

Date
System Reserve

Margin Actual
Adaptive

Regression
Five-Day
Averages

Mon Jul 23 00 122 20.30 19.29 19.28
Mon Jul 23 01 133 18.72 19.34 18.77
Mon Jul 23 02 140 18.53 19.53 18.91
Mon Jul 23 03 145 18.66 19.61 19.24
Mon Jul 23 04 143 18.57 19.59 19.13
Mon Jul 23 05 133 18.69 19.35 18.51
Mon Jul 23 06 114 18.92 19.62 19.91
Mon Jul 23 07 91 21.02 23.57 20.90
Mon Jul 23 08 73 28.12 28.47 21.96
Mon Jul 23 09 59 30.17 32.71 27.38
Mon Jul 23 10 48 34.41 37.89 29.36
Mon Jul 23 11 41 40.41 43.55 31.17
Mon Jul 23 12 35 49.03 51.74 32.82
Mon Jul 23 13 31 52.29 58.17 35.48
Mon Jul 23 14 33 51.22 54.83 37.31
Mon Jul 23 15 39 47.33 46.80 38.41
Mon Jul 23 16 44 44.16 40.96 38.97
Mon Jul 23 17 49 40.97 37.85 37.49
Mon Jul 23 18 55 37.56 34.47 34.46
Mon Jul 23 19 61 33.73 32.10 32.29
Mon Jul 23 20 63 31.30 31.47 30.87
Mon Jul 23 21 67 30.14 30.31 30.23
Mon Jul 23 22 80 28.95 26.52 26.95
Mon Jul 23 23 98 23.04 21.91 21.36

TABLE 3  R-square for adaptive
regression and five-day average
model

Model R-Square

Five-Day Averages 0.61
Adaptive Regression 0.96
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DISCUSSION:

FINANCE AND MARKETS

(Friday, October 3, 2003, 10:00 a.m. to 12:30 p.m., Session 2)

Chair: Charles M. Macal, Argonne National Laboratory
Discussant: Ed MacKerrow, Los Alamos National Laboratory

Agent-based Modeling of Lottery Markets

Charles M. Macal: This is the session on Finance and Markets. And there is something
of an applications bent to it.

Our first speaker (P.M. Beaumont) we have not seen today. We had some early warnings
that his computer wasn’t working or something last week and that he was having trouble getting
the results out, so we’re not exactly sure what happened. But, in any case, he is not here and we
have a little more relaxed timing now.

There’s been another slight change to the program in terms of the discussant. The
discussant for this session is Ed MacKerrow, from Los Alamos National Lab. The format will be
as follows: There’ll be presentations by the speaker, after which there’ll be perhaps time for
questions, brief questions. And then after all the speakers have given their papers, we will then
turn things over to the discussant, and the discussant will say a few words and perhaps cajole the
speakers to say a few more words and answer a few questions, and have a more general
discussion then with the audience.

So, having said that, here’s our first speaker, Shu-Heng Chen, of National Chengchi
University, who will be speaking on agent-based modeling of lottery markets.

[Presentation]

Macal: We have a question in the audience, from Ed. We’ll get the microphone up to
you.

Unidentified Speaker: It seems like as you increase the tax rate, you lower — and I’m
probably making some assumptions, because I’m not a lottery expert — the total amount of
money available for winnings, right?

Shu-Heng Chen: Yes.

Unidentified Speaker: What information does the market or the public have as far as
what is the available pot of money? That might not be known to them. But instead what they
might see is that, Steve just won $36 billion from some Lotto winning. And so what I’m
wondering about is, have you thought about or looked at the integrated amount of total winnings
available versus the bucketing? For example, you could just say there’s going to be two prizes
given out that are really big and they’re really publicized, but if you add those two prizes
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together, it might be 10% of the total possible winnings, as if there were lots of smaller prizes.
Have you thought about that effect?

Chen: No, we haven’t conceded to that individual labor. But, yes, this will be a direction
to think about. Thank you.

Unidentified Speaker: I have a quick question. You have a single population, am I
right? There’s a single population GA where all the agents are simultaneously voting rather
quickly. An alternative is to have each agent have his own GA. So having a single population,
could that be one of the reasons that you have rather fast learning?

Chen: Well, that’s a good question, from the technical aspect. Originally, we do consider
both versions; that is, single population GA and the multi-population GA. Multi-population GA
really will be a little difficult to interpret. The single agent has backed up his decision with the
whole population of ideas. And also, in implementation it will be difficult to evaluate all these
rules behind him.

So when we run, when we choose a particular version of … multi-population GA, and we
get a result quite unstable. So actually, we stopped at that point and did not investigate it further.
What … signify also what has been originally found, again, in the literature; that is, a single
population GA and a multi-population GA give different results.

And the reason we do not pursue this line further is because we consider how we are
actually being exposed to the question how complex we are going to model our agent. Thank you
for the question.

Unidentified Speaker: Have you looked into the incentive for a higher tax rate, in the
sense that money is going to projects? I know it’s marketed a lot that you’re buying a lottery
ticket; part of it is the winning, the other part of it is, “Hey, this money is going to all these nice
projects.” I know in Europe it’s marketed that way. So is that a factor at all?

Chen: No, we didn’t consider that altruistic behavior, no. The people here — it’s quite
simple — they participate with the hope that they can change their life.

Unidentified Speaker: I have a question, and it’s going to display my ignorance of
probability. Let’s say you have a lottery where you could pick six numbers, say, from 1 to 50,
and they’re uniformly distributed. In infinite time, if you just tallied up what the winning
numbers were, I think you’d have the uniform distribution; in infinite time.

So I’ve always wondered, what if you could take your model and have an agent just say,
“Okay, you know, number 3 has not been picked ever in the last 10 years of simulation, so I’m
going to bet on 3 and number 7.” Have you thought about things like that, where you have these
sort of, I don’t know what you call them, farmer rules or whatever?

Chen: If you look at the so-called “expert,” quote/unquote, on the lottery market, what it
would actually be is something more fantastical than what you said, because they actually apply
like data mining or machinery stuff. And actually in some magazines you can see how they
recommend a number and actually correlate different lottery markets from what happened in the
North Ireland to Taiwan. They can somehow get this crazy correlation.
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And so actually that is what I’m introducing in the dimension of conscious selection. But
my conscious selection in this moment is quite simple, okay? They have no … sophisticated
machinery technique stuff. They are just randomly say, “Maybe these few numbers are good, so
this time I’m going to try them.” Next time, they change some numbers. But in the end, as I
show in the learning curve, they are gradually being discouraged, that actually there is nothing to
learn from this series of lottery numbers, to quite a large extent, but it’s not entirely convinced
the market to give up the learning. But it’s a quite large proportion of the people will now try to
learn anything from there.

Unidentified Speaker: I had one question. Have you looked at the effect of the
population size, because things such as herd effect, etc., might start coming up at much larger
populations, or at smaller ones you would probably just see more homogeneity and no
heterogeneity emerge at all.

Chen: Right. It’s a good question.

This is our agent-based simulation, and we have some natural … trend, which is the
number of agents in our simulation. Over here, we take 5,000 agents. But of course, even the
smallest lottery market in the country, in this world, is 5,000 people. So what we’re doing here is
trying to fine-tune the market size parameter; that is, the number you’re going to pick, and from
how many numbers.

So what we are trying to do in our presentation is to fine-tune the population size — I
mean, the number of customers, and the market size so they can somehow give you a similar
degree of the heartiness to win the lottery as corresponding to the real markets….

Unidentified Speakers: But if you were to look at, say, the herd effect, which is more
independent of this probability of winning — rather it is a contagion sort of an effect, where you
get a bunch of people — there are certain beliefs evolving into a certain direction at a certain
point of time. So if you look at the rollover rates and the effects, you do see a spike in the sale,
but that spike is not always proportional to the rollover. In some cases you see a much larger
spike — say five times, ten times — which is rather a sudden convergence of a belief and not
necessarily rational or probabilistic in some manner.

Chen: Right. I just don’t have time to show the result we have, because actually we have
some statistics over the six lottery markets being actually studied. Although you see that …
happen in five of the markets, the degree, for example, in terms of the R squared, changes quite a
lot over different markets. So I perfectly agree with what you said, yes.

Effects of Global Information Availability in Networks of Supply Chain Agents

Charles M. Macal: Okay, I’m the next speaker. My name is Charles Macal, from
Argonne National Laboratory, and my co-author on this paper is Michael North…. I’m going to
talk about emergent social structures arising from networks of interacting supply chain agents, or
at least the presentation will be in along those lines and in that direction.

[Presentation]
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Macal: Any questions?

Unidentified Speaker: Just in terms of speculating about those final graphs, it strikes
me, in thinking about the real world being similar to some of the wildness in this model, to
wonder whether in fact what’s been going on with the just-in-time methods and so forth that
have been innovated in the past decade. What these folks are doing is in fact seeking these points
of very low cost by trying to have systems that are so highly efficient that they actually can hit
those points, but the cost that they’re bearing of doing that is, of course, that instability, that if
things don’t perform exactly as engineered, they can be in rough shape. Perhaps some of the
things, some of the outages we’ve had in this or that piece of infrastructure lately, may be
examples of the cost of highly efficient, but nonrobust, solutions.

Macal: Yes, I think that this kind of analysis and the prospects that it offers are highly
suggestive that the real world may be poised at areas that are what we would call unstable, if we
knew what the other alternative worlds around us were. And certainly the notion of zero
inventory is attractive. I worked on a project once with DARPA where the whole idea of the
project was to have zero staging. The trucks would come from the fort and roll out to the ship
and not have that buffer area for staging. And it quickly became apparent that maybe that’s not
such a good idea, that buffering is good, even though it is costly.

So the only other thing I would say is that the challenge is to take a model like this and to
really get it to a point where you could say something about the real world, and that people
would give some credibility to it. Okay, so we have suspicions the real world does behave like
that, yes.

Unidentified Speaker: Okay, I have a question about the real world. I’ve seen the beer
model before, and so to some extent this doesn’t address your talk, although I liked your talk a
lot, but it’s something you might be able to do with your model now that you have it, is the
problem with this decision process that it’s already optimized for — it seems like that step
function is a very unnatural situation. So I’m wondering why, if people as you say behave so
badly and go into this big chaos, you gave it a more normal sort of gradual transition in the
supply. Does that actually create more chaos because it’s constantly changing, or does that
actually stabilize out because the function’s really optimized to deal with that kind of situation?

Macal: Well, I’ll give you the answer that I know to be true, and for the beer model, in
particular. It will always be chaotic, no matter what the demand is, because the demand is
exogenously given, and the structure of the equations is such that the chaos is in the variable
part, not in the exogenous demand part. But of course we could explore how demand affects
things through the simulation.

Unidentified Speaker: [Unintelligible question]

Macal: I’d actually say one, and sort of offer an extension of that answer. I’d say that on
a certain sense, yes, but also a certain sense no. The actual structure of those equations was
determined empirically, based on quite a few hundred business student runs. Now, whether or
not you consider business students a sample of normal human beings is debatable. I should say
that quietly, since we’re in the business school now.
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If you looked at the equations for a while and sort of see what’s going on, though, the
way I put it into simple terms is that people are systematically unable to estimate second
derivatives properly. It seems to be a very hard thing for people to do. They get first derivatives
right; they understand things are going up, they understand things are going down, but they don’t
understand that things are going up and slowing … or going down and slowing. They don’t seem
to ever quite capture the slowing part, which would be a second derivative. And so that actually
seems to be a common sort of perceptual error that people do seem to have. And so I think it’s
grounded in a little bit more empirical observation or phenomenological observation. And so in
that sense I think that you see this exact type of behavior in real systems. The real estate markets
do this all the time, you know.

I can’t say why people have trouble with second derivatives, but that seems to be the
problem.

Jesse Voss: It seems to me that you’re showing that there is an exponential effect that’s
associated with the linear increase in the amount of imperfection in the information. If you had
an agent-based model simulation of a population environmentally situated and they were
demonstrating exponential population growth that was out of synch with the record of the data
that it’s in, do you think that inclusion of a simple supply chain dynamic like what you have, so
you’ve got an exponential population growth and then you’ve also got possibly exponentially
growing effects of imperfect information that might be linear, could that linearize population
growth so that it was flatter if there was a relationship between population growth and
effectiveness of the supply chain?

Macal: Population growth wasn’t an aspect of the model.

Voss: No, but I’m thinking about what I could use this for …

Macal: Oh, okay. Well, I guess, in terms of the imperfect information thing, I believe
that — and it could probably be worked out analytically to be supported — the variances
somehow are multiplicable, so the variances actually are amplified because they’re being
multiplied, even though everybody gets the mean right, but the tiny variance gets amplified by
the time it gets reflected up and comes back down.

So if population was changing or the numbers of agents was changing on top of
everything, I’m sure the system would exhibit the same kind of behavior.

Voss: Right, and I was just going to add that that’s the bullwhip effect, where people are
moving up the chain.

Macal: Yes, the bullwhip, right. Additional questions?

Unidentified Speaker: In this whole thing, the consumption time period and the
decision-making time period are exactly identical. Consumption happens in one period, not in a
staggered form. What if the retailer was to make decisions every five periods, while consumption
happens every period? The distributor makes decisions on different time periods. If the decision-
making is staggered out, would you now see some of this chaos go away?
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Macal: I guess that remains to be investigated. I don’t see that it would necessarily go
away, just thinking about the mathematics of it all, even if you reduce the timeframe to, let’s say,
one-fifth for decision-making.

Unidentified Speaker: No, I’m talking of the reverse, where the consumption happens
every period, the retailer makes decisions every five periods, and the distributor, on the other
hand, makes her decision every 10 periods.

But all the information in between, up to the period before that, is available to them. So a
retailer gets to see four periods before he decides what to order every fifth period, for the next
five periods altogether. The distributor, on the other hand, has information for nine periods and
makes a decision for the next 10 periods. So if you were to take a financial market, it’s a
portfolio-holding kind of a scenario, where you are trying to maximize a certain return or hedge
out a risk for longer, different terms altogether. On the other hand, the production end is planning
at a much, much larger scale.

Macal: Well, I don’t know how to answer the question without running the simulation.
But I think that it’s a good lead-in to Mike North’s talk on these kinds of markets, and
speculations relative to near-term spot market type things versus longer-term perspectives.

So with that I will turn things over to Mike for the next presentation.

EMCAS: An Agent-Based Tool for Modeling Electricity Markets

Michael North: Thanks. I would say that probably I would think that you’re right [in
reference to the last comment for Macal’s presentation]. They probably would have a smoothing
effect. But at the same time, it’s something we’d want to test, rather than simply speculate on
now.

[Presentation]

North: So now I’d like to move on to questions. If people have any thoughts, comments,
I’d be glad to answer them.

Unidentified Speaker: It seems like quite a complex model. I just was curious if you can
give us some sense of how many lines of code, execution time, how many people to build it,
some sense of its scale.

North: I would say it’s actually been under construction for over three years now, I
believe. Probably, tens of thousands of man-hours have gone into it. It’s on the order of 150,000
lines of code, somewhere in that range, although I’d have to get a counter out to really know. It’s
growing by the day, because we’re adding a series of new features; one interesting example is a
need for something called phase shifters. It turns out that there’s these moderately small devices
that are in place inside the various locations, or particularly around Chicago, and we originally
did a solution of this system to try to run it inside, but you can’t get power through Chicago was
the conclusion we were finding when we first ran the model. Then we talked to the regulators
who said, “Oh yeah, we’ve got those phase shifters hidden inside the system.” You put those in,
and now the system’s solvable.
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And so these are the types of things we find. As we’re moving on in each study, we have
new things we need to work with. And so I would say, probably, that the effort is 10 person-
years, something in that range.

Unidentified Speaker: You mentioned the nuclear as having different, I suppose,
different physical capabilities. Do you have heterogeneous producers in that sense, in the sense
of coal and various other forms of generation? What would be the impact of them, or
renewables?

North: That’s a good question. The answer is, yes, we definitely capture differences in
generation capability. One thing that differentiates those ancillary services markets is that only
certain generators are physically capable of responding to any one of those markets. And so only
natural gas-fired units and a few other special types of units can get into the fastest markets. And
so there’s a lot of variation in those markets.

Renewables I think are a very exciting area. It’s something that we’re very interested in,
in fact. So that’s some of the discussions we’re having, to model renewables. For us it’s a very
exciting thing, and there’s a lot of potential.

Renewables are very interesting, though, because they have inconvenient physical
characteristics in a lot of cases. I mean, they’re good for the environment, I think they’re a very
positive thing, but they often are intermittent and they have other factors, which our model can
capture.

Unidentified Speaker: In fact, as part of the second phase of the project, which will start
up early next year, we will look at the impact that renewables might have on some of the market
power that we might find under regular conditions. So there is talk about developing wind farms
in certain locations in Illinois, there is biomass production that could be used, and other things
that are done for the Illinois Clean Energy Association. Phase II essentially takes a look at
specifically those issues.

Unidentified Speaker: Are you trying out different market rules? You didn’t mention
that in your presentation.

North: That’s one of the things that people are very interested in. This model’s designed
to capture exactly that, where you can vary, say, pricing policies. And a good example would be
whether or not you can get pay-as-bid. So that means if your bid is accepted, you get paid what
you wrote on the contract, or a market clearing price, which means that you could get paid that
amount or more. And so these are the types of things people are interested in.

It depends very much on the study we’re doing, though, because in some cases people
have a clear idea of what they want, you know, what the rules are likely to be, and they want to
know about the physical operation. Could renewables help? In other cases, people are extremely
interested in determining what types of rules would be effective.

Unidentified Speaker: But have you done that yet?

North: Oh, yes. We do have examples where we have looked at, say, market clearing
price versus pay-as-bid.
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Unidentified Speaker: And the results?

North: The results? Actually, I have to be careful how I answer this question, because it
depends. It turns out that there are varying outcomes that you can get depending on the structure
of the system. A lot of it also depends on what you look at. With pay-as-bid, sometimes you can
get lower prices, but you can drive everyone out of business. And so it’s complex; there’s no one
answer as to what’s better and what’s worse. It seems to depend.

Unidentified Speaker: I’m asking because I’m seeing this as the application that could
put agent-based simulation on the map. It’s a very big, multi-billion dollar question. It’s
something that is not being well addressed.

North: Oh, yes. And it’s something that we’re extremely interested in. In fact, this model
does capture those and can answer those types of questions. But beyond that, the answer depends
a lot on the system. The system characteristics determine the policy that’s affected.

Unidentified Speaker: Is the model set up so that you can, in the future, have individual
agents learn and broaden their bidding behavior to better exploit holes in the market rules?

North: Well, that’s actually part of what the system does now. I think that it’s always
possible to improve these areas, because there’s an enormous amount that can be done with
machine learning and all sorts of other techniques. But even now the agents do probe to see, to
try different pricing structures, to see if they’re going to be effective.

And in fact we do have another example. I didn’t present that here, but we had a simple
market structurally. But then we allowed the agents to adjust not only their pricing amounts, but
their pricing patterns. And over time they learned to evolve. And I put “learning” in quotes,
because machine learning’s always a debate as to how much is learning and how much is
structural. But the idea is that they adjust their bidding patterns and essentially learn what we call
hockey stick bidding, which is an interesting thing we hadn’t really thought about until we had
seen it come out of the system. And with the hockey stick bidding basically you have extremely
low prices, or essentially production costs for virtually all of your capacity, except at the very
end you have a very high upturn at the very edge. And so essentially what happens is you have
very low risk, because virtually all of your capacity is accepted at close to the economic value,
and so you won’t lose money, and you may make a little bit of someone else’s at a slightly high
price. But in those rare times when there’s an outage, you can make an enormous amount of
money, because you have that extra bid, and it drives up the price, if it’s a locational marginal
price or you get paid the clearing price. Then you can end up with a huge payoff, kind of a
lottery win.

So that’s an example of something that came out, that we were able to evolve out of the
model. And so the answer is, yes, we do have capabilities for that now, and we’re expanding
those capabilities in the future.

Do we have other questions?

Joanna Bryson: This is also more of a comment, so I’ll be very quick, because I’m
curious to hear his, but it came back out of the renewables.
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One of the things that’s really noticeable, the difference between American energy
markets and some of the European ones, is that in Europe a community can decide to put up its
own windmill and then supply its own energy and perhaps sell it back in. Obviously, that would
be something that would be a huge thing to agent-based modeling, because you have the
autonomy of new generators, which is a policy thing I know the U.S. is worrying about right
now.

North: Yes. And actually many state regulators are very interested in that as well.
There’s an issue of microgeneration as well, and the idea is people actually are beginning to
install home-scale generators out in the backyard, usually natural gas-fired. And what does that
do to a system? You know, it’s an interesting question. You’re moving emissions, you know,
from usually a relatively isolated area back into the cities now. But at the same time you’re also
providing relief to some of the transmission problems.

Here’s a good example of how in America, the situation’s reversed. Instead of deciding to
install things, we’re deciding not to install things. An example is California, where they were
going to put in what I guess would have been the world’s largest Internet server farm. About
50 megawatts, if I remember correctly, of power was required. They had two referendums on the
ballot: “Do you want that server farm?” and “Do you want a generator to support it?” The people
said yes to the server farm and no to the generator, and then wondered why the lights went out.

Brian Pijanowski: You probably addressed it throughout your talk, but one of the things
I would be thinking about is modeling climates and land uses. I mean, have you thought about
those kinds of exogenous factors. Or do you have surrogates for them in your model? I assume
you probably get asked a lot, especially about climate change. But how are you addressing it in
the model?

North: Well, I can say this isn’t a climate model specifically. It’s a very interesting
question. In fact, we do have other obviously unrelated models now that do capture some issues
of climate change. And it’s something that our division has been very interested in for many
years, and we’ve actually done quite a bit of modeling in that regard.

I’ll say that the current … model does not directly look at emissions in these types of
things. They can calculate what the emissions would be, and you could use that, although that’s
not currently something that we’re focusing on, although I think with the renewables, though,
that’s going to become a bigger question.

And there has been some discussion — we have a couple of mesoscale meteorological
models. You know, that’s a small-scale weather, basically. And we have plans that we’ve been
putting together to integrate MCAS and this mesoscale model, and so it’s something that we
have not done yet but we are very interested in doing in the future. I feel there’s a lot of potential.
So yes, definitely.
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ASSESSING AGENT COMMUNICATION LANGUAGES

R.K. SAWYER,* Department of Education, Washington University

ABSTRACT
 
 In artificial societies, macrostructure emerges from models of large numbers of agents,
their connections, and their repeated communications and interchanges over time.
Although interaction is a fundamental aspect of artificial societies, the communicative
formalisms implemented in them have been radically simple compared with sociological
theories of communicative action. Empirical studies of human communication resulted
in the rejection of speech act theory by the early 1980s; yet the most widely used
agent communication languages (ACLs) continue to be based in speech act theory. This
paper draws on empirical studies of conversation by linguistic anthropologists and
sociolinguists to show that ACLs are empirically inaccurate models of human
communication, and suggests future enhancements to result in ACLs that are better able
to simulate emergence in social groups.
 
 Keywords: Agent communication language, speech act theory, artificial society,
conversation analysis

1  INTRODUCTION

Within the last decade, a new social simulation technology — multi-agent systems
(MAS) — has emerged from computer science. Beginning in the mid-1990s, MAS technology
has been used to simulate human societies by anthropologists, sociologists, economists,
ecologists, and urban planners; these simulations are called agent-based social simulations,
multi-agent based simulations, or artificial societies (Epstein and Axtell, 1996; Sawyer, 2003a).
Several sociologists have argued that this technology is not only of methodological interest, but
has the potential to contribute significant theoretical insights to foundational sociological
questions (Carley, 2000; Gilbert, 1999; Gilbert and Troitzsch, 1999; Macy and Willer, 2002;
Sawyer, 2003a). In particular, some sociologists have argued that artificial societies can
contribute to our theoretical understanding of the relation between the individual and the
collective, known as the micro-macro link (Alexander, et al., 1987; Barnes, 2001). In MAS, the
relation between the individual, or “agent,” and the collective — the emergent macro behavior of
the system — is the core concern of the paradigm (Conte, et al., 2001; Gilbert, 2002; Sawyer,
2001b, 2003a). Developers of MAS technology are computer scientists, not sociologists, and
none of their work uses the phrase “micro-macro link.” Yet they are encountering longstanding
unresolved issues in sociological theory: multi-agent programmers are developing a new science
of the micro-macro link.

Artificial societies focus on three distinct sociological phenomena: the model of the
individual, the model of the communication language, and the observation of emergent social
phenomena. These three phenomena — individuals, symbolic communication, and macro
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properties of social systems — have likewise been the central concerns of sociological theory.
The sociological study of the individual has focused on agency and action theory; the
sociological study of symbolic communication has been the purview of microsociologists such as
symbolic interactionists and conversation analysts. Most sociologists are also centrally
concerned with the emergent macro behavior of social systems; structural sociologists study
properties of collectives without necessarily being concerned with a model of the individual
participants nor of their interaction (Blau, Mayhew, Black), and methodological individualists
study how macro properties emerge from individual actions (Coleman, Homans).

Increasingly since the 1980s, sociologists have developed hybrid theories that incorporate
both the micro and the macro level; this task has been called a “third phase” of postwar
sociology (Alexander and Colomy, 1990, p. 43), and several theorists believe it is the central
focus of contemporary sociology (Alexander and Giesen, 1987; Archer, 1995). However, these
contemporary hybrid theories generally lack a theory of symbolic communication (cf., Rawls,
1987; Ritzer and Gindoff, 1992; Wiley, 1988). Rather, most micro-macro theory attempts to
relate individual action and macrosocial structure without theorizing a mediating level of
symbolic interaction. Theories of the micro-macro link and theories of symbolic interaction have
proceeded independently and have rarely been integrated (but see, Collins, 1981; Ellis, 1999; and
Ritzer and Gindoff, 1992). A great deal of sociological theory neglects symbolic interaction
entirely, from the canonical syntheses of Weber and Parsons, to contemporary hybrid theories by
Alexander, Giddens, and Archer.

Most sociologists assume that communication is epiphenomenal — that it has no causal
consequences, either for emergent macro phenomena or for individuals. Instead, the ultimate
causal forces in social life are either, for the collectivist, large macro patterns (race, class, gender,
educational level, network connections) or, for the individualist, rational actions taken in the
context of pairwise game-like encounters. Thus, both of these opposed camps agree in their
implicit assumption that communication is of only marginal concern to the sociologist
(cf. Rawls, 1987; Ritzer and Gindoff, 1992).

I argue that full explanation of the micro-macro link requires a focus on communication
processes and how they contribute to micro-to-macro emergence (Sawyer, 2003b). Of course,
interaction is at the center of the sociological tradition associated with Simmel, Cooley, Mead,
and the Chicago School of symbolic interactionism; however, this tradition did not directly
address the micro-macro link. A few contemporary sociological theorists have addressed the
micro-macro link by proposing that interaction mediates between individual action and
macrosocial structure (Collins, 1981; Ellis, 1999; Rawls, 1987).

In artificial societies, structures emerge from models of large numbers of agents, their
connections, and their repeated communications and interchanges over time. This suggests that
micro-macro theory requires an explicit theorization of interagent communication. The success
of artificial societies in recreating phenomena of micro-to-macro emergence provides support to
those who emphasize that micro-macro theory must consider agent interaction.
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2  AGENT COMMUNICATION LANGUAGES

The communication language that agents use to communicate with each other is referred
to as an agent communication language (ACL). Although interaction is a fundamental aspect of
MAS, sociological research and theory suggests that the ACLs implemented in MAS have been
radically simple. In some MAS, communications can be as simple as exchanging one bit of
information. The Sugarscape artificial society uses interaction rules like the one illustrated in
Example 1 (Epstein and Axtell, 1996, p. 73).

Such rules are simple versions of the
forms of interaction assumed by both exchange
theory and rational choice theory. In exchange
theory, for example, all sociologically relevant
communication is modeled as a form of
exchange, as in the exchange of valuable
information for status. Similarly, with
Coleman’s rational choice theory, social
communication is modeled as a type of
exchange, as in a transfer of trust from one
agent to another (1990, Chap. 8).

In contrast to these simple interactions, many MAS use ACLs based on the speech act
theory philosophical approach. Speech act theory is the explicit theoretical foundation for the
two dominant industry standard ACLs: FIPA, from the Foundation for Intelligent Physical
Agents (http://www.fipa.org) and Knowledge Query and Manipulation Language (KQML)
(http://www.cs.umbc.edu/kqml/). Following speech act theory, KQML messages are called
performatives. Performatives are defined in terms of the agent’s knowledge base, which contains
two types of knowledge: beliefs and goals. The performative TELL is defined in Example 2
(following Labrou and Finin, 1997).

This model of communication is based
on a theory of agency that is widely used in
MAS: the belief-desire-intention (BDI) model
(Rao and Georgieff, 1995). The italicized terms
in Example 2 represent beliefs and desires of
agents. Before any communicative act occurs,
the agent must first have goals and beliefs
about how to accomplish those goals. An
“intention” captures the notion of commitment
to a plan of action; agents communicate only
after committing to a plan of action. Since
1995, theorists have developed a formal logic
of BDI systems using modal logic, which includes logical operators such as “BELIEVE(x,y)”
and “DESIRE(x,y)” (Wooldridge, 2000). Agents reason about other agent’s actions, assuming
that those other agents are also operating according to BDI principles. Beliefs about the BDI
states of other agents play an important role in composing and interpreting messages (as in
Example 2).

Example 1.  An agent interaction rule
in Sugarscape

Cultural transmission rule (tag-flipping):

For each neighbor (four orthogonally contiguous
agents), a tag (one bit in an eight-bit mask) is
randomly selected.

If the neighbor’s bit setting agrees with the agent’s
at that position, take no action; if they disagree, flip
the neighbor’s tag to agree with the agent’s.

Example 2.  Definition of the TELL
performative in KQML

TELL (A, B, X): A states to B that A believes X to
be true.

Precondition for performative: This performative
occurs when A believes X, and A knows that B
wants to know whether X is true.

Result of performative: A knows that B believes
that A believes X. B knows that A believes X.
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3  WHAT SOCIAL SCIENTISTS KNOW ABOUT HUMAN COMMUNICATION

Beginning in the 1960s, sociologists and anthropologists began to use audio and video
technology to record naturally occurring interactions in dyads and groups. In the early 1960s,
anthropologist Dell Hymes founded an approach known as the ethnography of communication,
and in the early 1970s, sociologist Harvey Sacks founded conversation analysis. The seminal
works of these two approaches led to a burst of rigorously empirical studies in the 1970s, 1980s,
and 1990s, and today we have a radically better understanding of communicative processes than
just a few decades ago.

These decades of empirical research were not good to speech act theory, nor to the
theories of speaker intentionality that it was based on. Almost all empirical scholars of human
communication reject speech act theory, and the philosophy of intentionality that drives it. That
rejection is based on several discoveries about how human communication really works.

3.1  Discovery 1: The conduit metaphor is false.

ACLs assume the conduit metaphor of communication, where a communication
represents an intention on the part of the speaker to transmit some information to the hearer
(Reddy, 1979). Speaker’s intentions are assumed to be formed before the act of speaking, and the
addressee is seen as a passive listener whose only job is to guess what the speaker has in mind.
I’ll call this the individualist theory of intention and speech. However, empirical studies of
conversation by ethnomethodologists, conversation analysts, and sociolinguists have shown that
the conduit metaphor is an inaccurate model of human communication. There are many cases in
daily life in which the meaning of a given act is not defined until the recipient has replied, thus
retroactively giving the act meaning. Indirect insults among African Americans are one well-
known example I’ll discuss later (Fisher, 1976; Morgan, 1996). Another well-studied example is
a technique used by teachers in classrooms, to rephrase a student response in terms that further
the teacher’s pedagogical goals — using more scientific language than the student, or creatively
interpreting the response so that it more naturally furthers the day’s lesson plan (O’Connor and
Michaels, 1993; see Example 3).

ACLs implicitly assume a polite turn-
taking model of interaction; they assume that
only one person can speak at a time. But there
are many situations where this isn’t true.
When your audience is interrupting, or when
several people are talking at once, speech
becomes collaboratively constructed. When
we’re talking, we’re always looking at the
people listening to us, checking to make sure
they are still listening and still interested,
looking for any signs of confusion or
enthusiasm, as they quietly murmur
“Hmm…” or “Uh…” during our words.
Listeners communicate much of this
information nonverbally, with their eyes or
their posture. Conversation researchers refer

Example 3. Revoicing

Teacher: Renee / What about you? / /
Renee: (unintelligible)
Teacher: We’re your audience / we can’t hear you

/ / You’re doing fine / / You think it will
balance because...

Renee: (unintelligible)
Teacher: Yes / yuh / three of them at three
Annie: Could you speak up?
Renee: (unintelligible)
Teacher: So it’s ten and ten?
Teacher: So instead of / I’m going to give a little

louder voice to what I think I hear Renee
say / / She was saying she wasn’t adding
five and two / and saying it’s seven / she
was saying five and five / knowing that if
you double something it’s like adding it to
itself.
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to this as backchannel communication, and effective conversationalists can intuitively monitor
these messages to calibrate their ongoing talk.

We process this feedback subconsciously, and often don’t even realize how it’s
influencing the way that we talk. To explore these subtle cues, sociologist Chuck Goodwin
(1981) videotaped conversational groups, making sure to get both the speaker and the listener on
camera. He noticed that both speakers and hearers use their gaze — who they are looking at —
to communicate important nonverbal information, and speakers construct their words based on
where they see the listener looking. For example, speakers often stop their sentence once they get
the listener’s attention, and start over again.

Goodwin developed a novel way to transcribe the gaze of both the speaker and the
listeners. Example 4 (Goodwin, 1981) shows a mother talking to her two children; she wants to
suggest that they move closer to the teacher so they can hear better, but when she starts speaking,
Brian is not looking at her. At the X, Brian turns to look at his mother, and notice how she
interrupts herself and restarts her suggestion.

The horizontal line
after the X indicates that
Brian is looking at Barbara.
Although Barbara is the only
one talking, Brian’s gaze
contributes to the way she
forms her words — when he
turns to look at her, she
starts again, this time
addressing both children.
Goodwin also noticed that
speakers sometimes stop in mid-sentence, waiting for the listener to look at them; in Example 5
(Goodwin, 1981), each dash in parentheses represents a pause of one-tenth of a second.

Mike pauses because he’s not sure if Carney is paying attention; he continues after
Carney turns to look at him.

In both of the above examples, listeners collaborate in the construction of the utterance
even though they don’t say anything. These examples show that the conduit metaphor is false —
it’s not true that speakers formulate utterances cognitively before they speak.

An important aspect of humor, gossip, and insulting is indirection — where speech is
addressed to a “mediator” but is intended to act toward an “overhearer” nearby. Indirection
intentionally obscures intentionality.

This indirect insult strategy has been widely documented among African-Americans. The
anthropologist Marcyliena Morgan (1996) has done some interesting work on the use of two
types of indirect insults among African-American women. Perhaps the first study of this kind of
indirectness was done by Lawrence Fisher in Barbados, in which this communication is called
remark dropping. Fisher (1976) reported the example of remark dropping given in Example 6.

Example 4. Listener gaze and utterance construction

Barbara:  Brian, you’re gonna have — you kids’ll have to go down closer.
Brian:                                 X________________

Example 5. Listener gaze and utterance construction

Mike:  Speaking of pornographic movies, I heard (---------) a while…
Carney:                                                                  X________________
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The apparent target of such an insult
doesn’t have a good way to respond. One
Barbadian told Fisher “If I drop a remark to
you and you challenge me, I would just say,
‘Who told you I was referrin’ to you? You
must be hearin’ things.’” It’s like the
Heisenberg uncertainty principle — how you
perceive the utterance changes its interactional
meaning.

Just after lunch in my office, I walked across campus to get coffee at the campus food
court, dressed in my suit in preparation for the afternoon’s class. As I walked back to my office
across the quadrangle, a group of high school boys approached me, carrying duffel bags. Just
behind them, there were three adult men that were clearly their chaperones. Seeing my coffee,
one of the boys said “Is the food court that way?” in what I took to be a somewhat disrespectful
tone, but I brushed it off and politely said yes, it’s that way, and down the stairs in the basement.
As the boys turned toward the food court, the three men passed by. They had overheard our
exchange. One of them asked with exaggerated deference, “Is the food court this way, Sir?”

We both knew that he had heard my directions the first time. The purpose of his question
was not to request information; he was implicitly apologizing for the boy’s rudeness, to
acknowledge that he had also perceived the tone to be somewhat disrespectful. Even more
fascinating was the way that the man spoke loudly and distinctly, so that the boy could overhear
his question. With this one question, he spoke to two audiences — apologizing to me, while
reprimanding the boy. And he made it clear to me that he was reprimanding the boy.

The surface meaning of the question is irrelevant — the man has already heard my
directions to the food court. The apology is hidden in the words — he has not said “I apologize
for my student’s rudeness.” The reprimand is also hidden — he has not said “How dare you be
rude to this man!” This single utterance accomplished two different speech acts, each directed
toward a different audience.

We’ve seen two problems with the accuracy of conduit metaphor: the collaborative
construction of utterances, and indirectness. The third problem is even more fundamental. In his
influential essay “Footing,” Goffman (1981) argued that “speaker” and “hearer” were folk
theoretic categories; that the analyst must break out each of these folk roles into multiple
functional roles in interaction. Goffman proposed that a speaker consists (analytically) of three
distinct roles: the animator, author, and principal (1981, p. 144). Levinson further elaborated
these subcategories into more than 10 “producer roles” (1988, p. 172). In both cases, the attempt
is to tease out the different roles that are involved in speaking. More recent theory has shifted
even more radically — from an analysis of static roles to an analysis of the dynamic process
whereby roles are assigned, often shifting, during an ongoing interaction (Irvine, 1996).

For example, Judy Irvine’s analysis of Wolof (Senegal) ritual insult poems, performed at
weddings, distinguishes seven different functional participant roles (Irvine, 1996): sponsor,
formulator, speaker, co-speakers, addressee, hearers, and target. The poems are performed by
low-ranking griot women, but the performer composes the poem in collaboration with the high-
ranking wives married into the new husband’s patrilineage. The composition process is secret, so
that at the actual wedding, a particular insult can’t be identified with any specific author. The

Example 6. Remark dropping in Barbados

A woman chose to wear an overly bright shade
of lipstick to a party. She overheard a woman say,
“Oh, I thought your mouth was burst” to a man
whose lips were in perfect order.
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griot performer can claim that she is merely the transmitter; the sponsoring women can claim
that they sponsored the event only in general, and had no part in any particular poem. Thus
responsibility for an insult is distributed across the transmitter, the sponsors, and the
(unidentifiable) composer.

There are multiple recipients for a poem: the bride (ostensibly the addressee); the bride’s
kin, who are often the target of the insults; and the bride’s family and friends, who are often
insulted — especially those who are prominent and whose doings are of community-wide
interest. Even if one of these persons is not present, word of a clever insult is sure to be relayed
to them later.

The audience actually joins in and speaks the chorus of the insult poem, further
distributing the speaker role, as in Example 7 (Irvine, 1996, p. 137).

But Irvine’s deeper point is more subtle. She notes that these participant roles don’t exist
only in the moment of performance itself; they only arise because the insult occurs as part of an
ongoing history of interactions in the community. Everyone knows the insult was not composed
on the spot, but that it emerged from prior secret conversations. And everyone knows that the
insult will be repeated later by members of the audience, to nonpresent targets and their friends
and relatives. “The significance of the insult … depends on this complex of implicated
dialogues” (p. 139). Yet speech act theory focuses only on an isolated utterance, with no way of
capturing this history.

3.2  Discovery 2: Speaker intentionality is often problematic.

“I’m sure I didn’t mean —” Alice was beginning, but the Red Queen
interrupted her impatiently.

“That’s just what I complain of! You should have meant! What do you
suppose is the use of a child without any meaning? Even a joke should have some
meaning — and a child’s more important than a joke, I hope. You couldn’t deny
that, even if you tried with both hands.”

“I don’t deny things with my hands,” Alice objected.

“Nobody said you did,” said the Red Queen. “I said you couldn’t if
you tried.”

Example 7. Audience collaboration in performance

Choral Couplet (introduced by the soloist and repeated as a refrain):
1. M – G – né na, baalal ma Màka — M – G – said, “Forgive me, Màka —”
2. sa xaj gi demul. your pilgrimage didn’t work

Soloist:
3. M – G – moo jénaxi tookër, lan M – G –, he is a bush-rat; whatever
4. la mu gis jàppéwaan ni ci cop. he saw, he grabbed, mounting it

(and spoiling it).
5. Du ko laaj — mu dajéwoon. He didn’t ask — he just coupled.
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Speech act theory is based on an overly simplistic notion of speaker intentionality; this
makes it compatible with BDI agent models, but difficult to extend to more robust models of
agency. For example, in many speech situations — such as a Wolof insult poem — intentionality
is distributed; it is often unclear what the denotational meaning or the interactional effect of
a single utterance is, apart from its performance context, because of the contingency of the
ongoing interaction (Sawyer, 2001a). As I just showed, conversation research has discovered that
many human communications are cocreated, in part with the contribution of nonverbal back
channel information on the part of the listener (as in the above section). Just as stories are
cocreated, intentions can also be formed and altered during the process of communication;
discourse itself can be an integral part of the process of goal and belief formation. In speech act
theory, meaning is identified with speaker’s intentions to express certain beliefs or bring about
certain changes in the world. Intentions are psychological states that exist in the speaker’s mind
before the act of speaking. But in many situations — in America and in other societies —
intention and meaning is collectively constructed, partially determined by the addressee’s
response. BDI theory can’t capture these real-world phenomena.

Linguistic anthropologist Alessandro Duranti studied the Samoan speech event called
fono (1988, 1992). Duranti argued that whereas Americans think of talk as a way to
communicate information from one mind to another, Samoans think of talk as a way to assign
responsibility. Samoans do not talk about speaker’s motives or their inner psychological states
when discussing conversations. Instead, when they talk about conversation, they attempt to
assign responsibility for words spoken. Unlike speech act theory, which focuses on the intentions
behind words (and corresponds well to American folk theories about language, as reflected even
in the legal system’s focus on intention), the Samoan ethnotheory of language focuses on the
consequences of words.

Duranti studied the fono in the small rural village of Falefa (Upolu) during 1978–1979.
The fono is a formal meeting; Duranti focused on these special convocations of matai, chiefs and
orators, which act as a high court and as a legislative body. Matai gathered in a fono can both
make laws and decide policies related to new problems. Fonos are often antagonistic, with
different powerful groups in competition, and they are public. As a result, each group attempts to
control one another’s actions and the public’s interpretations of them. And the eventual outcome
is often uncertain; as a result, it is often convenient to be “cautious, humble, and vague” early on
in the meeting (1988, p. 16).

In Samoa, as in many other places in Polynesia, a special class of talented verbal artists
known as tulafale — “orators” — has the right and the duty to represent powerful chiefs
ceremonially, and to act as spokespersons and mediators in political conflicts. The tulafale often
negotiate publicly and at length before the chiefs that they’re speaking for speak themselves.
This often puts them in the difficult position of not knowing how their chief will ultimately
decide. An example of the danger facing orators is shown in Example 8 (Duranti, 1992, p. 32).

Fa’aonu’u had expressed an opinion about how a conflict between villages should be
resolved, an opinion that supported a decision previously expressed by the young chief Savea
(to resolve the issue in court). However, during the ensuing meeting, advocates of resolving the
issue the traditional way (out of court) prevailed, and Savea changed his mind. At the conclusion
of the meeting, the senior orator Moe’ono (who was an advocate of an out-of-court settlement)
reprimanded Fa’aonu’u for hastily expressing an opinion, as we see in the transcript. Note that he
is reprimanded even though at the time he expressed the opinion, it was that of the chief, who
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only later reconsidered. (In fact, one of the
reasons that orators speak first on behalf of the
chief is that it allows the chief to change his
opinion without a loss of face. The chief’s
wrong decisions and changes of position are
assumed publicly by the orators who speak on
their behalf.)

One strategy the tulafale can use to
avoid public blame is to avoid committing to a
position by being very vague. However, at
various points in the fono a tulafale is forced
to be more direct, as in Example 9 (Duranti,
1992, p. 29).

In Example 9, we see the spokes-
person, Loa, engaging in a verbal strategy of
vagueness, which has the desired result
of involving the more powerful senior
orator (Moe’ono), so that a difficult
announcement is ultimately made jointly —
with responsibility distributed.

Speakers’ intentionality at the time
they produce a speech act is irrelevant
(Duranti, 1992, p. 34). Orators can get into
trouble for public statements, even if everyone
knows they were speaking on behalf of
a higher-ranking chief, and retaliation can
occur. Accusations and discussions of
responsibility are always in terms of the
practical consequences of his words; the
speaker’s personal motives are considered
irrelevant. As Duranti wrote, “a speaker must
usually deal directly with the circumstances
created by his words and cannot hide behind
his alleged original intentions” (1992, p. 33). This is in sharp contrast to Western contexts, where
it is assumed that messengers should not be held responsible for what they say.

Based on such phenomena, Duranti argued that speech act theory is based on culturally
specific Western ethnotheories of meaning — what I call the individualist theory — that “people
should be held responsible only for those acts (and words) that can be clearly seen as reflecting
their own individual intentions” (p. 40). In Samoa, as in many other cultures, speech acts are
often collective, are often spoken on behalf of another, and are often retroactively redefined.
Speaker intention is not important. Utterance meaning is not “owned” by the speaker; rather, it is
a cooperative achievement: “meaning is seen as the product of an interaction (words included)
and not necessarily as something that is contained in someone’s mind” (p. 41). Utterance
meaning (and intention) emerges from a collaborative, distributed social process.

Example 8.  Samoan tulafale as scapegoat

ma: – (…) ou ke kaukala aku fo’i Fa’aogu’u
� ��������(…)
And – … I am also talking, Fa’aonu’u, to you

mea lea e leaga ai le – le alualu i galuega
this going away (from the village) to work

sau fo’i ua− (…)
coming back to – (speak up) is bad

�������	�
��
 ���
�� ������	��������
����� ����(…)
as for before, my opinion is going to reach back
(i.e., to what you said before)

���
������
����� ���������������	����
�����
faleakua (…)
as for the – the topic that concerns your subvillage,

kaofiofi le i’u maea. (…)
moderate yourself …

�������
��
���	��
 
 ����������������������
���� ���
and don’t show off your op(inion) like the crab that
has eyes that stick out

a’o lea ua aliali gei,
now it looks like
[…]

ua fausia e Savea le – le figagalo lea e fai aku iai
Savea has agreed to say that

�	������ �������
������������
����(…)
we should meet with Lufilufi …

KO’A! le fa’aukaga. (…)
HOLD (IT)! the advice …

ko’a le fa’aukaga. (…)
hold the advice …

e leai fo’i se isi Fa’aogu’u ’o oe
there is no other Fa’aonu’u but you

	���������� ���������	����(…)
only you, you are the Fa’aonu’u …
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3.3  Discovery 3: Communication and meaning are collaboratively
emergent social processes.

Linguistic anthropologist Don Brenneis (1984) studied one of the most creative styles of
gossip during his research in a rural community in Fiji, a small Pacific island. Brenneis spent
most of his time in Fiji with a large group of Hindi-speaking Indian immigrants, who immigrated
to Fiji generations ago. The Fijian word for gossip is talanoa and Indian immigrants have
borrowed it; it translates roughly to “idle chatter,” and in Fiji, only men talk talanoa.

Talanoa stories are always told collaboratively: two or more men join together in
a conversational duet. What’s more, listeners are expected to jump in and contribute to the story;

Example 9.  A tulafale’s attempt to distribute speaker responsibility

(The orator Loa has just concluded the introductory speech leaving out the mention of the agenda.)

Loa: maguia le aofia ma le fogo!
Good luck to the assembly and the fono!

?: � 
 �
Well done!

M: ��� ���� �������
����	��
What are the topics of the fono?

����������� �������
����	�
Tell (us) the topics of the fono.

Loa: [����� �������
�����������
����	�
The agenda of the assembly and fono

Moe: fai mai (?)
Tell us (?)

Loa: �����������������	��
������
��� ������
�
���
Well it’s really about the two subvillages,
(CLEARS THROAT)
�	������	 ������� �����
those are the only topics,

M: oi!
Oh!

Loa: �� �
What?

M: ���
��������� ������������
The other topic of Savea

Loa: ������
�������������� ���������	����
���
Well the other topic is about the –

le afioga � ��������	������
the honorable Savea ‘cause –’

M: ��������� ��	���
��������� ��	�


Loa: ���
��
 ���������������������� �	��
��������	�������������������� ��	��

	����������
��������������
��� 
 �
given that Savea has complained to – the
Government,

ia’
well

	������������	����������	���������� ��	����
�
paloka,
given that some illegal campaigning of
�������� ��	������	����������	�������	�����
(to occur)

�����	������	 ����������� �������
�����������
�
fogo,
Well, those are the only – topics of the assembly
and the fono,

��������������	������� ����
-hh (if) there are other topics,

��
����
 ������
I am not getting to,

ia la’a maua i luma!
Well they will be brought to the front!

?: � 
 �
Well done!

Moe: � 
 �����
��
Well done, the (honorable) speaking

?: � 
 �����
��
Well done, the (honorable) speaking
(…)

Moe: ia fa’afekai aku Kafiloa. (…)
Well, thank you Ka(o)fi(ua)iloa …

’ua ’e fa’amaga le fogo
for starting the fono
[…]
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sometimes a talanoa story is more like a conversational trio or quartet. Different speakers are
always interrupting each other to continue the story; but no one complains about it, because it’s
an expected part of the collaboration.

Talanoa gossip is spoken in a rhythmic, almost poetic style of talk, with “lines” that have
a metric structure like our own traditional poetry. Because of this rhythm, everyone knows when
a line is going to end. And because there are clear pauses after each line, it’s easy for someone to
jump in and take over the story. When a man jumps in and takes over the storytelling role, he
often begins by repeating the last line, and then continues the story in the same tempo and meter.
Watching this, you get the impression of a connected verbal performance — a collaborative
poetry.

There is a reason that talanoa stories are always performed collectively. In the small
country villages where these Indians live, it’s important not to directly insult another person,
since word of it is guaranteed to get back to the person you’re talking about. So if two or more
people are telling the story together, neither one of them can be blamed for talking behind your
back. And if the audience keeps jumping in and participating, they’re equally guilty. The talanoa
style of group storytelling distributes the blame for whatever is said.

In talanoa, speech acts are collectively created, and emerge from an ongoing social
encounter. Linguistic anthropologist Laura Graham, in an ethnography of the Xavante Indians of
Central Brazil, documented a similar phenomenon in a more public political form of discourse
called wara (1993). Using this form of discourse, speech acts become the product of multiple
selves and multiple voices, “a collage of multiple articulating voices” (p. 719). Wara discourse
practice severs the link between speech and individual, and makes discourse “an emergent,
intersubjectively produced social interaction” (p. 718). The function of this speech form is to
promote social cohesiveness and reinforce egalitarian relations among the senior male
participants. (As with the Fijian community studied by Brenneis: anonymity, and the use of
metaphor, allegory, and proverbs, all make it difficult to associate intention with a specific
speech act. Both are smaller, egalitarian communities, with a need to avoid direct confrontation
among equals.)

The wara is a men’s council that includes a morning meeting and an evening meeting,
which goes on late into the night. Once it’s dark it’s difficult to see individual speakers;
overlapping speech is common and makes it even more difficult to identify speakers.

Speakers typically address the council as a representative of their faction rather than as
themselves. The features of the discourse event minimize the speaker’s individual identity
(p. 725):

• Many people talk at the same time.

• There are no podiums or lighting or public address systems.

• Men avoid looking at the speaker; most lie on their backs and look up at the
sky.

• Many men keep up a running commentary throughout the event, resulting in a
constant murmur.
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• A second speaker doesn’t have to wait for the first to finish before starting.

• Each speaker incorporates much of what has been said already into their
delivery, resulting in a high degree of collective repetition (see Example 10).

• Skilled speakers often integrate the remarks that others are making
simultaneously into their ongoing speech, revealing an ability to monitor
others’ speech while talking (see Example 11).

Speakers use a genre of speech that
is distinct from conversational Xavante
called ihi mrèmè, which is characterized by
extensive repetition, parallelism, and a
special intonation pattern. Like Brenneis’
Fijian gossip, these formal features enable
a more collective discursive practice.

Finally, in interviewing the
Xavante after a meeting, Graham reports
that they don’t claim responsibility for
their own speeches, and they decline to
comment on the speeches of others. No one admits to paying attention to any particular
individual, and no one admits to playing a particularly prominent role in a meeting (p. 736). All
of this is consistent with Graham’s interpretation of the discourse event itself: speech acts are
produced collectively and are distributed among the participants. “The locus of political action
resides in emergent social interaction, not in any single agent” (p. 737).

Most talk occurs in groups of three or more; yet, many theories of speech are based on
two-party interactions (and ACLs likewise are assumed to occur between two agents). Argument,
story-telling, and family dinner-table conversation have multi-party dynamics radically different
from the one-turn-at-a-time dyadic conversation assumed by speech act theory (and other
linguistic theories of social action), as research by the Goodwins has so broadly documented.

Example 10. Collective repetition in the Wara

Eduardo he just perfected what he saw in the dream

Jusé yes he perfected what he saw in the dream

Eduardo they [the ancestors] perfected themselves

Jusé they [the ancestors] perfected themselves

Eduardo he is remembering the story

Jusé he is remembering the story

Example 11. Speakers integrate others’ remarks into their talk

Warodi in the dry season…his brother…
the grass’s smoke rose straight up and he missed him…
again…he returned… for him to walk together

Jusé    for him to continue walking together

Warodi       for him to walk together

Jusé    for him [continue] walking together

Warodi    for his brother in the dry season
again…he returned…for him to continue walking together
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3.4  Discovery 4: Context influences the meaning of speech.

Cultural anthropologists have found that our ways of thinking about language and about
human agency are intimately linked. Theoretical attempts to explain how language works (such
as speech act theory) reflect our culture’s views about the nature of agentive individuals. Many
other cultures hold to different theories of personal agency, and their own views of language
action are correspondingly different.

Speech act theory holds that speech acts are accomplished by autonomous selves, whose
deeds are not constrained by relationships and contextual expectations. But conversation
researchers have discovered many speech situations in which speech action is intimately tied
with social context. Anthropologist Michelle Rosaldo studied the Ilongot (in the Philippines) in
1967–1969 and again in 1974. Rosaldo found that directive speech acts (commands, requests,
orders) were central to the Ilongot’s cultural beliefs and system, reflecting role conceptions of
men, women, children, and relative status relationships (Rosaldo, 1982).

For example, directives tend to move in lines associated with age- and sex-linked social
rank; men can ask women to get something for them — and they’re rarely rejected — but
women rarely ask men. Women often make demands on children; and older children make
demands on younger. However, in certain social contexts, it is considered appropriate for
children to issue directives to parents, or for wives to issue directives to husbands.

Rosaldo argued that one cannot understand the meaning of a directive without knowing a
lot about the social situation and context of utterance. In fact, she argues that relations and
context are primary in interpreting the meaning of a speech act, in contrast to Western culture,
which holds that speaker intentions are primary (p. 210). For Searle for example, acts of speech
are not social actions, but rather the embodiments of universal goals, beliefs, and needs held by
individual speakers.

For Searle, “to promise” is the paradigm speech act. “To promise” focuses on the
sincerity and integrity of the speaker — it is a thing derived from inner life (unlike a greeting,
which is often required conventionally by the situation). And Searle’s description of the promise
focuses almost entirely on the sincerity of the speaker’s commitment: a promise is defined as “a
sincere undertaking, by the speaker (S), of a commitment to do A, where A is something S would
not ordinarily undertake, and something, furthermore, that S believes that hearer (H) desires”
(Rosaldo, 1982, p. 211). Note what is missing from the definition: any invocation of context or
relationship. But in fact, promises are things that we offer only to certain kinds of people at
certain times. Promises to a child are typically didactic and tendentious; a promise from a
candidate for political office is judged not only on sincerity but also on suspiciousness, sound
bite worthiness, and grandness of vision. Promises between spouses have a different tenor from
the public contractual commitments implied by Searle’s definition (Rosaldo, 1982, p. 211).
These are the complex social rules that surround the action of promising, all neglected by speech
act theory — because they don’t match the language ideology, and the assumptions about
personhood and intentionality, held by the culture that developed speech act theory. Searle’s
definition of the promise fits with Western folk beliefs that social meaning issues from
private persons.

Rosaldo’s shocking observation is that the speech act of “promising” does not exist in the
Ilongot speech community (1982, p. 211). Among the Ilongot, as Rosaldo claims, the directive
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rather than the promise is the paradigm speech act, and when it comes to the directive, it’s hard
to ignore the context and the relationship. Rosaldo steps through Searle’s five speech act
categories (assertives, directives, commissives, expressions, and declarations) and shows that the
Ilongot use of each of them fundamentally presumes relationship and social context. Assertives,
for example, are not meant to represent facts about the world, but rather are used to “articulate
relationships and claims within the context of a history that is already known…[and] to talk
about alliance and opposition in particular social groups” (1982, p. 214). The degree to which an
assertion is qualified, or the way that prior acts are named, becomes the stuff of verbal duels:

cautious qualifying verbs: “Well, what I will just, uncertainly, say to you”

metaphors qualifying speaker’s actions: “I’ll be the one to run ahead again (and
speak out) since it’s the way with young dogs”; “(Let’s talk until) we are filled up,
contented, from hand feeding one another words”

Each of these variations is strategic and carries subtly different implications for the
ensuing encounter.

Perhaps most striking is Rosaldo’s claim that the Ilongot have no verbs for commissive
and expressive acts, the two types that are most paradigmatic of Western folk theories of
language use. There’s no verb for “promise” or “apologize” or “congratulate.” There are no
expressive forms for “I’m sorry” or “Thank you/I appreciate that.” Acts that are similar to these
Western speech acts actually fall into Searle’s declarative class (all the cases where saying
something actually changes the world, e.g., “I marry you” or “I find you guilty”) — with the
result that they emphasize the consequences of the act, rather than the inner state of the speaker
(1982, p. 218). As in many other cultures, among the Ilongot the eventual consequences of
speech are more important than the prior intention of the speaker.

3.5  Discovery 5: Much of interaction is based on semi-scripted, ritual sequence.

Many communicative acts are socially distributed phenomena (Duranti, et al., 1991). Just
as human cognition is increasingly perceived as a situated practice, and is often distributed
among members of a collaborative team (as in the theoretical and empirical work of
psychologists Jean Lave and Ed Hutchins), speech acts are as well (as in my examples of
Samoan fono, Fijian gossip, and Xavante wara). For example, the status of an utterance as an
“answer” emerges not from the utterance itself, but from its placement after a particular kind of
talk — a “question” — produced by someone else. Duranti, et al. (1991, p. 4) state, “The
constitution of the action as an answer is thus not situated within the intentions of a single
participant, but instead emerges through a time bound process that is distributed across different
participants and actions within the framework provided by the sequence of activity that they are
collaboratively constructing.”

In sociology, the emergent pattern of the group encounter has been called a routine (by
conversation analysts) or an interaction ritual chain (Collins, 1981). Sociologists like Collins
and Giddens are typically concerned with structures that emerge and perdure across repeated
encounters, thus resulting in something approximating macrosocial structure.

Speech act theory focuses at the utterance level, and does not provide a theory for how
social action may be found in broader interactional structures — like the sequence of social
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interactions implicated in the Wolof insult poem performance. When we expand the analysis to
above the level of the utterance, we are analyzing interactional structures with multiple
participants. MAS need to consider the effects of connected sequences of communicative
behaviors, which sociological theorists refer to as rituals or routines. Sociological research
suggests that MAS developers may need to explicitly model interactional routines.

The ACL standard Foundation for Intelligent Physical Agents (www.fipa.org) allows
developers to create standardized sequences of communicative acts, called protocols; these are
rigidly defined scripts. If two agents agree to engage in a protocol, it can increase their
communicative efficiency, because they do not have to go through the same decision process
before each communicative act. This is similar to MAS work that attempts to increase
the efficiency of systems by explicitly modeling activities (Kristensen and May, 1996)
or conversations (Barbuceanu and Fox, 1997). Yet there are difficult, unresolved problems
associated with how agents first negotiate to engage in a protocol, and whether this negotiation
might take so much energy as to offset the presumed advantages of entering the protocol. And
because a protocol is a fixed script, these extensions to ACLs fail to account for opportunistic
improvisation — when agents break out of the protocol, or decide to modify or embellish it.

3.6  Discovery 6: Most speech acts are implicit.

“They gave it to me,” Humpty Dumpty continued thoughtfully… “ — for an
un-birthday present.”

“I beg your pardon?” Alice said with a puzzled air.

“I’m not offended,” said Humpty Dumpty.

“I mean, what is an un-birthday present?”

We all have had trouble understanding indirect speech acts.

The paradigm speech act is the explicit primary performative (EPP). But as we all know,
in most cases in everyday speech, the “speech act” accomplished is not explicitly marked by the
utterance’s verb (recall my food court apology example). In the terms of speech act theory, most
are “indirect illocutionary acts,” and speech act theorists have had the most trouble
accommodating these into the theory. In the context of the world’s cultures, Anglo-American
folk theories of language emphasize explicitness and directness; but even among us, most speech
acts are indirect.

ACLs have borrowed only from speech act theory’s notion of EPPs and illocutionary
effects, and have ignored implicit performatives and perlocutionary effects. Here, ACL
developers are drawing on the assumption of speech act theorists that the explicit performative is
normative, and represents the “deep structure” of even implicit acts. In contrast, most scholars of
communication have found that the normative case is implicit and indirect communication —
especially once you leave the Anglo-American speech community. Implicit communications
cannot be constructed nor interpreted without a profound understanding of the conversational
context; a fundamental aspect of human communication is indexicality: the relations between
communicative acts and the ongoing, co-constructed, emergent conversational context.
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Of course, when people speak they often “do” things. The problem with speech act theory
is that it attempts to connect speech function with speech form in a systematic way, but that way
only works for EPPs, and only for certain cultures.

3.7  Discovery 7: Speech acts are less likely to result in unintended
emergent effects.

Speakers use the metapragmatic function of language to “metacommunicate” about the
emergent process and flow of the encounter, or about the ground rules and the communication
language itself. Sawyer (2003c) has empirically demonstrated that the metapragmatic features of
human communication lead to unintended emergent effects, and that these emergent effects have
causal consequences for the future flow of the encounter. Yet metapragmatics have not yet been
implemented in agent communication languages. In ACLs, these properties of communication
are largely fixed in advance and cannot themselves be negotiated. A speech act comments on
itself — saying “I promise” has a denotational meaning, but at the same time says “what I’m
now saying constitutes a promise” — but this is only a small aspect of metapragmatics.

Sociological studies of improvisational groups help illustrate this point. In an
improvisational theater performance, when no dialogue or plot is specified in advance, how do
actors determine the variables of the interactional frame — the characters, motivations,
relationships, and plot events and sequence? In Sawyer’s (2003c) study of emergence in
improvising theater groups, the interactional frame was shown to emerge from complex levels of
metapragmatics (see Example 12).

Shared interactional under-
standings are created through
metapragmatic communication by
the collaborative efforts of the entire
group. No single participant creates
the frame; it emerges from the give-
and-take of conversation. The
interactional frame includes all of
the pragmatic elements of a small
group encounter: the socially
recognized roles and practices
enacted by each participant, the
publicly shared and perceived
motives of those individuals, the relationships among them, and the collective definition of the
joint activity they are engaged in. The frame is constructed turn by turn; one person proposes
a new development for the frame, and others respond by modifying or embellishing that
proposal. Each new proposal for a development in the frame is the creative inspiration of one
person, but that proposal does not become a part of the frame until it is evaluated by the others.
In the subsequent flow of dialogue, the group collaborates to determine whether to accept the
proposal, how to weave that proposal into the frame that has already been established, and then
how to further elaborate on it.

Emergent properties are often associated with unintended effects of action; intended
effects are not emergent by definition, because their origin can be traced to the individual

Example 12. Emergence in improvisational theater

Dave: All the little glass figurines in my menagerie,
The store of my dreams.
Hundreds of thousands everywhere! Turns around to
admire.

Ellen: Slowly walks toward Dave.

Dave: Turns and notices Ellen.
Yes, can I help you?

Ellen: Um, I’m looking for uh, uh, a present? Ellen is looking
down like a child, with her fingers in her mouth.
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motivations and advance the plans of individuals. In improvised dialogues, the actors do not have
beliefs, desires, and intentions as conceived of in ACLs; rather, these are attributed to individual
actions retrospectively as the dialogue evolves. In spite of their lack of plans and intentions,
actors are able to coordinate their actions to generate a plausible, coherent dialogue, and stable
macro patterns emerge.

I compared emergence processes in two 60-minute improvised plays, both performed by
professional groups in Chicago in the early 1990s (Sawyer, 2003c). The first group, called The
Family, used a format that they called “The Movie”; in The Movie, actors are allowed to step out
of character and to explicitly metacommunicate about the ongoing drama, using “director talk”
as if they were the director or playwright. The second group, called Jazz Freddy, did not allow
their actors to step out of character at all. Both groups created their 60-minute play from
a combination of two- to four-minute scenes, and the edits between scenes were emergent and
collaboratively accomplished by the actors. I found that in The Movie, all scene edits were done
with director talk; of course, in Jazz Freddy, all scene edits were done while remaining in
character.

These differences in metapragmatic strategy resulted in the unintended emergence of two
very different dramatic frames. The Jazz Freddy frame that emerged emphasized character and
relationship development, but its plot was not very complex. In contrast, The Movie’s emergent
frame had multiple, interwoven plot lines, but had weak characters and relationships. I used
conversation analytic methods to demonstrate the step-by-step process of this emergence,
showing that the metapragmatic differences were responsible for these different processes and
outcomes of emergence.

There can be no conscious awareness of emergence processes in small-group
improvisation, because they happen so quickly. For example, actors in The Family and in Jazz
Freddy were not aware of these contrasts between their performances. As Sacks was perhaps the
first to point out (1992, p. 11), during conversation people respond so fast that they could not
conceivably have consciously planned and decided their action. The psychological processes
underlying conversational behavior are largely preconscious. Prior research has demonstrated
that speakers have great difficulty becoming aware of the metapragmatic function of their own
utterances, even when they consider an interaction in retrospect (Silverstein, 1979, 1981). This is
why I proposed that emergence results from the implicit metapragmatics of dialogue, rather than
from the explicit formal features of dialogue (Sawyer, 2003c). Most offers are implicitly
metapragmatic: the offer is phrased as if the proposed state of affairs already were the case (as in
Turns 2 and 3 in Example 14, and as in the scene edits of Jazz Freddy). Such offers can only be
explained by reference to the metapragmatic strategies used in successive turns of dialogue.

4  WHY THEN, SPEECH ACT THEORY?

If speech act theory is so wrong so much of the time, and if empirical studies of actual
language use in context have shown this for several decades, why does speech act theory persist
in the academy?

The linguistic anthropologist Michael Silverstein provided an explanation back in 1979:
Speech act theory is popular in Western academic circles because it fits so closely with Anglo-
American cultural beliefs about how language does/should work. In other words, it represents
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our own unexamined cultural beliefs about language, dressed up in fancy academic garb.
Western societies believe in effective means-to-ends relationships, or efficiency; they believe
that utterances emerge from speaker intentions; and they believe that speakers are responsible for
their words, and that the meaning of the words is ultimately “owned” by the speaker. The explicit
primary performative — the canonical speech act, and the one that corresponds most closely to
ACL communications — describes the conventionally understood activity that speaker and
addressee are engaged in at the moment of the utterance (“I promise,” “I warn,” etc.). Because
the explicit verb describes the activity it performs, it is metapragmatic — it comments
reflexively on the act of speaking.

Silverstein noted that Austin’s tripartite division of locutionary, perlocutionary, and
illocutionary results from an objectification of three different ways of reporting “what happened”
in a speech event: What was said, what was done, and what the effect was. Each of these,
Silverstein notes, corresponds to a distinctly English syntactic construction used to report a prior
speech event (e.g., “He said X.”). Silverstein concluded “it is not by chance” that speech act
theory matches precisely the syntactic and semantic properties of English language (1979,
p. 213). After all, “illocutionary forces are distinguished [by Austin] only insofar as distinct
explicit performative formulas can be recognized” (1979, p. 213).

Silverstein concluded “There is no reason why an ideology that grows piecemeal from
various metapragmatic formulations of a language should show internal consistency, nor indeed
give adequate analytic insight in areas of social practice” (1979, p. 214). In other words, speech
act theory fails to explain the empirical data emerging from conversation studies, but there’s no
reason to expect it would be successful — considering that it did not emerge from empirical
scientific research, but rather from a culturally specific ideology of how language works.

Rosaldo (1982), drawing on her Ilongot data, argued that speech act theory invalidly
universalizes what are culturally particular views of human social action and intention (p. 212).
Summarizing how speech act theory fails to capture communicative action among the Ilongot,
Rosaldo (1982) likewise concluded that “certain of our culturally shaped ideas about how human
beings act have limited our grasp of speech behavior.” Ultimately, Searle’s work is an
ethnography “of contemporary views of human personhood and action” in the West, and not
a universal theory of language use (Rosaldo, 1982, p. 228).

5  CONCLUSION

The ACLs used in MAS simulate some aspects of human communication, such as
explicit primary performatives that communicate preformed agent goals and beliefs, that function
as isolated utterances rather than units in an ongoing routine, and that are unproblematically
related to the conversational context. However, empirical study has revealed that most human
communication does not meet these criteria. And in particular, communication is more likely to
have unintended emergent effects when communicative actions are implicit, collaboratively
distributed across three or more participants, and sequentially distributed across strips of
interaction. To date, no artificial societies come close to simulating these features.

There is some promising agent work that moves beyond speech act theory. Many
computer scientists have explored the kinds of communication that are necessary to sustain
group action (Cohen and Levesque, 1991; Grosz and Sidner, 1990; Jennings, 1993, 1995;
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Cohen, et al., 1990a; Rich, et al., 2001; Tambe, 1997). Designers of such artificial societies are
particularly interested in agents that do not necessarily have identical beliefs, as is common in
complex real-world environments. What would hold a team together when individual members
have distinct private beliefs about the shared activity? Collaborative systems thus touch on key
issues in the theory of intersubjectivity (Garfinkel, Matusov, Wertsch, Sawyer, Schutz), which
are related to long-known issues in distributed cognition: groups can collaboratively accomplish
tasks even when members hold different information, and different understandings of the task
(Cohen and Levesque, 1991). The need to continually manage intersubjectivity makes
communication necessary (Cohen and Levesque, 1991, p. 489). Agents in teams must be able to
reason with, and communicate about, group goals and actions, in addition to the individual
representations and communications supported by the ACLs of cognitive agents.

Much of this theoretical work has explored the relations between individual intentions
and joint intentions; for example, if a team jointly intends to perform an action involving a
sequence of steps, then the agent responsible for any step “will intend to do that part relative to
the larger intention” (Cohen and Levesque, 1991, p. 505). Philosophers who have influenced this
simulation work (e.g., see the essays in Cohen, et al., 1990b) have debated a version of the
micro-macro issue: is collective intentionality reducible to individual intentions, or does it
necessarily have a distinct ontological status? Some philosophers (Gilbert, 1989; Searle, 1990)
argue that collective intentionality is not reducible. But most collaborative systems do not
explicitly model collective intentions (see Tambe, 1997, pp. 113–114).

Grosz (1996) and Tambe (1997) have developed some of the most sophisticated
collaborative systems. In Grosz’s SharedPlan system, different participants have different
knowledge about how to proceed to solve a problem, and they must work together as equals to
solve the problem. Agents have different beliefs, intentions, and capabilities; collaboration
requires that agents have the ability to reason about other agents’ beliefs and intentions; and
agents must be able to collaborate in both planning and acting. Planning and acting are not
sequential but interleave, as the unexpected results of actions force rethinking of plans; and the
plans and actions that result in such systems are emergent group phenomena, emerging not only
from agent interaction but also from the unpredictability of interaction with the environment.

Grosz and Sidner (1990) argue that these emergent group plans cannot be understood as
the sum of individual plans (see Grosz, 1996, p. 73), and in fact, that agents must be designed to
plan differently if they are to collaborate toward emergent planning (Grosz and Kraus, 1996). For
example, agents must have intentional states that are directed toward the collective group plan;
Grosz and Kraus (1996) identify two such states, intending-to (the intention of an agent to
accomplish a subtask of the group’s task) and intending-that (the indirect intention of an agent
that is depending on another agent to accomplish a subtask). “Intending-that” carries
implications for the nonacting agent — not to expect other subtasks to be accomplished at the
same time, and a commitment to provide help when asked. Both states involve commitment and
responsibility, even though only one of the agents is directly responsible for the subtask.

In these collaborative systems, collective intentions and group plans are emergent. They
emerge when agents have a mutual belief in the plan — on the overall outline of how they are
going to execute the plan. There must be individual or group plans for each of the subactions.
And unique to groups, there must be an “intention-that” the group will do the action; and there
must be individual commitments to other agents being able to do their actions, “intentions-that”
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the collaborators succeed. But before this emergent state can be reached, the agents have to
undergo a process of reaching at least a partial agreement on a group plan.

Teams require their agents to have explicit representations of mutual beliefs, team plans,
and team goals (Tambe, 1997, p. 85). Although no single agent performs the entire team activity,
but only a part of it, each agent must be able to represent and reason about the group activity.
These collective representations are not supported in cognitive agent architectures nor in the
ACLs that they use. Tambe (1997) noted that prior systems, particularly Grosz’s SharedPlans,
typically have only two or three agents. Part of Tambe’s motivation for developing his STEAM
system was to support teams of more agents; systems have now been developed with 8, 11, and
16 agents. A classic example is the RoboCup soccer tournament, in which different research
groups develop multiagent soccer teams with 11 agents as team members (www.robocup.org).
STEAM systems start with joint intentions, and then build up hierarchical structures that parallel
Grosz’s theory of partial SharedPlans.

But most MAS simulation work continues to use either speech act-based ACLs, or even
simpler communication mechanisms (think of IPD simulations). It’s not surprising that computer
scientists developing agent systems have found speech act theory appealing; after all, its
assumptions about individual intentions and actions fit very well with the central contemporary
traits of object-oriented programming. Objects are “encapsulated”; agents are “autonomous” —
corresponding quite well to the individualist theory of personhood and intentionality held by
Anglo-American speech communities. The ACL adaptation of speech act theory is even more
rigidly constrained by explicit primary performatives  than the original theory; each
communication originates in a belief-desire-intention held by an agent, and is then
communicated explicitly to another agent. ACL communications are essentially like
programming language instructions — rather than “ADD” or “INCREMENT 1,” we see “BID”
and “EXECUTE.”

Such ACLs have proven quite suitable for many computer science applications,
particularly distributed Internet applications such as auction markets. But my claim here is that
they are woefully inadequate for modeling human social life. And in particular, we have no hope
of replicating how collective properties emerge from agent interaction unless we use much more
sophisticated ACLs.
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INVITED SPEAKER:

ASSESSING AGENT COMMUNICATION LANGUAGES

(Friday, October 3, 2003, 1:45 to 2:45 p.m.)

Chair: David Sallach, The University of Chicago
Discussant: Gina-Anne Levow, The University of Chicago

David Sallach: We’re pleased to have with us today as our invited speaker Keith
Sawyer, from Washington University. He is embarrassingly prolific, and he does really good,
rich, in-depth, qualitative social science, as I think you’ll see. Yet I don’t think he’ll be offended
if I say he’s kind of in the Goffman tradition, but also has been active in thinking through what
that tradition brings to, and what kinds of issues it raises for, the emerging computational social
sciences, and he has published in that area as well. And that kind of bridging is what he’s going
to speak on today, with references to agent languages.

R. Keith Sawyer: Okay, assessing the agent communication languages. Yes, my
background is a little bit too interdisciplinary perhaps, but my undergraduate degree is in
computer science, and I studied artificial intelligence. This was a long time ago, even before the
AI winter of the mid-1980s. But then I went back to graduate school and decided I wanted to be
an empirical social scientist. So most of my research has been in blends of linguistic
anthropology, sociolinguistics, and conversation analysis. And that tradition’s very different
from mainstream linguistics.

Mainstream linguistics has been the area of language study that has most influenced
computer science, and I have some ideas about that, probably because of the roots of linguistics
in philosophy as opposed to empirical social science, philosophy of language or logical
formalism, whatever. But what I’m going to talk about is going to be mostly data from empirical
studies of real live conversations in the world and what that says about agent communication
languages that are used in multi-agent systems.

[Presentation]

Sawyer:  … so I guess ultimately when I’m assessing agent communication languages, I
come up with a bunch of criticisms. That doesn’t mean I don’t think ACLs are going to be
effective for a lot of computer science applications. I think they have been effective. But if
you’re a member of a community that’s trying to use this technology to simulate human social
groups or natural social groups, then I think you’re going to have to not use ACLs based on
speech act theory.

Sallach: I’d like to introduce Gina-Anne Levow, from the Computer Science Department
at The University of Chicago. She’s going to be the discussant for this talk, and then we’ll maybe
have time for a few questions …

Gina-Anne Levow: I’ve got a few comments from hearing today’s presentation and the
copy at the top, the paper that I luckily got in advance so that I could think about this a bit. And
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hopefully those will bring in some outside work that we can think about and use to stimulate
some further discussion.

My personal background: I’m in the Computer Science Department at the University of
Chicago, and my area of research is actually in what in this context would be more called virtual
or conversational agents. I work on spoken-language systems and interactive systems that use
speech, natural language processing and other multi-modal-type interfaces. So it’s very
appealing to me to hear a talk like this, which brings together such a range of communities, both
from the strong perspective of the agents, as well as the sociology perspective, sociolinguistic,
socio-anthropological, and some work in previous philosophy and artificial intelligence work.

And something that the speaker didn’t have time to talk about as much in the talk,
though, that showed up in the full paper, is that there has been a confluence of ideas; there are a
number of active research areas that are working in agent systems and in coming up with ways to
start to handle some of the issues that the speaker did raise here, in particular, things like meta-
pragmatic uses and conversation about conversations. And in particular, a lot of people have
recognized the breakdown in this conduit metaphor; in particular, the notion of a single speaker,
single hearer and sort of a single concept that’s being transmitted back and forth. The importance
of back channels and socially constructed utterances has become progressively more clear as our
capabilities in building spoken language systems, for instance, for virtual environments have
brought us into confronting the fact that we’re actually having multiple agents interacting, trying
to have a communication.

There’s been a lot of work in the AI community, and some very recent work on multi-
agent conversational systems. Today’s speaker mentioned in his paper work by Gross on shared
plans, which endeavors to expand both the notion that an interaction is in fact not just two
speakers building their own individual plans, but that they actually collaboratively build both a
plan and a communicative process, as well as some work by Tumbay on team simulation in the
context of robotic soccer.

Well, these approaches have been particularly promoted in some recent work that I’d like
to mention out at ISI in California; in particular some work by David Traum, Jeff Rickel, Jay
Gratch and S. Marsella on negotiation over tasks in hybrid human agent teams for simulation-
based training. That’s quite an arcane term. But what’s interesting about this work is that actually
tries to generalize very strongly on speech act theory to extend it through dialogue act theory.

In human/human communication, we have a wide range of very flexible forms. At what
level do we want to incorporate things like indirectness, for instance, into our agent
communication language, or do we want to stay abstract past that to some other intermediate
representation? If we’re dealing with a multimodal dialogue, is it important to capture the
modality in terms of the lower-level representation, or do we simply want to abstract the fact that
somebody signaled attention in some way without necessarily specifying that it was by gaze, by
gesture, or by a back-channel “mm-hmm.”

Another question that I think plays into that role is what our goals are. If we’re building a
language where our intention is to simulate a full human society, it becomes particularly
important to model all of these facets. If we’re building functional agents that might be running
around in the background, say, simulating auctions for electrical power, it might be less
important to actually represent some of the indirectness of speech acts. And I think that’s going
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to be an ongoing question as we develop agent communication languages for different types of
activities.

One last thing that I’d like to mention (just because it’s interesting) was in the notion,
when you mentioned, “Well, pop in the agents and the language, and, you know, add water,”
well, there have been some interesting studies by a researcher at the University of Illinois at
Chicago, who I think is Gmytrasiewicz.

The most recent paper I’ve seen was called “Toward Automated Evolution of Agent
Communication Languages.” And what he does is, he takes a different premise, in which he
says, “There are agents, there are interactions. Let’s come up using, in this case, adaptive
mechanisms, in particular, optimizations of expected utility — a language that enables optimal
communication, and see what we get as a language,” rather than taking the question of, “Well, if
we have agents and a language, what do we get as a communicational structure?”

But now I’d like to open the floor for further discussion for whatever time we might
happen to have. Thanks. Comments, questions?

Unidentified Speaker: I found the paper very compelling and found myself really in
agreement with the critique. It does seem to me to be posing a question, but not suggesting any
answers, in the sense that, speaking as one of those who would love to come up with a way to
build an agent-based model that showed some emergent social effects of the kind I think you’re
giving evidence of, it’s pretty clear that most of the models we build really do use some version
of a BDI-like framework, because the representation falls to hand. I mean, it’s sitting out there
… something easy to grab hold of and use to write lines of code.

And I was wondering if you had any suggestions at all about places we might look,
theoretical structures that at least someone has invested some time in, that might be a place to at
least begin puzzling over as a way it might be turning an algorithm or broadened model so that
we can pick up some new phenomenology in our ABM constructs.

Sawyer: Yes. Well, like Gina said, I did have some more positive suggestions at the end
of the paper that I left out for lack of time: collaborative agents, joint intentions. So there is some
work that is trying to focus on collaborative seams that I didn’t have time to talk about, that is
not based on ACLs.

And I guess, yes, I would recommend, although I don’t know how practical this, the use
of relevant work in writings of linguistic anthropologists, some of the same people I cited. So I
think it would always be a good place to start with empirical social science work first, and then
work on the simulation. So, yes, there’s a lot of good stuff out there. And, like I said, it goes back
to the late 1970s. So it just hasn’t filtered over.

Unidentified Speaker: I think your comments about our science or our agent models
being based on individual perspectives is right on target. And I wholeheartedly support you. As
an issue that many commentators have raised, though, it’s hard to go from that criticism to a
solution. And I’m not sure that you can create a sufficient glue by just noticing that by removing
context you can actually come up with a better situation.
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I agree with you that removing context actually creates more problems than it can solve.
On the other hand, I don’t think that adding context is going to provide a solution as well. It
seemed to me that the thing you didn’t talk about was conflict. You didn’t address that as an
issue. And I think until you get into conflict, where you could see resource conflicts, sexual
conflicts, political conflicts, whatever they are, that you don’t introduce function. And I think
function is possibly — I’m not sure yet in my own mind — a glue that pulls these things
together. And maybe you’d like to comment on that.

Sawyer: Sure. Yes, I think that in a model where everyone is assumed to be cooperating,
then there’s no conflict, right? I think that in real human small groups, that in situations of
conflict and negotiation and argumentation, you’re often more likely to see implicitness and
indirectness and confusion about motives, and intentional confusion about motives.

So, yes, I guess I’d agree that that’s important. But I would say if you want to be able to
understand conflict, then my points probably become even more telling.

Unidentified Speaker: I agree with you there. What about function, social function,
function in the decision … discussion process …

Sawyer: You mean the function of a speaker utterance?

Unidentified Speaker: Speaker utterance, receiver utterances. Function of the social
process, whatever they’re doing; why they’re doing what they’re doing.

Sawyer: Oh, okay. So in a sense a part of context, maybe.

Sallach: Yes…. And it turns out language is difficult, actually, and we’ll probably have
to draw this session to a close.







303

CONVERSATIONAL AGENTS

D. SYLVAN,∗ Graduate Institute of International Studies, Geneva

ABSTRACT

 Conversations (i.e., extended verbal exchanges) are among the most salient types of
social interaction. Until now, agent-based models have not focused much on this
phenomenon, although in principle such models offer significant advantages as ways of
exploring it. The internal and external aspects of conversational commitment are
identified, and a research agenda is proposed for constructing agent-based models of such
interactions in two domains: social gatherings and diplomatic negotiations.
 
 Keywords: Agent-based models, conversation, turn-taking, third parties

INTRODUCTION

Almost a century ago, Simmel defined society as existing “where a number of individuals
enter into interaction.... [Motivations] are factors in sociation only when they transform the mere
aggregation of isolated individuals into specific forms of being with and for one another, forms
that are subsumed under the general concept of interaction.... If, therefore, there is to be a science
whose subject matter is society and nothing else, it must exclusively investigate these
interactions....” (Simmel, 1908, Chap. 1). Few would disagree explicitly with this formulation
even today, especially those concerned with the kind of modeling discussed at this conference.
However, for all their variety and richness, the kinds of agent-based models constructed until
now have tended to focus on certain types of strategic and habitual interactions, scanting
arguably other important ones.

The purpose of this paper is to focus on one of those less-studied forms of interaction,
namely, extended verbal exchanges (i.e., conversations). I argue first that conversations, whether
among private individuals or in some kind of workplace setting, perhaps between persons
serving as delegates, are of considerable importance. Second, I argue that conversations are best
modeled by methodologies that take account of certain semantic and pragmatic characteristics,
and that these desiderata are not satisfied by either existing agent-based approaches or certain
other formal methodologies. Third, I claim, this is a pity, because a more promising tradition,
namely conversation analysis, is badly in need of the potential advantages offered by agent-based
modeling. Fourth, I identify internal and external aspects of conversational commitment and
propose a research agenda for constructing agent-based models of these phenomena in two
domains: social gatherings and diplomatic negotiations.

In making these arguments, of necessity I will be operating at a relatively high level of
abstraction. The reason is not only that this paper is primarily methodological and meta-
theoretical, but also, as I discuss below, because conversations have an important indexical
quality; that is, they are “about” something in particular (cf. Garfinkel, 1967; Sacks, 1992,
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Vol. 1, Part 4; Brentano, 1874; James, 1890). This, in turn, means that models of conversation
must not only vary considerably by both domain and subject matter, but that for them to be
constructed as plausibly valid in the first place, they also must take into account a large number
of actual examples. In this case, intuition is insufficient; model-construction must go hand-in-
hand with data collection.

SIGNIFICANCE OF CONVERSATIONS

Before proceeding further, some conceptual clarification is in order. By interaction, I do
not mean simply a contact between one person and another, such as might happen in an
accidental collision between two persons.1 Rather, as in the Simmel quotation above, interactions
are characterized by the actions of persons, which are ways of being with and for each other, or,
to build on the way in which Weber put it, actions that are “meaningfully oriented to that of
others” (Weber, 1956, p. 23). Thus, if conventionally, action is distinguished from mere behavior
by dint of the former’s intentional quality, then, in turn, interaction is characterized by the fact
that each of the parties in the interaction is intending that its actions will be relevant to the other
parties (i.e., understood as such and reacted to in particular ways).

From this definition, it is clear that verbal exchanges are interactions. One need not
espouse the notion that society is “socially constructed” by “discourse” to recognize that when
two or more actors talk (or write) to each other, they are precisely intending to have their
utterances understood by the other party and, quite often, others as well; and that certain
consequences should flow from that understanding. For example, a judge who says, “I hereby
sentence you to five years in prison,” to a defendant in a trial is interacting with the defendant
and many others, including the prison system. In this sense, verbal exchanges can be seen as
being comprised of “speech acts” (Searle, 1969), even if, as is discussed below, the speech act
approach misses essential features of most verbal exchanges.

Many of the most important types of interactions are comprised of such exchanges. For
example, political campaigns and debates are verbal; so too are most legal proceedings; and the
same can be said of negotiations. But at least as important are far more mundane types of verbal
exchanges: classroom teaching, conversations among friends or co-workers, and arguments and
disagreements. In short, verbal exchanges make up both a high-profile and an existentially
salient quotidian part of social life. This is particularly the case for certain types of verbal
exchanges, those in which interaction is extended long enough to be referred to later in that
interaction or recalled in subsequent ones, thereby permitting commitments to be established and
secondary interactions related to such commitments to occur (Schegloff, 1996a). A good
example of this, of considerable political significance, is the way in which, during one of their
telephone conversations in August 1968, the Soviet leader Brezhnev berates the Czech leader
Dub�ek for having failed to implement political actions to which he had earlier, at length and on
repeated occasions, agreed (Prague Spring, 1998). Of course, there is no a priori correct criterion
by which momentary exchanges can be distinguished from extended ones, but the distinction is
nonetheless worth trying to specify.

                                                
1 An example, interestingly, given by both Simmel (1917, Chap. 1) and Weber (1956 [but drafted, 1918−1920],

Chap. 1).
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In the face of these observations, it may perhaps be suggested that extended verbal
interactions are so much flotsam and jetsam: what counts is some kind of physical action and not
the words that accompany it. This may well be true for certain types of social interactions, such
as marketplace transactions. (Even there, though, the verbal accompaniment can still take on
significance if it deviates from established norms. Imagine a salesperson who, on accompanying
a customer to the cash register, talks to the latter in a rude and insulting way; we would expect
that the sale would quickly be aborted.) But many verbal interactions have only a tenuous link, if
that, to any kind of physical behavior. Take, for example, an argument in an appeals court over
which precedent should be controlling in a certain case; what physical phenomenon is being
pointed to here? Or consider certain types of diplomatic exchanges, such as a carefully scripted
apology; this may, of course, open up future commercial transactions, but in and of itself, it is
impossible to understand without reference to the words involved.

In response, it might be agreed that social interactions are not necessarily about physical
behavior, but that to focus on verbal exchanges is to miss the real story, which is the overlap of
preferences or lack thereof among the different parties. I address this issue in more technical
terms below, but note for now that, if taken seriously, the objection leads to a reductio ad
absurdum: actors would arrive at preferences as to what they want from other actors without
taking into account what the latter are deemed to want (or, even more absurdly, making
inferences about this while not attending to anyone’s words about it). Hence, it is difficult to
escape the conclusion that, no matter what one’s views on the appropriate ways of studying
extended verbal exchanges, at least certain types of them are significant social interactions.

MODELING DESIDERATA

There are several ways of thinking about extended verbal exchanges and modeling their
various features. I briefly review four candidate possibilities, arguing that only one 
conversation analysis  captures particularly important features of such exchanges, even if, as
we see below, it is significantly limited.

The first, possibly, most prominent way of thinking about verbal exchanges is that they
are collections of speech acts. Utterances may be seen as having an illocutionary force, for
example, a request or an assertion on the one hand, a granting of the request or a denial of the
assertion on the other. In this way, a verbal exchange can be modeled as an argument, a series of
understandings, or a set of mutual commitments (Rescher, 1977; Bach and Harnish, 1979). One
“output” of such types of models is a conditional proposition about what kinds of speech acts are
possible for each party at different stages of an exchange (see Duffy and Goh, 2003, for
a preliminary example).

Much can be said for this approach to verbal exchanges. Certainly, many kinds of policy-
related exchanges are, in vital respects, arguments, and the parties to these exchanges seem to
abide by many of the “rules” of arguments, including more general norms of relevance and
nonrepetition. However, many conversations are not arguments, and even arguments have
elements not usefully reducible to collections of speech acts. Consider, for example, the
following telephone conversation between the soon-to-be assassinated South Vietnamese
president, Ngo Dinh Diem, and the U.S. Ambassador Henry Cabot Lodge, whom for months had
been advocating a coup d’etat to depose (though not necessarily kill) Diem (Diem, 1963).
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1. Diem: Some units have made a rebellion, and I want to know: What is the attitude
of the U.S.?

2. Lodge: I do not feel well enough informed to be able to tell you. I have heard the
shooting but am not acquainted with all the facts. Also, it is 4:30 a.m. in
Washington, and the U.S. government cannot possibly have a view.

3. D: But you must have some general ideas. After all, I am a Chief of State.
I have tried to do my duty. I want to do now what duty and good sense
require. I believe in duty above all.

4. L: You have certainly done your duty. As I told you only this morning,
I admire your courage and your great contributions to your country. No one
can take away from you the credit for all you have done. Now I am worried
about your physical safety. I have a report that those in charge of the current
activity offer you and your brother safe conduct out of the country if you
resign. Had you heard this?

5. D: No. (And then after a pause) You have my telephone number.
6. L: Yes. If I can do anything for your physical safety, please call me.
7. D: I am trying to re-establish order.

This conversation operates on several levels. It is, to begin with, a request by Diem for
information as to the American attitude, a request to which an answer, though explicitly avoided
by Lodge, is nonetheless implicitly responded to via Lodge’s change of topic from the coup as
political event to Diem’s safety. The conversation is also an argument: Diem tries to convince
Lodge, by playing on the notion of duty, that he deserves guidance and, perhaps, a statement that
the rebels are acting in an undutiful fashion. Lodge, while not agreeing to this, responds by
making a counterproposal that Diem look to his own safety, perhaps by trading his post as
president for exile; this, in turn, is implicitly rejected by Diem, who fails twice to respond to the
possibility of physical safety. In addition, Diem attempts to have Lodge take a more proactive
role by reminding him that he can call Diem if he wants; Lodge tries to escape this by offering to
have Diem call him instead.

Just which speech acts are each of these persons engaging in? Is Diem making a request
for information or an argument that Lodge must possess this information and is duty-bound to
convey it? Is Lodge rebutting Diem’s argument, or is he accepting some responsibility? In fact, it
seems as if any particular utterance is performing double- or even triple-duty, in which case the
same verbal exchange can be seen as giving rise to alternative speech act mappings (not very
good from the standpoint of parsimony). Otherwise, the participants must be generating new,
hybrid speech acts, again reducing the advantages of having models built on small numbers of
concepts. Indeed, we can put this as a trade-off. If there is a pre-set list of speech acts available to
conversational parties, either their utterances will fail to be mapped onto that list in a consistent
fashion or the list will be so long that it will be close to indistinguishable from the utterances
themselves (Sylvan, 2003).

Moreover, the same speech act  each placing responsibility on the other  appears to
be engaged several times, which seems repetitive and violative of relevance maxims. In fact,
neither actor is repeating himself. In turn 3, Diem poses the issue of U.S. knowledge not as a
question (which Lodge had just avoided) but as a statement, which he insulates from rebuttal by
emphasizing the issue of duty. Similarly, in turn 6, Lodge returns to the issue of physical safety,
this time not as a piece of information (just disclaimed as knowledge by Diem) but as an offer
to be triggered by Diem. Even the three-time use of the word “duty” in turn 3 is not idle
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repetition: it is a way of highlighting the point so that Lodge is forced to address it and thereby
admit the point, implicitly rendering Diem praiseworthy. What we see here is what we can call
the production of agreement by both speakers: the way in which one speaker’s utterance is
picked up immediately by the other and recrafted in such a way as to induce agreement in the
next turn (Sacks, 1987; Schegloff, 1996a). Such agreement is easy to see at the coarser level of
“brainstorming” or “problem-solving” discussions (good cases in point are the exchanges among
Clemenceau, Lloyd George, and Wilson, or between Roosevelt and Stalin: Yalta, 1945; Schwab,
1994), but it also exists at a finer-grained level of consecutive utterances. Often, in fact,
interlocutors seem to go out of their way to improvise agreement on issues highly local to that
particular moment in the conversation.

Thus, it appears that the speech act approach to verbal exchanges is too restrictive.
A similar objection can be formulated to a second approach, that which models exchanges as
dialogues made up of connected topical sequences (Moeschler, 1985, 1989). The idea is that
participants in dialogue move up, down, or “horizontally” within hierarchies of topics by means
of different connectors such as “well,” “good,” “but,” and so forth. This approach has the
advantage of not confining itself to particular pre-set speech acts; instead, topics, which can be of
considerably greater variety, are what dialogues enter, traverse, and exit. Because the connectors
are standard words or phrases, the mapping problem discussed above is also avoided.

In fact, there is not much difference between dialogical modeling and speech act analysis.
This can be seen clearly if we look at how topics are conceptualized and identified. A topic
is understood as the “about-ness” of a proposition: a request to do X, a refusal to admit Y,
a promise to enact Z, where the respective topics are X, Y, and Z. Already we can see that topics
are linked to speech acts, but not only in terms of their “function” in a dialogue. For dialogical
analysis to proceed, topics must be clearly identified so that a given utterance can be identified
clearly and situated correctly in the hierarchy. This poses some of the mapping problems
discussed earlier. Consider the following snippet of conversation in July 1958 between
Eisenhower and Macmillan (Lebanon, 1958). The former has just announced that, given the
day’s events (a coup d’etat in Iraq, the murder of the pro-Western premier, and a request for
intervention by the president of Lebanon), he has ordered U.S. troops to intervene in Lebanon.
Macmillan tries to press for a broader intervention extending as far as Iraq; Eisenhower refuses.
After several exchanges, the conversation arrives at this point:

1. Eisenhower: Well, now, I will tell you, of course, I would not want to go further.
Today we tried to project in our discussions here and with the
legislative leaders the development of the situation, and they could
take many forms. If we are now planning the initiation of a big
operation that could run all the way through Syria and Iraq, we are far
beyond anything I have power to do constitutionally. We have had
quite some trouble justifying to our own leaders what we intend to do.

2. Macmillan: Yes. What is your timetable?
3. E: Right now. ... I don’t know the exact time that they will get there on

account of the orders and hours, but I would not want to give any
information over an open wire.

4. M: Of course. Now, are you going to speak to the country?
5. E: Yes. This is very secret. We are calling an emergency session of the

Security Council for tomorrow morning. I will broadcast after that
Council does something.
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6. M: Tomorrow?
7. E: Well, probably.
8. M: Well, now, we have had a request from the two little chaps  the one

is gone and the other is there, the king ...
9. E: We did not know what the final reports were.
10. M: I know there is little news. The second is going along for the other. We

have got a sort of request from him saying that [what] we are going to
do. I feel, my dear friend, that if you set off this great show, which
I think is fine, you can’t confine it to what you say publicly, but in fact
all the trouble will blitz through on destroyers, oil fields, pipelines.
Taking on Turks and getting things back. We should be ruined. I am
for it. I don’t want you to say that now to me, but so long as
I understand we are in this together. We are doing this together.

11. E: My own idea would be this. If the situation develops where our whole
national interests are abandoned and destroyed, I have to go before the
Congress and ask for authority to act. We can understand and agree on
that much. And that is exactly what you say, except I have to say it in
my guarded terms.

Do we have here changes in topic? From one point of view, the answer is yes, since
Macmillan, having been rebuffed, shifts the topic to the mechanics of the operation and its
announcement, then raises another issue, a “sort of request” for intervention from the King of
Jordan and (presumably) the now deposed Iraqi leader. Macmillan then returns to his idée fixe,
which is that the intervention will have to be broader than Eisenhower envisages. From another
point of view, though, there is not a change in topic at all: Macmillan is trying to find out
Eisenhower’s level of commitment and playing on the idea of an obligation to respond to
requests for intervention as a way of expanding the intervention. To a limited degree, he in fact
succeeds. Presumably, these various moves by Macmillan would be coded as a set of
intervention subtopics, subordinate to the main topic.

The problem with this way of proceeding is that the hierarchical topic structure only
emerges in the middle of turn 10, which links turns 8 and 4 into the “broad intervention” topic.
But Eisenhower’s utterances in 5 and 9 are only linked to that topic when he plays along in
turn 11; had he simply reiterated his earlier refusal, the conversation would be made up of only
juxtaposed fragments. Topics thus are cooperative achievements whose identification and
presumed structure only occur in real time, in the course of the verbal exchange (Schegloff,
1996b). In spite of the fact that participants in conversations (especially diplomatic exchanges)
often have an agenda of particular points they wish to make, their ability to do this is contingent
on the real-time construction of the conversation. Both speech act and dialogical approaches to
verbal exchanges are in this sense static and top-down.

A third approach to modeling conversations has more immediate resonance with the
agent-based tradition. Agents can be seen as communicating with each other, with conversations
consisting of a set of offers and requests on the one hand, and responses, on the other. These
communications may be either “public,” broadcast generally (e.g., by means of placing messages
on a “blackboard”), or targeted at particular agents. The communicative responses, the responses
to them, and so forth, can be represented as finite state automata. However, for agents engaged in
multiple communications with various other agents, it is preferable to model these interactions as
Petri nets (i.e., as oriented graphs linking places to transitions via augmented transition networks
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[respectively, Winograd and Flores, 1986, Chap. 5; Magnin and Ferber, 1993; see more generally
Ferber, 1999, Chap. 6; and Kurt, 1992]). This latter approach, in particular, is quite promising
because it permits modeling simultaneous verbal exchanges between multiple agents, something
very much absent from the dyadic orientation of speech act and dialogical approaches.

Unfortunately, communicative models are only as good as the building blocks from
which they are constructed, and, once again, it turns out that up until now, most work in
communicative multi-agent systems has employed some type of speech act set of components
(e.g., KQML; see Labrou and Finin, 1997, for a critique). This leads to the top-down and pre-set
problems already discussed. In addition, casting verbal exchanges as communication runs the
real risk of missing much of the noninformational (notably pragmatic) aspects of conversation.
Consider the following example, in which Kissinger is negotiating with Brezhnev over nuclear
weapons (Kissinger, 1974).

1. Brezhnev: We should both scrupulously observe the agreement. You are refusing to
take into account forward-based systems. At whom are these aimed? Not
against France, because France can’t declare war on the United States.

2. Kissinger: But this may change if things keep up!
3. B: Or Holland or Belgium, or the GDR or the FRG. I can show you a map.

You said the agreement should relate to American missiles that could
reach the Soviet Union and Soviet missiles that could reach the United
States. That is the significance of those forward-based missiles. They
can reach Tashkent, or Baku.

4. K: The submarines?
5. B: Yes. And air bases. More than one-half of the European part of the

Soviet Union is within range of those.
6. K: We have to separate the problems. First of all, if M. Jobert makes more

of his speeches, we’ll need some of those missiles against France.
7. B: You can’t blame me for that! No speech ever caused destruction, only

weapons have.
8. K: This shows submarines?
9. B: It shows all kinds of bases and ships.
10. K: So this line is the range of the submarines, and they’re being counted.

They are part of the agreement. They are not forward-based systems.
They are counted in the Interim Agreement.

11. Gromyko: But they are pointed at us  whether submarines or carrier-based
aircraft. The first agreement left aside strategic aviation.

12. K: I agree with that. That’s a separate problem. These are our fighter
aircraft?

13. B: It’s not a good picture, is it? Those are European-based aircraft carrying
nuclear weapons. Then nothing else remains for us but to have our
aircraft carrying nuclear weapons or missiles.

We know that both Kissinger and Brezhnev went into the meeting with a pre-set, highly
structured set of proposals they intended to make to the other side. But Brezhnev, in setting up
his proposal, presents information aimed at putting Kissinger on the defensive, a goal which he
accomplishes. Kissinger first tries to deny the relevance of the information, then to deflect its
significance with a joke, and then to argue that the information has already been taken into
account; finally, he is reduced to a simple recognition, giving Brezhnev an opening for his
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(subsequent) proposal. To call this the communication of a speech act by Brezhnev is to miss the
point: it is Kissinger, not Brezhnev, who is induced (through both conversational norms of
courtesy and relevance and his own desire to show that he understands the significance of the
map) to specify the significance of the information. This, in turn, makes it more difficult for
Kissinger later to reject Brezhnev’s proposal. To model this exchange as a proposal by Brezhnev,
responded to by Kissinger, will miss much of the interaction that results in their eventual
agreement.2

What is needed, therefore, is a fourth approach to verbal exchanges that better captures
the bottom-up, genuinely interactive aspect of conversation than the various speech act-based
approaches do. An obvious candidate is the sociological subfield of conversation analysis;
although it has significant problems, some of which I will mention below, it nonetheless satisfies
the above desiderata. The reason for this has to do with the basic standpoint of conversation
analysis: that conversations are locally produced social achievements. This perspective,
originating in work by Schutz and Garfinkel, can be seen most clearly in the basic components,
which conversation analysts see as constituting the core elements of verbal exchanges: namely,
the notion of turn-taking (Sacks, et al., 1974; Clayman and Maynard, 1995).

At the heart of any conversation are “adjacency pairs”: turns, i.e., utterances (understood
now not in a speech act sense), which refer backward to their immediate predecessors.3 This
reference can take a number of forms, ranging from simple acknowledgment that the other party
has spoken to an explicit response to the preceding turn. What matters is that there is a felt
obligation of each party to do something following on a turn by the other party. In this sense,
conversations are shot through with locally produced, usually improvised, coherence (Schegloff,
1984, 1990). Often, indeed quite often, a given turn may be ambiguous, and the other party then
has to try and resolve the ambiguity, either by a turn that binds the preceding turn to a particular
meaning or by indicating a lack of clarity. This “work” evinces a norm of consistency, a norm
that operates by appealing to what we might call a default social order. A famous example of this
is Sacks’s (1972) discussion of a child’s “story”: “The baby cried. The mommy picked it up.”
Sacks points out that the standard interpretation of these two sentences is that the baby was
picked up by its mommy, and that in making this interpretation, listeners make the sentences
coherent by presuming a particular social order. In the same way, as we saw previously, Lodge
connected Diem’s sentences by tacitly acknowledging U.S. authority, Eisenhower connected
Macmillan’s sentences by tacitly acknowledging U.S. obligations to requesters, and Kissinger
connected Brezhnev’s map by tacitly acknowledging the threatening nature of U.S. tactical
capabilities.

Note that the local and bottom-up nature of coherence as seen by conversational analysis
is far more deeply social than the various top-down approaches discussed earlier. Conversations

                                                
2 A technical point. Negotiations (and, for that matter, ordinary conversations) frequently involve constructions of

elaborate scenarios of hypothetical events, the aim being to demonstrate to the other party that a given course of
action would have certain consequences, the latter being seen clearly as strongly desirable or, conversely, as
highly noxious. It is difficult to imagine how these hypotheticals could all be anticipated, such that the response
could be specified by the modeler in one of the transition rules.

3 Strictly speaking, an adjacency pair is a turn following on another turn; the first in the sequence may, as in the
opening of a conversation, not be preceded by anything. However, if one generalizes this notion to any pair of
turns, then one moves back in the direction of “topics”; it therefore is cleaner analytically to depict each turn as
referring only backward.
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only take place, in this sense, if the parties to it understand each other and tacitly collaborate.
This does not mean they have to agree in a propositional sense, but they have to play their role in
keeping the conversation going and moving it along. By contrast, the other approaches see no
immanent necessity of forward motion by participants. A given speech act could at any time
terminate the conversation without any problem except a possible violation of norms of courtesy
(one might ask why they are even observed). For the other approaches, conversational
participants operate side by side, not together, as is the case with conversation analysis.

ADVANTAGES OF AGENT-BASED MODELS

As presented above, conversation analysis is a promising approach to analyzing extended
verbal exchanges. However, most studies within the field suffer from three problems:

• They tend to be pointillistic, focusing on particular mechanisms of local
coherence without connecting those mechanisms into a broader picture.

• They insist, almost obsessively, on working with actual conversations,
neglecting the exploration of plausible potential conversations.

• They concentrate almost exclusively on individual conversations, failing to
examine how the same actor may engage in a series of conversations, with a
given conversation following on earlier ones.

Each of these weaknesses can be addressed if certain features of conversations are modeled using
agent-based approaches.

Pointillism

Agent-based models, as a particular class of computational models, require mechanisms
to be specified precisely. This in itself facilitates explicitness as to the connection between
mechanisms, but even if no such connections are laid out, the ability to run multiple, highly
iterated simulations provides built-in means by which they can be abduced. What is needed is
simply two or more mechanisms of local coherence. This is not a problem, as the conversational
analysis literature lists a number of such mechanisms.

The real problem in modeling coherence is to find an analytical terminology with which
to represent turns as adjacency pairs. It is evident from the discussion of modeling desiderata in
the preceding section that an attempt to build a language from scratch is likely to run into the
same problems we saw with speech act and other top-down approaches. What is needed instead
is a hybrid approach (see below) in which modeling proceeds from already coded conversations;
both the input and the output for each turn would therefore be indexical, semantically local
utterances.
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Actuality

The reason that conversation analysts work so closely on actual conversations and
eschew synthetic ones is a concern that the latter are almost sure to have been “normalized” into
top-down, already smoothed-out form. Hence, the near “fetishization” of transcripts made from
audio and video recordings of actual conversations. Nonetheless, even if the latter should remain
the starting point for conversational modeling, there is no reason that coherence mechanisms and
local utterances cannot be used as the basis for generating potential conversations. With
a sufficiently extensive database, it should even be possible to give a preliminary validity
assessment of some of the generated hypotheticals.4 Here, too, the fact that agent-based models
are simulations makes this a tractable task.

Sequences of Conversations

The preceding two advantages have nothing in particular to do with agent-based
approaches; they pertain to any type of computational model. However, when we turn to the
question of multiple conversations, the features of agent-based models come to the fore. It is
striking how much conversational analysis has tended to focus on self-contained exchanges
between two persons. This emphasis may be due to the provenance of recorded conversations or
the limitations of recording technology, but it clearly represents a reduced notion of social
interaction. Most conversational analysts acknowledge this, and it is not uncommon to see brief
discussions of multi-party conversations. (Multiple sequences involving at least one and perhaps
both members of the original conversational dyad are even rarer.) Unfortunately, such
discussions are not terribly illuminating, no doubt because of the complexity of the different
conversational combinations. If, however, connections between conversations can be specified,
say, by means of allusion, commitment, or other mechanisms (see below), it is possible to use
agent-based means to model an entire conversational ecology.

Implication

As I am arguing the matter, there is thus an elective affinity between agent-based models
and the analysis of extended verbal exchanges. Such exchanges are important forms of social
interaction whose neglect has rendered our agent-based models more limited than is desirable;
models of this sort seem particularly well-suited to the analysis of conversations.

RESEARCH AGENDA

Two particularly interesting conversational phenomena are what we can call the internal
and external aspects of conversational commitment. In any conversation, it is possible for
participants to recall what they earlier discussed, if only by alluding to it (perhaps jokingly). This
phenomenon, which I call commitment, not only serves as a means of trans-local coherence but,
from an interactive perspective, highlights to the participants the social link they established
earlier in the conversation. This does not mean that the participants are necessarily closer to each

                                                
4 One can imagine, for certain conversational domains, even checking certain adjacency pairs by experimental

means.
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other or friendlier, but it does mean that their interaction can now be referred to as a second-
order phenomenon, thereby facilitating its characterization as socially (and normatively)
significant.

Logically, commitments are of two sorts. One is internal to particular conversations 
when participants at some point recall what they discussed in the same conversation. The other is
external to particular conversations  when one or more parties to a conversation recall in
a later conversation, whether between them or with third parties, what they had discussed in an
earlier conversation. This second type of commitment permits conversations, as it were, to be
connected, not as some sort of legally binding precedent but as a way of rendering dyadic social
relations quasi-public, and hence as at least trans-temporally, if not trans-dyadically, significant.5

Note in passing that for now I am not attempting to model local coherence in verbal
exchanges. This is not because it is unimportant, but because it seems so open-ended as to be
hopeless, unless, that is, one wishes to return to the speech act approach I criticized earlier.
Instead, my proposal is to take local coherence as a starting point and to try and generate later
links to it. For example, we might posit a mechanism whereby acknowledgment of blame by one
party leads the other party to differentiate subsequent discussion to make clear that the first party
is not being blamed again; conversely, the second party may explicitly recall the
acknowledgment in later conversations with certain third parties.

As even this hypothetical example makes clear, such modeling efforts require that the
starting point be the early or middle stages of an actual conversation. This is due to the open-
ended quality of turn-taking mentioned earlier; and so, my proposal is to piggyback on existing
instances of coherence to generate certain types of subsequent internal and external commitment.
In fact, the first step in a modeling effort of this sort is to amass a significant corpus of
conversations in a particular domain, ideally one in which the participants both speak at length
and speak subsequently with each other and third parties. Only with such a corpus is it possible
to adduce various hypothesized recall mechanisms; and only with such a corpus can such
mechanisms be tested for the plausibility of their generative capacities.

The examples in this paper are drawn from the domain of interstate diplomacy. This
domain, which is the subject of my substantive research, is of obvious significance.
Unfortunately, the availability of verbatim transcripts is somewhat less than one would wish.
Partly, this is a matter of secrecy; it is not uncommon for transcripts either to be classified for
decades or never to be generated (policymakers are known to discuss certain sensitive issues
privately, excluding even trusted aides and secretaries). But partly it is because until recently,
there was a convention for writing summaries of conversations rather than recording them by
means which would later permit transcripts to be written up. For my purposes, this is
problematic, because it is precisely the little, often embarrassing, interchanges which produce
some of the most interesting and commitment-generating types of local coherence.

Thus, I propose supplementing the domain of diplomacy with a second, apparently quite
different, domain: that of social gatherings among “ordinary” persons. Here, a different problem

                                                
5 It is tempting to see external commitment as the conversational counterpart to social networks. This may be the

case, but there is no presumption here that multi-party, cross-conversational recall signifies that the parties are in
some sort of interlinked network arrangement. However, many of the contact mechanisms proposed by network
theorists presuppose some types of regular, extended verbal exchanges.
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exists: because most of these interactions are not “problem-solving” ones, there would seem to
be less incentive to engage in practices of external commitment. (This should to some extent be
mitigated by close physical proximity among participants in social gatherings.) Nonetheless, this
second domain appears likely to be complementary to the first.
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ACTION SELECTION AND INDIVIDUATION
IN AGENT-BASED MODELING

J.J. BRYSON,* University of Bath, Bath, UK

ABSTRACT

 This paper is a tutorial on action selection for agent-based modeling. Having a clear idea
of how to organize an agent’s intelligence will make code cleaner and easier to maintain,
and models easier to communicate to others. This paper describes four means of
organizing agent action selection in increasing order of complexity: environmental
determinism; finite state machines; basic reactive plans; and parallel-rooted, ordered,
slip-stack hierarchical (POSH) reactive plans. Modelers should use the simplest
mechanism possible. This paper describes the contexts in which more complicated
mechanisms can be required and suggests coding and commenting schemes for all four
systems. This paper also addresses the issue of individuated agent-based modeling
(IABM), where individual agents display different behavior. It gives examples of existing
IABM systems and describes how these can be moved into more mainstream agent-based
modeling simulators via two relatively simple mechanisms: exploiting individual local
variables or specifying different priorities within the action selection mechanism. This
allows individual agents to vary in their behavior while sharing the vast majority of
their code.

 Keywords: Agent-based modeling, action-selection mechanisms, individuated agent-
based modeling, basic reactive plans, behavior-oriented design

 
 

1  INTRODUCTION

This paper discusses action selection in the framework of agent-based modeling (ABM).
Action selection is the means by which an autonomous agent solves the ongoing problem of
choosing the next action. Action selection is the executive part of agent intelligence.

The remainder of agent intelligence, which is at least as important and difficult to
construct, consists of the actions between which the agent chooses and the perceptions that
inform the decisions and shape the acts. There is of course a trade-off in the granularity of
control: the more an action is capable of, the less complexity the executive must handle, but the
less control it has. For example, the action ‘walk-to attended-location’ represents a much larger
granularity than ‘extend left-knee.’ If an entire agent intelligence is being developed from
scratch, the best way to optimize this trade-off is to follow an iterative development process that
provides heuristics to allow refactoring when either actions or action selection become too
complicated (Beck, 2000; Bryson and Stein, 2001a; Bryson, 2003). For most people conducting
ABM, however, the actions and perceptions are already provided, either by the simulation
platform or in terms of existing libraries of behaviors from other developed simulations.
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Because agent-based modelers often lack experience with artificial intelligence, they
frequently do not use formal action-selection mechanisms. As a result, programming the agents
can become unnecessarily complicated and render simulations more difficult to understand,
maintain, and extend. This paper describes a number of established idioms for action selection,
each of which is useful in at least some domains. As such, it is intended to increase the clarity of
their work. Part of the emphasis of this section, however, focuses on relatively complex action-
selection structures for supporting individuated agent-based modeling (IABM), where each agent
may be programmed with different behavior. Section 2 begins with a short discussion of the
utility of IABM. Section 3, which makes up the bulk of the paper, describes four different action-
selection idioms, which may be useful for either conventional ABM or IABM. The paper
concludes with a description of the engineering issues involved in bringing the more complex
forms of action selection into familiar ABM environments, such as Swarm, Repast, and
NetLogo.

2  INDIVIDUATED AGENT-BASED MODELING

Much of the research exploiting ABM examines the patterns that emerge from the
behavior of very simple agents. This research has shown that such simple agents can do a good
job of replicating the behavior of complex real-world actors, even humans, at a high level of
abstraction. This level of abstraction seems to be most useful for large numbers of agents, where
individual variation or details of decision making can be treated as random noise. In recent years,
a number of software tools have been developed that support this research, including Swarm,
Repast, and NetLogo.

Another sort of agent-based social simulation exists, however, where the individual
agents are given relatively complex intelligent controls, typically to simulate the behavior of
relatively small numbers of individual actors. One of the most spectacular examples of this work
is that of Tu (1999), which replicates aquatic animal behavior from swimming through fluid
dynamics to mating and predation. Another example is the work by Hemelrijk (2000, 2002),
which has made significant contributions to evolutionary theories of the differences in macaque
social behavior. Hemelrijk’s work involves modeling colonies of primates with individual
differences in initial rank. She shows that differences in social organization can emerge as
a simple consequence of a single variable  the level of violence in the average antagonistic
interaction (Hemelrijk, 2000).

Tyrrell (1993) built a complex simulated environment (which he creatively called the SE)
to test a variety of action-selection mechanisms. The test agent in the SE is a small omnivorous
animal that needs to survive and breed. This test involves six types of subproblems:

• Finding sustenance. This problem includes water and three forms of nutrition,
which are satisfied in varying degrees by three different types of food.

• Escaping predators. Feline and avian predators have different perceptual
capabilities and hunting strategies.
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• Avoiding hazards. Latent dangers in the environment include wandering herds
of ungulates, cliffs, poisonous food and water, temperature extremes, and
periodic (nightly) darkness. The environment also provides various forms of
shelter, including trees, grass, and a den.

• Grooming. Grooming is necessary for maintaining homeostatic temperature
control and general health.

• Sleeping. The animal is blind at night and needs to sleep to maintain its health.

• Reproduction. The animal is male; thus, its reproductive task is reduced to
finding, courting, and inseminating mates. Attempting to inseminate
unreceptive mates is hazardous.

The success of the agent in the SE is counted as the number of times it mates in a lifetime.
Mating is highly correlated with life length, but long life does not guarantee reproductive
opportunities: these have to be actively sought. Tyrrell tested five well-known, action-selection
mechanisms from psychology and artificial intelligence (AI), one of which he chose as favorite
and extended. What makes Tyrrell’s work noteworthy is that there are very, very few AI or Alife
domains in which a single agent must meet such a diverse set of goals. These include intrinsic
and extrinsic goals, homeostatic and cyclic goals as well as opportunistic event-based ones.
Of course, real animals deal with such conflicting goals and desires all the time.

The work of these three researchers has two things in common:

1. Compared to most ABM, the individual agents have relatively complex
individual behaviors.

2. They all have conducted their research in proprietary research environments,
which they have developed or their institutions have developed for them.

Many researchers would like to be able to produce models exploring their own theories or
hypotheses working at this level of complexity, but they are either unwilling or unable to accept
the cost of constructing such simulations. I personally know of several theoretical biologists who
want to construct models of social insects (e.g., particular species of wasps and ants) with small
numbers of members per colony, at least two groups of primatologists interested in exploring and
demonstrating their own hypotheses (which are at odds with those of Hemelrijk), and a cross-
disciplinary group working on understanding social predator communication. It would be useful
if we could enable such research within existing ABM toolkits. If we cannot, a new toolkit may
be needed.

As indicated in Section 1, one way to obtain more complex behavior from existing
simulators is to simplify code by using (and commenting) a good model of action selection.
Section 3 goes through several such models in increasing order of complexity. We then return to
examining the question of whether current toolkits can support IABM.



320

3  MODELS OF ACTION SELECTION

3.1  Environmental Determinism

There is no established name for the simplest way to conduct action selection, so I have
called it ‘environmental determinism.’ Environmental determinism enumerates the possible
salient states of the environment and states what action should be performed in each. This model
assumes that:

1. There are only a limited number of salient situations in which the agent can
find itself.

2. These situations are mutually exclusive.

3. Actions can easily be mapped to situations.

While these assumptions may seem unrealistic, they have been usefully applied in sufficiently
abstract models. The clearest example is probably Conway’s Game of Life (Gardner, 1970),
a very early ALife system, which takes place on a two-dimensional grid. If I refer to any cell of
that grid rather than any live cell as an agent (which is how life is typically programmed), then
Conway determined that nine environmental situations may matter, because the only thing that
determines action in Conway’s system is how many neighbors one has, and one can have only
0−8 neighbors on a two-dimensional grid. Figure 1 further summarizes these into four situations.
Too few neighbors (0−1) and the cell is dead, regardless of its previous state. For two neighbors,
the cell holds its current state, alive or dead. Exactly three neighbors and the cell is alive
regardless of its previous state, but with four or more neighbors it is again dead.

0�1

Die

2

Stay

3

Be born

4�8

Die

FIGURE 1  Environmental determinism (Example is from
Conway’s Game of Life [Gardner, 1970].)

In the event that a reader is unfamiliar with the Game of Life, I strongly recommend
typing “game life” into Google to view the incredible variety of emergent (higher-level) growth
and action that results from this simple program. There are claims that this system is a fairly
realistic model of bacterial life in a petri dish, but I leave it to the reader to determine their
veracity.

Coding environmental determinism requires only a set of if-then statements. The
environmental conditions should be made clear by using functions and function names to keep
them clean, as well as comments. For example:
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if (cell is dead) AND (number-of-neighbors is 3)
then {set cell alive}; /* new cell is born */

if (cell is alive) AND (number-of-neighbors is 2 OR 3)
then {no action}; /* Leave the cell alive */

if (cell is alive AND (number-of-neighbors is NOT 2 OR 3)
then {set cell dead}; /*lonely or over-crowded cells die*/

if (cell is dead) AND (number-of-neighbors is NOT 3)
then {no action}; /* leave cell dead */

3.2  Finite State Machines

In general, programmers prefer to think about agents rather than environments. Agents
tend to be much simpler than their environment; they tend to have fewer possible behaviors than
there are possible external situations. So programmers find it simpler to organize coding around
actions, not events. The standard way to control many machines, notably AI game agents, is by
using the abstraction of a finite state machine (FSM). An FSM enumerates the possible states the
agent can be in, actions it might take, and the environmental contingencies that might make the
agent change state. Programming an FSM requires two things:

1. Enumerating the states in which the agent can be, and

2. Enumerating the causes for an agent to change a state.

Again, assumptions are made that both states and transitions can be enumerated and that they are
mutually exclusive.

For ALife action selection, we can think of each state being a situation in which an agent
should perform a particular action. To go back to the Game of Life, we now have to think of the
cell/agent as expressing one of two behaviors: looking alive or looking dead (Figure 2).

FIGURE 2  Finite state machines (Example is from Conway’s Game of Life
[Gardner, 1970].)
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Documentation for an FSM should ideally include a diagram. The coding should be the
possible transitions clustered by state:

/* Transitions from state DEAD */
if (self dead) AND (number-of-neighbors is 3)

then (self be-born);
/* Transitions from state ALIVE */
if (self alive) AND (number-of-neighbors NOT in {2,3})

then (self die)

To be formal, an FSM should also enumerate all possible environmental or internal events and
specify the situations in which no change takes place, as described in the following paragraph.

The advantage of this approach is that one can check the code to ensure that the
programmer included and coded all possible transitions. The disadvantage of this approach is
that it might make the code less readable and that in most situations, such a check may be an
intractably long procedure. In general, programmers should try to put in as much code and
comments as required. For example, if a condition exists that the programmer had to take a long
time to consider, or a condition that another person needed explained to them, such conditions
deserve comments and possibly code to make the comments more explicit. For ALife modelers
who run large and long simulations, it is almost never a good idea to code the cases where there
is no change explicitly because they will take CPU time, though they can be coded for clarity and
then commented out.

It is important to realize that in either environmental determinism or FSMs, the
programmer needs to create discrete categories of both environmental events and behavioral acts.
The only differences occur in the FSM, where the programmer also must enumerate states for the
agent, and actions are tied to these states rather than to the environmental categories. Often the
states turn out to be a useful abstraction, but that does not have to be the case. For many
simulations, it may be that the environment really is the more salient actor, and the agents are
simple enough that there is no reason to add theoretical entities, such as internal states for the
agents.

3.3  When Enumerating Transitions Is Too Hard

Most agents, of course, have more than two possible actions. If there are limited ways of
transitioning from each action to the next, FSMs are a good way to describe that behavior.
However, if behavior is largely driven by environmental prompting, and the environment is very
dynamic and unpredictable (as when it contains many other types of complex actors), there may
be transitions from every state to every other state. As a result, for every new action or capability
added to an agent, you need to add as many transitions to both the agent and the other states as
there are other capabilities. The number of transitions (and therefore the size of the code) grows
quadratically, since all N�nodes must have N − 1 transitions in them. It would be better to have a
way to code action selection that did not grow much faster than the number of possible actions.

Consider a situation where the agents approach a more humanoid intelligence than
Conway’s cells, for example with some arbitrary character chosen from a Jane Austen novel. The
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typical Austen character might be thought of as having four states: flirting, engaged, in church,
and married. A first cut at an FSM for this agent might look something like Figure 3.

The problem comes when we start trying to label the transitions. When you think about it,
a good Georgian English agent would not only go to church to get married but also might attend
regularly at any stage of his or her life. On reading Austen further, one realizes that marriage is
not in fact a terminal state; some characters continue to flirt and may even become re-engaged.
In fact, the only terminal state is death, which can occur at any time (Figure 4).

The problem with the FSM is that it must represent all transitions for an agent. But if we
are trying to create a working agent, we really need to specify only the transitions that the agent
makes itself. In fact, in the AI for abstract simulations, we generally need to model only the
transitions that an agent might rationally choose to take in pursuit of its own goals.

3.4  Basic Reactive Plans

The basic reactive plan (BRP) is the name given here to an idiom or pattern found in
several (though not most) influential reactive planning architectures (Fikes, et al., 1972; Nilsson,
1994; Bryson and McGonigle, 1998; Bryson and Stein, 2001b). Building a BRP requires a few
assumptions. For example, it requires one to assume that the agent has a goal and is capable of
accomplishing a set of actions that can lead to achieving that goal. The BRP is a prioritized list

FIGURE 3  A first cut at an FSM for
a Jane Austen character (The
double circle on married indicates
that it is a terminal state — the end
of autonomous action selection, at
least for this controller.)

FIGURE 4  A somewhat more realistic draft FSM
for an Austen character (Notice that labeling the
transitions would still be fairly complex.)
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of these actions. The most important action is the one that consummates the goal; the second
most important action is one that enables the most important act, and so on.

If the agent can already do the most important action, it does not need to execute the
other ones. A reactive plan recognizes this situation, which means it can behave
opportunistically. Such behavior indicates that each action is paired not only with a priority, but
also with a perceptual condition that allows it to know when it can execute that action. This is
important not only for opportunism (skipping unnecessary steps in a conventional plan), but also
for robustness (possibly repeating steps if they fail or simply need to continue to be repeated,
such as digging a hole until you hit water).

Rather than explicitly coding how to recognize every possible transition between action
states, a BRP programmer need only code how to recognize the situation in which each action
can fire  a task made simpler by the invariant that no better (higher-priority) action can fire or
the current one would not be considered. This means that for each action, the programmer need
only hand-code one situations: the minimal requirements where that action might be usable.
There is no reason to describe when the action should be skipped because that is encoded by its
priority within the BRP.

For the Jane Austen agent, assume we are programming one of the ‘pure’ characters with
no devious intentions. The agent’s highest goal is to become married. To do so, the agent must
be in a church, but there is no point in going to the church without one’s fiancé, and one cannot
have a fiancé without having gotten engaged. If one is not engaged, one must flirt. Flirting of
course also has preconditions, but for simplicity, we stop here.

A possible BRP is shown below:

1. (fiancé present and in church) ⇒ marry
2. (fiancé present) ⇒ go to church
3. (engaged) ⇒ go to fiancé
4. (receiving attention) ⇒ become engaged
5. () ⇒ flirt

The numbers assign priority, with 1 being the highest. Thus, if one is in a church but does
not have a fiancé present, one does not get married; one either goes to be with the fiancé (if one
exists) or flirts, unless, of course, one is receiving attention already, in which case flirting can be
skipped. One can become engaged and on the next iteration become married, assuming nothing
has happened to remove the new fiancé from the church between program cycles. On the other
hand, a character that never receives attention can flirt indefinitely, or, if suddenly receiving
notice that one has become engaged (perhaps by arrangement by parents), skip directly to going
to the fiancé.

Obviously, encoding this BRP in an FSM would take at least 25 lines of code, assuming
that the goal takes one line to describe and each possible transition between states could be
specified in one line. Similarly, a large amount of possible environmental states have been neatly
ignored as not relevant to this particular agent’s pursuit of its goal.

For all its elegance, a BRP is simple to code in most programming languages. It is best
coded as a switch (in Java or C) or cond (in Lisp), though it can also be coded as cascading
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if-then-else statements in pseudo-languages that lack this idiom. Details of building successful
BRPs can be found in Bryson (2003), but essentially they are a simple derivation from
a conventional sequential plan. For example:

flirt ⇒�become engaged ⇒�go to church ⇒�get married.

The BRP simply inverts the ordering and then specifies a mechanism for recognizing when each
item could be activated.

3.5  Parallel-rooted, Ordered, Slip-stack Hierarchical Reactive Plans

The life-like agents described above as individuated generally have more than one goal.
Further, many actions may themselves require some multiple subactions to complete, and these
in turn may require a BRP to organize.

An examination of the history of the action-selection literature (for a review, see Bryson
[2000a]) indicates three problems that any successful approach must address:

1. Some things must be checked at all times. For example, a loud noise will
nearly always stop you from what you are doing and direct your visual
attention toward the source, without any conscious processing of this attention
switch.

2. Some things hardly ever need to be checked. For example, when you walk,
you have a reliable pattern for controlling your legs that is characteristic of
your individual gait. It would be very unusual for you to become aware of, let
alone attempt to control or alter, the muscle patterns involved.

3. Some things must be checked only in particular contexts, but then in an
unpredictable order. For example, if you are doing a jigsaw puzzle, you may
have a set of rules about where you are piling edge pieces or pieces of
a particular shade of blue. Unlike walking, you cannot predict the appearance
of the next piece that you notice, so your plan cannot be ordered in advance.
This situation requires a BRP.

It might seem simpler to represent everything as a sense/action pair — one enormous
BRP.1 However, it is untenable (that is, computationally intractable) to have every possible skill
that requires this level of attention be equally accessible all the time. The reflexive response to
the previously mentioned loud noise is one of a relatively limited number of such stimuli (some
learned, some innate) that seem to be stored in a separate (and fairly small) part of the brain, the
amygdalic system. This is not only a consequence of combinatorics and computational limits, but
also of perception and context. In another context, that shade of blue might trigger one to follow
a friend wearing a particular shirt through a large crowd or to pass a ball to a teammate rather
than selecting or arranging puzzle pieces.

                                                
1 Or a large set of production rules, see Newell (1990).
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I have developed an action-selection mechanism that supports all three of these situations
with three types of representations, as well as a development methodology to determine when to
apply each type (Bryson, 2001; Bryson and Stein, 2001a). The development methodology,
behavior-oriented design (BOD), is an iterative process for determining not only which type of
action-selection representation should be used, but also the granularity of the primitive actions.
Primitives are encoded in object-like behavior modules, thus the name. Bryson (2003) gives
a good summary of the heuristics and practicalities of using BOD.

The representational frameworks for BOD action selection are called parallel-rooted,
ordered, slip-stack hierarchical (POSH) reactive plans. POSH plans contain five types of
elements. Types 1 and 2 are the primitive actions and senses. There are only two differences
between these types:

1. Return values. Actions do not return a meaningful value, except in the case of
radical failure, when a flag may break the system out of its current action-
selection context. Senses return meaningful values that can be used in
predicates for comparisons.

2. Duration. Some actions may take some time (though usually no more than
100 ms). Senses are expected to return values very quickly, because many
sensory preconditions may be checked on each cycle of the action-selection
architecture, which ideally runs at least 100 Hz for real-time systems
(e.g., robots) and orders of magnitude faster for simulations. Some actions
(such as shifts of visual attention) also take place during sensory
preconditions, but currently POSH plans have no separate type for these
sense-speed acts.

Types 3−5 are action patterns, which are simple sequences to handle the second level of
planning problem (things that almost always follow); competences, which are essentially BRPs
and handle the third above-mentioned case (things checked in certain contexts); and drive
collections, the things that must always be checked.

Type 5, the drive collection, is a special extension of the BRP. It serves as the root of the
POSH plan hierarchy. It has several important characteristics.

• There is only one drive collection, and it is checked on every iteration of the
action-selection mechanism.

• Each element of the drive collection represents a separate goal for the agent.
These goals can be met in parallel, so each element of the drive collection
keeps track of its immediate child, as well as what it was doing most recently
— its current action selection context.

• To facilitate parallelism, the drive elements may have associated frequencies.
Thus, some action (e.g., breathing, looking around) may be very high priority
every few seconds, but after initiating that action, the action-selection
mechanism is free to consider other, lower-priority goals over the next
specified time interval.
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The POSH action-selection mechanism is a sequential process, and it grants only course-
grained parallelism and scheduling, because it depends on the return time of the primitives. Since
the primitives are supported by independent modules (which may themselves be threaded),
however, POSH agents can exhibit smooth and continuous parallel behavior. For example (from
Bryson and McGonigle [1998]), consider a robot moving through a cluttered space. The robot in
a dynamic environment might need to resample its sensors seven times a second, but there is no
reason for it to stop moving while it does so. The primitive that creates movement can send the
wheel drivers the current direction and speed for motion, with the understanding that the drivers
will continue at that velocity until the next message is received.2

4  SUPPORTING IABM

Reflecting on the four types of action selection offered, we return to the question of
IABM. Can platforms such as Swarm, NetLogo and Repast support individuated action
selection? Absolutely. The main requirement is only that each individual agent be able to have its
own variable state. From here, there are two possible solutions:

1. Each agent can have a copy of a common intelligence. So long as some
decisions or other behaviors are made dependent on the content of the
individuals’ variables, their behavior will be individuated by the different
values of these variables. This is effectively what Hemelrijk (2000) has done;
her agents’ behaviors vary only in their relative dominance ranking (their
probability of success in a social context is determined by this) and by gender
(males may be influenced to approach females more frequently.)

2. Each agent may have a script that describes its action-selection system as
a piece of variable state. This is actually just a special case of the first solution
— the common intelligence is an action-selection mechanism capable of
interpreting that script.

I can demonstrate that both of these methods are plausible in existing ABM platforms. Of
the three modeling platforms listed, Swarm and Repast have access to ‘real’ programming
languages for describing agent intelligence (Objective-C and Java), while NetLogo only allows
modelers access to a toy/teaching language (Logo). Recently, two Bath graduate students
replicated some of the most basic Hemelrijk (2000) results in NetLogo by using Method 1 above
(Muhd Fathil, 2003; Wang, 2003). Thus, even in the simplest of the three platforms, Method 1 is
possible.

Method 2 has not yet been demonstrated in a major ABM platform, but Bryson (2000b)
implements POSH action selection on a minor ABM platform, the SE developed by Tyrrell
(1993). This works because of the sequential nature (described above) of the actual
action-selection mechanism that exploits POSH plans. This was easy because I had a version of
POSH in the native language of the SE available at the time. All that was required was to link the
POSH code to the SE code and then replace the central iterator for POSH with an individual call
                                                
2 Good robots also have time-outs associated with their drivers, so if the action-selection mechanism is hung or

crashes, the robot stops within a short time after failing to receive instructions (e.g., one second).
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to a single POSH program cycle from inside the modeled agent. Code for this implementation is
available from the Web page for that project, currently:

http://www.cs.bath.ac.uk/˜jjb/web/edmund.html#code.

The main obstacle for using POSH on a major ABM platform is the absence of a version
in the appropriate language. It would be impractical for NetLogo to address this problem because
the overhead for the extra action-selection mechanism would be too high; the system is already
significantly slower than the other two platforms mentioned. On the other hand, there is no
‘in principle’ reason that POSH could not be translated into Java; it currently exists in C++
(Bryson and McGonigle, 1998), Lisp (CLOS) (Bryson, 2001), and Python (Kwong, 2003).
IABM by no means requires the complexity of POSH action selection.

Method 1 does not require it nor did the Hemelrijk replications. It might also be possible
to make simpler systems for Method 2, though I have tried to keep POSH plan structures as
parsimonious as possible. As I emphasized in the previous section, any sort of ABM can be
improved and extended simply by making clear, intentional decisions about how the action
selection will be handled, and by clearly coding and commenting the action-selection part of the
agent’s intelligence. In modeling as well as the rest of computer science, it’s important to do the
simplest, clearest thing possible for the problem at hand.

5  SUMMARY

This paper has presented two related topics: how to improve action selection for ABM
and how to individuate agent-based modeling. The important steps for improving action
selection are:

• Separate the problems of describing how the agent acts (coding its possible
behaviors) and when it takes an action (coding its action selection).

• Use a standardized mechanism for describing an agent’s intelligence. Here,
‘describing’ includes both coding and commenting. Four different action-
selection frameworks were presented:

1. Environmental determinism requires enumerating contexts in which the
agent may find itself and then saying what it will do in each.

2. Finite state machines (FSMs) require enumerating the things the agent
might do and then describing what might make the agent switch between
possible actions.

3. Basic reactive plans require prioritizing the actions that the agent might
take to achieve some goal and then describing the minimal requirements
for being able to take those actions.

4. Parallel-rooted, ordered, slip-stack hierarchical (POSH) reactive plans
allow encoding of full animal-like intelligence.
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The developer should choose the framework that most simply describes the minimum behaviors
the agent needs.

The easiest way to individuate agent behaviors is to have all of the agents share the bulk
of their behavior code (the ‘how’ part), then to individuate their action selection, either by having
their (shared) action-selection program reference an individual agent state in its decision making
or by providing different action-selection programs for different agents.

There is a danger in simplifying action-selection coding; that is, simplification can lead
researchers to make more complicated models than necessary. Already, the most difficult task
for modelers is to analyze and explain the group behavior that emerges from the interactions of
agents — the more difficult their behavior, the harder this explanation. Having clearer code is
worth this risk. The history of science is full of examples where the first successful model was
not the simplest, but given that it was the first, it must have also been the most immediately
intuitive. Once a good model has been built, simplifying it is part of the scientific process of
analyzing how it works. Good coding techniques can make it easier to build both the first and the
simplified models.
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ABSTRACT

 This paper proposes a conceptual framework to represent emergent social phenomena,
characterizing the reciprocity between micro and macro dimensions in an organization.
The primary rationale for this research is that explicit modeling of emergent macro
features might improve artificial distributed support systems. The framework represents
organizational actors’ beliefs and interactions and deduces emergent collective cognitive
values in a multi-agent system. Cognitive mapping is used to represent actors’ beliefs and
collective values, and Latané’s social impact theory inspires the deduction of macro-
social outcomes. The paper discusses two ways of modeling collective values:
a collective cognitive map, deduced from artificial agents’ cognitive maps and validated
a posteriori by direct negotiation between organizational actors, and dynamic
representation of emerging social outcomes through socio-cognitive models. The paper
suggests that these two points of view are complementary.
 
 Keywords: Multi-agent systems, cognitive maps, emergence

1  INTRODUCTION

Human societies can be considered complex social systems because their collective
properties, such as structures of collective values, emerge from interactions among individuals
(social actors). Multi-agent systems have been used to represent complex social systems (Luck,
et al., 2003). Nevertheless, nature and dynamics of emergent social phenomena are still very hard
to identify (Axtell, 2000; Sawyer, 2003). Different approaches in social sciences  from
methodological individualism to holism  have tried to explain the behavior of individuals in
society. Emergentism is an alternative to both individualism and holism. The emergentist
sociocultural approach in psychology proposes to look further than individual-level explanations,
suggesting that we take into account a situated level, the context where social actors reason. The
socioculturalist view focuses on the diversity of individual situated participations in collective
activity (Sawyer, 2002). On the basis of this approach, one way of analyzing complex social
phenomena is to represent high-level cognitive models that emerge from situated interactions
among social actors. This paper suggests a representation of both individual beliefs and emergent
collective values and adopts a concept of society composed of successive flows of
microsituations (Sallach, 2003). The multi-agent paradigm is consistent with this point of view,
where macro representations result from the aggregation of micro behaviors. Actually, the multi-
agent model, which is composed of a set of autonomous artificial agents that operate
concurrently, is particularly well suited to support interactions in a distributed organization
(Louçã, 2000). Individual microsituations can be represented by using artificial agents; in a way,
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they help to characterize the emergence of high-level cognitive models, which can concern
informal relationship nets, power structures (legal, moral, and others), and, in a general way,
patterns of social life that influence interactions among social actors.

The goal of this paper is to propose a conceptual framework to represent emergent social
phenomena, characterizing the reciprocity between micro and macro dimensions in an
organization. The primary rationale for this research is that explicit modeling of emergent macro
features of social systems might improve artificial distributed decision support in organizations.
This idea requires dynamic creation of cognitive models during the run of the system, so that the
macro phenomena represented would emerge from micro interactions of the organizational
actors. Emergent macro patterns would then be represented in the system so that actors could act
accordingly.

We consider an organization where cognitive agents support actors. Specific software
tools and knowledge-based systems compose artificial agents. In this environment, interactions
among actors occur through artificial agents in a multi-agent system. Figure 1 depicts this
general idea, where some cognitive representation of collective values is deduced from
interactions among actors.

Artificial
agent

Organizational
actor

Message
between
artificial
agents

Deduction of high-level
collective modelsMicro-to-macro impactB e l i e f s

Macro-to-micro impact

Macro-to-micro impact

Micro
representation
of ind. beliefs

Beliefs

Beliefs

Beliefs

Beliefs

Beliefs

I n t e r a c t i o n s

FIGURE 1  Reciprocity between micro and macro dimensions in
an artificial society

The influence of actors’ interactions on collective values, also called the micro-to-macro
impact, is complemented by the macro-to-micro impact, where collective values constrain
actors’ beliefs. To represent this reciprocal influence, the framework must be able to represent
actors’ beliefs and interactions and deduce collective values and social regularities and
structures. Cognitive mapping is used to represent actors’ beliefs and cognitive interactions. On
the other hand, social impact theory inspires the deduction of macro-social outcomes (Latané,
1981; Nowak and Latané, 1994).
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This document is organized as follows. Section 2 presents the theoretical foundations on
which this research is based, including some aspects of Latané’s social impact theory, to main
characteristics of multi-agent systems and to the domain of cognitive mapping. Section 3
presents STRAGENT, a multi-agent model based on multi-dimensional reasoning processes that
have been proposed in previous research. Section 4 concerns the main proposition of the paper
(e.g., a conceptual framework to represent emergent social phenomena, based on the reciprocity
between micro and macro dimensions in an organization). Section 5 discusses the ideas proposed
and references some research perspectives in the domain.

2  THEORETICAL FOUNDATIONS

The conceptual framework proposed here is based on the multi-disciplinary theoretical
foundations of Latané’s social impact theory to model the micro-macro link in an artificial
society, on multi-agent systems to model distributed and interactive support systems, and on
cognitive mapping to represent artificial agents’ beliefs.

2.1  Social Impact Theory

The social impact theory proposes a general explanation as to how individuals react to
social situations (Latané, 1981). According to this theory, three basic principles explain the
impact of a group of people on an individual’s behavior and beliefs (macro-to-micro influence),
and vice versa (micro-to-macro influence). The first principle  social forces  states that
impact I is caused by a combination of factors:

• Persuasiveness or strength S, that is, how important the influencing group is to
the individual, acknowledging that status, age, and authority can influence
strength;

• Social distance or immediacy I, that is, how close the group is to the
individual in both time and space; and

• Number N of sources, that is, how many people are in the group.

The principle does not define the precise nature of the relationships among these three variables,
but it presents impact as a function of their combination (I = f[sin]). Nevertheless, field research
suggests that influence increases when people are important, socially close by, and numerous
(Latané and Fink, 1996). The second principle  psychosocial law  states that impact is
a power function of the scaled number of people psychologically present N, where the power
function is less than 1, or I = SNt, t < 1. Finally, the third principle  division of social impact
 says that the impact of an individual on others is a negative power function of strength,
number, and immediacy. This principle combines the first two principles to explain how social
impact acts when many individuals are close by. As the number of individuals in the group
increases, the impact decreases.

Latané and his colleges used these three principles to study individual reaction to social
phenomena. Some of their conclusions were that conformity and imitation are stronger and larger
in four-person groups; diffusion of responsibility increases with the number of persons in the
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group; and social loafing (the tendency for individuals to expend less effort in groups) increases
with the number, but not in direct proportion to the individuals present. An important
contribution of this research is the idea of opinion clusters, which introduce the notion of social
influence within a local neighborhood and among groups of actors (Nowak and Latané, 1994).

The reciprocity between micro-to-macro and macro-to-micro impacts, evidenced by the
social impact theory, can be studied in light of the emergence and dynamics of collective values.
This theory also considers the social context where each actor interacts (represented by the
strength, immediacy, and number of the other actors), which is according to the socioculturalist
approach previously introduced.

Latané’s theory has been tested extensively and received empirical support. Simulations
of a number of social situations have supported the development of the analytical model
(Rockloff and Latané, 1996). Multi-agent systems are particularly suited for computing this kind
of social simulation, that is, where cognitive artificial agents can represent social actors.

2.2  Multi-agent Systems

Multi-agent systems, composed by software agents, are distributed, with no central
control. Artificial agents are autonomous and interact with each other in a proactive and
asynchronous way. They are well adapted to represent complex societies, where the global
behavior of the system is the result of the aggregation of agents’ autonomous actions. Multi-
agent systems can model both stable and dynamic interactions. For this reason, in multi-agent
systems, the macro level of collective values can be explained in terms of the micro-level
artificial agents. Those characteristics allow the study of what Coleman referred to as the
foundations of sociology: the micro-macro relations underlying social dynamics (Sawyer,
2003).1

By drawing on cognitive science, artificial agents are able to support heterogeneous
organizational actors through a wide range of knowledge representation and reasoning
techniques, which can be based on logic, rules, frames, semantic nets, or others (Davis, et al.,
1993; Luck, et al., 2003). Cognitive mapping is a knowledge representation technique recently
proposed to associate agency to individual subjectivity and interpretation (Louçã, 2000, 2003a).

2.3  Cognitive Mapping

Multi-agent systems are completely distributed: the reasoning process goes on internally
to each artificial agent. This feature allows the representation of heterogeneous agents, using
complementary technologies and representing different cognitive models. The knowledge
representation and reasoning technologies used for this purpose are chosen according to their
specific features, each attending to some things and ignoring others. When choosing a given
technology, we are in fact selecting a point of view about knowledge representation and
reasoning. Each technology is an approach to the task of determining how well it approximates
the reality we intend to represent (Sowa, 2001). For instance, logic concerns a point of view of

                                                
1 A good roadmap for the next generation of agent-based computing can be found in a report by AgentLink II,

a network of researchers concerned with agent-based computing (Luck, et al., 2003).
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individual entities and relations among them; rule-based systems consider rules of inference;
frames represent prototypical objects; and semantic nets are graphic representations of different
kinds of entities through a network topology (Davis, et al., 1993). Each of these approaches has
both benefits and drawbacks. In fact, the choice of a given technology is motivated by the
characteristics of a given domain, as well as by some insight that indicates how people reason
intelligently. On the another hand, formal technologies are problematic in practice. Recent
research in multi-agent systems has searched for new technologies. These technologies should be
simple and operational enough to be used in organizations, and quite powerful and adapted to
hill-structured domains. According to this idea, cognitive maps have been proposed to model
beliefs of cognitive agents in a multi-agent environment, as reported by Chaib-draa (2002) and
Louçã (2003a).

A cognitive map is a graphic representation of the behavior of an individual or a group of
individuals, concerning a particular domain. Cognitive maps can be used at a micro level to
represent individual cognitive models and at an institutional level through the use of collective
cognitive maps. Psychologists use cognitive maps primarily as data structures to represent
knowledge. Generally, this kind of cognitive model facilitates communication inside a group,
supporting discussion and negotiation between elements that have different points of view. In
this way, cognitive maps can be used to detect conflicts. Several software systems are proposed
to represent organizational discourse into cognitive maps, describing mental models in artificial
agents (Chaib-draa, 2002; Louçã, 2000, 2003a) and allowing the use of network analysis
techniques (Lewis, et al., 2001).

A cognitive map is composed of concepts (representing things, attitudes, actions, or
ideas) and links between concepts. Those links can represent different connections between
concepts, such as causality or influence links. Figure 2 exemplifies a cognitive map, where links
can represent very positive influence (++), positive influence (+), negative influence (-), and very
negative influence (--). This particular type of cognitive map is used to represent strategic
thought in organizations, as reported by Louçã (2000).
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FIGURE 2  Example of a cognitive map (Louçã, 2000)
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The main interest in cognitive maps is their reflexive character, allowing people to
become conscious of implicit knowledge, through the visualization of direct and indirect links
between concepts. Each person constructs a private version of reality and deals only with those
constructions, which may or may not correspond to the real world (Louçã, 2000). On the other
hand, organizations can be seen, at some level of abstraction, as systems of construction and
interpretation of reality (Weick, 1995; Lissack and Gunz, 1999). Actually, if cognitive maps can
be used to model complex systems of individual beliefs, they can also be employed to represent
collective values. Collective cognitive maps can represent collective cognitive models and social
values. The main advantage of such maps is to take into account shared concepts, representing
a cognitive interpretation about organizational culture. Those characteristics make cognitive
mapping appropriate for use in distributed software systems conceived to support interactions in
an organization and to represent individual and collective values.

2.4  Previous Research

Previous research by Louçã (2000) proposed a multi-agent model called STRAGENT,
which is based on multi-dimensional reasoning processes. In this multi-agent environment,
individual beliefs are used to compose a collective solution to a goal through a distributed and
incremental process based on agents’ interactions. Cognitive maps represent the beliefs of
organizational actors. They are composed, on the one hand, by concepts and causal links
between those concepts in a strictu senso way (Weik, 1995), and on the other hand by the
cognitive context of concepts (Louçã, 2003a).

Each concept is coupled to its context, which is called a scheme (Bougon and Komocar,
1994). More precisely, a scheme is represented by a concept and its context  a scheme
represents the meaning of a given concept  and communicating schemes influence agents’
beliefs. Interaction processes aim to converge to common schemes, representing the emergence
of collective beliefs. This general mechanism is represented in Figure 3.

STRAGENT was tested through a prototype representing a distributed software system to
support decision making in human organizations. This prototype was applied in an industrial
enterprise in the domain of telecommunications and electronics, to support the collective
decision-making process. Cognitive maps were designed from documents and interviews.

3  REPRESENTING THE EMERGENCE OF COLLECTIVE VALUES

The main proposition of this paper concerns the representation of collective values in an
organization. This proposition is composed of two ways of modeling collective values, according
to two different perspectives about the role of an artificial system in monitoring the emergence of
social processes. The first is related to the composition of a collective cognitive map, deduced
from artificial agents’ cognitive maps and validated a posteriori by direct negotiation between
actors. The second perspective concerns dynamic representation of emerging social outcomes.
We propose that these two points of view are complementary.
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FIGURE 3  Convergence to common cognitive models (Louçã, 2003a)

3.1  Collective Cognitive Map Composition

The method of composing collective cognitive maps, through a distributed artificial
system, is a development of work described above by Louçã (2000, 2003a). This method is
integrated in a process of internal debate. The aim is to identify organizational goals and plans of
action. First, the multi-agent system compares artificial agents’ cognitive maps and automatically
detects all common concepts, composing the collective cognitive map. This first version of the
collective cognitive map takes into account all different points of view, including conflicts.
Afterward as reported by Louçã (2000), actors discuss the collective cognitive map and negotiate
until they achieve a consensual and coherent collective map with no conflicts. The overall
method, including concept matching and negotiation among actors, is represented in Figure 4.

      Concept
    matching and
  negotiation of
collective
values

Influence of
collective
values on
individuals

Individual cognitive map
Individual cognitive map

Individual cognitive map

Collective cognitive map

FIGURE 4  Collective cognitive map composition
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Conflicts concern different points of view about the nature of the link between two
concepts, for example, when one agent considers that a given link represents a positive influence
(+) and another agent thinks that the link is negative (–). Conflict resolution through negotiation
has two consequences: (1) conflicts are solved (the collective map becomes coherent) and
(2) individual agent’s cognitive maps are updated according to negotiation processes. The belief
revision conducted by agents maps out all different influences to which the actor was submitted.
This information is kept in each agent’s cognitive map, according to the following formula:

,yy b,a,i

i

b,a,x ][

1

][ ∪
=

=

where

x = agent,

{1,…,n} = set of agents that interact with x,

a, b = concepts in x cognitive map,

y = link between those concepts, and

∪ = n-tuple composed by agents’ {1,…,n} opinions regarding y.

In this way, the agent’s cognitive map keeps track of all conflicting opinions that influenced him.

Collective cognitive maps concern both micro-to-macro  the initial collective map
composition  and macro-to-micro processes  the individual belief revision. Nevertheless,
one limitation of this approach is the representation of social outcomes only at a discrete moment
in time, without dynamically monitoring the system throughout interactions.

3.2  Dynamic Representation of Emerging Social Outcomes

Messages exchanged during multi-agent interaction can be used to compare concepts and
match common concepts, as well as detect potential conflicts (Figure 3). This paper proposes
conception of thematic subcognitive maps, called socio-cognitive models, concerning specific
social domains, such as power relationships in the organization (legal, moral, and others), and in
a general way concerning patterns of social life and collective values that influence interactions
among social actors. These submaps are conceived throughout interactions composed by
common concepts. On the other hand, sociocognitive models then influence agents’ beliefs and
behavior. This general idea is depicted in Figure 5.

Sociocognitive models are conceived dynamically, allowing the identification of different
collective cognitive structures and representing diverse aspects of organizational culture. An
interesting factor of sociocognitive models is their capability of explicitly representing links
between common concepts and individual cognitive maps, allowing a situated cognitive
perspective (i.e., taking into account the social context of each sociocognitive model). This idea
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FIGURE 5  Emergence of a sociocognitive model

is according to the socioculturalist approach discussed above. We suggest considering some
notions from social impact theory (Latané, 1981), identifying factors that characterize social
context. In this way, the main factors of the principle of social forces are considered:

• Strength S, that is, how important the agent is to the group that contribute to
the sociocognitive model, given that status and authority can influence
strength;

• Immediacy I, that is, how close the agent is to the group; and

• Number N, that is, how many agents participate in the sociocognitive model.

The aim is to represent both the impact of individual beliefs on sociocognitive models (micro to
macro), and the impact of sociocognitive models on agents’ cognitive maps (macro to micro);
see Figure 5. The micro-to-macro impact can be analytically represented according to the
following formulas:
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where Impx,§ represents the impact of the agent x on the sociocognitive model §, which is
a function of strength Sx,§, immediacy Ix,§, and number N§. Therefore, the link y[a,b],§ between
concepts a and b in § is an n-tuple, including both 1, …, n agents’ opinions concerning y[a,b] and
each agent impact Impx,§.



340

Similarly, the macro-to-micro impact can be analytically represented by the following
formulas:

,)N,I,S(f §x,§x,§x,§ =Imp
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n
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where the measure of impact concerns the influence of 1, …, n sociocognitive models on agent x
individual beliefs.

The relationship among individual cognitive maps, a collective cognitive map, and
sociocognitive models is represented in Figure 6.

The process of emergence of sociocognitive models is continuous and based in concept
matching during interactions. The micro-to-macro and macro-to-micro measures of impact-use
notions from Latané’s social impact theory allow discussion of situated cognitive models. The
exact relation among variables S, I, and N, however, is still to be studied in further research. In
this sense, a prototype is being developed to support interactions among artificial agents, which
will allow the validation of this conceptual framework.

Individual cognitive map
Individual cognitive map

 Individual
      cognitive
               map

Collective cognitive map

Socio-cognitive model Socio-cognitive model

FIGURE 6  Three-dimensional cognitive representation:
individual cognitive maps, collective cognitive map,
and sociocognitive models
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4  RELATED WORK

This research can be compared with other propositions, mainly concerning some specific
aspects of the framework. The use of cognitive maps to represent knowledge can be put side by
side with an artificial intelligence approach that uses a graphic notation called semantic networks
(Sowa, 2001). Like cognitive maps, semantic networks represent knowledge through nodes
connected by arcs. Nevertheless, in those networks, nodes are hierarchically typed, with
derivation, according to the generality level of the nodes. Those systems are mainly used to
classify or group knowledge in natural language systems. Conversely, cognitive mapping has
fewer constraints and does not need particular typing; it is a general methodology. One of its
strengths is precisely its ability to adapt to a large variety of domains. The same argument can be
used when comparing cognitive maps with Bayesian networks. Actually, these tools have already
been associated in the qualitative probabilistic networks (Wellman, 1994), a sort of cognitive
mapping with causal probabilistic links, allowing Bayesian reasoning in cognitive maps. The use
of the original version of cognitive maps, however, has the advantage of simplicity: cognitive
maps can represent a larger domain of situations. Cognitive maps, a tool used by psychologists,
allows qualitative reasoning.

The POOL2 system, proposed by Zhang, et al. (1992), composes collective maps through
the aggregation of individual cognitive maps. POOL2 does not incorporate the notion of
interaction among artificial agents. In A-POOL, or Agent-Oriented Open System Shell, Zhang,
et al. (1994) use cognitive maps to represent artificial agents’ knowledge. The communication
occurs through the exchange of partial cognitive maps, and interactions are used to compose an
organizational map. The most recent evolution of this system includes the propagation of
numerical values (Zhang, et al., 1994). The use of quantitative inference, however, is far from
the qualitative spirit of cognitive mapping. In the line of thought of A-POOL, Chaib-draa (2002)
proposes a method of causal reasoning adapted to multi-agent negotiation. Chaib-draa introduces
the notion of interaction matrix to represent different points of view. Nevertheless, the conflict
detection is not dynamic throughout interactions; it is performed at a given moment. This model
is not adapted to artificial agents that dynamically and continuously adjust their knowledge to
a changing environment.

5  CONCLUSIONS AND FURTHER RESEARCH

Generally, in other multi-agent systems, the social macro features are preprogrammed;
that is, interactions among agents modify the macro level but only within a predefined structure.
On the other hand, micro-to-macro and macro-to-micro phenomena have not been modeled
simultaneously (Sawyer, 2003). By drawing on cognitive science, this framework represents
ill-structured emergence of social outcomes, as well as modeling both micro-to-macro and
macro-to-micro phenomena. The main goal of the research, however, is not to search for an
explanation of a society, but to propose some operational representation of collective values,
even if this representation is a simplification of a complex reality. Here, simplification is
assumed in different dimensions.

First, the use of cognitive mapping to represent agents’ beliefs is obviously
a simplification of agents’ internal cognitive structures and interdependencies. Cognitive
mapping was chosen because it concerns a well-known technology, operational enough to be
used in organizations, quite powerful, and adapted to hill-structured domains. Nevertheless, the
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building blocks of this framework, such as the collective cognitive model and the sociocognitive
models, are easily adaptable to other graphic kinds of knowledge representation technologies,
like semantic networks. This would change the semantics of collective representations. Recall
that a technology of knowledge representation is, among other things, a theory of intelligent
reasoning and a collection of mechanisms for implementing that theory.

Another simplification hypothesis is the existence of social representations equally
known by all agents. In reality, each organizational actor has its own interpretation about
collective values, and interpretations can differ greatly among actors. Cognition is internal to
actors, not to organizations. Social cognitive patterns emerge from interactions, but they do not
really exist beside actors reasoning about their own interpretations. So, external representations,
such as the collective cognitive model and the sociocognitive models, are simplifications that
allow the use of collective values in multi-agent systems.

Several lines of research are opened concerning the representation of emergent social
phenomena through the association of cognitive maps and multi-agent systems. One concerns the
cognitive map extraction mechanism from interactions. The actual stage of the framework,
however, does not consider opinion clusters (Rockloff and Latané, 1996). An important line of
research is to study the conditions under which opinion clusters are composed. These can be
based on the sociocognitive model: neighbors in a sociocognitive model can compose an opinion
cluster. Also, the social influence of opinion clusters can be deduced by using some social
impact formulas. The exact mechanism that relates strength, immediacy, and number, however,
is not yet clear. How can we move forward and combine the impact factors? Are there any other
factors? This subject is under study. Also, other theories that explain social impact are being
considered, such as the social influence network theory (Friedkin, 2003).
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INTERPRETIVE AGENTS:
IDENTIFYING PRINCIPLES, DESIGNING MECHANISMS

D.L. SALLACH, The University of Chicago*

ABSTRACT

 This paper takes the position that social action inherently involves meaning and that it
therefore cannot be adequately modeled without representing the interpretive process
among agents. However, the development of interpretive models is challenging and
quickly raises issues of computational tractability. A strategy that is based on three design
assumptions (agent focus, continuity reduction, and orientation fields) and three
mechanisms for simulating social interaction (prototype inference, orientation
accounting, and situational definition) is developed here. When the three mechanisms are
incorporated into action selection, they provide a model of the social interpretation
process with a higher level of verisimilitude than that achieved by many other
approaches.

INTRODUCTION

In communication and action, human actors are oriented by meaning. Accordingly, they
consider, discern, define, attribute, convey, question, dispute, affirm, reconsider, and evolve the
meaning in every situation. Inevitably, the attribution of meaning is an indexical process: the
same participants may view shared situations as having distinctive, or even conflicting,
meanings. The process of attributing meaning is dynamic, often shifting rapidly as the actor’s
interpretation shapes and informs the subsequent flow of communications and actions.

The ability to model orientation and meaning is not a new challenge. Many significant
strategies involving artificial intelligence, including semantic nets, logic-based semantics, rule-
based inference, and neural networks and subsumption, have sought to address this challenge.
Therefore, in a developing initiative on designing interpretive agent models, there is a
responsibility to distinguish the new strategies from those already explored.

At present, agent design is bounded by the complexity exemplified by the long search for
artificial intelligence and by the simplicity of reactive agents. When addressing complex
environments, strategies using artificial intelligence typically encounter the limits of
computational complexity. Strategies using simple agents, on the other hand, tend to require
drastically simplified environments; for example, they might reduce social interactions to the
random flipping of binary cultural tags (Epstein and Axtell 1996; Lustick and Miodownik 2000;
Lustick, et al., 2001).
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The objective of the strategy developed here is to capture domain complexity without
confronting computational limits by emphasizing shared social prototypes and the interpretations
and actions through which they operate. More specifically, the goal is to design and construct
three linked mechanisms that simulate the fluidity of social interaction: (1) prototype inference,
(2) orientation accounting, and (3) situational definition. These mechanisms are, in turn, based
on the three design assumptions, which are discussed next.

INTERPRETIVE ASSUMPTIONS

Agent Focus

One assumption of the present initiative is that agent-based modeling and simulation
provide a unique and often effective research domain. The nature of this domain provides several
potential advantages on which the strategy can draw. These include the ability to (1) control the
complexity of the topology and artificial ecology, (2) define the action and communication
capabilities available to the agent, and (3) experiment with a variety of algorithms and methods
(including neural networks, genetic algorithms, and swarm algorithms). All of these
opportunities provide flexibility, allowing simple, proof-of-concept models to evolve toward
more complex and realistic assumptions.

Another advantage of agent models is their natural support for social processes. It is true
that some agent models are only minimally social (e.g., they use individual agents as the
fundamental unit of analysis, with all state and behavior defined at that level). Yet, even atomic
agents that rely on simple rules (and therefore rely on limited individual intelligence) can
produce a result that simulates implicitly social processes, such as local comparison or situated
learning. In addition, since the models frequently assume that there are many agents distributed
across space, social networks, etc., there is ample opportunity for experimentation with
mechanisms that are more fully and intuitively social.1 The very sociality of such strategies may
provide a more realistic and tractable approach to the design of interpretive agents than does the
direct attempt to model agent intelligence. The present discussion explores one such approach.

Reduction of Continuity

A second assumption of the present strategy is that a significant fraction of agent
innovation can be represented by a translation process that goes from a continuous environment
to discrete internal models that provide the basis for inference. More specifically, the present
model assumes that agents are situated in a complex environment that makes available multiple,
simultaneous cues (or, in a semeiotic sense, signs) that are used by the agent in defining the
salient features of the current situation. Such cues include complex components of
communication, such as voice tone and emphasis, facial expression, and body language. These
subtle, textured situational clues and may be represented as defined on continuous domains.
However, given bounded rationality, each agent “collapses” the richness of the setting into more

                                                
1 As has often been argued (Minsky 1987; Sallach 1988; Gasser 1991; Axtell 2003), social algorithms and

mechanisms may become increasingly important in defining the foundations of computation and information
science.
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discrete classifications, rules, and schemas.2 For example, agents must determine whether a
statement is a fact or a misrepresentation, a quip is a joke or an insult, or a response is indifferent
or a threat, and they must analyze many other complex communications that themselves occur in
a larger (ecological, technological, structural) context.

Considering the range of possible interpretations and their virtually unlimited
combinations is beyond the capacity of the agent; thus, they must be reduced to a finite set of
possible alternatives. However, the prospective responses of agents may be subtle and nuanced;
therefore, they may be reasonably represented in complex and continuous forms.3 It follows
from the translation assumption that, at every step, the communicative and interpretive processes
are a possible source of misunderstanding among agents.

Orientation Fields

A third assumption of this approach is that agents (dynamically) maintain an orientation
field with an emotional valence for every relevant agent, object, and resource, and that this field
forms the context within which inference occurs. In addition to concrete referents, an orientation
field also contains typifications of various types and at diverse levels of granularity, which are
the focus of agent affectivity at varying levels of intensity.

In general, there is considerable stability in affective commitments. However, events,
along with associated cognitive reclassifications, can influence emotional valence (e.g., a trusted
employee becomes a competitor). Accordingly, it is assumed that emotion and cognition are
integrated into a co-evolving orientation field that shapes successive agent behavior.

INTERPRETIVE MECHANISMS

In the context of these three assumptions, three mechanisms can be used to at least begin
to simulate the constitution of meaning. The three mechanisms are (1) prototype inference,
(2) orientation accounting, and (3) situation definition. These are described now.

Prototype Inference

A primary mechanism is to use conceptual prototypes to comprehend and draw
inferences about the world. In other words, human concepts take the form of prototypes rather
than a set of facts, assertions, or beliefs. Agent concepts, both individual and collective, manifest
a core/periphery structure with concept exemplars and with departures from that prototype,
varying along the dimensions that together define the prototype concept.

Although this conceptual structure is well known and fully documented in cognitive
science research (Rosch 1978, 1983; Hahn and Chater 1997), understanding the process of

                                                
2 The comparative advantage of particular forms of internal representations comprises an active area of research in

itself.

3 For present purposes, it is not assumed that such complex responses will be expressed in natural language.
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drawing inferences from a network of prototype concepts is still in an early stage. Accordingly,
in the near future, methods are likely to be exploratory and perhaps domain-specific. However,
the incorporation of naturally occurring data structures seems likely to add robustness and
plausibility to agent models.

Orientation Accounting

This second mechanism is inspired by social pragmatism (Mead 1934; Mills 1940) and
ethnomethodology (Garfinkel 1967, 2002). A simple accounting mechanism models the facts
that (1) in preparing a communication or act, an agent considers the likely response of significant
others, and that (2) if recent communications or acts are challenged by others, the decision must
be defended, initially by invoking an anticipatory rationale. Orientation accounting locates the
mechanism within the previously discussed orientation field. While there are cognitive
dimensions in orientation accounting, emotional anomalies must be resolved to achieve relational
stability. For example, if the challenge continues, it may be necessary to elaborate the defense
and have it (minimally) accepted, accept disruption of the relationship, or acknowledge a
misjudgment. Orientation accounting is implemented as a capability (set of methods) shared by
all interpretive agents, and it is driven by emotional orientation.

Situational Definition

A third mechanism is situational classification. The specificity of circumstances, in
conjunction with the agent response to those circumstances, provides direct input into the action
selection mechanism. The ability to define the salient features of a situation has been recognized
since the work of Thomas (1967) as a vital set of skills for human actors. Accordingly, it is
important to model this skill set in prototype terms yet in sufficient detail to clarify domain-
specific implications. Situation theory (Barwise 1989; Devlin 1991) provides the formalism with
which to represent the process.

Situations are often extremely dynamic, with successive communications or actions
having the potential to redefine how participants categorize and respond to the situation. As
Sawyer has extensively documented, situations emerge, and participants attend to them by using
their improvisational skills. The resulting experiences, which cannot be assumed to be the same,
even among common participants, then feed the agent’s orientation field back into the structure.

The three mechanisms work together to shape meaning in communication and action.
Communications and events create a new situation that is defined by agents in terms of existing
prototype situations. Inferences are then made about causality, constraints, and probable
outcomes. During the generation of communication and action alternatives, emotional
accounting considers how best to justify a course of action, including the possible alteration of
the course of action in order to improve the response of significant others. After a situational
response, and possibly at other points in the future, prototypes are reclassified, and emotional
valences are adjusted. The operation of these three mechanisms does not exhaust the components
of interpretive agents, but it does provide a preliminary nucleus.
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TOWARD IMPLEMENTATION

Since salient social entities and events are complex, multidimensional, variegated, and
fluid, agents must have a coherent and computationally tractable means for reasoning about
them. Prototypes have been explored by empirical psychology during the last several decades,
but they have not yet been incorporated into agent simulation. For the purpose of this project, a
prototype is defined by (1) assembling a set of dimensions4 along which a particular entity (or
related set of entities) may vary, (2) identifying clusters of core values relative to which one or
more salient social entities are defined, and (3) reasoning about the location of entities (or sets of
entities) and how they may influence agent orientations. These three components represent
actions available to interpretive agents. They will be designed and implemented during the
course of the present project.

An orientation is an emotional valence toward a salient social entity. Orientations tend to
be preserved but can be called into question by events. Major or consequentially timed events
can result in a wholesale reorganization of agent orientations. One constraint on the easy or
frequent restructuring of orientations is the fact that they are shared with groups of other agents:
groups in which the agent is a member or with whom she or he identifies. These agents, both as
individuals and groups, are the salient social prototypes. This means that the actions constituting
orientation management include (1) anticipating significant agent responses, (2) selecting and
calibrating possible actions to satisfy such constraints, and (3) generating accounts in which the
consequences of actions for salient individuals or groups can be justified. Together these possible
actions define an aspect of agent behavior to be implemented as part of the present initiative.

Interpretive agents, complete with prototypes, orientations, and the actions with which
they are managed, find themselves in situations that must be interpreted. The agents use
prototypes and orientations to generate expectations and act accordingly. After the situation
(itself composed of the actions of multiple agents, as well as possible exogenous developments)
occurs, it is assessed, and prototypes and orientations are realigned accordingly. This process of
realignment incorporates possible actions available to the agent. These actions will be designed
and implemented during the course of this project.

Together, agent actions that allow the management and use of prototype inference,
orientation accounting, and situational interpretation result in an interpretative aspect that will be
available to the agents used in this project. Since prototypes and orientations are shared among
groups but are individually aligned, they provide a basis of common action, but they are also a
source of possible misunderstanding among agents and groups. Such misunderstandings must be
negotiated or otherwise responded to in order for coordinated social action to emerge.

Thus, prototypes and orientations constitute a shared social heuristic by which coherent
social behavior may be simulated without creating unbounded computational demands. The
prospect of modeling interpretive agents and interpretive social processes carries the potential of
a new type of social simulation that can capture the complexity inherent in meaning-oriented
systems, while still remaining computationally tractable.

                                                
4 Mathematically and computationally, these dimensions will be represented as relational domains, with this

extension: in addition to attribute values, domains may aggregate complex entities (cf., Codd 1979) and,
especially, prototypes. However, every component of a complex entity must ultimately be reducible to (values
defined upon) a relational domain.
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DOMAIN COUPLING

While these features and capabilities are designed to be generic and thus broadly
applicable, their use requires that they be mapped to particular topical domains. Each domain has
its own entities, events, types, and structures that must be specifically represented in order to
develop a reliable model. Thus, both designing and embedding generic mechanisms are part of
the overall design process.

To illustrate the process, the generic mechanisms described above will be applied to a
stylized, two-stage, electoral process. More specifically, agents will be programmed to apply
prototype inference, orientation accounting, and situational definitions to the issues addressed by
political actors facing elections. The interacting interpretations of diverse agents will then
generate the creation and dissipation of (partially) shared political orientations relative to their
political options.

The situated model containing these complex interactions is implied in the nested
political games developed by Tsebelis (1990). Nested games occur when two or more games are
played at different but interrelated levels, with one forming a context in which the other is
conducted. Strategy choices that are apparently suboptimal may actually be a result of multilayer
interaction.

For example, a two-phase election such as in the French Fifth Republic has an initial
partisan phase, followed closely by a coalition phase, in which the previous competitors must
close ranks within a week in order to successfully contest the general election (Tsebelis 1990, pp.
187-232). During the first round, candidates are typically motivated to attack the candidate from
within their coalition (their competitor) because they seek support from the same pool of voters.
During the second round, the potential for the coalition to win the office provides an incentive to
support and vote for the coalition candidate.

Tsebelis’s analysis of historical trends indicates that a coalition’s ability to close ranks in
the second phase is influenced by how competitive the coalition partners are with each other and
by their prospects for winning the seat. Thus, the results of the partisan phase define a context in
which the coalition phase decisions are made. Tsebelis’s analysis concludes that the less
competitive the parties in the coalition are, and the better their prospect of winning the office is,
the more likely it is that the supporters of the losing candidate will transfer their support in the
second phase. However, when this pattern occurs, it is because individuals and organizations
have pre-existing orientations and interpret events in particular ways. There are also occasions
when Tsebelis’s generalization does not pertain, and those patterns also result from the
orientations, situational definitions, and interactions of participating agents. The challenge is to
construct simulation models that can capture the closing of ranks as well as the failure to close
ranks in their situated specificity.

Tsebelis constructs a game theoretic model of these tensions. However, the resulting
framework has sometimes been criticized for failing to adequately address equilibrium selection.
In a broader sense, its virtues are also its faults, in the sense that the additional complexity
introduced by the concept of game nesting results in a model that is analytically intractable. The
nesting of layers also pushes the design of agent simulation beyond the standards of current
practice, in that agents may hold views that are ambivalent and internally inconsistent. Thus, the
example may usefully illustrate the prospective advantages of interpretive design as well.
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For example, imagine that there are thousands of voters and dozens of issues of varying
salience on which the voters may have an opinion. Multiple parties and their leading candidates
attempt to attract voters who share their positions, and, in some cases, the candidates evolve
toward positions that will attract key segments of the electorate. A larger number5 of newspapers
serve a particular reading audience and take positions on a variety of issues. Together, and
through their interactions, these individuals and organizations define multiple orientation fields:
their own and those they share. The result gives rise to a dynamic, co-evolving process.

In defining an interactive model, we can further assume that there are three small group
settings in which actors influence each other: the party committee, the editorial board, and the
neighborhood group. The latter group might be extended to include work groups, religious
groups, etc., where the form of interaction is a sharing of orientations, as each group tries to
convince other groups and/or learn the information that they have relevant to answering the
question of who to support in the particular phase of the election. In each setting, individuals
bring their personal orientation field, which may evolve on the basis of interactions with others,
to the process of arriving at shared strategies to achieve group goals.

In sum, when the structure of a two-phase electoral process is translated into a simulation
model, where heterogeneous voters from across the political spectrum are confronted with a
variety of candidate strategies and first-phase outcomes as well as with the commentaries of
various editorials, the contribution of situational models becomes evident. Specifically, because
each agent has a potentially distinct social background and a particular position within the field
of contested policies, each voter casts a ballot not only in the context of a private (subjective)
state but also in the context of a unique situation.
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DISCUSSION:

AGENT ARCHITECTURES

(Friday, October 3, 2003, 3:00 to 5:30 p.m.)

Chair and Discussant: Tom Howe, The University of Chicago

Conversational Agents

Tom Howe: I think it’s a fairly widely held belief at this stage in time that much of what
can be achieved using the cellular automata and traditional kinds of agent-based and reactive
types models has been achieved, and it’s time to start investigating new ways of modeling
agents, new agent architectures that can more accurately and more richly represent how societies
and agents within societies actually interact.

We’ve switched the order around slightly in order to maintain some continuity from the
previous speaker [Sawyer], and moved David Sylvan to the beginning of this session, and just
bumped everyone else back. So I would at this point like to introduce David Sylvan, from the
Graduate Institute of International Studies.

David Sylvan: Thank you very much.

[Presentation]

Howe: I think that was a really good description of some of the specific mechanisms that
we can use to model and the problems that arise around them. And I think that that was a nice
way to continue on from what Keith Sawyer said earlier about the difficulties in modeling
various kinds of speech.

I have two questions. I’m going to ask one and then I’m going to open it up to the
audience. You invoke Garfinkel in concepts of indexicality. It seems that most of your discussion
of indexicality, though, is really focused on conversation, current and prior, but from Garfinkel’s
perspective there would be many, many more issues. And I’m curious how you feel is the best
way to represent extended forms of indexicality as it relates to meaning within conversation.

Sylvan: It’s an excellent question. I don’t even have the beginnings of the answer to it,
precisely because there are so many ways that one can do this. What I’ve done, though, just in
terms again of the area that I deal with (international relations), is show how one can track some
of these kinds of things exactly through a set of references. It’s very rare that at least with the
kind of people I’m looking at, that things are so implicit that it really is a question of a nudge and
a wink and a kind of long-shared history. And you get this with certain kinds of so-called
statesmen, who’ve interacted with each other for decades, but that doesn’t happen that much, and
the nice thing about, for my purposes, is that in effect the world begins again with some
frequency. But you’re absolutely right, for ordinary people, it’s much harder. I agree with you.

Unidentified Speaker: I would agree with the last set of comments, because I can’t
imagine that everything is going to be found in those transcripts. And I can certainly imagine,
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having observed Kissinger for a number of years, that he would write a book or two about that
conversation, and that a lot of the comments that he would write would be self-serving. And so it
would make your job even harder to interpret and understand.

Sylvan: I agree with you. I’m looking only at the tapes.

Unidentified Speaker: I’ve got a question about the technology that supports the mode
of communication: telephones, e-mail, chat rooms. Do the principles still hold there or is it
something different, number one, and, number two, e-mail conversation seems to have the ability
to actually be recorded.

Sylvan: It’s a very complicated thing. The work I am doing and I started out with, is
actually for a very stylized communication, for example, negotiating offers in the World Trade
Organization. That doesn’t occur in real time. And there you can actually use ACL-type
approaches, because it’s much more stylized.

Telephones, I think, when you heard they were first introduced, it was something that
would be much more stultified. Already I have a lot of evidence that by the ‘30s, that these were
becoming much more complex. But of course, there are face-to-face names, and we don’t,
unfortunately, have anything to access, the kind of thing you like to have, which is videotapes or
things like this. That, I think, would be considered a bit much.

So it’s a very good question, and we only have a very partial answer to it.

Unidentified Speaker: I just wanted to ask a sort of quick point of personal clarification
in terms of what exactly you’re modeling, because of your Kissinger example and also your
emphasis on commitments. I’m coming from the international relations and also have serious
criticisms as sort of the Copenhagen speech act approach, but I’m coming from a more
materialist ontology of my criticisms, so it’s not entirely clear for me, are you modeling the
diplomatic process or the outcome?

Sylvan: By the process, the implicit assumption — actually explicit — is that if you can
get a recall, this notion of commitment, then what that does is it get you a locally binding
character …  and the reason why you move toward closure or toward agreement on certain kinds
of issues, or disagreement. But the point is, it gets a kind of binding nature to it, so that what
happens in a very quick interaction, when you might raise your eyebrows at me and I say, “Well,
too bad.” That doesn’t have any significance by itself, unless later on we talk further and say
“Yes, we really disagreed about that.” So that’s what I’m really trying to get at, in a sense.

Unidentified Speaker: But the implicit assumption is that the process is in some inherent
way generative of the outcome.

Sylvan: Not solely. Look, these guys go into these negotiations with all kinds of clear
briefs beforehand as to what they can and can’t do. But those briefs only cover approximately
5% to 10% of the topics that actually get raised. And so there’s all kinds of things that happen,
and if we all know about negotiators who end up having to try to sell the people back home on
this …

Howe: Okay, that’s all the time we have for questions for right now.
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Action Selection and Individuation in Agent-based Modeling

Howe: Next up is a speech which I think is going to continue some of the themes that
we’ve been talking about, so without further adieu, I’d like to introduce Joanna Bryson, from the
University of Bath.

Joanna Bryson: I want to make a claim that there’s at least three completely, almost
completely, disjointed communities of people that claim that they’re doing agents. And you guys
are one, and then there’s those guys who do KQML and that stuff. And I’m from this weird old-
school group of people that used to be roboticists, and we use an “agent” to mean either a robot
or an animal. And I think that what you guys are doing is very interesting, and fortunately for me
at least some of you guys think what I do is very interesting. So I was asked to put it into an
abstract. And I have to say, I’ve really enjoyed this meeting.

I’m going to talk about some of my thesis work and some of the tools that I’ve built,
which right now are not actually integrated into the kinds of tools that you’re used to, but we’re
going to talk about how the perspective of roboticists and people like that can help with agent-
based modeling.

My title is “Action Selection and Individuation in Agent-Based Modeling,” which is
slightly different than what was in the program.

[Presentation]

Unidentified Speaker: I have to admit that I’ve been watching this architecture for
probably a year and a half now, so I’ve been a big fan of a lot of the pieces in it and I think
they’re really rather exciting, particularly in the way that they create a nice, sort of discretization
of action, as opposed to a continuous sense of action, and it’s very difficult to decide how to
actually approach these actions in a discrete way.

My question at this point would be the drive collections, the goals that you describe,
particularly when you’re talking about robots or animals. Those are generally predefined,
exogenously defined by the modeler. What kind of support would you envision for
endogenously-created drive collections and goals?

Bryson: In my papers, I’ve often said this is the biggest gap in my architecture. So I
allow for learning, but the learning happens within the modules, and when you have to learn a
new module, you have a bit of a problem.

What I’m actually really interested in doing is imitation learning, where you absorb
goals, and in that case I think you may actually be forking goals. So there’s nothing in my system
right now that does this, but you could pretty easily imagine that you had these things lying
there, and you just decided to do some simple operation on them. So you’ve figured out that in
some context you want to do things just slightly differently, and so you just split them off and
then you allow them to learn priorities.

I originally envisioned the reactive plan element as … in fact, they’re dot-lap files, the
little scripts for the plan part. It was supposed to be made of learnable action patterns. I
eventually decided that learning was really, really hard, just like search; search and learning are
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the same, in fact. But I actually haven’t pursued that at all, and it’s for the same reasons. But I
think that if you do have some information like that, you see another agent successfully do
something like that, or if you’ve been taught a discrimination or learned a discrimination, then
you want to split it. And I have some separate research, but it would take forever for four agents
to be doing it, on task planning. And so in a separate thread of research, I am pursuing trying to
understand how this kind of stuff would happen.

A Conceptual Framework to Represent Emergent Social Phenomena

Howe: Next up we have Jorge Louçã, from the University of Lisbon.

Jorge Louçã: The main idea of my research is that some explicit modeling of emergent
macro social features in an organization might improve artificial distributed decision support in
this organization. In the sense of this idea, the main goal of my research is to study micro and
macro dimensions in an organization, and mainly to characterize reciprocity between these two
dimensions. So my proposition is to put together a set of ideas and a set of notions in a
conceptual framework, allowing them to represent emergent social phenomena, including some
dynamical representation of cognitive models in the organization. This conceptual framework
includes macro, representation of macro phenomena that is going to emerge from micro
cognitive models and also from interactions between organizational actors.

The topics of my presentation are these: first of all, I’m going to give my point of view
concerning micro and macro dimensions, and then I will present the theoretical foundations of
my work, that is the sociocultural approach in psychology, social impact theory, multi-agent
systems, and cognitive mapping. I’ll make a brief reference to my previous research and I will
explain then my proposition to describe the emergence of collective values, using some specific
cognitive representation. Then, if I have the time, I will talk about related work, a conclusion and
some perspectives of research.

[Presentation]

Louçã: I’d like to look to other theories that explain social impact, such as the social
influence network theory or others. If anyone has a suggestion, I would be very grateful.

Howe: Thank you. I think that this represents a nice hermeneutic for defining both agent
behaviors and agent values, as well as sort of group behaviors and group values. And I think it
also does a nice job of providing sort of an explanation for the higher-level emergents that come
out. It’s not just that the collective beliefs and collective values emerge from the individual
agents, but also that there’s sort of a process that evolves from that as well.

I’m going to take a little bit of liberty here and ask two questions instead of just one. So
my first question has to do with the concept of inner group or overlapping group, collective,
cognitive maps. You talk about how individual agents’ cognitive maps can be composed into a
collective cognitive map, but I was wondering, what happens when you start to have overlapping
groups that have influence on one another?
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Louçã: Well, I haven’t studied it, this problem actually. This has to be tested in practice.
What I think is that we have to have some sort of mechanism to solve conflicts between different
cognitive maps. And my point of view is that the best thing to do in organizations is to evidence
conflicts, to show them and to propose them for people to discuss, because this is the way they
accept this kind of cognitive representation. I can imagine another way to automatically choose
one or another, but this is not going to be accepted, so I propose this for people to discuss.

Howe: I guess in all fairness I should open it up to the audience before I take up with the
second question. So …

Unidentified Speaker: It’s just a very quick question about the structure of the cognitive
maps. What kind of relations are these? Would these be just some kind of simple relations
between two concepts? Can you have pairs of concept, or more than two? And can you do some
scenario building?

Louçã: Yes, the notion of cognitive map is very simple. It’s a set of concepts and links
between those concepts. Most of them concern causality links. There are works that are studying
cognitive maps in a way that they can isolate a part of the map to represent scenarios or to
represent some more complex idea, the notion of scheme. And, well, I think this notion can be
used mainly to represent interactions and in multi-agent communication. But the initial idea is
very simple.

Unidentified Speaker: Jorge, good job. One of the things that I liked about introducing
Latin-A social impact theory is that you’re bringing in geography or distance, and the effect that
distance between people has on social influence. And I think that’s an important consideration
often overlooked. So thanks.

Howe: Okay, I’ll go ahead and ask my second question, then, since I have a minute left
and nobody else has a question right now.

As a hermeneutic for defining sort of values and behaviors, both within individuals as
well as within collective groups, I was wondering how you see this sort of fitting into some of
the other things that we’ve heard today, such as action selection, you know, language, and then,
even though you can’t predict what David is going to say, some of the topics of how agents make
decisions.

Louçã: Well, this is a very important issue. If you want to study how agents make
decisions in organizations when we use cognitive agents, the main issue is the cognitive
representation, and on the other side, to reach some interaction between the artificial agent and
the organizational actor that is really going to make the decisions. This is the key for the success,
I think.
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Interpretive Agents: Identifying Principles, Designing Mechanisms

Howe: Finally, I’d like to introduce David Sallach from The University of Chicago.

[Presentation]

[No discussion was recorded.]
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EXPLAINING STATE SIZES: A GEOPOLITICAL MODEL

L.-E. CEDERMAN,* Swiss Federal Institute of Technology, Zurich

ABSTRACT

 While international relations scholars have ignored the issue of state size, economists
have explained the territorial extent of states as an optimal outcome given various
constraints analogous to the theory of the firm. By focusing on full distributions rather
than on average sizes, this paper adopts a systemic, generative perspective supported by
agent-based modeling. Given that empirical state sizes are lognormally distributed, the
goal is to reconstruct such size distributions by relying on a geopolitical model. This
reconstruction task becomes possible by adding a mountainous terrain that imposes
various logistical obstacles to conquest processes.
 
 Keywords: Geopolitical modeling, international relations, agent-based modeling

INTRODUCTION

Traditionally, polarity has played a central role in international relations (IR) theory.
Scholars have engaged in lengthy and inconclusive debates about whether bi- or multi-polarity is
more likely to produce geopolitical stability. Despite the attention paid to the number of states,
however, little has been said about their territorial extension. This fact is surprising because
states are the key actors of most theories, and size is perhaps the most obvious attribute of any
organization.

By contrast, economists have spent much more time accounting for state size. By
drawing on the classical theory of the firm, however, their individualistic approach often
downplays geopolitics. Moreover, it focuses on equilibrium outcomes at the expense of historical
developments. While fitting neatly into a textbook microeconomic perspective, such scholarship
is almost totally disconnected from traditional IR theory.

This paper addresses the question of state size, without losing sight of geopolitics, by
adopting a systemic, distributional perspective supported by computational modeling. Size
distributions contain much more information about a system than polarity, which is nothing more
than a single number. Most important, distributions can be interpreted as “footprints” of the
underlying mechanisms that generate them, thus helping to explain not only the states’ size but
their genesis and behavior in more general terms.

The starting point for this work is a new territorial dataset that shows that real-world state
sizes are lognormally distributed. Because macro-historical mechanisms cannot be manipulated
easily in quasi-experimental terms, a computational model is introduced, which was developed
for other purposes to determine if it is possible to reconstruct the empirical distributions within
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that framework (Cederman, 2003). The original model performs quite poorly in this respect.
Adding a map of geographic obstacles, however, takes us much closer to the historical
benchmark. This finding quantifies what geopolitical theorists have long suspected: rugged
terrain and communication technologies have a direct impact on the scale of political
organization.

EMPIRICAL STATE-SIZE DISTRIBUTIONS

The first challenge confronting a distributional perspective is to explore empirical data to
determine the type of distribution that is operating. Fortunately, literature abounds on size
distributions in various domains. For the present purposes, it is particularly interesting that some
economists  those who choose to deviate from the microeconomic orthodoxy  have studied
the systemic statistical patterns relating to firm sizes. The locus classicus of this scholarship can
be traced back to “Gibrat’s Law,” or “the law of proportionate effect,” which states that
multiplicative random walks tend to generate lognormal distributions (Sutton, 1997). More
simply, this applies to processes in which an organization’s growth is proportionate to its size.
Formally, lognormality implies that size S is distributed according to the following principle:

log S ~ N(µ,σ),

where µ is the mean and σ is the standard deviation (Aitchison and Brown, 1957; Crow and
Shimizu, 1988).

Subsequent empirical research has revealed other skew distributions that perform well as
descriptive statistics of firm sizes. Following Simon and Bonini (1958), power laws are often
mentioned as plausible candidates. Such distributions have a “thicker tail” that reflects a higher
frequency of very large firm sizes (Axtell, 2001). Wars, measured in numbers of casualties, are
power-law distributed (Richardson, 1960; Cederman, 2003).1

How can we distinguish lognormal distributions from power laws? The easiest way is to
plot the logged cumulative frequency (c.d.f.) against logged sizes. Power laws should appear as
straight lines in such frequency diagrams, whereas lognormal distributions taper off for large
sizes and therefore exhibit significant bending.

Fortunately, I have been able to use a new dataset for the territorial size of states, which
was generously provided by Lake and O’Mahony (2002) and Hiscox and Lake (2001). On the
basis of information from several data sources, including the Correlates of War database and
Polity III, their database covers the period between 1815 and 1998, excluding the world wars and
the colonial empires.

Figures 1 and 2 display the frequency diagrams for the first and the last year of the
sample. The diagrams depict the logged, converted c.d.f., log Pr(S > s), as a function of logged
size log s. This paper uses logarithms with a base of 10. All empirical state sizes are measured in

                                                
1 Of course, there are other skew distributions, such as the Yule distribution (see Ijiri and Simon, 1977;

Reed, n.d.).
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Pr (S > s)

log s

FIGURE 1  Empirical state sizes in 1815

Pr (S > s)

log s

FIGURE 2  Empirical state sizes in 1998
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terms of square kilometers. Intuitively, the function indicates the probability that there will be
a size of an even larger size. For very small sizes, this probability is close to one, but as the size
increases, it falls quickly to very small values.

Visual inspection reveals that the empirical state sizes do not follow a power law because
of the obvious curvature of the data. To see if they are lognormally distributed, I generated such
curves using maximum likelihood estimation, as indicated in Figures 1 and 2 (Aitchison and
Brown, 1957). For the two years illustrated, the numerical analysis shows that a lognormal
distribution captures the observations quite well.

Even in 1815, the data accurately conform to a lognormal distribution. For that year, the
estimation (based on 34 observations) yields

log S ~ N(4.98, 1.02),

with a mean absolute error2 (MAE) of 0.048. In 1998, the fit is even more impressive, as
reflected by the lower MAE of 0.028 based on as many as 154 state sizes. Figure 2 demonstrates
that the empirical curve approximates lognormality very well. At this point, the estimated curve
approximates the following distribution:

log S ~ N(5.31, 0.79).

Further analysis, not reported here for space reasons, shows that the lognormal shape
holds up for most of the intermediate years as well.

What explains the strikingly good fit? What theoretical inferences can be drawn from it?
The obvious problem is the potential for an infinite number of mechanisms that are capable of
producing lognormal laws (Russett, 1968, p. 315). Yet, these empirical findings are helpful
because they can be used as an explanatory target. After all, far from every model is capable of
generating the patterns in question. We can say, however, that any systemic theory of state size
worth its salt, or possibly even any general IR macro-theory, has to reproduce this distributional
footprint to claim quantitative accuracy.

Nevertheless, in enormously complex settings, such as the Westphalian state system, it is
hard to match mechanisms with aggregate outcomes. For obvious reasons, counterfactual
substitutions become increasingly difficult as soon as we distance ourselves from the historical
path. Indeed, it is implausible that such fundamental properties as state sizes flow from
superficial, short-term processes.

Computational modeling provides tools that promise to alleviate this dilemma. If we
cannot conduct experiments in world history, at least we can re-create simplified, artificial
worlds that lend themselves to being experimentally manipulated (Cederman, 1997, Chap. 3).
Within such framework, it becomes possible to learn if specific mechanisms or conditions
generate the empirically observed patterns.

                                                
2 The MAE offers an intuitive measure of the fit of the curves in the units of the observations. Note that the errors

are calculated based on the logged axes. Other standard measures could have been used as well, such as the mean
square error (MSE). The most important criterion, however, is the visual shape of the point cloud. Small MSE
values may hide systemic deviations from lognormality.
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GEOSIM: AN AGENT-BASED MODEL

In the past decade, I have developed a computer-based geopolitical laboratory for various
analytical purposes (Cederman, 1997). Based on the agent-based tradition of Bremer and
Mihalka (1977), these models share a common architecture featuring raw Hobbesian power
competition among perfectly sovereign states. The current study uses a version, called GeoSim,
that was developed to regenerate power-law distributed wars (Cederman, 2003). Unlike earlier
versions, which were coded in Pascal, GeoSim was implemented using the Java-based toolkit
Repast.

Does GeoSim produce lognormal state sizes, or is some addition needed to achieve this
goal? Before attempting to answer this question, it is necessary to introduce GeoSim’s main
principles. Cederman (2003) describes GeoSim in great detail, so this discussion is limited to
a summary; the focus then moves to the incremental changes added in this paper.

The standard initial configuration consists of a 50 × 50 square lattice populated by about
200 composite statelike agents interacting locally. Because of the boundary-transforming
influence of conquest, the interactions among states take place in a dynamic network rather than
directly in the lattice. In each time period, the actors allocate resources to each of their fronts and
then choose whether or not to fight with their territorial neighbors (Figure 3). In the grid shown
in Figure 3, the lines correspond to state borders, and the dots or rings, to the capitals.

All states use the same “grim trigger” strategy in their relations. Normally, they
reciprocate their neighbors’ actions. Should one of the adjacent actors attack, they respond
relentlessly until the battle has been won by either side or ends in a draw. Unprovoked attacks
can happen as soon as a state finds itself in a sufficiently superior situation vis-à-vis a neighbor.
Set at a ratio of three-to-one with respect to the locally allocated resources, a stochastic threshold
defines the offense-defense balance.

Because of the difficulties associated with planning an attack, actors challenge the status
quo with a low probability. When the local capability balance tips decisively in favor of the
stronger party, conquest results, thus implying that the victor absorbs the targeted unit. In this
way, hierarchical actors form. If the target was part of another multi-province state, the latter
loses its province. Successful campaigns against the capital of corporate actors lead to their
complete collapse.

Territorial expansion has important consequences for the states’ overall resource levels.
After conquest, the capitals of conquered territories are able to “tax” the incorporated provinces,
including the capital province. As shown in Figure 4, the extraction rate depends on the loss-of-
strength gradient, which approaches one for the capital province but falls quickly as the distance
from the center increases (Boulding, 1963; Gilpin, 1981, p. 115). This function also governs
power projection for deterrence and combat. Given this formalization of logistical constraints,
technological change is modeled by shifting the threshold to the right, a process that allows the
capital to extract more resources and project them farther from the center. In the simulation runs
reported in this paper, the transformation follows a linear process in time. (Note that in the grids,
the capitals of states that have undergone at least one technological change are depicted as rings,
not dots; see Figure 3.)
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FIGURE 3  A multipolar sample system at time 5,000

Together, these rules produce four possible patterns:

1. The number of states will decrease as the power-seeking states absorb their
victims.

2. As a consequence of conquest, the surviving actors will increase in territorial
size.

3. Decentralized competition will create emergent boundaries around the
composite actors.

4. Once both sides of a border reach a point at which no one is ready to launch
an attack, a local equilibrium will materialize.
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FIGURE 4  Technological change modeled as a shift of loss-of-strength
gradients

STATE-SIZE DISTRIBUTIONS IN THE UNMODIFIED GEOSIM MODEL

How could the agent-based model shed light on the historical record of state sizes? It
might seem that the simulation model has little to do with the empirically observed process
described above. Whereas the model produces a steady fall in polarity, the dataset of Lake and
colleagues points in precisely the opposite direction.

If the time perspective is lightly expanded, it becomes clear that within the Westphalian
state system, polarity has decreased dramatically over the centuries. Although no precise figures
exist, historians have counted about 1,000 independent political units in the Middle Ages (Jones,
1981, p. 106). Early modern Europe still had about 500 such units (Tilly, 1975). What followed
was a phenomenal consolidation; by the 19th century, the number had decreased to about
25 states (i.e., half of the polarity reported for the period above).
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Rather than trying to model the last 200 years of history, the goal of this paper is limited
to the reproduction of state sizes as they appeared at the beginning of the empirical sample
period (i.e., during the first half of the 19th century, before nationalism and democracy started to
have geopolitical repercussions). This limitation seems to be reasonable, because GeoSim  in
its current form  does not attempt to trace modern, participatory politics, either in terms of
nationalism or democracy.3

Therefore, the high initial polarity characterizing the simulation runs makes sense. The
main target then is to generate state-size distributions that are lognormal at a level of accuracy
comparable to the estimated curves reported in the empirical section. To make a comparison
possible, it is important to produce state systems with roughly the same number of states as in the
19th century (i.e., about 50).

The experimental procedure goes as follows:

1. Run a batch of 15 runs for 10,000 periods.4

2. Calculate the mean polarity for each time period of all the runs.5

3. Select a time point t* with an average of approximately 50 states.6

4. Estimate lognormal distributions for all the 15 runs at t*.

5. Select a representative run with the median MAE.

6. Use this value and visual inspection to evaluate the lognormal fit.

Applied to the 15 runs of the standard model in Cederman (2003), Step 3 tells us to stop
at time period 5,000. At this point, the representative run with the median fit corresponds to the
55-state system shown in Figure 3.

What does the synthetic state-size distribution look like? Figure 5 suggests that it does
not resemble a lognormal pattern. Rather than coinciding with the estimated c.d.f., the point
cloud intersects the curve, indicating that large states are over-represented and that intermediate
size states are scarce. The almost vertical drop for large state sizes suggests that these units are
too similar to conform with a lognormal distribution. The relatively high MAE of 0.086 confirms
the deviation from the empirical target. Compared with the distributions estimated in the
19th century, this value is at least twice as high as in most of those cases.

                                                
3 For attempts to extend GeoSim to such settings, see Cederman (2001, 2002).

4 Strictly speaking, all runs include an initial 500 periods before measurement starts. Thus, the total run time
amounts to 10,500 periods. All run times are indicated, including the initial period.

5 To speed up the simulations, state-size distributions are computed only every 500 time steps.

6 “Atomic” states comprising only one unit are not counted because such entities reflect a lower “time resolution”
in that they occur as a part of state breakups. See the rules of  “structural change” described in Cederman (2003).
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log Pr(S > s)

log s

FIGURE 5  Representative size distribution at time 5,000

Careful scrutiny reveals a recurrent pattern featuring historical breaking points that allow
a small number of “great powers” to outgrow the rest of the states. This phenomenon happens
more or less simultaneously, thus creating historically unrealistic equality in terms of the
territorial sizes. This pattern is typical for most of the runs. The histogram in Figure 6 shows that
the run with the median fit is indeed representative of the entire ensemble of 15 simulations.
Some error values more than triple the empirically observed rates.

In sum, GeoSim, in its standard configuration, definitely fails to generate realistically
distributed state sizes. The obvious question arises: would it be possible to modify the system to
bring the model’s output in closer harmony with the empirical patterns?

ADDING RUGGED TERRAIN

The computational experiments described in the previous section show that a higher
degree of geopolitical diversity is needed. Virtually all theories of state size postulate the
presence of constraints that impose increased costs as the size of a state grows, although the
identity of those obstacles varies according to the theory. In keeping with the geopolitical focus
on the GeoSim framework, mountainous and inaccessible terrain was allowed to slow down
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MAE

FIGURE 6  Distribution of deviations from lognormality, MAE

conquest and territorial expansion. Together with cultural differences, this factor is mentioned
most often in explanations of state size (e.g., Bean, 1973). In his comprehensive study of
European state formation, Jones (1981, p. 106) presents the basic logic:

Belts of difficult terrain lying between the core-areas, and ancient ethnic and
linguistic apartheid dating from early folk movements and settlement history,
helped to maintain the individuality of political units. Amalgamation went so far
but no farther; never to a single empire. Amalgamation costs were high. Major
natural barriers protect several parcels of territory the size of modern nation-states
and the more durable politics to fit the framework and there stop.

While the GeoSim framework can be adopted to feature cultural differences and
nationalism (Cederman, 2002), this paper focuses exclusively on geographic obstacles. On the
whole, the Jones (1981, p. 107) theoretical perspective dovetails nicely with the modeling project
presented here:

Optimal-size solutions for European states cannot be worked out as simple
geometry. The spaces on the board have different values like those in the game of
Monopoly and capturing and amalgamating some of them is exceedingly
expensive. Where terrain did not provide much protection, units tended to
disappear in takeovers by their neighbours.

Rather than trying to account for specific state sizes, Jones is content with offering
a “lower-bound theory of European state formation in which other forces decide the precise
outcome, but the selection of the nucleus of the rising state will be from among the richer
potential cores” (p. 109). Again, this idea corresponds closely with the explanatory ambition of
the current paper.

The task then is to modify GeoSim to mimic real-world geographic constraints. This
change can be performed easily by creating an artificial topological map that allocates a “height”
to each cell in the grid. First, a tunable number of mountain peaks is distributed randomly across
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the grid. A diffusion process then connects these peaks with their surrounding sites, thus creating
relatively smooth mountainous terrain gently sloping down to the plains.7

Having described the initialization of the landscape, we need to consider the behavioral
implications of the rugged terrain. The key to these modifications resides in the notion of
effective, rather than geographic, distance. Whereas the base model uses Cartesian distances as
input to the logistical curve presented in Figure 4, the modified version replaces this measure
with one that takes the difficulty of the local terrain into account. The additional obstacle plus the
distance per unit depend on the “altitude” of the mountains, where the peaks represent the
maximum logistical penalty. The simulation below assumes that the initial parameter is three.
Each time a province is conquered, the effective distance from the capital is calculated on the
basis of the effective distance of the conquering province, adding the terrain-corrected value of
the conquered area. If a mountain peak is conquered, three effective distance units (rather than
one) are added to the accumulated distance from the capital. Apart from this change, the
logistical distance curve shown in Figure 4 remains unchanged. It should be stressed again that
capitals must cope with these constraints, both when allocating and when projecting resources.8

Figure 7 displays a grid with a geographic setting of this type. The gray shades
correspond to the altitude of the virtual mountains. This particular snapshot describes the
situation in time period 7,000. State formation has already generated a number of larger,
compound states. As expected by Jones (1981), the largest states are located in the more easily
accessible basins (which are depicted as the brighter areas), whereas the smaller units can be
found in the mountains and the periphery of the system. Moreover, as a rule, state borders tend to
coincide with the mountain ranges.

What differences do geographic obstacles make in terms of state-size distributions?
Following the same experimental steps as in the previous section, I concluded that the
15 replications generated about 50 states at time period 7,000. It is not surprising that t* is
somewhat higher with the mountainous terrain than without because the additional obstacles can
be expected to slow down state formation. Again, the run associated with the MAE was selected
and the distribution estimated. Figure 8 presents the results of this procedure.

It is readily apparent that this distribution comes much closer to the empirical benchmark.
While some deviations occur for intermediate-size states, on the whole the observations conform
roughly with the estimated curve. This is reflected in a much lower mean MAE of 0.050 than the

                                                
7 To be more precise, the terrain module allocates heights to every cell in the 50 × 50 grid. The algorithm starts by

creating a random selection of mountain summits constituting a fraction propMountains = 0.05 of all unitary
cells. A recursive algorithm is then run repeatedly timesSmooth = 20 times, smoothing the height of the
surrounding cells. This “brush” continues to a cell in the von Neumann neighborhood with a probability of
prVisit = 0.8. For each “visit,” the algorithm sets the neighboring call to a weighted average
(propSmooth = 0.7) of the initial cell and its previous value. From an intuitive standpoint, this algorithm is
similar to water flowing from the mountain peaks, dragging with it soil that leads to a smoother landscape
around the summits.

8 This algorithm calculates distances based on the square grid, as if the system were a big Manhattan, rather than
as the crow flies.



374

FIGURE 7  Snapshot from system with difficult terrain at time period 7,000

one obtained with the base model. The histogram shown in Figure 9 helps to gauge the fit in all
15 runs. A comparison with Figure 6 reveals that the fit for the geography-dependent runs
approximates lognormal much better than those of the base model.

This experimental procedure prescribes the selection of a particular polarity level.
Although the choice of about 50 states reflects a specific historical benchmark, the finding that
terrain helps generate empirically realistic state sizes would be potentially fragile if it hinged on
the number of states in the system. Therefore, I compiled an additional graph that plots the
average of the MAEs in the 15 runs over time (Figure 10). This step allows a dynamic
comparison of the two experimental configurations, with and without terrain.
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Pr (S > s)

log s

FIGURE 8  Representative size distribution for system with
terrain at time 7,000

MAE

FIGURE 9  Distribution of lognormal fits in system with
terrain at time 7,000
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Mean MAE in 15 runs

Time

Legend:
Straight line = Systems without terrain
Dotted line = Systems with terrain (height three)

FIGURE 10  Mean value of loglinear fits over time with and without
terrain

On the basis of the findings shown in Figure 7, it can be concluded that the runs with
terrain (marked with dots) produce a persistently tighter fit than without it  nearly at the level
of real-world data. Moreover, on average, the discrepancies remain steady throughout the
simulations. In the base model, however, the runs shift decisively away from the lognormal
curve between 3,000 and 4,000 time steps into the simulations. This effect is precisely what was
captured in the snapshot in Figure 5.

It is obviously premature, however, to draw any far-reaching conclusions about the
influence of terrain on state size. All that has been done so far is to show that in a particular
artificial world, the finding can be upheld. Because most of the parameters have been intuitively
tuned for the model to behave realistically, sensitivity testing and further empirical calibration
are still urgently needed.



377

PRELIMINARY SENSITIVITY ANALYSIS

This paper offers very limited insights into the robustness of the computational findings.
This section explores three theoretical dimensions:

• Consideration of different levels of terrain obstacles,

• Process of technological change, and

• Reconstruction of a size distribution that approximates the current state of the
international system.

To facilitate analytical comparisons, Table 1 provides an overview of these experiments.
Corresponding to a set of 15 runs, each line contains information about representative
distributions selected according to the six-step procedure, and statistics about the entire set of
runs. Shaded lines 1 and 3 refer to the two configurations that have been discussed. Line 1 is
associated with the base model, whereas Line 3 introduces rugged terrain in the standard
configuration with an altitude of three.

Focusing on the difficulty of the terrain, Lines 2, 3, and 4 together tell us that the other
levels of obstacles produce similar, if not equally impressive, results. Yet, in all cases, the
lognormal fit clearly improves over the base runs in Line 1. Thus, other things being equal, the
main finding appears to hold reasonably robustly.

The second dimension highlights technological change. Tuned to provide power laws
over a large size range in Cederman (2003), the standard rate shifts the loss-of-strength gradient
by as much as 20 units from an initial 2 units during each simulation (Figure 4). To explore a less

TABLE 1  Results from the Sensitivity Analysisa

Parametersb Representative Distribution Output from all 15 runs

# dim tech terr t* #states µ σ MAE
mean

#states
mean

µ
mean

σ
min

MAE
max

MAE

1 50 20 0 5,000 57 1.38 0.48 0.085 49 1.54 0.47 0.046 0.126
2 50 20 2 7,000 62 1.51 0.35 0.055 50 1.51 0.47 0.039 0.085
3 50 20 3 7,000 43 1.47 0.53 0.050 53 1.45 0.48 0.035 0.088
4 50 20 4 7,000 60 1.37 0.48 0.059 52 1.42 0.52 0.045 0.089
5 50 10 0 8,500 50 1.52 0.36 0.086 52 1.49 0.41 0.058 0.137
6 50 10 2 10,500 53 1.48 0.43 0.049 54 1.50 0.43 0.036 0.084
7 50 10 3 10,500 51 1.48 0.46 0.043 59 1.45 0.43 0.031 0.062
8 50 10 4 10,500 54 1.39 0.52 0.048 54 1.46 0.46 0.030 0.076
9 75 10 0 7,000 172 1.34 0.40 0.092 140 1.40 0.42 0.047 0.117
10 75 10 3 9,000 146 1.41 0.44 0.032 154 1.38 0.45 0.020 0.040

a The shaded lines refer to the runs discussed before the sensitivity analysis.

b dim = dimension of grid; tech = rate of technological change; and terr = max level of terrain obstacles
(mountain altitude).
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dramatic geopolitical transformation, the next group of runs features half that rate (i.e., a shift by
10 units). While the runs without terrain, shown in Line 5, differ very little from the base runs in
Line 1, geographic constraints contribute even more strongly to generate realistic output. Lines 6,
7, and 8 reveal that for each level of ruggedness, the lognormal fit improves compared to the first
set of runs with a high rate of technological change. In fact, for mountain heights of three, the
MAE value of 0.043 of the representative run is one-half of the run without terrain.

Still, these results fall short of reproducing state sizes comparable to those in today’s
international system. Although this is not the prime scenario because of the model’s limited
suitability in such scenarios, it is interesting to see how far the model can be pushed. Because the
real-world distribution in 1998 has as many as 154 states, it seems reasonable to generate around
150 rather than 50 states at time t*. To produce polarity levels of this magnitude, however, it is
necessary to increase the dimensions of the grid from 50 × 50 to 75 × 75. Lines 9 and 10 report
the results. Here, the difference in terrain is even more marked than in the smaller grids. With
a median MAE of 0.032, the topologically modified runs come very close to the empirical fit
(which has a MAE of 0.027). Despite the low MAE value, the shape does not live up to
loglinearity because the points exhibit a slightly exaggerated curvature, especially for large
states. Whether this depends on the absence of nationalism or a fragility in the present model
requires further research, which is beyond the scope of this study.

Before considering such extensions, however, it is very important to check whether the
power-law result in terms of war sizes of Cederman (2003) remains robust despite the
topological alterations introduced in this paper. Recall that Line 1 produces exactly the same war
behavior as found in the earlier paper. A quick check of the standard model in Line 2 suggests
that scaling survives the changes without problems. Inspection of all the 15 log-log plots (not
shown here) confirms that linearity is upheld across the board. Numerically, the result is
indistinguishable from that reported in Cederman (2003) because the median R2 is as high as
0.994 as opposed to 0.991 for Line 1, and the range of R2 values has a higher minimum:
[0.983, 0.997]. As might be expected, the slopes become steeper (a median of −0.69 rather than
−0.55).9 Thus, it can be concluded that the geographic modification generates realistic sizes of
both wars and states.

Having investigated the findings’ robustness along a few selected dimensions, I am still
not in a position to draw any firm conclusions about the independent effect of logistical
constraints on state sizes. Further sensitivity analysis and empirical calibration are clearly
needed. A promising avenue of analysis would build on geographic information system  tools
and other sources of geographic data to derive empirical measures of terrain and communica-
tions. Such data could then be used to calibrate the model (Lake and O’Mahony, 2002). For
example, investigations of the entire international system appear seriously incomplete without
paying more attention to naval warfare and sea communications (e.g., Rasler and Thompson,
1989).

This paper has suggested that the decrease in average state size throughout the
20th century, together with the explosive proliferation of independent states, is closely associated
with nationalism and participatory politics: “These nineteenth-century developments differed
fundamentally from other histories of territorial consolidation in Europe” (Rokkan, 1999,

                                                
9 For shock levels at 10, the improvement is equally significant (see Line 7). In this case, the median R2 value is

0.991 with a range [0.980, 0.996] and the median slope −0.72.
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p. 263). To capture such effects, the model needs to be explicitly extended, which is fortunately
within the realm of possibilities. Such an extension requires both a mechanism for secession and
a representation of culture and identity (Cederman, 2002). In addition, it would be desirable to
develop empirical measures of the colonial empires’ territorial scope.

Beyond this important challenge, the long-term goal would be to join the economists and
other scholars who attempt to explain the size of particular types of states; however, the current
systemic approach provides a more solid theoretical method because it allows rejection of
models that fail to produce the distributional benchmarks. Moreover, it appears very likely that
state size is to a large extent an inherently systemic attribute.

Finally, elaborations of this type represent one possible strategy. Equally interesting,
however, is the idea of radically simplifying the model. Such a project might say more about the
logic of the underlying mechanisms, the detailed operation of which is very hard to trace in the
GeoSim framework (e.g., Stanley, et al., 1996).

CONCLUSION

This study demonstrates that realistic, lognormal state-size distributions can be “grown”
artificially. To my knowledge, no one has proposed a model with this capability. The main
finding confirms the intuition of systemic theories that stress topological constraints as a course
of geopolitical diversity. Furthermore, the model generates power-law distributed war sizes, thus
hitting two important empirical targets simultaneously.

Of course, this paper is not the definitive word on the topic of state size. On the contrary,
I hope that it will inspire others to take on the challenge of modeling macro-historical processes
with computational tools, for this approach has many obvious advantages. First, as a contribution
to IR theory, it goes well beyond the traditional debate about polarity, with its unclear definitions
and failure to endogenize the number of states. As a complement to traditional quantitative
studies and rationalistic model building, computational models of this kind can serve an
important purpose in checking the empirical plausibility and internal consistency of systemic
theorizing in IR.

Second, agent-based modeling also constitutes a useful alternative to individualist
theories of state size, especially to those that regard this property as an equilibrium outcome. By
offering an explicit representation of the dynamic mechanisms constituting nonequilibrium
processes, the generative approach sheds more light on the sources of the empirical patterns than
does comparative statics analysis. Since longitudinal data are available, it would be worthwhile
to take advantage of this information in theory building.

Third, by introducing a new way to experiment with what is profoundly unalterable in the
real world, the current computational approach will hopefully revive long-neglected geopolitical
scholarship and put macro-sociological analysis on firmer ground. Without the “accounting
mechanism” of agent-based modeling, it is hard to assure that intuitively compelling arguments
are connected with observed macro patterns.
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INVITED SPEAKER:

EXPLAINING STATE SIZES: A GEOPOLITICAL MODEL

(Saturday, October 4, 2003, 8:30 a.m.)

Lars-Erik Cederman, Swiss Federal Institute of Technology
Chair and Discussant: John Padgett, The University of Chicago

John Padgett: Lars-Erik, as you probably realize, is the most well-recognized agent-
based modeler in political science. It’s not just my opinion, but the field’s opinion has done this.
He’s had a career, an Axelrod student in Michigan, gone to UCLA, gone to Harvard University,
and now he’s at the Swiss Federal Institute of Technology, and his work has been actually quite
influential in international relations. And indeed he is a sign, you might say, that the field of
political science, which, like most disciplines, is not that risk-taking, is actually starting slowly to
accept this whole agent-based modeling paradigm, and Lars-Erik is the leader in that.

Lars-Erik Cederman: Well, thank you, John, for these very kind words.

Okay, so let me see if we can get going here. This is the outline on my presentation, and
afterwards I’ll say a few things about the theoretical background. I will show you a few pictures
of the real-world state-size distributions. And then we’re going computational, and I’m going to
tell you a bit about how I was trying to reconstruct these distributions. Before closing, I’ll also
say a couple of words about the robustness.

[Presentation]

Unidentified Speaker: Could you briefly define a state?

Cederman: The sovereign entities in the international system. You can’t just have a little
ethnic group in the mountains; you must have a sovereign unit. I don’t have the exact operational
definition that Lake and company used.

Unidentified Speaker: For several years in World War II, there was occupation of a
number of states in Europe. Those states still exist.

Cederman: Yes, but that’s a detail compared to the grand array that I’m interested in
here. I’m interested in the fact that some process is coming down from several hundreds of years,
leveling out before something new happens. I’m modeling this. I want to land in my simulations
here and, at the same time, have not just 50 states, but those I want to have in a long, normal
row.

That’s the challenge here. We’ll come back to the underlying reasons. I postulate that this
is about nationalism and the breakup of empires. Decolonization is a huge factor, but the breakup
of the European empires will be important too. And my model in its current form doesn’t really
cover that. So let’s focus instead on what the model does.
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This work is based on my own geopolitical framework that I created in the early 1990s
and has been gradually improved and reimplemented. Now it has found its optimal form due to
Repast, entirely in Java. You have a dynamic network that’s overlain on a territorial grid. Some
people think that this is a CA basically. But it isn’t; it’s a dynamic network that happens to have
some kind of spatial representation that is grid-based.

[Presentation Continues]

Unidentified Speaker: What does this mean for the local interaction between agents?

Cederman: There’s no difference in the rules; one state can attack another, as before.
But the weights put on the calculations when these states are evaluating the benefits of attacking
will be affected by the distance. The hope is that this is going to lead to a rather realistic
situation, where large states reside in the plains where there is fertile soil. The larger units seem
to build up around these fertile bases, and that’s exactly what Jones anticipates.

Unidentified Speaker: When you start the simulation, are all the states the same size?

Cederman: The simulations all start with a system seeded with 200 states, almost
equally sized. During those first 500 periods, I try to let the systems settle and use the local
interaction to form a more spontaneous distribution. There are no wraparound effects, for the
simple reason that in the real world, in geopolitics, unless you look at the whole globe, there
aren’t. It’s not realistic.

[Presentation Concludes]

Commentary

Padgett: Last year, Lars-Erik gave a social-theory style talk, and a distinguished social
theorist, Alex Wendt, commented. This year he’s giving a more data-oriented talk, so my
comments will be data- and methods-oriented. I want to reflect on model validation issues, which
have been very central issues for a long time. Let me frame things in the following way. Lars-
Erik represents a small but growing number of agent-based modelers who are looking into
distributional forms as an approach to model validation. He mentioned Doyne Farmer on stock
market issues and a number of people who have processual dynamic modeling style inclinations
and are turning to distributional forms as an approach to model validation. I support that move. I
think this is a good occasion to reflect on how to do that and on what the strengths and
weaknesses in that approach are.

Why is this attractive? Why do people want to look at distributional form rather than just
mean variance type of regression approaches? The answer is very straightforward. Processual
distributional form is a signature of process. Many different distributions and textbooks in the
stochastic process literature show particular detailed processes of cumulation, multiplication,
subtraction, division, and so forth. Sometimes they result in normal, or chi squared, or power law
distributions. There’s a wide range of distributions, and all of them have different processual
roots.
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In my early days, I did work mostly in stochastic processes. I was attracted to this work
for the same reasons that people are attracted to computer simulations; namely, that it’s dynamic;
it revels in heterogeneity; it’s not a homogeneous distribution; it’s processual. There’s a
resemblance between the old stochastic process literature and the new computational literature
that is being brought to the surface by this emphasis on distributional form. So although these
two types of literature developed independently, the more people have turned to distributional
forms, the more the connection between stochastic process literature and computational literature
have been highlighted. I applaud this move, because the intuitions and sensitivities of these two
literatures — heterogeneity, interactions, distributional outcomes — are similar.

They differ with regard to one huge variable, though. The stochastic process is
overwhelmingly KISS (keep it simple, stupid). It wants really stripped-down, minimalist types of
models. Computational models typically go a little bit in the other direction. Although the
approaches differ a lot with regard to this one dimension, they are very similar with regard to
every other dimension. Think about possible deeper and more explicit connections between
computational modeling and the old stochastic process approach.

Let me comment about data before I return to stochastic processes. There were some
questions early on, such as “What is a state?” The historian thinks that’s a very important
question, not only for its own sake. If you look at the actual trends over time and the “blips”
(e.g., the World War II blip and the big states in the middle blip), the rise and collapse of an
empire is apparent. It’s not obvious what a state is. And the unit (of a state) is not necessarily
consistent over this long time scale. Units are typically not consistent over long time scales. So
historians are picky with regard to the stochastic process, computer simulation, Lake’s data set,
this whole enterprise. Fundamentally these are radically changing units. So doing a single model
across time seems crazy.

In response, the modeler will say, “Look at those lognormal distributions. They’re
amazingly good.” They’re really good at the beginning. Lars-Erik didn’t show us the middle,
which I would like to see, because the middle represents the big empire. I would be much
encouraged if it goes down in the middle period. But let’s assume it doesn’t. Then you have the
following problem. The historians and common sense indicate that the really fundamental issues
about changing definitions of states have been, to some extent, “swept under the rug.” Yet the
models are doing powerfully well at explaining this, in spite of these complications.

So how are we going to achieve goodness of fit between simple models and historical
richness? Computational modeling is attractive because it at least offers the promise (delivery is
another issue, of course) of filling in the continuum. You’d like to have some “knobs” that tune
the world down to a very simple Gibrat’s Law and then tune it up to actual history, showing the
rise and fall of empires and so forth. Lars-Erik doesn’t claim he’s there. Yet this is the promise,
and it is why we’re here in this room: we believe that you could make some disciplined,
principled judgments on this continuum. Don’t dismiss the historians but respond to them.
Determine when their issues matter with regard to lognormal distribution and when they don’t.
That’s my philosophy on the general picture of what we are trying to do in this enterprise.

Now I’ll be more specific. When you turn to what Lars-Erik is doing — fitting lognormal
distributions of city and nation sizes — a question arises with regard to all these distributional
sorts of models. Lars-Erik has the data on lognormal distribution, and he has a model that fits
that data. He makes a move, and you learn something from that move, specifically about terrain.
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He used the data as a way of pushing forward his own logic. Both his own logic and general
theorizing are improved by this exercise, but that doesn’t really prove that the model is valid. It
means that he has learned something and he’s making progress. That’s an internal test. But in
terms of the external test, is this what’s going on in the real world? We cannot say yes or no
because a lot of processes can lead to lognormals. Gibrat’s original processes led to lognormals,
and it was a multiplicative, randomly distributed error term. Instead of having normally
distributed error plus, normally distributed error plus, normally distributed error plus, you have
normally distributed error times, normally distributed error times. It is a large number of
multiplicative terms that are added or multiplied together. It shows and generates Gibrat’s law,
and the original application in firm size distributions. This means random profit rates. For
example, say there is a random distribution of profit rates, +5%, +6%, +7%, -5%, 10%, and so
forth. If you are looking at the distribution of assets at the end of the day, you multiply
percentages, you don’t add percentages. So when you multiply this, a random walk on the profit
rate generates a lognormal distribution of firm sizes. That’s a classic stochastic process,
minimalist, KISS type of thing that’s almost a nihilist result, in the sense that a really random
distribution of profits fits the data. This is a nihilist-type conclusion, yet it generates lognormal
distributions.

If you look in the literature, you’ll see many other processes that generate lognormal
distributions. For example, I just saw one about splitting. You take a unit line and then randomly
split, split, split. As N goes to infinity, you get a lognormal distribution of interval lengths. The
point is that for this distribution, like any other distribution, a number of processes underlie it.
Does that mean that the real world is just Gibrat’s law or this “splitting thing”? No, it just means
that we have to think. Now that we’ve thought about distributions and so forth, we have to think
about external validity in addition to internal validity, and what we can do.

There are three things you can do. The first is what I asked Lars-Erik about, which is on
the diagnostic level. It’s great that you could show good fits, but it would be even better if you
could show where the model expects bad fits. The middle period, which is the empire world, is
not really well captured by the model. If the data are also not well captured by the model, that’s a
point in your favor. But if the thing fits the data just as well in the middle period as it did in the
front and end period, that’s a point against you. That’s a little internal diagnostic I would
emphasize.

Stick with the distribution. Work with the conditions under which you expect the
distribution to work or not work. See if the rank order of fit is consistent with your self-critique
of your own model. That’s an internal test you can do.

The second thing you can do is what Lars-Erik did magnificently — that thing about war-
size distribution. A standard critique of any distribution fitting is that it is just curve-fitting. You
could take a model and try to get lognormal. In response to that, Lars-Erik could say, “We don’t
have to look at just one distribution. Let’s look at other distributions.” Say we have done curve-
fitting on the target distribution. Can we use another distribution, like war-size distribution, that’s
not based on curve-fitting to evaluate the model? In his case, that worked very well. And the
more alternative multiple distributions you have, the more confidence you can have in your
results.

As a footnote, I would like to add that historians have a very different approach to
validating models or interpretations than do social scientists. Social scientists take a given data
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set and try to fit it. Historians say a model or interpretation is good or bad, depending on how
many different archives they have visited. In other words, how many heterogeneous unconnected
data sources does your one interpretation fit? It may fit any one of these data sources poorly,
actually. But if it fits multiple frameworks sort of coherently, that’s what historians are
impressed by — not goodness of fit of one particular type of data set. What I’ve just said about
multiple distributions is a stochastic process way of making that same point: look at multiple
distributions and many different data sets, and rely on that as a mechanism.

The power of both computational modeling and the stochastic process is that they
generate predictions about multiple distributions. One should focus on that.

The third thing you can do is what Lars-Erik had thrown away at the end. He’s
sympathetic to this, but I would like him to take it seriously: distributions of change. Not just
distributions of final outcome but distributions of year-by-year change. That gets much closer to
the actual mechanism underneath these marginals, which is really what you’re talking about:
marginal one, marginal two. What does the structure of the interior of a cell look like? These
distributions of change are crucial. In my work on stochastic processes, they are what I found to
be most revealing. Distributions of outcomes are a good first step; they help you make sure
you’re “in the right ballpark.” But then you can have a problem: too many models fit the same
outcome. If you look at the detailed change distributions instead, you’ll find radically stronger
divergences among these sorts of things.

I’ll conclude with a pitch. The earlier literature on the stochastic process was motivated
by some of the same concerns as those held by current-world computational modelers. But
basically the two worlds aren’t meeting. There are no conferences attended by both stochastic
process people and agent-based modelers. The two aren’t connecting even though they should.
The benefit of connecting agent-based models to the stochastic process is that it gives you not
only well-defined literature but also more powerful statistics.

I agree strongly with what Lars-Erik said about “eyeball stuff.” However, I don’t go all
the way in that direction, because I would like to know whether the mean absolute errors are
statistically significant or not. For example, you showed some plots. I don’t know if there was a
good or bad fit. I have the same sorts of questions any statistician would have. I don’t think
eyeballing is quite good enough. But the stochastic process literature has quite a lot about
sampling from lognormal distributions. You could do a lot better than what you did in terms of
actual statistical significance tests if you examined that literature.

My final point is that in order build a bridge between the stochastic process and computer
simulation (which will strengthen model validations and speak to historians), agent-based
modelers need to have a certain style. This style relates to old debates between KISS and reality
testing. You must have some “knobs” that turn your model into real KISS — that strip it down
into real baseline, low-level, stochastic process stuff — so that you actually have a computer
implementation of some of the standard stochastic process methods. Then as you tune it up, you
can see the degree to which some parameters don’t alter the basic KISS lognormal outcome.
Some parameters do alter it. And you can have control over this sort of exercise. This is an
argument for KISS, but I’m also saying don’t stop there. I’m saying you need some parameters
to tune it down so you can actually solve it in a simplified version. If we modelers did that
exercise, I think we would be in a much better position to connect to the whole body of
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stochastic process literature, which would really strengthen our statistical and model validation
sides.

Questions and Answers

Greg Madey: With regard to the distributions, you observe a lognormal on the data and
suggest that lognormals are often generated by multiplicative processes. Do you have a
hypothesis about what’s going on in the real world that’s multiplicative that would be generating
the lognormal? Then when you observe the lognormal in your simulation, do you know what
multiplicative process is generating it? Are they the same thing? Also, what kinds of things
would change if your data were to go from lognormal to power law? Like your size of wars:
what’s different about the size of wars relative to the size of states? What changed? Why isn’t
the size of wars lognormal, or why aren’t the sizes of states power law, for example?

Cederman: I’ll start with the last question first. One of the most fundamental differences
has to do with the fact that wars are not limited in size, as states are spatially limited. So you
have a territorial system that is the upper limit. Wars, however, can drag out along a temporal
axis. Also, they are partly spatial. This may be the main reason why you can’t get the “fat tails”
or “parlor tails” in terms of state sizes, because the world has an upper limit; the planets cannot
grow.

When it comes to the first question, I’m still searching for possible mechanisms. But this
is an internal search for now. It’s too early for me to draw very tight links between the processes
in the real world and the stylized processes I’m plugging into my models. I completely agree
with John on his third recommendation. Without starting to calibrate those mechanisms using
real-world data, I cannot make stronger claims. So it’s still at the intuitive level. There is
something multiplicative about it; that’s how that plays out. It would probably require a lot of
research. Even if it may seem to be an internal search, there are external repercussions. You can
certainly say certain things about models that fail to produce this kind of pattern. It’s like a filter
explanation.

There is probably a huge number of models that can generate these outcomes. But there
are even more models that cannot. In that sense, I can claim to be on the right track. For
example, if Alassina and company make the assumption that all states are equally large, that
assumption doesn’t even begin to answer this question. There is some heuristic value.

Padgett: Do you have insight on where in your model there’s a multiplicative process or
something similar that’s producing the observed lognormal? One of the benefits of this type of
modeling is that that if you stumble across that process, that’s at least a conjecture as to what’s
going on in the real world.

Cederman: Yes. The answer is the loss of strength gradient. If I have no terrain, then I
get just a bunch of almost exactly equally sized states. So with the distance dependence, but
without terrain, I’m somewhat closer to something resembling lognormal distribution. If you
diversify it even more, you get even closer. My instinct is that it’s really about the spatial
distribution of state behavior, and how you can extract and project resources over space. That’s
the crucial dimension.
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Unidentified Speaker: I want to take issue with the discussant rather than the speaker. I
liked your three recommendations about what to do to elaborate on the results. But I want to
contest this idea of the individual search. What about the philosophy of science? How long do
you keep working on a model before you publish it? Nobody in science can come up with
absolute certain proof. People don’t prove things with absolute first principles. They just have
the most likely current explanation. You can’t say whether one individual in isolation has done
anything good. You have to ask, “Is this currently the best explanation? Is this the simplest
explanation? Is it the most powerful explanation for various reasons?” So if you come up with
two things that are equally simple and powerful, you have to examine them more and find a way
that they are different and separate them. Yet at some labs, people sit on results for years, and at
other labs, people get results out and allow other people to play with them and attack them. I
favor the latter.

Claudio Cioffi-Revilla: Lars-Erik, there’s no question that GeoSim today is the standard
for doing computational work on political research. But what would you consider to be the few
challenges in model design that would be significantly innovative with respect to the GeoSim
standard today or that you foresee in the near future?

Cederman: I make no claims of presenting a standard. I can point to a couple of places
where I’m going with this research. I’m moving toward [tying] in nationalism, and I’ve
presented a couple of papers on that. That’s one area where I want to infuse the landscape with
cultural entities. More fundamentally, when it comes to improving the whole framework, the
greatest challenge may actually be to loosen up some very drastic assumptions that I’ve made
from the beginning. I made them to make life somewhat simpler, but they may actually take
away some of the real fun.

I’m thinking of the sovereignty assumption: that these entities have very sharp borders,
and that when they attack an area, they may get it and incorporate that province. It would be very
exciting to start to loosen up these borders, because empires just don’t look like this. Most
historical empires have loose fringes: frontiers rather than borders. That is a huge challenge that
is on my agenda, but I don’t know how many years are going to elapse before I take that one on.
It has to do with the interaction topology. The progress that has been made within Repast with
this new package that Tom Howe and others have presented could be very helpful. Perhaps at
some point I would re-engineer the whole system to include not just civil wars and all sorts of
violations against sovereignty but also even the emergence of sovereignty. How did these entities
in early modern Europe emerge in the first place?

The ultimate problem with that is that you need to come up with some kind of
organizational code. The entities themselves would have to have some kind of a simple
representation for their organizational forms. Also I’d like to breed sovereignty from first
principles. That’s a tall order, to say the least. These are a couple of things on the agenda.

David Sylvan: I wonder if you might be able to commission an alternate modeling
exercise, or, as a way to incorporate some other kinds of things, to try to generate something that
would also get at some of these same distributions. For example, if you had a more social model,
you could bring in things, not just attacking, but marrying, inheriting, going bankrupt (which was
true for a lot of these princes), and coexisting. The really interesting question is less about the
ability to generate these things, because I think the points that have been made about that are
correct, and more about the particular kinds of absorptions. Who is absorbing whom? And the
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particular kind of microdynamics about the typical paths by which a particular unit ends up
absorbing parts of another one.

Cederman: These are all excellent suggestions. In fact, I’ve been dreaming of the
moment when some historian would be willing to approach this kind of research. I’d like to do
teamwork, because there’s no way I’m going to be able to maintain and continue to develop this
type of system while at the same time being a historian who visits a number of archives. Such a
meeting of minds or cultures could result in very serious scientific progress.

There are obvious reasons why it’s never happened. John did a good job in his comments
to explain exactly why that is so. You’re right when it comes to the dynastic marriages. For
instance, the Hapsburgs had a saying, “Others may fight, but you, lucky Austrians, marry” or
something like that. In reality, the social networks among the sovereigns — that whole game —
was actually very small, and a very small number of figures participated in it. And it’s well
documented, if not quantitatively, at least historically and qualitatively. The most exciting thing
would be to link that game to the territorial equation and see how both interact over time. But I
would certainly need help with that. That’s not a one-man show.

Brian Pijanowski: I was fascinated by that historical trend line. Could you introduce into
your model a test of how technology — at least technology of transportation — would change
the assumptions of the interactions between the states over time, and could you vary and relax it?
Have you done that?

Cederman: In fact, I’m doing that. I’m changing the communication technologies, in the
sense that the loss of strength gradient that I show as this curve is actually shifting outward. So I
have a very simple model of technological change. The reason is that I was unable to produce
power loss without that. And the base model of GeoSim, or the predecessor, didn’t have that
process. That’s something I added along the line. It’s so fundamental that if you want to study
centuries, you must have some kind of simple model of that process.

Joe Jeffrey: I was fascinated with the idea of the impact of technology on distance power
projection. What do you think would happen if you had a more heterogeneous set of laws for
different actors? Certainly there are lots of cases when some sovereign state has some unique
technology (this includes a general notion of technology, where it’s not just science or
engineering, but something like management techniques for organizing armies and so forth). You
might get a lot of interesting effects on your power law distributions. What’s your take on it?

Cederman: The very simple process I built in is capturing some of what you’re talking
about, because this sliding curve represents the state of the art in the system. It doesn’t mean that
all states update to that curve. In fact, I have a jerky update; in all probability, the state may
acquire the newest technology. So because of that function, I have differences that are absolutely
crucial. It would be even nicer if I had endogenous updating, where, for instance, fighting would
spread the weapons technology. Right now, it’s stochastic updating that’s happening.

Your point about organizational innovation is also well-taken. This is abstract enough to
capture that, too. But what you’re saying is right. I don’t draw any strict line between
technological and administrative improvements.
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INCLUDING RELATIONSHIPS, MOTIVATION, AND ACTOR-OBSERVER-CRITIC
IN THE HUMAN COMMUNITY FRAMEWORK

H. JOEL JEFFREY,* Department of Computer Science
Northern Illinois University

ABSTRACT

 The Human Community Model (HCM) is designed specifically for simulating human
action in the context of a social system. Actions are modeled as agents engaging in the
practices of a community, as opposed to the simpler input-process-output model, which is
suitable for simulating machines or animals. The HCM can be used in the construction of
formal models that capture a significantly wider range of the factors involved in group
human behaviors, including identity, individual and group preferences, and the complex
logical structure of behaviors. This paper extends previous work in three ways. First, the
HCM incorporates the logical relationship between an agent’s motivations and his/her
relationships, providing a more complete and sensitive representation of the fluid or
“smooth” changes in moment-by-moment actions. Second, the model is expanded by
explicit representation of three logically distinct types of agent functioning: (1) actor, in
which the agent engages in a social practice of a community; (2) observer, in which the
agent simply observes the facts of a situation; and (3) critic, in which evaluations of the
situation supply motivations to engage or not engage in various actions. Finally, the paper
discusses the implications of the HCM for simulating emergent characteristics and
features of social systems.
 
 Keywords: Agent-based simulation, human community model, human behavior, social
systems, social practices, social practice descriptions

INTRODUCTION

The Human Community Model (HCM) is intended to prove explicit representation of the
logic of human action in social systems. Social systems are defined as organized groups of
humans (rather than merely biological or physical agents). In the HCM, human actions are
modeled as agents engaging in the practices of a community, as opposed to the simpler input-
process-output model, which is suitable for simulating machines and animals. Both communities
and behavior have formal representations that can capture a wide range of facets, thus allowing
construction of formal, computer-implementable models that secure a significantly wider range
of factors involved in group human behaviors, including identity, individual and group
preferences, and the complex logical structure of behaviors (Jeffrey, 2003).

In the HCM, rather than simply being a way of thinking, all aspects, including
communities, practices, relationships, and motivation, have formal articulations, as do the logical
relationships among these factors. Having a formal articulation of these concepts allows us to
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represent, in machine-usable form, a much wider range of the aspects of behavior. The goal is to
have more complete and realistic simulations of social systems.

Formal representation of social practices has been used to build software systems that
model the practices of several different communities, including some question-answering
systems with knowledge bases of 50 to 150 practice descriptions, and a system to actually carry
out practices in a large multi-office bank (Jeffrey, et al., 1981; Jeffrey, 1983). One of the more
interesting aspects of previous work is the application to practices not usually considered as
formally describable, such as analyzing a person’s intrinsic motivations, or a manager
collaborating with a colleague.

Previous work applying the HCM to agent-based simulation focused on two aspects: the
hierarchical structure of human social practices and the logical relationships between behavior
and the actor’s place (formally, their status) in their community, and their communities (Jeffrey,
2003). Briefly, the model presented in Jeffrey (2003) includes aspects discussed in the following
section.

DESCRIPTION OF THE HUMAN COMMUNITY MODEL

The HCM is based on the central concept that human action, as contrasted with animal or
machine processes, is most appropriately and usefully seen and modeled as the actor engaging in
the social practices of a community. Both social practices and communities are formally
modeled, which gives a significantly richer representation of the facts of social action. This paper
extends the HCM by including interagent relationships and the motivational significance of those
relationships for behavioral choice by the agent, and the representation of three “modes” of agent
behavior: actor, observer, and critic.

A community is a group of persons, or “members,” characterized by specific social
practices, choice principles, statuses, languages, concepts, and world. Formally, a community is
defined as (Putnam, 1981):

Community = <M, P, Cp, S, C, L, W>,

where

M = members,

P = practices,

Cp = choice principles (govern choices in practices),

S = statuses,

C = concepts (distinctions),

L = language, and

W = world (of, for example, art, accounting, baseball, Lakota).
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Every member occupies one or more statuses in any community in which he/she is
a member. Each status has one or more (typically very few) social practices that are intrinsic to
that status (i.e., practices engaged in by members that position simply by virtue of being in that
position). Chess players play chess; mountain climbers climb mountains; and agent-based
modelers create agent-based models of systems. Pragmatically, the intrinsic practices provide the
“fuel” for a system of human actors; that is, the actions that do not need any other “cause.”
Rather, they are performed by an actor in that status simply when he/she has an opportunity.
Every action in which a person engages or everything a person does is a social practice of
a community (of which the person is a member). Thus, all actions are instances of engaging in
one or more social practices of a community.

The choice principles of the actor’s community function as priorities on the person’s
actions. “Preferences” are not an undifferentiated set (ordered or partially ordered) but include
both personal preferences (in the sense of the word) and priorities among actions reflecting
community values. As a number of authors have pointed out (e.g., Lustick, 2000), these values
are quite significant and very different from one community to another, leading to markedly
different actions. Because a person typically is a member of more than one community and has
more than one position within a community, the actions chosen reflect a complex and often
conflicting set of preferences and priorities.

Each practice is a hierarchically structured set of subpractices, sub-subpractices, and so
on. A practice is not “atomic” but is carried out by engaging in one of its known versions.
A version is a set of smaller practices such that completing the set is a case of completing the
larger practice.

Social Practice Descriptions

Formally, a practice is specified by a social practice description:

Social Practice Description = <S, D, G, C, V, Sk, Kn>,

where

S = stages/options of the practice, the other, smaller, practices necessarily or
optionally involved in carrying out this practice;

E = elements, or logical roles of the practice;

G = eligibilities of individuals for each role, specified by lists of individuals or
formal rules;

C = constraints on the occurrence of combinations of stages/options, either on
other stages/options or on specified states of affairs being the case;

V = versions, the sets of stages/options that are considered by members of this
community to be valid instances of this practice;
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Sk = skills, acquired by relevant history of engaging in practices, required to
carry out this practice; and

Kn = facts, concepts, or perspectives required for the practice.

The social practice description is a formalism originally devised by Putman (1982) to
extend the Ossorio (1978) basic process unit. Engaging in practices by engaging in versions,
coupled with the complexities of membership and status, provides a great deal of sophistication
in addressing issues of choice in action and representation of individual behaviors. Simulation
proceeds by selecting the practice with the highest priority and engaging in a version of that
practice, recursively carrying out Stage A by carrying out a version of Practice A, and so on.

Several researchers, including the above-mentioned formal work, have shown the value
of using hierarchically structured sets of social practices in communities to capture several
aspects of human action in social groups. Such work does not capture certain other aspects,
however, such as actor-observer-critic functioning; the logical role of motivationally significant
relationships: and the smooth, seamless way in which persons switch from one behavior to
another in response to changing circumstances. The difficulty is not in devising an algorithm to
model the fact that an agent’s behavior changes in response to new situations, but rather in the
prima facie verisimilitude of the simulation.

Because agent-based simulation with the HCM proceeds with each agent carrying out
a set of steps that comprise a version of a practice, any reasonable simulation must address the
assessment of current facts, including the state of affairs that is the outcome (by definition) of the
step just completed. Certain characteristics of this assessment are important in devising the
logical architecture of the system that includes it. First, in the real world, circumstances often
change in ways that have nothing to do with the practice currently being enacted by an agent. It
seems indisputable that on many occasions agents make observations unrelated to the practice
being carried out. Persons (agents) often stop in the middle of carrying out some action, even
though there is no lower-level, more detailed breakdown of that action into smaller behaviors, in
light of new circumstances, for example, stopping with the forkful of food on the way to one’s
mouth. Modeling this fact by an a overt observation step engaged in by an actor, while possible
technically, seems a poor fit with the facts — a technical “kluge.”

Second, behavior, especially human behavior, is often highly sensitive to facts involving
relationships between the agent and other agents or the agent and other states of affairs, including
desired objects. The intensity with which agents act to obtain a valued state of affairs changes as
the agent’s relationship to the state of affairs changes (physical proximity being the most obvious
of these relationship changes). Agents change their behavior when a practice is discovered to be
harmful or would endanger another agent with whom the agent has a positive relationship, etc.
The “smoothness” or “fluidity” of this change in behavior is difficult to model with only the
logic of hierarchically structured social practices and community factors, as fruitful as those
appear to be for capturing certain aspects of human behavior.1

                                                
1 The author is indebted to David Sallach (2003) for observations on the fluidity of human behavior in response to

changed circumstances, a cogent reminder of a criticism that has been made of all frame systems and “chunking”
approaches for a number of years (Dreyfus, 1992).
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This paper addresses these two considerations by:

1. Incorporating the logical relationship between an agent’s motivations and
relationships, providing a more complete and sensitive representation of the
fluid, smooth changes in moment-by-moment actions that is not represented in
the formal structure of social practices per se.

2. Expanding the agent model to include explicit representation of three logically
distinct types of agent functioning:

a. Actor − the agent engages in a social practice of a community;

b. Observer − the agent simply observes the facts of a situation; and

c. Critic − evaluations of the situation supply motivations to engage or not
engage in various actions.

3. Discussing the implications of this model for studying emergent phenomena
in social systems, in particular creating new communities and subcommunities
with distinct values and practices.

Functions of Actor-Observer-Critic

When an agent carries out a practice, three kinds of functioning are required. These can
be thought of as either logical roles (Ossario, 1981, p. 58; 1998, p. 25) or distinct modes of
functioning. The actor engages in social practices of the community, chooses which community
to act as a member during a conflict, and chooses what status to act on. Acting as a member of
a community in the chosen status provides a reason to engage in the practice or practices intrinsic
to that status.

The observer, implemented as a separate process, observes all facts and “posts” them to
the list of known facts.

The critic appraises each known fact for motivational significance. This appraisal
automatically gives the agent a reason to engage in behaviors — behaviors that the agent knows
provide an opportunity for achieving the change in state of affairs indicated by the critic.

Actor-Observer-Critic for Each Status

Actor, observer, and critic are types of functioning, not statuses in communities. These
functions are required for carrying out the practices associated with any status because they are
simply a formal representation of three logical requirements for successful functioning in
a situation in which success of a behavior is not guaranteed: the agent must carry out (part of) the
practice; he/she must observe the results of the action; and he/she must correct its functioning.
(These fundamental facts could be phrased in terms of feedback loops, but for our purposes,
rephrasing of these basic behavioral facts in the language of electronic circuits seems to have
little value.)
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Because each kind of functioning is associated with a status, an agent’s identity repertoire
(the statuses he/she occupies in each community of which he/she is a member) corresponds to an
actor-observer-critic repertoire, representing the three kinds of functioning of the agent in each
status.

Relationships

It is commonplace that persons (and some animals) have relationships with other agents
and other states of affairs that affect their behavior. These affairs can be either simple, such as
having food or avoiding danger, or much more complex, such as engaging in an intrinsic practice
of a religious community.

The relationships between the agent (person or animal) and other agents or states of
affairs are logically related to motivation for the agent to engage in practices: having relationship
R (to another agent, situation, object) gives an agent a reason (motivation) to engage in certain
practices and not to engage in others. If A has the relationship “friend” to B, he/she is motivated
to engage in certain kinds practices with B, to refrain from engaging in others, and so forth.

Because relationships and behaviors have this fundamental motivational character, which
plays a large role in the behavior chosen by an agent, the HCM has been expanded to include this
aspect of agent functioning, based on the articulation of this range of facts in Ossorio (1998,
pp. 87–91).

Each relationship is associated with a set of behaviors practiced in the community.
Having relationship Ri gives the agent reason (i.e., motivation) to engage in practices Pi,1 ... Pi,n.
Intuitively, reasons can be stronger or weaker, which is modeled by associating with reason Ri to
engage in practice Pj, –1.0 ��Si,j ����������	�
�	�����
������
������	��
�	����Pj is the sum
of the strengths of the motivations to engage in Pj.

Agent Functioning

Each agent engages in the practice Pj for which the total motivation is highest. The agent
engages in Pj by becoming involved in a version of it via the actor. The fact that the agent is
participating in the practice, a version of the practice, and the particular stage (or substage,
sub-substage, etc.) currently being engaged in is recorded in the representation of the current
state of the agent’s world — the facts known to be the case at that time.

Independently (in separate threads), the observer of each status occupied by the agent
watches facts. Each fact, when noted, is recorded in the representation of currently known facts.
In a parallel set of threads, the critic of each such status appraises the known facts, adding those
appraisals to the known facts (since an appraisal is a special kind of fact, one with motivational
weight). The actor thread, carrying out Pj, is interrupted when the practice called for differs from
the practice being engaged in (a fact reported by the observer and appraised by the critic).

When a practice is interrupted, it does not acquire a special status, such as being placed
on a push-down stack. Rather, it is handled as any other fact: the fact that it is “in progress” is
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observed and appraised, which automatically gives the agent a certain amount of motivation to
return to it.

Examples of the HCM

Everyday Example

The elaboration of the HCM, and its operation, can be illustrated by an example used in
earlier work to highlight the enhancements to the model. In this example, a couple goes out to
dinner to celebrate their wedding anniversary. A partially complete formal description of the
practice involved is given to illustrate the correspondence between the formalism and the
ordinary-language description. At dinner, each spouse has a glass of wine. The husband sips the
wine. The couple engages in several practices, beginning with sipping the wine and proceeding
to larger and more significant practices, all of which add up to celebrating an anniversary. This
last practice is intrinsic to the status of husband (and wife). The practices followed are listed
below:

• The husband sips the wine.

• The husband has a meal.

• The husband is dining.

• The couple has a meal together.

• The couple dines at a nice restaurant.

• The couple celebrates an anniversary.

(In each case, the verb phrase names the practice. Note that the phrase is a formal name. Thus,
“dines at a nice restaurant” is the formal rather than informal name for a practice.)

A partial description of the top levels of this hierarchy of practices is shown in Table 1. In
celebrating their anniversary, a couple engages in Paradigm 2, Version 1, a paradigm case that
consists of Stages 1a, 2, 3, 4, 5, 6, 7, 8, and 9. Stage 7 takes place by engaging in the paradigm
case version 7a, 7b, and 7c. Stages 7a and 7b take place by engaging in the paradigm case
Version 7ai through 7av.

In a straightforward, unproblematic case, this practice begins and is carried through to
completion. A number of authors have pointed out, however, that human complexities surface in
the cases that are not straightforward (i.e., ones that are either realistic or not).

Problematic Example

In light of the everyday example, let us consider a problematic case. In this case, the
husband (or wife) drinks a glass of wine when a diner at another table drops a glass, breaking it,
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TABLE 1  Top levels of hierarchy of practice (partial description)

Example 1: HCM elaboration and operation:

Couple celebrates a wedding anniversary
• Paradigm 1: Couple buys gifts for each other
• Paradigm 2: Couple dines at a nice restaurant
• Paradigm 3: Couple goes on a cruise

Couple dines at a nice restaurant
1. Couple goes the restaurant via one of three options:

a. By car
b. By train
c. By walking

2. Couple is seated and engages in one or more options (items 3−5)
3. Couple examines menu
4. Couple examines wine menu
5. Couple orders wine
6. Couple orders food
7. Couple eats meal together

a. Husband eats meal
i. Person eats salad (optional)
ii. Person eats soup (optional)
iii. Person eats main course
iv. Person eats dessert (optional)
v. Person drinks wine (optional)

b. Wife eats meal
i. Person eats salad (optional)
ii. Person eats soup (optional)
iii. Person eats main course
iv. Person eats dessert (optional)
v. Person drinks wine (optional)

c. Husband and wife converse
8. Couple pays
9. Couple departs the restaurant

and cuts his/her hand on the broken glass. The other diner is bleeding. Table 2 provides details of
the HCM and highlights its functionality by giving details of the problematic example.

Advantages of the HCM

An advantage of the HCM is that it provides an explicit framework for integrating
research into replication of what is sometimes called “cognitive” functioning (i.e., algorithms
based on representations of facts, including relational ones, to derive new facts, including both
observations and appraisals). It formally represents the relationship between cognition and
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TABLE 2  HCM problematic case

Example 2: HCM elaboration and operation for a problematic case

1. Couple dines at a restaurant.
2. Guest at adjacent table cuts hand on broken water glass  a fact with no place

in the practice of dining.
3. Couple observes that the other diner is bleeding. This fact is posted to the known

facts for each agent as is the state of affairs that the relationship to the injured diner
is fellow member (the “default” relationship between members of a community).

4. The critic function of each agent (more precisely, the critic function of the status
of member in good standing of the community) appraises the new fact: injury to
fellow member of community. Action called for: see that the member gets aid.

5. Husband and wife suspend dining; both observe whether activities involved in
helping an injured person (subpractices of emergency help practices known
to the husband and wife) are occurring.

6. Husband and wife observe help arrive.
7. Husband and wife observe that fellow member has now received aid.
8. The practice with the highest motivational value is chosen. (Dining has previous

value plus the fact that it is in progress.) The fact that one is engaging in an intrinsic
practice carries automatic reason to continue it.

action, and therefore for assessment of the implications for agent functioning of theories,
algorithms, or empirical findings in cognitive modeling and/or artificial intelligence.

SIMULATION OF EMERGENT PHENOMENA

The HCM does not include any explicit theory on how choice principles develop or
evolve. The reason for this is that although evolution of a facet of a community can be modeled
as a process, that process is not per se a social practice of the community (although a community
may, and some do, have practices in which the outcome is to change specific practices). The
fundamental goal has been to provide formal representation of all of the logic of actions in
a community, thereby providing the means for simulating the life of a community.

However, there is a closer relationship between this goal and that of understanding
emergent phenomena than is initially apparent. The HCM provides three mechanisms for
modeling emergence. First, the basic “unit” of simulation in the HCM is the action of the
individual agent (keeping in mind that one of the central features of the HCM is that individual
actions reflect several kinds of individual preferences and community principles). The laws that
govern individual behavior can result in the emergence of global phenomena and complex states,
which is perhaps the central concept in the discipline of chaos and complex systems, as discussed
by Gilbert (2003), Page (2003), and other researchers in the field. The elements of the HCM
provide a significantly expanded set of logical primitives involved in human behavior in social
groups, in comparison with the usual primitives for describing human action. The richer
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set of primitives provides a logically more complex system in which this kind of emergent-from-
individual-behaviors phenomena can occur. (The situation is perhaps analogous to having more
dimensions in a physical system.)

Second, many animal and human practices have an associated latency (i.e., a time
between episodes of a practice). This fact holds even for practices that are intrinsic, that is, for
which the agent needs no reason, only an opportunity. Thus, for example, if we model a chess
community, we know that playing a game is intrinsic to chess enthusiasts and is (tautologically)
engaged in whenever an opportunity arises. Realistically, however, actual human chess players
delay playing their next game for some period (which varies from agent to agent and clearly
must be modeled statistically in the case of many chess players). This latency results in a cyclical
pattern often found in practices, including eating (or for humans dining), sexual activity, sanitary
activity, growing of crops, hunting, building, and so forth. In addition, the heat and light of the
sun create 24-hour patterns found in several areas of human life. If we consider such biological
processes as plant growth, we can see that these cyclical patterns can extend over several seasons
or years (e.g., tree growth, reforestation, or even millenia-long weather patterns). In summary,
these cyclical nonbehavioral conditions create cyclical emergent behavioral phenomena, at all
time scales, modeled by including these conditions in the constraints of the social practice
descriptions of an HCM of the community of interest. (The cause of the latency may or may not
be biological. Of interest here is the set of cycles, at various time scales, and their impact on
practices.) This seems particularly interesting when coupled with the observer and critic
functioning, as it appears to be a model of the subjective phenomenon of a need or desire to do
some entirely unrelated action arising in the midst of one’s activity. (Has anyone not experienced
the need for food or coffee in the middle of an intense and interesting intellectual discussion?)

The third connection to emergent phenomena and change, the one we personally find
most interesting, is that human agents act deliberately to create new communities and choice
principles. That is, humans commonly engage in social practices that specifically result in a new
community. The simplest example of community creation is perhaps one child asking, “Will you
be my friend?” If the answer is affirmative (the second action in the practice), the result is a new
two-member human community. The same logic can be observed in the deliberate formation of
alliances between groups and nation states  creation of a new community by deliberate action.

Consider how this seemingly simple addition changes the dynamics of a basic predator-
prey community. The basics of this community consist of two statuses  predator and prey,
each with practices and choice principles:

• Practices
1. Predators: prey, fight, mate, raise young
2. Prey: flee predators, grow food, mate, raise young

• Choice principles
1. Predators: high priority for prey
2. Prey: high priority for fleeing

These practices are modeled via a practice description, each of which fundamentally
combines task analysis (with constraints on allowable sets of tasks), role specification, and
versions. Thus, the practice to “grow food” might include “sow seed, tend crop, harvest,” and
so on.
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To this simple model, let us add the status of pacifist and the following practices:

3. Prey: convert predator to pacifist
4. Prey: convert predator to defender
5. Pacifist: convince predator to spare prey

Here, we see the basis for modeling situations, which for humans, is more realistically termed
“ally” and “enemy,” rather than predator and prey; allies can sometimes be convinced to change
sides or become peacemakers.

Next, consider a community in which pacifists have following additional practice:

6. Pacifist: convert predator or prey to pacifist

Clearly, we now have the basis for a simulation in which the group of pacifists in the community
is likely to increase because pacifists create more pacifists.

A second form of community creation is one that can be observed empirically with some
regularity  the deliberate creation of a community with a specific community value (choice
principle). If Agents A1 and A2 both have the individual value V, V may or may not be
a community choice principle. But A1 and A2 can engage in a different deliberate action 
forming community C in which value V is part of the definition of C. This phenomenon occurs
when a group of people, for example, create a community service club or a society to promote
a cause. In this case, V is now a choice principle of C. (“God wants us to spread this religion” is
recognizable as verbal behavior indicative of this principle of community creation.)

Finally, one of the most common forms of community creation, and also one of the most
far-reaching, is perhaps the creation of a community with a single overarching, social practice,
the practice for which that community exists, that is, an organization (Putnam, 1983). Thus,
“Agent A creates an organization” is a third kind of community-creation practice, arguably one
the most significant for simulating human societies in light of the impact of organizations
(including businesses). Once created, organizations carry out the practice for which they were
created: building houses, growing corn, conquering territory, creating theories, publishing
newspapers, and so on, almost ad infinitum.

CONCLUSION

The central concept of the Human Community Model is that human action, as contrasted
with animal or machine processes, is most appropriately and usefully seen and modeled as the
actor engaging in social practices of a community. Both social practices and communities are
formally modeled. The formalism allows explicit representation of a significantly wider range of
facts of human action than does the usual input-output-process–type model. This paper extends
the HCM by including interagent relationships and the motivational significance of those
relationships for behavioral choice by the agent, and the representation of three modes of agent
behavior, namely, actor-observer-critic. The purpose of the extensions is to provide greater
accuracy and verisimilitude when simulating societies, including both the daily life of the society
and certain kinds of social evolution and change.
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SOCIOECONOMIC SIMULATION TO ANALYZE ROOT-CAUSE MOTIVATIONS
OF MIDDLE EASTERN TERRORISTS*

EDWARD MACKERROW,1 Los Alamos National Laboratory

ABSTRACT

 The rise of Islamic terrorism is the result of many complex and interrelated issues
associated with globalization and cultural penetration of the West into predominantly
Muslim regions. Many perceived causes of this social unrest have been well-stated by
Islamic fundamentalists as obvious determinants of social conflict. Other, less obvious
causal factors and long-term conditions might be better understood by applying methods
from agent-based approaches. An agent-based simulation framework has been developed
to examine the usefulness of this approach in understanding the “why” behind Islamic
terrorism. It also aims to support decisions in pre- and post-conflict analyses. The design
of the simulation framework allows a “modular” approach to various micro-social models
used for agent interaction, cultural transmission, and social network dynamics, so the
model is not “hard-coded” to particular social theories and allows for a research test-bed
for various micro-social models applied to terrorism. The goal of this framework is to
provide policy makers with decision support based on socioeconomic computer
experiments: scenario generation representing known militant and terrorist groups, ethnic
and culturally defined groups of agents, Western and Eastern regimes, and their
interrelated political economies. Since this effort is designed to deliver a specific desktop
computer social simulation framework to the analyst community, it requires very specific
data and features relevant to real-world socioeconomic conditions. This paper discusses
the trade-offs and challenges used to deliver the simulation, demonstrates the simulation,
presents results, discusses the pros and cons of this research, discusses actionable
decisions that could be supported by this simulation, and suggests future improvements.

                                                
* At the time of publication, the full paper for this presentation had not been received.

1 Corresponding author address: Edward MacKerrow, Los Alamos National Laboratory, P.O. Box 1663, Los
Alamos, NM 87545; e-mail: mackerrow@lanl.gov
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THE EFFECT OF RECIPROCAL EXCHANGE ON THE RESILIENCE
OF SOCIAL NETWORKS: AN EXAMPLE USING THE MESA VERDE

PRE-HISPANIC PUEBLO CULTURE

R.G. REYNOLDS,* Wayne State University
Z. KOBTI, University of Windsor

T. KOHLER, Washington State University

ABSTRACT
 
 The initial version of the model used in this study, Village 1.0, was implemented by Tim
Kohler and a team of developers from Washington State University. Village 1.0
addressed environmental constraints, but not social ones. Recently, we used cultural
algorithms as a framework for adding the social aspects. This paper extends our previous
model by adding the ability for agents to perform symmetric reciprocal exchange. We
developed a state model for agents’ knowledge and the various responses of given agents
based on this knowledge. Experiments showed that the system without reciprocity was
not only the most resilient, but also the least complex. Because we allowed agents more
opportunities to exchange resources, we produced more complex social structures and
larger populations. Furthermore, allowing the agents to buffer their requests reduced the
variability inherent in these larger systems but did not remove it. Introducing reciprocity
to be triggered by both requestors and donors produced the largest number of successful
donations. This work represents the synergy produced by using the information from two
complementary situations within the network. Thus, the network has more information
with which it can work.
 
 Keywords: Cultural algorithm, multi-agent, network resilience, reciprocity, small world
networks
 
 

1  INTRODUCTION

The initial version of the model used in this study, Village 1.0, was implemented by Tim
Kohler and a team of developers from Washington State University. The simulation relives the
settlement and farming practices of the Pueblo Indians of the Mesa Verde region of Southern
Colorado; it is based on archeological, geological, tree-ring, and other data sources. The model
presents an approach developed to help to understand the behavior of the region’s inhabitants
and the reasons that led to their eventual disappearance from the region, given modern
archaeological knowledge of that area (Kohler, 2000). The reasons for the disappearance of this
social system  one that had occupied the region since A.D. 600  is one of the key issues in
the archaeology of the Americas. Many theories have been proposed to solve this “mystery.”
Kohler’s approach started with the most fundamental of these propositions  climatic change.

The Little Ice Age (LIA) has been invoked as one of the reasons for the depopulation of
the Northern San Juan region in the thirteenth century. The term LIA refers to “an interval within

                                                
* Corresponding author address: Robert G. Reynolds, Wayne State University, Department of Computer Science,

Detroit, MI 48202; e-mail: reynolds@wayne.edu.
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the last millennium when alpine glaciers in many parts of the world advanced and when climatic
conditions were significantly cooler than today” (Van West and Dean, 2000, p. 27). In his
original simulation, Kohler tested the hypothesis that changes in high-frequency precipitation
patterns would accompany the LIA, affecting the distribution of arable land in the region, and
lead to depopulation in the region. Using tree-ring data to estimate precipitation in the region, he
generated a Swarm-based, multi-agent simulation model for land use in the area between
A.D. 900 and 1300.

Kohler’s original simulation suggested that something other than these climatic factors
affected the social history of the valley, since the model did not generate depopulation of the
region using only climatic factors. The approach of the original model concentrated on farming
practices and the distribution of land suitable for farming. The social interaction of individual
households (agents) was purposely omitted to see how much of an explanation for the systems
behavior could come directly from the rainfall and land distribution alone.

We extended Kohler’s original model by establishing a framework using cultural
algorithms, in which to embed a population of social agents, and to document the impact that
their social interaction and cultural learning have on system performance. In particular, we are
interested in the nature of the social networks produced by various combinations of social
parameters. While the cultural algorithm provides a framework in which agents can learn to
select various combinations of co-adapted parameters, our goal is to observe how varying these
parameters causes certain aspects of the social networks to appear or dissipate.

Specifically, we focus on a single parameter  search or move radius. This parameter
determines how far away from the original family a new family would settle, or if a family
decides to leave its current location how far away it could look for a new location. We view it as
a surrogate measure of propensity for social aggregation. Thus, when a new agent household is
formed or relocated, its position is governed by the range over which it can search for another
position. Links are then made between the household and the households of its relatives. We
assume that these links represent communication links between agents, and that they are
necessary to coordinate activities. We do not, however, consider the details of these activities at
this time. We then observe the social structures that emerge from the interaction of the agents
and their environment.

Our previous work looked at the trade-offs between the tendency for social aggregation
on the one hand and the environmental constraints that tend to force dispersal on the other
(Kobti, et al., 2003). In the simulation, the agents effectively tried to strike a “balance” or “find a
centering” between the social forces for aggregation and the environmental forces in the region.
The notion of finding a balance or center is a common theme in the study of southwestern Indian
cultures (Thompson, 2002). We demonstrated that agents tend to form “small-world networks”
based on kinship, and that these network structures can be differentially affected by
environmental perturbations.

However, no explicit movement of information, or resources within the network, was
considered. This paper extends our model of the agent household to produce a preliminary state
model of each household agent. This state model is the basis upon which various models of
reciprocal exchange among the individuals within the network are produced. This capability
allows resources to move between individuals that have different states, e.g., between those with
excess productivity and those in need. We provide three different frameworks for such flows:
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1. Needy households ask their relatives for assistance.

2. Households with excess productivity poll nearby relatives to see if they need
assistance.

3. Both items 2 and 3 within the same network are combined. It is suggested that
the combined approach synergistically enhances the resiliency of the network.

Section 2 briefly gives an overview of the cultural algorithm framework in which the
model is embedded. Section 3 describes how the social networks are modeled. Section 4 focuses
on describing the state model of an agent’s behavior. Section 5 presents the basic simulation
system used here. Section 6 gives the results of our experiments; Section 7 gives our
conclusions.

2  THE CULTURAL ALGORITHM FRAMEWORK

Holland (1975) developed a formal framework for any generic adaptive system. This
adaptation framework involves a system that can alter its structure or behavior based on
experience in some set of performance environments (Reynolds, 1979). Adaptability is the
capacity to (1) function in an uncertain or unknown environment and (2) use information to
evolve and learn (Conrad, 1983). Adaptation can take place at three different levels: population,
individual, and component (Angeline, 1995).

Cultural algorithms consist of a social population and a belief space (Reynolds, 1979), as
shown in Figure 1. Selected individuals from the population space contribute to the cultural
knowledge by means of the acceptance function. The knowledge resides in the belief space
where it is stored and manipulated on the basis of individual experiences and their successes or
failures. In turn, the knowledge controls the evolution of the population by means of an influence
function. A cultural algorithm thus provides a framework in which to accumulate and
communicate knowledge so as to allow self-adaptation in an evolving model.

Five basic categories of knowledge are important in the belief space of a cultural evolu-
tion model: situational, normative, topographic, historical or temporal, and domain knowledge
(Reynolds and Kobti, 2003a). All of these knowledge sources are present in our cultural model.
For example, in our current model, we assume that agents have access to knowledge regarding
the distribution of agricultural land (topographic knowledge), the distribution of rainfall as it
occurs over time (history or temporal knowledge), and agricultural planting and harvesting
techniques (domain knowledge). These three knowledge sources are fixed at this time.

We concentrate on the acquisition or learning of just two types of knowledge by agents at
this point  situational and normative. Situational knowledge is a “snapshot” of the state of the
world. The world can be viewed as a sequence of situations linked by social behaviors (Russell
and Norvig, 1995). Examples of specific individual experiences correspond to a set of situational
knowledge or relationships between individuals and their physical and social environments.
Normative knowledge, on the other hand, describes how a rational agent should act in terms of
ranges of acceptable behavior (Russell and Norvig, 1995). In other words, normative knowledge
defines a standard or ideal that can be used to judge which behavior is desirable or undesirable
(Valente and Breuker, 1994). For example, in our scenario, agents can learn in general which kin
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relations are most likely to respond to requests for resources and which are most likely to require
aid. This knowledge can reduce the search effort of individuals and improve the flow of
resources within the system.

FIGURE 1  The cultural algorithm framework

3  MODELING THE SOCIAL NETWORKS

The first step in establishing social relationships between households is to develop the
social network through which these relationships can be expressed. In this model, the basic
relationship is based on kinship, and the strength of the relationship is affected by the distance
between agents that share a kinship relationship. Each agent is a household that is composed of a
husband, wife, and their children. Household members live together in the same location, share
their agricultural production, and are affected by the same environmental conditions in the
region. Children grow up, marry, and move out to form their own households; however, they
maintain their connection to their parent households and siblings. Likewise, the parents maintain
ties to their children. When one parent in a household dies, the other can form a new household
with an available single agent. The initial structure of the social network supports the notions of
parents, siblings, and grandparents. Members of a given household know who their parental
households are on both sides of the family.

Table 1 shows the layout of the social network from the perspective of a household.
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TABLE 1  Connected nodes identified by the kinship
social network

Tag Identifier Description

ParentHHTagA Link to the parent from the mother’s side

ParentHHTagB Link to the parent from the father’s side

ChildHHTag One link to each child that moves away from this
household and forms its own household

RelativeHHTag One link to each extended family member

Each household (agent) is identified by a unique tag identifier in the system. This tag is
basically the household’s name that uniquely identifies it. In the initial step, agents are formed
without any links (or relations). In subsequent annual steps, an agent updates its links based on
a set of simple rules, as discussed below.

If a new child marries and moves away to form his or her own household, the parent
household has a link to it. The child household in turn maintains a link to the parent household.
This effort is duplicated because each child comes from a different household. So cumulatively,
a child household has, at a minimum, links to two parent households: one link to the parent
household from the wife’s side and another link to the parent household from the husband’s side.
A child household can also remember its siblings. They are immediate relatives and hence the
child has links to them. A household member can remarry if the spouse dies. In that case, the
household keeps a link to the initial household, except now as a relative, and updates a new
parent link to the new spouse’s household. Kinship relation rules can be extended to other family
members. Other concepts, such as friendships and neighbors, could also be modeled; these are
necessarily based on kinship relations but could be based on a household’s physical location and
proximity. The overall social network is maintained dynamically, as it is updated every time
step.

The set of kinship relations between agents cumulatively form a directed graph. At each
time step, the current graph is stored in the form of an adjacency list. We can then plot the graph
and examine the distribution of structural properties for the vertices (agents) and their edges
(relations) as shown in Figure 2.

This kinship model can set the stage for the flow of materials between agents. In
particular, we assume the custom of generalized reciprocity as practiced among kin. Such a
practice is common in many societies (Flannery, et al., 1989). Thus, we investigate how such
reciprocity shapes the population and social networks within the region and in turn how those
networks are subsequently affected by the results of climatic change, such as a drought. Section
4 discusses how reciprocity is modeled here.
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FIGURE 2  Social network structure as defined by the kinship relations

4  COOPERATION FRAMEWORK

Three strategies for symmetrical reciprocal aid were explored along with the case in
which no goods are exchanged between agents. Table 2 lists the methods of aid used and briefly
describes each. Reciprocal exchange is defined in terms of the exchange of maize between one
agent related through kinship to another agent. Unlike trade between agents, the model of
generalized reciprocity used here does not keep a record of debts owed. Modeled after the
compassionate and human response of social beings, agents can ask their relatives for food in a
time of need, while others donate their surplus to their relatives during prosperous times. In other
words, the exchange is ritually activated by the requestor, the donor, or both. Each version is
potentially reciprocal; the only difference is who provides the information that triggers the
exchange.

TABLE 2  Description of the different cooperation methods at the kinship level

Cooperation
Method Description

0 No cooperation. No reciprocity of food between households.

1 When an agent requires food, it is allowed to select and request food from
within its kinship network in order to survive.

2 When an agent has excess food, above a predetermined threshold, it is
allowed to select an individual(s) from its kinship network and donate
some of its excess.

3 Both methods 1 and 2 are enabled simultaneously.

Social Link = {< Parent Household from Wife’s side>
<Parent Household from Husband’s side>
<Child Household>1, <Child Household>2, …, <Child Household>c
<Relative Household>1, <Relative Household>2, …, <Relative Household>r}

GraphSocial network = {<Social Link>1, <Social Link>2, …, <Social Link>s}

The format of the output file containing the adjacency list generated for one time step (each year) is:

Tag Agent tag whose links we are describing
X, Y Position of this agent in the world
ParentTagA, ParentTagB Links to each parent’s tag (−1 means no link)
ChildHHTag1, …, ChildHHTagc Link to each child
RelativeHHTag1, …, RelativeHHTag2 Link to each relative
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4.1  Individual Agent Strategy

Each agent’s basic strategy is to farm, harvest, and store enough maize to survive. In
a time of drought or on lands of relatively low yields, the household may not have enough food
to sustain it. Starvation in a noncooperative model directly triggers the death of the entire
household. To avert this situation, the starving household can seek the help of another household
known to it from its kin network. The selection method can be one of several types (random,
fitness proportional, or round robin), but the model is flexible enough to allow other strategies to
be implemented in the future.

If the selected agent is in the appropriate state, resources are exchanged. If the
counterpart is not in the appropriate state, the requesting agent can ask another available agent.
The number of attempts that can be made by an agent in a year is another model parameter. On
the other hand, an agent may be in the appropriate state but unable to fulfill the entire request. In
the case of partial fulfillment, the requesting agent can make another attempt to request the
needed amount of food to survive, if desired.

Figure 3 shows the basic states of agents. An agent can have more food stored than
needed and can therefore be a donor. An agent can have more than the minimum but less than
what is needed to be a donor. Likewise, an agent can be taking in somewhat less than needed; the
hungry state or the food level for an agent can be less than the starvation point. They can ask for
or receive food from a donor. Three cases of exchange are based on the states of the individuals.
In the first, an individual who is in a hungry or critical state can ask for resources from a kin-
related agent who is in a donor state. In the second method, an individual agent who is in the
donor state can provide resources to kin who are in the hungry or critical state. In the third case,
reciprocal aid can be triggered either by agents who are hungry or by agents who are in the donor
state.

In any case of symmetric reciprocal exchange, a limiting constraint is the physical
distance between the two agents. For instance, an agent cannot request food from another agent

FIGURE 3  Actual maize amount in storage determines the state
of an agent
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who is beyond its search area. A similar case applies for an agent giving away its surplus.
A radius distance parameter is implemented in each of the two cooperation strategies.

4.2  Selection Methods

A number of possible household selection methods are implemented in the system. An
agent can be allowed to adopt any approach to select another agent to cooperate with it. Three
basic selection methods are potentially present in the current model: random, roulette wheel or
fitness proportional selection, and round-robin selection. Table 3 gives the three different
choices. In this paper, the selection scheme is random. An agent can randomly select the agent it
wants to cooperate with as long as this agent is within its cooperation radius (which is set to 20
here) and is in the appropriate state. If the requestor initiates cooperation, the requestor must be
in a state of need and must ask for a donation from an agent in a state of excess. Likewise, if the
donor initiates cooperation, the donor must be in a state of excess and must select an agent in a
state of need. Figure 4 describes these and other state-base agent interactions supported within
the model.

TABLE 3  List of the implemented selection methods

Method Description

Random An agent is randomly chosen from the kinship network within a given range.

Roulette An agent is randomly selected (equal initial wheel portion) from the kinship
network, then rewarded or penalized based on the size of the portion
depending on whether the agents cooperated with or declined the request.

Round robin Each agent that is kin with the agents and in the given cooperative radius is
systematically given a turn.

FIGURE 4  Agent state transition diagram (Note that additional states transitions are
possible directly between F, P, S, H, and C states.)
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4.3  A State-based Model of Agent Behavior

The approach used to implement our symmetric reciprocal strategy is based on an agent’s
set of states. The state of an agent can change dynamically each year on the basis of the food
(maize) produced by the agent. An agent normally acquires its food from the harvest of its plots
of land. The yields directly depend on the environmental factors affecting the farming area as
well as on the farming practices (currently fixed in the model) and the number of labor force a
household can spare.

How agents participate in the symmetric reciprocity process depends on their current
state. For instance, agents doing well may either choose to donate some of their excess food or
keep it for themselves in storage. At the other end of the spectrum, an agent straining under an
unfortunate event of nature and bad crop yields is doomed to starve and die. With a cooperative
social network, the agent has the opportunity to tap into the wealth of its nearby relatives and ask
for food to survive. Essentially, the system is now formed by reactive agents in a dynamic
environment.

Figure 4 gives the state transition diagram for each agent. Arcs between nodes represent
state changes that can take place as the result of reciprocal aid. The arc that points from the state
back to itself represents the fact that the agent can change its state or remain in that state from
year to year. The states are described as follows:

• Satisfied (S) – An agent is in a satisfied state when it has sufficient food in
storage to feed the entire family in the household.

• Philanthropic (P) – An agent becomes a philanthropist when it has a surplus
of food in storage, defined in terms of stored maize in excess of a given
threshold. For instance, an agent that stocks 90% or more of its storage
capacity would be able to donate its food to others.

• Hungry (H) – A safety buffer zone is implemented as the level below which
the agent should consider asking for additional food. When the agent has its
last food ration, it enters a “hungry” state that triggers precautionary requests
for food to avoid starvation.

• Critical (C) – An agent with insufficient or no food has no choice but to ask
for food or face starvation and imminent death. If even after moving the agent
does not receive its ration to feed the entire family, it will die.

• Death (D) – An agent is marked for immediate removal from the system. An
interaction diagram shown in Figure 5 allows us to examine the cooperative
relationships that are possible between two individual agents based on their
respective states.
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Agent B �
Philanthropic Satisfied Hungry Critical

Agent A �
Philanthropic, P N/E P donates S P donates H P donates C
Satisfied, S N/E N/E N/E N/E
Hungry, H H requests from P H requests from S H requests from H H requests from C
Critical, C C requests from P C requests from S C requests from H C requests from C

FIGURE 5  Matrix of possible interactions between agents A and B (agent A, depending
on its current state, interacts with agent B differently according to its own current state.
N/E = no exchange.)

5  EXPERIMENTAL FRAMEWORK

The cultural algorithm framework discussed in this paper has been implemented in the
Swarm simulation environment (Langton, et al., 1995). This environment provides a framework
for facilitating the development and experimentation with a large number of agents in a dynamic
environment. Currently, the system is written entirely in Objective-C and uses the Swarm 2.1.1
libraries. The model is a graphic multi-agent simulation that allows us to probe individual agents
in a dynamic environment. Agents reside in a cellular space that corresponds to the basic
geographic region. At every model step in the simulation, the environmental state of each cell is
updated by using the database of collected environmental data. Geographic data for the region
were compiled from a number of sources and rainfall estimates were produced from tree-ring
data (Van West, 1994). Agents can be observed either by means of probes that examine their
internal properties or by accumulating output files for later examination. A dynamic viewer has
been developed in Visual Basic to show the results of the run over time.

The simulation was run five times over the period from A.D. 900 to 1281 for each
propensity/constraint combination. For each time step, the network is generated and stored into a
file named “links<YEAR>.out.” This file is used to examine the properties of the emerging
network and any characteristic found relevant to network resiliency. Visualization of the network
is written in a separate package, either MatLab or Visual Basic (shown in Figure 6). Our program
allows plotting of the graph and close examination of the distribution and densities of the links
between agents. As the graph becomes more and more dense, especially as more agents develop
more social links over time, we can visually filter out weak links and display only those edges
attached to a node with a certain associated out-degree. In other words, we can identify the agent
with the highest connectivity in the social network in terms of the number of associated links that
it maintains.

In the experiments we conducted (see Section 6), the search radius that the agent uses
when looking for a new plot to move into was varied from 5 to 30 pixels, and movement was
possibly further constrained by existing land uses (e.g., two households cannot farm the same
plot). For the different values of the move radius tested, we generated the network volume and
the number of links over time. The network volume is the sum of all of the links associated with
each individual household (agent) present. The idea is that with a larger move radius the agents
must move farther from their previous location. Because relocation occurs frequently when a
group fissions as a result of population growth, a larger move radius means that they relocate
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FIGURE 6  Using a search radius of 10 (MOV_RAD 10)
the network is plotted for 1280 A.D. showing highly
dense nodes

farther from a previously successful area. The success of the strategy of increasing search radius
depends on the distribution of productive land in the region.

6  RESULTS

To test the various effects of cooperation under changing environmental conditions built
into the model, fixed rules for reciprocity are implemented to guide the strategic behavior of the
agent. In turn, the outcome of such cooperation techniques is examined to evaluate its effect on
the agents in terms of their survival rates. Of specific interest are known drought years that have
devastating effects on crop yields unknown to the agents. Experiments are set up to examine the
agents’ response over time in terms of (1) the number of requests and fulfilled requests and
(2) the number of donations available and accepted. With each of these two measures, we
tracked the amounts of food that changed hands each year. The social network is examined in
terms of its hub node densities and any observable collapse of major nodes. The number of
surviving agents is recorded yearly to examine the effect of environmental variability on the
population counts in the presence (and absence) of cooperation in its different forms. Three
possible cooperative strategies were examined: the first involves an agent requesting food when
it reaches its critical state, hungry state, or either state; the second involves an agent donating
food when it reaches a full state, philanthropic state, or either state; and the third combines the
effect of the first two cooperation strategies.

To make comparative observations, the selection of the reciprocal aid strategy required
symmetry in the state. For instance, when we tested an agent who could ask for food only when
it reached its critical state, we also tested an agent that would donate only when it reached its full
state. Similarly, we tested an agent who could reach the hungry or critical state along with agents
that could reach the philanthropic or full states. In addition, we fixed the target agent state to
F, P, S and C, H, S, reflecting that an agent could donate to another agent who is in its satisfied,
hungry, or critical state, and an agent could request from another who is in a full, philanthropic,
or satisfied state. Of course, many other combinations could be tested, but these selected



418

combinations reflect the scenarios most likely, in our judgment, to be encountered in human
social systems (Table 4).

An important aspect of the early cooperative strategies examined is to allow the agents to
maintain a safety buffer in their food storage levels. For instance, an agent does not need to wait
until it reaches the critical state to ask for food. If an agent is in a critical state and does not
receive sufficient food to survive from another agent, the former agent will terminate. A safety
buffer is therefore established based on a measure that an agent computes to determine if it is
about to eat its last food ration. This measure depends primarily on the makeup of the household
members and their food requirements. Currently, the system defines the hungry state as that time
when an agent has only one food ration left. After it eats, it falls into the critical state where it
has no food and must seek food from others. One set of experiments tested the scenarios with the
presence of such buffering in anticipation of allowing the agent to foresee and bail itself out of
starvation, while another set tested the scenarios without the presence of buffering, where agents
procrastinate and gamble for their life (Tables 4 and 5, respectively).

A fourth set of experiments focused on the control scenario when there is no reciprocity
(Table 6). These experiments allow us to establish a base level against which the impact of
various reciprocity scenarios can be assessed.

6.1  The Impact of Reciprocity on Network Resiliency

We performed runs for each combination of states for three different move radii;
however, in this section, we give only the results for move radius 30. Figure 7 consists of three
figures that summarize five runs of the simulation in which no cooperation occurs between the
agents. The agents produce kinship networks over time, but the networks are not used explicitly
to provide symmetric reciprocal aid to kin. Figure 7a gives the maximum, minimum, and average
number of links between the agents. The average number of links is six, which is very
characteristic of a small-world network. The average and minimum number of links are not
affected by change in precipitation over time, but the maximum number of links per node is. The
nodes with large numbers of links are the hub nodes, which provide the network connectivity
required for an individual agent to search the network. Figures 7b and 7c give the volume of the
social network over time, while Figure 7c gives the number of households. The household
numbers decrease later in the period, as drought conditions begin to emerge.

When reciprocity is allowed (see Figure 8), the numbers of social agents, link volume,
and the maximum number of links increase. Figures 8a−8c give the results when agents in
critical need (Figure 8c) request from agents who are full. Figures 8d−8f give the results when
buffering is allowed in that agents who are hungry, but not yet in critical need, can ask as well.
This represents a buffering situation in which the system is less constrained to produce complete
help for each request.

The addition of reciprocity increases the complexity of the system by producing larger,
more complex networks, but these networks are much more variable in response to the same
environmental input. For example, the maximum number of links shown in Figure 8a varies
markedly throughout the run, but in particular near the end, as do social network volume and the
total number of households. It is interesting that while both the buffered and unbuffered cases
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TABLE 4  Experimental setup with bufferinga

Coop
Type

Move
Radius Donor Requestor Donate to Request from

1 10 F, P C, H C, H, S F, P, S
2 10 F, P C, H C, H, S F, P, S
3 10 F, P C, H C, H, S F, P, S
1 20 F, P C, H C, H, S F, P, S
2 20 F, P C, H C, H, S F, P, S
3 20 F, P C, H C, H, S F, P, S
1 30 F, P C, H C, H, S F, P, S

a F = full; P = philanthropist; S = satisfied; H = hungry; and
C = critical.

TABLE 5  Experimental setup without buffering

Coop
Type

Move
Radius Donor Requestor Donate to Request from

1 10 F C C, H, S F, P, S
2 10 F C C, H, S F, P, S
3 10 F C C, H, S F, P, S
1 20 F C C, H, S F, P, S
2 20 F C C, H, S F, P, S
3 20 F C C, H, S F, P, S
1 30 F C C, H, S F, P, S
2 30 F C C, H, S F, P, S
3 30 F C C, H, S F, P, S

a F = full; P = philanthropist; S = satisfied; H = hungry; and
C = critical.

TABLE 6  Experimental baseline control: no cooperation

Coop
Type

Move
Radius Donor Requestor Donate to Request from

0 10 − − − −
0 20 − − − −
0 30 − − − −
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FIGURE 7  No reciprocity across the network (Coop 0)

of reciprocity are more complex than the no exchange case, the buffered version has more
uniform variability and slightly larger peak values for household number, link volume, and
maximum link number. Thus, adding in the buffering capability dampens the fluctuations while
maintaining an increased complexity over the no exchange case.

Figures 9a through 9f give the case in which reciprocity is triggered by the donor and not
the requestor. As before, Figures 9a−9c concern the unbuffered case where only agents in
a critical state ask for aid from their kin, while Figures 9d−9f concern the buffered case. The
complexity of the emergent system is not as great as the networks produced when the receiver
initiates the exchange. Also, the complexity of the buffered case and its variability are reduced
compared with those of the unbuffered case. Thus, allowing the donor to initiate the exchange
identifies where in the network the excess is but may not allow sufficient time to get to those in
critical need.

Several things are notable:

1. Buffering reduces variability in household number, maximum link size, and
social volume in both the donor- and the requestor-initiated exchange.

2. The requestor-initiated exchange tends to produce more complex networks
than the donor-initiated exchange.
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FIGURE 8  Coop 1 Network volume and agent counts over time
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FIGURE 9  Coop 2 Network volume and agent counts over time
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3. However, the donor-initiated exchange produces networks that are less
sensitive to environmental perturbation than the requestor-based approaches.

There is a potential for the two approaches that initiate the exchange to be
complementary. The requestor approaches produced larger populations in both the critical and
buffered case, but at the cost of increased variability in the wake of environmental change.

Figure 10 shows the synergy produced by combining both the requestor and the donor
modes of reciprocal exchange. In both the buffered and unbuffered cases, the system that is
produced is more complicated and larger than the networks produced by either one alone. The
unbuffered system, however, exhibits large variability in social volume, household numbers, and
maximum links. Adding the buffering capability to the system generates a slight decrease in
complexity and produces a more stable system.

An interesting result is that by adding reciprocity and buffering to the system, we
effectively produce more complicated social structures with larger population sizes, network
volumes, and hub complexity. The downside of this result is that these systems exhibit the most
variation of the various configurations tested. The presence of buffering in the combined case
makes the variation more predictable, but it is still substantial. Reduced resilience may be a price
that one pays for social complexity.

Figures 11 and 12 demonstrate why the combined scheme produces the largest and most
complex social networks. Figure 11 gives the number of successful donations produced by the
four different exchange combinations for each of the three different search radii tested. The
figures show that as the radius increases, the volume of the donations decreases. Within any
given radius, the buffered solutions outperformed the unbuffered ones. Figure 12 shows that the
number of requests for each exchange configuration decreases as the move radius increases. The
fact that there is little difference between the number of requests in each configuration reflects
the fact that the same environmental perturbations are being presented in each case. The fact that
the configurations differ in terms of the number of donations made, however, reflects the ability
of the system to opportunistically deal with shortfalls.

7  CONCLUSIONS AND FUTURE WORK

This paper extends our previous model by adding the ability for agents to perform
symmetric reciprocal exchange. We developed a state model for agents’ knowledge and, given
agents’ different responses based on this knowledge, we arrived at some general findings:

1. The system without reciprocity was the most resilient, but least complex.

2. As we allowed agents more opportunities to exchange resources, we produced
more complex social structures and larger populations.

3. Allowing the agents to buffer their requests reduced the variability inherent in
these larger systems but did not remove it.
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FIGURE 10  Coop 3 Network volume and agent counts over time
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FIGURE 11  Donation trends: as the radius increases, the volume of the donations decreases

FIGURE 12  Donation trends: the number of requests for each exchange configuration
decreases as the move radius increases
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4. Allowing reciprocity to be triggered by both requestors and donors produced
the largest number of successful donations. This represents the synergy
produced by using the information from two complementary situations within
the network. Thus, the network has more information with which it can work.

In future work, we plan to extend the state model so that agents can include other
activities, including trade and warfare.
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DISCUSSION:

SOCIAL AND CULTURAL DYNAMICS

(Saturday October 4, 2003, 9:45 a.m., Session 1)

Chair and Discussant: Claudio Cioffi-Revilla, George Mason University

Including Relationships, Motivation, and Actor-observer-critic in the Human
Community Framework

H.J. Jeffrey: The interesting thing to look at here is the subtitle, not the formal title,
which is always sort of boring. It’s a semi-tongue-in-cheek reminder that human beings, the kind
of agents that many of us here are particularly interested in modeling, aren’t primarily biological
organisms. Obviously we have biological characteristics, but people, all of us at each moment,
exist within a fabric of a human society, and these biological things like eating and so forth take
place as ways of engaging in human, specifically human, social practices.

[Presentation]

Claudio Cioffi-Revilla: Thank you. Any questions on this presentation?

Konstantinos Alexandridis: I understand what you’re saying on an individual level, but
sometimes as cultures and as groups we have also a collective perception. And when we do that,
we face options like the choice sets. It appears to have different distribution among groups. Or
we face different choice sets.

So if we go about to assess those choice sets, it’s a very data-intensive process, and I
don’t know if it’s feasible to go through and interview an entire population in order to reveal
those things. There are some economic methods of addressing our revealed preferences or some
kind of contingent valuation methods, but when we’re talking with the trade-offs between the
individual and the collective behavior or choices, we face problems, like what’s going on with
the freedom of choice where, as we reduce our choice sets and things like that.

H.J. Jeffrey: The way that I see that one is, it’s a question at what level you want to
model things at. Clearly, an approach to simulation that says, “Well, go out and build a model of
each individual human beings in the culture” — and there’s, what, 250 million Americans or
something like that? Or 12 million, say 12 million Swedes. Clearly, if you have to build a
12-million, many-element data set, it’s infeasible. So it’s a question of what level of granularity
you want to simulate at.

My notion is that you pick the level that is the usual compromise between what you need
and what you can afford to do, and you model it statistically. You make guesses using the data
sources that give you indications of how many people tend to make which choice, tend to have
which values, tend to have which priorities, and model it using that. In other words, you say,
well, so many people will make this choice, so many people will make that choice. You don’t
drive that by interviewing all these people. You don’t go out and build it bottom up from
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individual choices, but you use exactly the tools you’d expect. So in other words, take in the data
that you can and say, “Here are the choices statistically.”

For example, you might have, well, on the abortion issue, in a given community X% of
the people pick this, and Y% of the people pick this, and Z% of the people pick this other. And
that’s what you use directly in your simulation; not trying to interview all the, as I say, 12 million
Swedes or 250 million Americans or whatever it happens to be. So you’re driven by the data you
can use, in other words.

Does that answer the question?

Alexandridis: Well, sometimes you have to build a model that moves across scales and
how you merge those scales together is a challenge sometimes, and that’s what I was trying to
point out.

Jeffrey: Yes. The usual situation is that you build what you can, and then you see how it
matches the data.

Socioeconomic Simulation to Analyze Root-cause Motivations of Middle Eastern
Terrorists

Claudio Cioffi-Revilla: So now this is followed by Ed MacKerrow from Los Alamos on
his terrorist network agent-based model.

Edward MacKerrow: Thanks, Claudio,

[Presentation]

The Effect of Reciprocal Exchange on the Resilience of Social Networks:
An Example Using the Mesa Verde Region Pre-Hispanic Pueblo Culture

Claudio Cioffi-Revilla: Okay. Bob Reynolds will present on behalf of his whole team a
model of the Mesa Verde Southwestern Region, near the Four Corners.

Robert G. Reynolds: This is truly as multimedia as time will permit. Basically, the study
area is here in the Four Corners: Utah, Arizona, Colorado and New Mexico. The group under
study is the Anisazi, the ancient Pueblo peoples….

[Presentation]

Reynolds: The simulation is going to crash. Here goes it. Wham! Okay, and it takes a
little time for the system to kind of recover from it, but all of a sudden these are going to go
away.

Unidentified Speaker: What causes the crash?
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R.G. Reynolds: The crash has to do with the fact that the distribution of rainfall has been
reduced, and the impact of the distribution is felt differentially over the landscape. It turns out
that those individuals who are hubs are hubs because they have been productive, and they have
generated lots of links to other people in the network. And it turns out that the rainfall
differentially affects those areas where the hubs are.

MacKerrow: Bob, I have a question having to do with the bark beetle problem in the
Rocky Mountains right now in the Southwest. Do you think that effect is the same as the
drought, or is it different?

Reynolds: That’s an interesting question. I think that the bark beetle problem relates to
the drought, because basically what happens is that when you have sufficient water, it means that
there’s more sap in the trees, and the sap keeps the bark beetles out. And so when you have less
water, basically there’s less sap in the trees and more room for the bark beetles to get in.

MacKerrow: Yes, but what I’m asking is, in your model, do you think the effects of
something like a bark beetle would play out differently in a drought? You know, you could take
a forest fire percolation model, that will topographically have the same effect? Do you see where
I’m going?

Reynolds: Yes. The interesting thing is that a drought is a regional thing. Bark beetles
and forest fires can be very localized phenomena. But in fact it’s very possible if they’re
localized relative to a habitation center, the impact of the drought could be amplified. And so, in
other words, the drought by itself has an impact regionwide. However, if you throw in other
factors that are going to effectively be exacerbated by the drought and allow them to provide
localized perturbations, then you’re in big trouble. Excellent point.

Cioffi-Revilla: One more?

Jesse Voss: My question has to do with how you operationalize the lineage controls. I
was interested in how you expressed the kin relations. To what degree of granularity to you have
the clan lineage household connections, or is it more limited? I mean, how is that, how far do
you break it down?

Reynolds: Well, we have it basically down to the lowest level. We keep all of that
information at this point. In fact, that’s one of the issues in making the model initially run as
slow as it did. We’ve expedited it by coming up with data structures that make searching these
networks an easier thing to do.

In other words, these hub nodes are a lot like routers on the Internet. In fact, one of the
big issues is getting these routers. You have rules that basically govern how messages come
through the Internet. One of the key issues is making sure that these rules can be easily checked
to route as many mail messages as possible, especially when these rules are changing all the
time. And in fact the situation here is very similar. And so we have to be checking — these
connections are rules that determine where things flow, and we have to check these things all the
time. And so the data structure problem is a key to make this. It ran here in front of your very
eyes, but we have run it for, initially for days. So that’s a key question.



432

Unidentified Speaker: I’m just wondering, have you compared this to a simple pooling
of resources? And could part of the volatility be due to the fact that by sharing you’re increasing
survivability, but when you cross a threshold, the problem becomes too severe, and then you
kind of revert to a more normal level.

So I’m just wondering, have you compared this to a case where all the resources in the
community were pooled and what the distinction is.

Reynolds: Well, actually, the way we have it set up with moved radius, if we just set that
equal to, let’s say, 10, that’s basically what we’re doing. We’re pooling resources, but within kin.
Now we haven’t pooled resources in the community outside of kin-based relations. But in fact
that would be one of the next steps. So we have other things that we can add in, of course: trade,
exchange, and that sort of thing. But at this point we wanted to see as far as we could get with
kin.

But you’re right. I think certainly one of the things by just pooling in localized areas,
well, it wasn’t as successful as having a larger range. That’s because you’re only sharing with
your kin. If, as you say, you can share with non-kin, then you certainly will have more resources
and you don’t have to look as far in your network. We haven’t done that yet, but that’s the next
layer. But each of these layers in and of itself is, it’s easy to describe, but it’s not necessarily easy
to implement.

Cioffi-Revilla: Thank you, Bob.

The organizers asked me to both chair and discuss this session. So I’m not going to
provide an extensive discussion of these papers, because we’re really out of time, but I just want
to raise a few points.

On Jeffrey’s paper there are, I thought, some really amazing parallels or quasi-parallels
between the approach you take and what has been done in political analysis, in political science,
especially in comparative politics and international relations. There we have a subfield called
“event data analysis” where the idea is to code in a systematic way the longitudinal patterns of
behavior of what countries do to each other, for example, or what different groups do
domestically.

There’s extensive literature on this, and today this is being carried out through
computational tools. The leader in this field is Phil Shrout, of the University of Kansas, who has
been using Holland classifiers to machine code, for example, the UPI and AP chronicle of what
countries do to each other internationally, because human coding of that data has become
impossible because of the sheer flow there.

Something I would point to is that there’s a great deal of need for a systematic notation
that could be at least as efficient as the notational system that exists in music, ballet, and other
areas. The notational music for ballet is very interesting, and it’s very tough to learn. It’s not a
weekend job. It takes quite a bit of work. But it’s very efficient, and so much so that you can take
people that have never danced together in a formal piece, you show them this graphic script, and
they know how to execute it exactly as was intended by their choreographer. A similar thing, of
course, happens in music, so for describing behavioral events in social science we’ve never had
this sort of notational system. And I think that that would be a good thing to have, because it
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would also facilitate a comparison between empirical records of behavior and synthetic ones
generated by agent-based modeling.

Now I’ll comment on MacKerrow’s model of the terrorist network. I think there are some
great ideas in this project. I would just point out a few of them. First of all, the dry-grass notion
related to the concept of potential energy. I would say that rather than apologize for its
introduction from physics, we should be very happy of that, because social scientists in many
different areas of social science have had an intuitive idea about this in the past. But there’s been
nothing anywhere near as elegant as a theory of the potential in physics.

For example, international relations scholars in political science often define a crisis as a
situation in which the probability, not the certainty, but the probability of war is significantly
increased. Well, in terms of a bifurcation, this means entering a bifurcation set and creating a
metastable state, which is a modification of the potential function in the dynamics. So the
intuitive idea is there, it just hasn’t been formalized. And some help along those lines would
certainly be welcome.

There are other parts of this that I think are very interesting and really meritorious, but I
would just like to point out that in terms of Atran’s article in Science, there’s a follow-up to that
which appeared in the September or October issue of the American Political Science Review on
suicide bombing. And this is the first systematic database of suicidal terrorism that has been put
together and published. It’s not a sample, it’s a population. And so it has tremendous value. And
I believe that the analysis presented in this APSR article is minimal. And so the minimal
analyzable paper you published? There’s a lot more that can be squeezed out of that data set.
And for validation purposes, it should be very helpful.

There is, by the way, Middle Eastern agent-based modeling simulation coming.

Because of lack of time I’d like to say one thing only about Bob Reynolds’ project. This
is really great proof of the fertility and the power of a great initial modeling framework like that
of the cultural algorithms. When Bob began developing this a number of years ago, it was really
impossible to do — I guess he had a vision and he could see some future directions. But, of
course, rolling all that out, one modeling stage at a time, for me it’s been fascinating to see over
the years the application of this framework to the rise of Oajaca civilization in the Southwest.
Now with the Mesa Verde case, I really see a great deal of future for this framework. And similar
to what I mentioned to Lars-Erik earlier this morning, since this really defines quite a standard in
this area, it’s always important to keep in mind where do we jump ahead, to maintain the frontier
as vibrant and as exciting as possible? But this is a really very exciting new development.

One surprise I had is that maybe looking at the ideas of Steve Lexon in his model of the
Chacoan meridian may have some bearing on the ideas that are being modeled in this project.
Lexon’s idea is of a polity in the Southwest that initiates with a capital in Chaco Canyon, which
then moves on the same meridian to the modern-day city of Aztec, and then drops all the way
down into the Chihuahua desert across the Mexican border to Paquime, which is today called
Casas Grandes. And so these people had this moving capital, and Mesa Verde comes into the
picture from as being a northern sort of a, not quite a frontier, but a northern community of this
larger Southwestern polity with the initial capital in Chaco.
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EMPIRICAL ESTIMATION AND MULTI-AGENT BASED SIMULATION OF A
DISCRETE CHOICE MODEL WITH NETWORK INTERACTION EFFECTS:

AN EXPLORATION OF THE ROLE OF GLOBAL VERSUS LOCAL
AND SOCIAL VERSUS SPATIAL NETWORKS IN TRANSPORTATION

MODE CHOICE BEHAVIOR IN THE NETHERLANDS

E. DUGUNDJI,* University of Amsterdam, Amsterdam, Netherlands
L. GULYAS, Hungarian Academy of Sciences, Budapest, Hungary

ABSTRACT

 An outstanding challenge in econometric discrete choice analysis is the treatment of the
interdependence of decision makers’ choices. Furthermore, in an activity-based
transportation demand modeling framework, both social and spatial networks may be
relevant. This paper illustrates theoretical issues in the estimation of a discrete choice
model with global and local interactions. A multi-agent-based simulation model is
presented to highlight some main hypothesized interaction effects with two broad classes
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when a network representing the interactions between an agent and the aggregate
behavior of other (local) agents has the small-world property, the system behaves in the
long run as that with global mean field information. Testing for the small-world property
may be an alternative to collecting data on the precise details of a social network.
Limitations in the present work are summarized and suggestions for future research
efforts are outlined.
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INTRODUCTION

A wide spectrum of policy measures have been put forward over the past decade to try
to address the infamous rush hour road congestion in the “Randstad,” the western region of the
Netherlands marked by the ring of the cities Amsterdam–Utrecht–The Hague–Rotterdam. These
measures range from flexible work hours to congestion pricing to light rail to facilitation of park-
and-ride to road construction. The research reported here is a small part of a larger work aimed at
understanding, measuring, and modeling the combined residential choice and multi-modal
transportation choice behavior of households residing in the north wing of the Randstad, that is,
the Amsterdam–Utrecht greater region, focusing particularly on multi-modality as a land use
transportation planning policy instrument for reducing road congestion. Here is understood both
the promotion and facilitation of carpooling (slow mode or single-driver private vehicle to
multiple passenger private vehicle) as well as the use of so-called park-and-ride “transferia”
(slow mode or single-driver private vehicle to multiple passenger transit vehicle). A central
aspect of the research approach is the intended treatment of social dynamics.
                                                
* Corresponding author address: Elenna Dugundji, University of Amsterdam, Department of Geography and

Planning, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam, Netherlands; e-mail: E.R.Dugundji@uva.nl.
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Pioneered in the domain of multidimensional choice of location, housing, automobile
ownership, and mode to work by Lerman (1975), discrete choice analysis has become an
industry standard in land use and transportation planning models. Some subsequent elegant and
elaborate operational examples of the development of this methodology are Wegener and
Spiekermann (1996), Waddell and Nourzad (unpublished), and Hensher and Ton (2001), to cite
just a few. Meanwhile, the field itself has flourished in the past 30 years, ultimately extending
the basic random utility model to incorporate cognitive and behavioral processes, flexible error
structures, and different types of data in so-called hybrid choice models (Ben-Akiva et al.,
unpublished). However, as discrete choice theory is fundamentally grounded in individual
choice, an outstanding challenge remains in the treatment of the interdependence of various
decision-makers’ choices, be that via global or local interactions. The formulation of the nature
of the interaction in turn raises the issues of networks and network evolution. However when
considering the problem domain of the relation between residential choice behavior and given
multi-modal transportation planning and policy, not only social networks but also spatial land
use and transportation networks may be relevant (Dugundji et al., 2001).
A framework for the mechanisms of interaction is proposed as follows:

(i) Interactions among individuals within households — for example, joint residential
location choice in a dual-income earner household (Timmermans et al., 1992);
coordinating activity schedules and travel patterns within a household.

(ii) Interactions between identifiable households proximally situated in a spatial
network — for example, both nuisance from neighbors and (conversely) satisfaction
with neighbors are very strong factors in the inclination to relocate, both for under
55 and over 55 age groups in the Netherlands (Hooimeijer and van Ham, 2000);
coordinating carpooling with neighbors or co-workers.

(iii) Interactions between identifiable households tangentially situated in a spatial
network — for example, coordinating carpooling via a carpool facility.

(iv) Interactions between identifiable households associated in a social network, not
necessarily proximally or tangentially situated in a spatial network — for example,
attraction to a particular municipality in choice of residential location because
friends or family live there; awareness about availability of certain alternatives in
the choice set generation process through information transmission in the social
network via friends, family, neighbors, and/or co-workers, be that the suitability of
a particular neighborhood in residential location choice, the suitability of using a
park-and-ride transferium for a commute, or the existence of a carpool facility.

(v) Interactions between a household and the aggregate actions of other households
proximally situated in a spatial network — for example, high volatility or
(conversely) stagnancy of turnover in housing stock in a particular neighborhood,
affecting the general desirability of a neighborhood or the possibility to move there;
social pressure to own a car because other neighbors or other co-workers on average
do, regardless of whether there is any direct social contact with these persons;
improved feasibility for higher level of public transit service associated with higher
volume of public transit ridership in a particular region.



439

(vi) Interactions between a household and the aggregate actions of other households
tangentially situated in a spatial network — for example, many other households
passing through a given household’s (prospective) neighborhood on their commute
trip may lead to negative traffic externalities affecting that household’s evaluation
of that neighborhood, such as conditions unsafe for young children, noise and air
pollution, etc.

(vii) Interactions between a household and the aggregate actions of other households
associated in a social network, not necessarily proximally or tangentially situated in
a spatial network — for example, preference for a particular type of housing
situation [as opposed to preference for a specific municipality, see (iv)]; social
acceptance of cycling or public transit because friends, family, neighbors and/or
co-workers also cycle or use public transit.

(viii) Interactions between a household and the aggregate actions of other households in a
subpopulation, not necessarily associated in a social network nor proximally or
tangentially situated in a spatial network — for example, as in (vii) above, not
because of a household being influenced by others in a social network, but rather
because of a more general trend or societal bandwagon effect.

Furthermore, an important distinction can be understood in this particular problem
domain among (social and/or spatial) network interactions impacting choices, such as transport
mode choice, which do not necessarily endogenously affect the household’s reference position in
a network (e.g., whether a household chooses carpool versus transit in a multi-modal trip, or
chooses a unimodal trip, will not spatially affect the fact of who the household’s neighbors or co-
workers are), as opposed to network interactions affecting “sorting” type choices, such as
residential location choice, which obviously endogenously impacts the household’s reference
position in a spatial network and potentially also within a social network (e.g., in moving to a
new neighborhood, a household by definition acquires new neighbors).

In short, a distinction is hypothesized between social network interactions versus spatial
network interactions, identifiable versus aggregate interactions, proximal versus tangential
versus global interactions, and exogenous versus endogenous interactions. The research reported
here explores mechanisms (v), (vii), and (viii) and to some extent interaction mechanisms
(ii) and (iv), for the exogenous network case in the given problem domain, that is, transportation
mode choice (see Figure 1). Technically, however, interactions of types (i) and (iii) may also be
modeled as non-directed graphs, and thus results reported here may prove to be useful in those
areas as well. The authors are currently exploring representations for the endogenous case, that
is, residential choice. As similarly proposed by Brock and Durlauf (2002), the nested logit model
is seen as a promising direction for coupling the exogenous network case (transportation mode
choice) and the endogenous network case (residential choice).
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FIGURE 1  Interaction mechanism framework (This paper considers
[1] interactions between a household and the aggregate actions of other
households proximally situated in a spatial network and [2] interactions
between a household and the aggregate actions of other households
associated in a social network. Interactions between a household and the
aggregate actions of other households in the population (i.e., bandwagon
effects, are also addressed as the special limiting case of a fully connected
network].)

DISCRETE CHOICE WITH AGGREGATE GLOBAL INFORMATION

Discrete choice theory allows prediction based on computed individual choice
probabilities for heterogeneous agents’ evaluation of alternatives. In accordance with the
notation and convention in Ben-Akiva and Lerman (1985) and Ben-Akiva and Bierlaire (1999),
the so-called multinomial logit model well known in econometrics and discrete choice theory is
specified as follows. Assume a population of N decision-making entities indexed (1,..., n, ..., N)
each faced with a choice among Jn alternatives indexed (1,..., j, ..., Jn) in subset Cn of some
universal choice set C. Let Vin be the deterministic (to the modeler) or so-called “systematic”
utility that a given decision-making entity n is presumed to associate with a particular
alternative i in its choice set Cn. Then the probability that the individual decision-making entity n
chooses alternative i within the choice set Cn is given by:
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where µ is a strictly positive scale parameter that we generally normalize to 1.

For the binary case of choice with the universal set containing only two alternatives,
C = {i,j}, say car versus public transit, we have the simplification:
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We now follow the spirit of Aoki (1995) and introduce social dynamics by allowing the
term Vin – Vjn to be a linear-in-parameter β function of the proportions xi and xj = (1 – xi) of
decision-making entities1 who have made each choice:
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The variable x is termed a “field variable,” as motivated by Aoki: “Knowledge of a field
variable relieves agents (at least partially) of the need for detailed information on interaction
patterns. Any macroeconomic variable that serves this decentralizing function is called a field
variable.” Such an approach can be particularly useful if simplifying assumptions, such as having
constant interactions among all possible pairs of microeconomic agents or interactions only with
other agents in neighborhoods in the sense of Markov random fields, are not appropriate.

Substituting Equation 3 into Equation 2 and normalizing the scale parameter µ = 1, we
have:
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Note that the parameter β indicates the level of certainty in the model. If it is fairly
certain that the utility of alternative i is greater than the utility of alternative j, then β >> 0, and
we have effectively deterministic choice:

( )

( ) for1,     0
1

f x

in f x

e
P

e

β

β β= ≈ >>
+

. (5)

If there is uncertainty as to which technology is more profitable, then β ~ 0, and we
have effectively a “fair coin toss” between the two alternatives:
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Aoki (1995) models decision-making entities “as jump Markov processes, and the
dynamics of interactions (among these entities) as birth-and-death stochastic processes where
they switch their choices randomly and asynchronously with transition rates that are functions of
the aggregate situations summarized by the proportion of decision-making entities who have
taken the same choices.” As remarked in Blume and Durlauf (2002) in an analogous continuous
time Markov process changing state in discrete jumps with a uniform global interactions model
                                                
1 To be clear about our notation in that it differs slightly from Aoki (1995), we define the proportion xi = Ni/N and

xj = (1 – xi) = 1 – (Ni/N), where Ni in the number of decision-making entities have chosen alternative i at time t.
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(that is, a model with interactions of constant strength between all pairs of decision-making
entities), “Implicit... is the fact that players are myopic in (stochastically) best-responding to the
current play of the population rather than some forecast of future paths of play.” In this paper, we
will accept this myopic assumption for our exogenous network case with transportation mode
choice; however, particularly for the endogenous network case with residential choice, this
assumption may be worth revisiting.

Let us formalize these assumptions by considering the aggregate behavior of the
population of N decision-making entities instead of the behavior of an individual
decision-making entity. Let P(Ni, t) denote the probability that Ni number of decision-making
entities have chosen alternative i at time t. The total number of possible states of the population
of N decision-making entities is N + 1, since the number of decision-making entities choosing
alternative i can range from 0 to N, and the number of decision-making entities choosing
alternative j is fully determined given the number choosing alternative i, for our binary choice
case. Let WNi,Ni′  denote the transition rate between the states of the population with Ni and Ni′
number of decision-making entities choosing alternative i, and let WNi,Ni be the rate of the inverse
transition. Aoki (1995) uses the backward Chapman-Kolmogorov equation, or so-called “master
equation,” to govern the time evolution of the probability density. The master equation is fully
specified once the transition rates are given between the states.
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As remarked in Reif (1965), “Note that all terms... are real and that the time t enters
linearly in the first derivative. Hence the master equation does not remain invariant as the sign of
the time t is reversed from t to –t. This equation describes, therefore, the irreversible behavior of
a system.” Nonetheless, as motivated by Reif, there is assumed to be a symmetry property
relating a transition to its inverse:

’, , ’i i i iN N N NW W=  . (8)

In general, we find that the probability density P(Ni, t) tends to increase with time
because the population transitions from other states to the given state with Ni number of
decision-making entities choosing alternative i, and the probability density tends to decrease with
time because the population in the given state transitions to other states. For the earlier
mentioned assumption of asynchronous choices of the decision-making entities, however, we
have a convenient simplification, since the only states to which the population in the given state
with Ni number of decision-making entities choosing alternative i can possibly transition to, are
the states with Ni′ = Ni + 1 and/or Ni′ = Ni – 1 number of decision-making entities choosing
alternative i. In short, as remarked by Aoki (1995), in the birth-and-death processes of this paper,
the transition rates are non-zero only for Ni′, which is either Ni + 1 (a so-called “birth”) or Ni – 1
(a so-called “death”). We can thus simplify the master equation for this continuous- time discrete
state Markov process:
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The assumption that only one decision-making entity revises its choice per unit time
may be reasonable for analytical purposes if we consider an arbitrarily small time unit. In
practical situations, however, we can also imagine that there can be non-negligible time-lag in
the spread of information in the population, whereby multiple decision-making entities may
revise their choices per unit time interval, before the knowledge about changes in the system is
disseminated. In the multi-agent simulation implementation of the model we relax this
assumption of asynchronous choices, allowing explicitly for revisions by multiple decision-
making entities per unit time via an external parameter that can be set by the researcher.

In the simplest birth-and-death processes, the transition rates WNi,Ni+1 and WNi,Ni–1 are
given by:
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More generally we can express the transition rates WNi,Ni+1 and WNi,Ni–1 as expansions in
powers of (1/N):
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Dropping all terms of order N –1 and higher, and making the simplifying assumptions
that:

( )g N N=  , (12)

and that the “birth” transition rate WNi,Ni+1 is linear in the individual choice probability P in that
alternative i is superior to alternative j, and the “death” transition rate WNi,Ni–1 is linear in the
individual choice probability Pjn that alternative j is superior to alternative i, we have:
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Aoki (1995) shows that the mean ϕ of the field variable x is governed by the
deterministic differential equation:

( ) ( ) ( ) ( )0 0

1 1

2 2in jn
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dt
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Normalizing κ =1 and λ =1, we have:
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Stationary points are zeros of dϕ/dt. Thus the key equation to determine local
equilibria is:

( )1
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This equation can be solved conveniently graphically, by plotting the left side and the
right side on a graph, and finding their intersection (see Figure 2). Depending on the
specification of f(ϕ), this equation may have more than one solution. Equivalently, from the first
line of Equation 15, we could instead write:
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A stationary point of the mean ϕ for the field variable x is locally stable in perturbations
of the mean if the derivative d2ϕ /dϕ dt is negative:
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Thus we have the condition for local stability:
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If the derivative f ′(ϕ) is nonpositive with β nonnegative, this local stability condition is
always satisfied, since we have defined x = xi – xj = xi – (1 – xj ) = 2xi – 1 on the interval [-1,1],
and thus ϕ = E(x) "�#�����
�β is large and if f ′(ϕ) is positive, this inequality may be violated,
with the equilibrium becoming unstable (see Figure 2).

Using the Repast agent-based modeling platform, we created a computational version of
this model and replicated Aoki’s original work. Example results for f(x) = x are shown in
Figure 3. With a low value of the parameter β, we obtain precisely the case of one stable
equilibrium at x = 0. Conversely, using a high value of the parameter β, we obtain precisely the
unstable equilibrium at x = 0, with the system being driven away with equal probability to either
the extreme x = +1 or the extreme x = -1. Cumulative histograms for 500 runs (plotting the value
of x after 2000 iterations) are shown in Figure 4.

An example of the Repast graphical user interface (GUI) is shown in Figure 5.

(a) β ~ 0              ϕ      (b) β >> 0            �

FIGURE 2  Plotted graphs of y = ϕ , and y = tanh (1/2)β f(ϕ) with f ’(ϕ) positive,
showing (a) one stable equilibrium at ϕ = 0 and (b) one unstable equilibrium at ϕ = 0
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(a) β = 0.03, Random seed = 1

(b) β = 5, Random seed = 1 (c) β = 5, Random seed = 3

FIGURE 3  Example time series for 100 agents with f(x) = x for (a) low certainty (see also
Figure 5) and (b) and (c) high certainty with two distinct random seeds

 

(a) β = 0.03 (b) β = 5

FIGURE 4  Computational results for 100 agents with (a) low and (b) high certainty;
cumulative histograms of f(x) = x over 500 runs (i.e., 500 distinct random seeds)
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(a) Control panel

(b) Simulation settings (c) Distribution of decision-making entities having
chosen each alternative at the indicated tick count

(d) Time series for the field variable x

FIGURE 5  Repast graphical user interface for an example run  (The setting “CoeffDelta” in
[b] refers to the parameter β in the text indicating the level of certainty in the model.)
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AN AGENT-BASED APPROACH: HETEROGENEOUS LOCAL INFORMATION

Aoki’s model described in the previous section assumes uniform, global and perfect
information access, unlike in the real world. The very fact that certain influences are transferred
via social interactions, and thus via social networks, implies heterogeneous local information.
Therefore, the model is extended to explicitly model interaction networks. The perceived
information is still perfect; however, noise and errors are not modeled explicitly.

In our model, each decision-making entity n is assigned a set of “reference”
decision-making entities influencing its choice. At each time step, the decision-making entities
look at the choices their particular reference entities made in the previous round, plus their own
choice, and calculate localized values of the difference in systematic utility between the
alternatives.

Obviously, the “reference” relationships introduced above define a graph or network.
Let us denote this graph by G = (N, L), where N is the set of nodes (vertices) and L is the set of
edges (links) between them. In our case, each decision-making entity is a node,
i.e., N = {1,...,n,...,N} and a decision-maker’s “reference” entities are defined by its links L(n).
We assume that edges are symmetric and that the graph contains no loops (i.e., no node can have
a link to itself).

It is hypothesized that different network structures yield different system behavior.
Empirically however, it can be in practice difficult to reveal the exact details of the relevant
network(s) of reference entities influencing the choice of each decision-making entity. Moreover,
the actual reference entities for a given decision-making entity may not be among those in the
data sample. Therefore, we have turned our attention towards studying abstract classes of
networks in the hope of identifying classes of networks that yield similar results.

��� �����	
��������
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����	���
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%�������������������� ����
��������������
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network. A random network consists of a number of nodes and set of random edges between
them, such that the probability of the existence of a given link is uniform across all possible
edges. The actual number of the links is determined by the density p of the network, which is
�����������	��%������������!��������������� ����
����������&����
��������
�����p is defined as
the ratio of the number of existing links versus the number of all possible links, that is:

#{actual links} / #{all possible links}p = . (20)

One advantage of studying random networks is that they are perhaps the simplest
possible networks that are general enough to describe a wide range of graphs, from unconnected
nodes to a fully connected network (i.e., a graph that contains all possible links, as in our initial
replication of the Aoki model). In addition, they accomplish this without introducing any explicit
bias into the structure of the network. Moreover, results are known about important properties,
such as at approximately what value of p will the network become connected (i.e., when each
node is “reachable” along the edges from any other node), or when a so-called “giant
component” will emerge. Finally, an important feature of random networks that is observed in
real-life social networks is the so-called “small-world” property: the average path length l (the
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average number of “hops” between an arbitrary pair of nodes) is less than or of the order ln(N),
where N is the number of nodes.

With the discrete choice model on a random network, both analytical results and
computational replications confirm that low certainty values effectively yield a “fair coin toss”
between the alternatives. This is due to the fact that the relative importance of others’ choices
becomes low. Therefore, there is no reason to believe that the structure of the underlying
interaction network would play any significant role in determining the outcome. The following
experiments were therefore carried out with a high certainty value, β = 5.

As a base consistency check, we first tested our model with p = 1.0, which, should yield
a model equivalent to the one discussed in the previous section. Simulations2 confirmed this
expectation. Experiments were then carried out with density values ranging from 0 to 0.025
(p = 0, 0.005, 0.01, 0.015, 0.02, and 0.025). The results show that low densities yield behavior
similar to that of low certainty, while higher p values display tendencies toward the high-
certainty outcome of the global information model (see Figure 6).

The actual density values tested were designed to embrace the critical point at which a
giant component emerges, i.e., when, in practical terms, the graph becomes connected. It is
known (Molloy and Reed, 1998) that this occurs around p = 1/N + ε, where N is the number of
nodes and ε > 0 is a small value. In case of 100 agents, this formula gives p = 0.01 as the critical
point. Indeed, simulation results show “random outcomes” for subcritical densities. Also, a
significant change in behavior occurs around a density of 0.02. The range in between yields more
ambiguous outcomes, which may warrant further study. Nonetheless, the overall picture suggests

(a) p = 0 (b) p = 0.05 (c) p = 0.01

(d) p = 0.015 (e) p = 0.02 (f) p = 0.025

FIGURE 6  Cumulative histograms of f(x) = x over 500 runs for different network densities

                                                
2 All simulations reported here consisted of 100 agents and had 20 different networks for each density value. With

each individual network, 500 independent runs were carried out. Each run was stopped after 2,000 iterations.
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that it does not really matter what structure the interaction network has; as long as it is
connected, it starts yielding outcomes similar to the fully connected graph.

Watts-Strogatz Networks

In the previous section, we found that random networks yield behavior similar to that
based on global aggregate information, given connectedness, or more precisely, the existence of
a giant component. This result may be counter-intuitive as it appears relatively easy to craft
examples where it is, at least, unlikely that one alternative will eventually reach total dominance.
$�������� � ��� ���%����� ���� �
������� 
������ ��� ���� ��� ����
��� '#()(*� ������� +
� �!�����
�
property that is observed in real-life social networks, but not embodied in a random network, is
“clustering”: i.e., two friends of a certain person are more likely to be mutual friends themselves
than an arbitrary pair of individuals.

The Watts-Strogatz (1998) model starts from an ordered network, or lattice, which
contrary to the random network, has high clustering, but long average path length, or in effect, no
small-world property. The dimensionality of the lattice is a parameter, although only 1D and 2D
models are commonly discussed (see Figure 7). The extent to which the neighbors are connected
is also a parameter of the Watts-Strogatz model. In Figure 7, nodes are linked to their immediate
neighbors, that is, with extent equal to 1. To avoid artificial boundary effects, thorical lattices are
considered that are “wrapped around,” that is, nodes on the boundary of the system link to nodes
at the opposite boundary.

“Shortcuts” are then introduced into these systems to create the Watts-Strogatz model,
by randomly rewiring a few links. The controlling parameter is the probability of rewiring w,
which gives the probability that each original link in the system is replaced by a random
connection. Only a very few shortcuts (i.e., a fairly low w) are needed to achieve the small-world
property.

Experimenting with Watts-Strogatz networks for our discrete choice model, the first thing
to consider is the density of the generated graphs. In our experiments this value was p = 0.04
(1D with extent = 2), a density that is sufficiently high to be in the two-equilibrium regime of the
random network model. Indeed, experiments with w = 1.0, which renders the

(a) 1D thorical lattice (b) 2D thorical lattice

FIGURE 7  Examples of ordered networks (with extent = 1)
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���������������!������,��%���
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���!������3 Varying w from 0 to
0.3 shows that as the average path length l falls below the small-world threshold, the outcome
converges to the two certain choices behavior (see Figure 8).

CONCLUSIONS AND FUTURE WORK

-����
��������������������������� ����
����
����������������������������������������
��
network representing the interactions between a decision-making entity and the aggregate
behavior of other (local) reference entities has the small-world property, the system behaves in
the long run as Aoki’s original model with global mean field information (Aoki 1995). If we are
only interested in long-run behavior and not how long the system takes to transition there, testing
for the small-world property may be an empirically advantageous alternative to collecting data
on the precise details of a social network.

Another important and widely studied property of social networks is the degree
distribution, that is, in our case, the distribution of the number of “references” the
decision�!��
�� �
������� ��%��� .���� ���� ��� ����
��� ������ �
�� ��������������� ������ ������ �
Poisson degree distribution, which is unlike various real-life cases. Further studies with models
yielding different degree distributions may be fruitful. Another interesting question is what class
of networks may be needed to address interactions between identifiable decision-making entities,

(a) w = 0, l ~ 13 (b) w = 0.04, l ~ 5.2 (c) w = 0.1, l ~ 4.3

(d) w = 0.15, l = 4.0 (e) w = 0.2, l = 3.8 (f) w = 0.3, l ~3.7

FIGURE 8  The effect of rewiring w and decreasing average path length l. The “small-world
threshold” is ln(100) ~ 4.6

                                                
3 The results reported here are based on experiments with 20 different networks for each parameter set. Each

network was tested with 500 independent runs, and each run lasted 5,000 iterations.
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as technically they may also be well-modeled by interaction graphs, but in particular, as the
current results suggest that more sparse networks are more dependent on the actual reference
structure.
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EMERGENCE OF TRADING NETWORKS: A HYPERCYCLE APPROACH*

JOHN E. PADGETT,† DOOWAN LEE, and NICK COLLIER, The University of Chicago

ABSTRACT

 On the basis of the hypercycle model of the origins of chemical life on earth, this paper
develops an autocatalytic model of the co-evolution of economic production and
economic firms, represented as skills. Production and distribution of goods by firms are
only a part of what is accomplished in markets. Through a learning process, firms are
produced and transformed as goods pass through them. By using both agent-based and
analytic modeling, we establish three principles of social organization: structured
topology, altruistic learning, and stigmergy. These principles provide sufficient
foundations for the unconscious evolution of technological complexity.
 
 Keywords: Hypercycle, Repast, agent-based modeling, economics production.

INTRODUCTION

The production and distribution of goods by firms represent only half of what happens in
economic markets. The production and transformation of the firms themselves also occur as a
result of the goods passing through them. This transformation is not just a matter of an increase
or decrease in profits. Skills and the core competencies that define firms are developed and
maintained through “learning by doing” and other learning processes that are triggered by
exchanges among firms. In periods of decentralization and outsourcing, like today, it is more
evident than ever that linked chains of skills are distributed across firms. In this context
especially, the learning and evolution of distributed skill sets reverberate directly in the
reconstitution of firms. Evolving links among firms, in turn, guide and shape the recombinant
new-product possibilities latent in distributed skill sets.

The duality of this co-evolution between product and organization is often ignored by
analysts as they “assume away” one side of the dynamics in order to focus attention on the other.
One place to find analytic inspiration is the field of chemistry. From the chemical perspective,
life is an interacting ensemble of chemicals that reproduces itself through time, in the face of
turnover of its parts.1 Biological organisms are not fixed entities; they are autocatalytic networks
of chemical transformations that continually reconstruct both themselves and their physical
containers. The origin-of-life problem, under this view, is how such an ensemble can
self-organize from a “soup” of random chemicals that are interacting and in flux.

                                                
* This paper updates a related work, titled “Economic Production as Chemistry,” that was published in 2003 in

Industrial and Corporate Change, Vol. 12, pp. 843-877.

† Corresponding author address: John E. Padgett, Department of Political Science, The University of Chicago,
Chicago, IL; e-mail: jpadgett@uchicago.edu.

1 From the physics and biological points of view, additional criteria are sometimes added for defining “life.”
Physicists (e.g., Prigogine and Glansdorff 1971) sometimes add the criterion of far-from-equilibrium throughput
of energy. Biologists (e.g., Maturana and Varela 1980) sometimes add the criterion of permeable encapsulation.



456

This chemical perspective can be applied to the analysis of the co-evolution of products
and firms through the following analogy. Skills, like chemical reactions, are rules that transform
products into other products. Products, like chemicals, are transformed by skills. Firms, like
organisms, are containers of skills that transform products. Trade, like food, passes transformed
products around through exchange networks, renewing skills and thereby firms in the process. In
the macroeconomic aggregate, product inputs flow into this trading network of firms and skills,
and outputs flow out of it.

In this view, firms are sites through which a distributed production process flows, akin to
a chemical reaction. At a minimum, firms can be considered to merely be collection bins for
diverse skills. Trading among firms regulates both the activation and the evolution of the skill
sets that are distributed across firms. The composition of the skills within firms evolves through
learning-by-doing, among other methods: the more a skill is used, the more the skill is
reinforced. Skills that are not used are forgotten. These two processes of learning and forgetting
impose selection pressure on an evolving network-of-skills-through-firms production system.
The origin-of-life problem for markets, then, is to discover how a randomly distributed set of
skills across firms can self-organize, through exchange, into a coherent product-transformation
network,2 which then reproduces itself through time and “grows” a set of firms to sustain it.

Inspired by the literature in chemistry on hypercycles, we first develop a family of
economic production models that operationalizes this co-evolutionary perspective on markets.
We then discuss extensions beyond the hypercycle framework at the end of this paper.

The “hypercycle” is a specific model of the chemical origin of life pioneered by Eigen
(1971) and Eigen and Schuster (1979) and extended by others (e.g., Hofbauer and Sigmund
1988; Kauffman 1986, 1993; Fontana and Buss 1994; full literature reviewed in Stadler and
Stadler 2002). From random distributions of chemicals, the hypercycle model seeks to find and
to grow sets of chemical transformations that include self-reinforcing loops: {1→2, 2→3, 3→4,
…, n→1}. Chemical cycles are crucial to the issue of life because they are the motors behind the
self-reproduction of metabolic networks, in the face of continuous turnover in component
chemicals. Without cycles, there is no positive feedback for growth; without them, any chemical
reaction left to itself will stop or “die.” Eigen and Schuster, Hofbauer and Sigmund, and others
have explored how variations in the reaction rates, density, and number of components can affect
the dynamic stability or “survivability” of various classes of hypercyclic chemical reactions
within a well-stirred liquid reaction tank. Boerlijst and Hogeweg (1991) and Padgett (1997)
extended the investigation beyond the original liquid context to a spatial topology of interaction.

Viewing economics as chemistry entails extraordinarily minimalist assumptions about
economic production: firms become nothing more than bins of transformation rules; products
randomly flow in and through these bins, without purpose; rules reproduce or die only as
functions of use. There is no guiding intelligence, either at the level of the market or at the level
of the firm.3 In such a minimalist setup, the analytic question is this: Can any coherent and self-
reproducing systems of production (that is, coevolved sets of products and firms) emerge? And if
they can, what mechanisms affect the likelihood of such emergence? A priori, one might expect
that not much complex economic organization could result from randomly iterated rules. Yet the

                                                
2 Such a network could be called a “metabolism” or a “technology,” depending on the application context.

3 This is not only bounded rationality, this is the absence of consciousness altogether.
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history of chemical and biological life on earth suggests that minimalist systems can generate
astounding complexity under the right circumstances. Intelligence, we speculate, may not have
been necessary for markets to emerge.4 We are not arguing thereby that humans are no more
complicated than chemicals. We are arguing that a surprising amount of social and economic
organization does not depend on humans being complicated.

METHODOLOGICAL CONSIDERATIONS

Here we describe our hypercycle model of economic production in pseudo-algorithmic
fashion, since we have implemented it in the form of an agent-based simulation.5 We used the
Repast simulation development package developed at the Social Science Research Computer
Center at The University of Chicago. The method we used to verify the specification validity of
our model is a “scaling technique.” Scaling is essentially a comparison of analytic results with
simulation outcomes while the experimental complexity of the model is gradually increased.
Here we start with a simple setup of parameters and gradually increase the complexity of the
experimental variations with subsequent simulations. Then we formulate probability functions of
the model’s basic setup and analytically derive the probability of each parameter’s permutations
by solving the mathematical expressions. Finally, we compare the analytic solutions to the
simulation outcomes obtained by the same setup of parameters to show that the model is
behaving as expected. This way, we know with certainty that the simulation outcomes are not
some artifact of the source code or accidental convergence. We believe that this is a reliable way
of testing the specification validity of the model when there are no empirical data for
verification.

HYPERCYCLE MODEL OF ECONOMIC PRODUCTION

First we describe our core models of production and learning. These illustrate the logic
behind our basic “dependent variable”: hypercycle emergence. Then we describe experimental
variations in our core model: number of products, interaction topology, mode of learning, input
environment, and input search. These are the “independent variables” that may affect the
likelihood of hypercycle emergence. The simplest versions of our spatial hypercycle model can
be solved analytically. We present such solutions below in order to both verify and aid in the
interpretation of the simulation results.6

                                                
4 Hayek (1948) made an argument about the “self-organizing” operation of markets that is similar to the one we

make here about the emergence of markets.

5 Our agent-based model is publicly available for both demonstration and modification. It is available at
http://repast.sourceforge.net under the application module HYPERCYCLE. Repast is a comprehensive software
framework and library for creating agent-based simulations, built in the Java language.

6 In economics, though not in physics, there is frequently a fruitless methodological debate about agent-based
modeling versus analytic modeling. Our position is that one can and should do both: namely, solve simple
settings analytically and then scale up through computer modeling. Analytic solutions are more transparent than
computer simulations, but they frequently require the imposition of highly restrictive and unrealistic
homogeneity assumptions. Computers can numerically solve highly nonlinear models with heterogeneous agents
in nonhomogeneous topologies, and there is no reason not to let them do so as long as one can understand the
results.
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Core Model of Production

1. There are three components in the model: rules (“skills”), balls (“products”),
and bins (“firms”).

2. Rules/skills transform balls/products into other balls/products. For example, if
balls/products are indexed by i = 1,2,3,…,n, then the set of transformation
rules obeying a cyclic structure7 would be represented as {1→2, 2→3, 3→4,
…, n→1}. The set of transformation rules we call a “technology”; n indexes
the “complexity” of the technology.

3. Rules/skills are contained in bins/firms. At the beginning of each simulation
run, skills are just randomly distributed across available firms, without any
logic. The number of firms initially is large.

4. Bins/firms are arrayed on a spatial grid, with wraparound boundaries. Each
firm has eight possible nearest-neighbor trading partners.

5. At each asynchronous iteration of the model, a random rule is chosen as
“looking for action.” The firm containing that rule/skill reaches into the input
environment (modeled as an urn) and draws an input ball/product. If the input
ball/product selected is compatible with that rule, then the ball/product is
transformed according to that rule. (For example, if a firm possessed an
activated 1→2 skill, and it drew a 1 as input from the urn environment, then it
would transform the input 1 into the output 2.) If the ball/product selected
could not be processed by the activated rule, then the input ball/product would
pass through the firm into the output environment (also modeled as an urn)
unchanged.

6. Products successfully transformed within the firm are passed randomly to one
of the firm’s eight possible trading partners. If that trading partner possesses a
compatible skill, then it transforms the product further, and passes the
transformed product along in a random direction. (For example, if the second
firm possessed a 2→3, then, after receiving the output 2 from the first firm, it
would transform the 2 into a 3, and then pass that on to a third firm or possibly
back to the first.) In this way, transformed products pass through sequences or
chains of skills.

7. Bins/firms continue passing around transformed products among themselves
until the product lands on a firm that does not possess a compatible skill to
transform it further. At that point, the product is ejected into the output
environment, and a new input ball is selected to restart the iterative process.

                                                
7 Rule sets that are more general than the cyclic structure are quite possible to set up and explore. In this paper,

however, we restrict ourselves to the cyclic structure in order to root ourselves in the preexisting literature on
hypercycles. In future papers, we intend to explore other rule sets. The HYPERCYCLE code has already been
written with this extension in mind.
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Overall, the production process is as follows: Input balls/products come in from an input
environment, then pass in random directions through randomly distributed production chains of
skills. They are transformed en route until they pass back into an output environment. For this
random production process to self-organize into coherence, there must be some sort of a
feedback mechanism. In our case, this is learning through trade.

Core Model of Learning

1. “Learning by doing” is modeled in a chemical fashion as follows. If one skill
transforms a product and then passes it on to another transforming skill, the
skill is reproduced. We call such a sequence a “successful transaction,” since
both sides transform products.8 Which of the two skills is reproduced in a
successful transaction is an experimental variation within the model, as
discussed below.

2. “Forgetting” is modeled in a chemical fashion as follows. Whenever one skill
is reproduced anywhere in the system, another skill, randomly chosen from
the overall population of skills, is killed. The total population volume of skills
in the population is thereby held constant.9

3. Once a firm loses all its skills, it “goes bankrupt” or “dies,” never to recover
any skills.

For firms, learning is thus equivalent to reproducing skills. We argue that learning and
the reproduction of skills are the same process; they may simply be called by a different name at
different levels of analysis.

Our focus is analogous to taking a germ’s eye view of disease. Instead of focusing on the
organism getting sick, we focus instead on the reproduction and spread of germs. Firms learn and
adapt in our model, but the underlying mechanism is not conscious reasoning. Rather it is the
reproduction of the inherited skills through use.10 Firms are kept alive or are killed solely on the
basis of the skills that operate through them like chemical reactions.

This combination of learning, forgetting, and dying imposes selection pressure on the
production system of skills. In the face of inexorable forgetting, skills must reproduce in order to
survive. In the harsh conservation-of-skills setup employed here, the success of the rules in one
place in the system imposes sharply competitive selection pressure on the rules elsewhere in the
system. Heavily used subsets of the distributed skill set reproduce, and rarely used subsets of the
distributed skill set disappear. The death of a firm is an absorbing state that permanently

                                                
8 Final consumption is the output urn.

9 This conservation-of-skills assumption mimics the conservation-of-mass assumption in chemistry. While
perhaps too harsh an assumption for many human populations, this constraint is one chemistry-style way to
model competition among firms.

10 In future extensions of this model, we intend to add diffusion of skills among trading firms, in order to mimic
“collaborative dialogue.”
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eliminates its unsuccessful skills.11 As the composition of the skills within rules within firms
thereby evolves, surviving firms cluster into mutually reinforcing trading groups, reminiscent of
Marshallian industrial districts. Production chains of compatibly sequenced rules self-organize
their way through these spatially contiguous groups of firms.

A conscious desire to cooperate (indeed, consciousness itself) is not necessary for
mutually reinforcing clusters of trading firms to emerge or survive. In this model, the minimal
requirement for the long-term survival of both firms and clusters is to participate in at least one
spatially distributed production chain that closes in on itself to form a loop. Not all production
chains within a trading cluster need to be closed into loops. And more than one loop within a
cluster is possible, in which case, there may be a dense hypercyclic network of spatially
distributed production rules. However, loops within distributed chains of skill are crucial, not for
production itself but for the competitive reproduction of skills. Loops set up positive feedbacks
of growth in skills; these give the firms that participate in the loops the reproductive ability to
outproduce firms that do not participate. Put another way, clusters of firms can produce products
with or without hypercycles, but firms whose skill sets participate in production chains that
include loops have the further capacity to keep renewing each other through time. This is the
chemical definition of life.

From a chemical perspective, therefore, the secret to understanding the competitive
success of both firms and industrial districts is to find the conditions that foster the spontaneous
self-organization of skills into self-reinforcing hypercyclic production chains that wend their way
through firms, knitting them together in trade and helping them to foster each other’s
reproduction through continuous learning.

Experimental Variations

Five independent variables (i.e., experimental treatments in the simulation model) affect
the likelihood of finding and sustaining self-organized hypercycles of skills. The first three are
discussed here.

1. Complexity. A parametrically fixed volume of rules or skills is scattered
randomly around the space of firms at the beginning of each run. In this paper,
200 rules are scattered, and the composition, or complexity, of the rule set is
varied. In a cyclic structure of rules, complexity is indexed by n. We vary n
from 2 to 9; that is, we explore two-skill hypercycles, three-skill hypercycles,
and so forth, up to nine-skill hypercycles.

2. Interaction topology. The basic spatial topology for trading explored in this
paper is the 10 × 10 wraparound grid. At the beginning of each run, there are
100 firms (one firm per cell in the grid), each of which can trade products with
its eight nearest neighbors. This is the so-called Moore-neighborhood
topology.12

                                                
11 Allowing the entry of new firms is another obvious extension to our model that we do not explore here.

12 In future work, we plan to investigate additional topologies as well. Padgett (1997) used four-neighbor
(von Neumann) neighborhoods. The impact of social networks of various kinds, such as cliques and small
worlds, is an especially important avenue to explore.
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As an experimental variation, we compare the hypercycle behavior of this
spatial topology to that of the nonspatial “well-stirred liquid reactor”
topology, which is more traditional in chemistry. In nonspatial or random
topology, every rule is equally likely to pass a product to any other surviving
rule, irrespective of the firm’s spatial location.

A major finding in the existing hypercycle literature (Hofbauer and Sigmund
1988, page 96) is that nonspatial hypercycles are dynamically stable up to four
elements but not beyond. In other words, in nonspatial interaction when
hypercyclic sets consist of five elements or more, one or more of the
component chemicals is always driven to zero during the reaction process,
thereby breaking the reproductive loop and causing the hypercycle to “crash.”
This is a “complexity barrier” that self-organizing hypercycles, and hence
“life,” cannot penetrate when the chemical interaction is nonspatial or random.
Padgett (1997) has shown that in spatial interaction topologies, dynamically
stable hypercycles with a complexity of five elements and more can be grown,
although at increasingly lower frequencies at higher levels of complexity.
Spatial interaction, in other words, can break the complexity barrier.
Presumably this is one reason why complicated chemical life is embodied. We
reconfirm both the nonspatial findings of Hofbauer and Sigmund (1988) and
the spatial findings of Padgett (1997) here in a new context.13

3. Learning/reproduction. In the spatial topology setting, two variants of
learning by doing are explored14:

a. “Source reproduction” occurs when the originating rule in a successful
transaction is reproduced.

b. “Target reproduction” occurs when the receiving rule in a successful
transaction is reproduced.

For example, if 1→2 receives a 1 from the input environment, transforms it
into a 2, and then successfully passes that 2 onto a neighboring 2→3 that
transforms it again, then source reproduction occurs where the initiator 1→2
reproduces, and target reproduction occurs where the recipient 2→3
reproduces.15 The variation in the mode of reproduction thus defines who
benefits from the transaction.

                                                
13 The models in this paper are extensions of the model presented in Padgett (1997). The main extension is the

addition of explicit products that are being transformed. In the earlier paper, there were action-reaction chains of
“play,” but nothing was actually produced or accomplished. We believe that the setup in Padgett (1997) was
appropriate for modeling the emergence of informal organization among people within a firm, whereas the setup
here is more appropriate for modeling trading among firms in an economy.

14 In nonspatial interaction, these two reproduction modes behave identically. Space is what separates target from
source. In Padgett (1997), a third mode was also explored: “joint reproduction,” where both rules in a successful
transaction reproduce. Because two rules are reproduced in this hybrid, two offsetting skills need to be killed to
preserve conservation-of-mass.

15 Of course the recipient 2→3 could easily turn into an initiator the next time, if a neighboring 3→4 is
subsequently found.
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Source reproduction is considered “selfish learning” because the initiator of
the successful transaction (like a teacher) reaps the reward. Target
reproduction is considered “altruistic learning” because the recipient of the
successful transaction (like a student) reaps the reward. Although “selfish”
and “altruistic” accurately characterize who benefits, they are suggestive
labels, and one should avoid importing motivational connotations. In the
minimalist models developed here, there are no motivations — just actions
and reactions, like in chemistry.

Padgett (1997) demonstrated that, in contrast to source reproduction, target
reproduction dramatically increases the likelihood of growing stable
hypercycles. It also increases the spatial extensiveness and complexity of the
firm cluster that is produced by the hypercycles. Both of these findings are
reconfirmed here.

In addition to these three experimental manipulations, two more experiments vary the
input environment in which hypercycles grow. Such additional experiments were not possible in
Padgett (1997), because previously there was no explicit modeling of products or of product
environments.

4. Input environment. Input environments of resources or products can be
conceived of as being fixed or variable and rich or poor.

Among fixed resource environments are two types. Rich input environments
are modeled by letting the input urn of resources contain all possible inputs,
never to be depleted, even as products/resources are withdrawn. Poor input
environments are modeled by letting the input urn of resources contain only
one possible input (by convention, it is called “1”), which is not depleted,
even as products/resources are withdrawn.

Among variable resource environments is the endogenous input environment.
This environment is modeled by letting the input urn be constructed over time
by the outputs of the production system. Under the endogenous environment
variant, our model withdraws one input product, transforms it into other
products through distributed production chains, and then places the final
output back into the original input urn.

Presumably, rich input environments are more congenial to hypercycle
emergence than are poor environments. What is less clear is where
endogenous environments rank. Given that we have defined “rich” as being
virtually nirvana (i.e., all possible inputs are available all the time, never to be
depleted), our expectation is that nothing can outperform that. However,
modelers of social insect behavior (e.g., Camazine et al. 2001) have
discovered that “stigmergy” (i.e., the ability of social insects to transform their
physical environments into nests, mounds, paths, and the like) can sometimes
provide surprisingly powerful feedback that affects the development of the
social organization itself. The open question, therefore, is whether the social
organization that is achievable in an endogenous environment is superior in
any way to that achievable in a rich environment.
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5. Input search. The final experimental manipulation varies the precision of the
search through the environment. A random search occurs when an activated
rule reaches into the input environmental urn and chooses inputs randomly, in
proportion to what is there. A selective search occurs when an activated rule
reaches into the input environmental urn and selects the exact input it needs to
transform, if it is there. A random search is like literal chemistry.
(Metaphorically, we think of this as the intelligence of an atom, bouncing
around.) A selective search is more like animal behavior. (Metaphorically, we
think of this as the intelligence of a cow, looking for grass.) This is the only
place in the model where we vary degree of intelligence. We expect the more
intelligent selective search procedure to outperform the random search
procedure in finding and nurturing production hypercycles.

FINDINGS AND DISCUSSION

The basic findings from our agent-based simulation model of hypercycle economies are
presented in Figures 1 and 2. The y-axis represents the dependent variable: the long-term16

probability of hypercycle survival. The x-axis represents the varying degrees of complexity in
the simulated economies’ technologies: simple two-skill technologies, slightly more complicated
three-skill technologies, and so forth, up to the most complex nine-skill technologies. Different
lines within the graphs present the results of our various experimental manipulations: interaction
topology, mode of reproduction/learning, and input environments. Figures 1a and 1b show
comparisons for selective search; Figures 2a and 2b show them for random search. The findings
are discussed here.

1. Unstructured interaction topologies are not conducive to the emergence of
complex technologies. Without help through embodiment, long sequences of
skills cannot dynamically regulate their own stable reproduction. “Structured
topology” does not have to mean spatial, as it does here (Cohen et al. 2001).
But constraints on interaction are necessary for two reasons: (1) to break the
symmetry of full mixing and induce localized heterogeneity and (2) to allow
positive reproductive feedback to turn that raw heterogeneity into path-
dependent memory of past successes. This is the chemistry answer to why

                                                
16 Our operational definition of “long term” came inductively from observing a great many runs and seeing how

long even the slowest among them took to converge to equilibrium. We finally chose the following liberal
stopping points for our simulations: 30,000 ticks for two-element hypercycles, 40,000 ticks for three-element
hypercycles, 60,000 ticks for four-element hypercycles, 80,000 ticks for five-element hypercycles, 120,000 ticks
for six-element hypercycles, 180,000 ticks for seven-element hypercycles, 250,000 ticks for eight-element
hypercycles, and 300,000 ticks for nine-element hypercycles. For the more complex of these hypercycles, much
computing time was required. Each point in these graphs represents the average of 30 simulation runs.
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FIGURE 1  (a) Source reproduction and selective search and (b) target reproduction
and selective search (Each point is an average of 30 simulation runs.)
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FIGURE 2  (a) Source reproduction and random search and (b) target
reproduction and random search (Each point is an average of 30 simulation
runs.)
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firms exist:17 dynamic barriers of technological complexity can be
transcended, once “global” is transformed into the concatenation of “locals.”
This finding is evident in Figures 1 and 2.

Classic Marshallian industrial districts receive the benefits of physical space
naturally. However, in this era of globalization, densely interconnected firms
may or may not be so fortunate. What our model implies is that trading within
these new “virtual industrial districts” will have to become interactionally
constrained in order for technological progress, and not instability, to be the
consequence of increased connectivity (cf. May 1974; Davidow 2000).

2. The potential benefits of localized embodiment are more easily reaped
through altruistic learning than through selfish learning. When the recipients
rather than the initiators of transactions receive the reproductive rewards,
complex technologies are more readily nurtured and repaired.18 “Free-riding”
does occur, but it does not threaten system stability. This repair mechanism
can also be shown analytically for one special case of our model. We derived
differential equations of skill growth for the extremely simple two-skill-
hypercycle setting of a single dyad: two adjacent firms trading only with each
other. Table 1 collates the differential equation results for ease of inspection.
In our agent-based simulations, interlinked dyads proliferated across the entire
grid, generating interaction effects not captured in the stripped-down dyadic
setting. Simplification does, however, permit analytical solutions not
otherwise possible. Such solutions are useful, both to increase transparency
and to double-check computer code.

The analytic contrast between target reproduction and source reproduction is
most sharply illustrated in the setting of a fixed rich environment. There, in
both of the target reproduction equations, E(n12,t+1) always goes up when
n12,t is less than n21,t, and it always goes down when n12,t is more than n21,t.
The converses are true for E(n21,t+1). In other words, target reproduction
generates a consistent tendency toward homeostatic stability over the entire
range of n12. In sharp contrast, in both of the corresponding source
reproduction equations, both E(n12,t+1) and E(n21,t+1) equal zero. Source
reproduction exhibits no built-in tendency toward homeostatic stability: n12

                                                
17 Padgett (1997, pages 119-200) discusses why the traditional explanations for the firm given in neoclassical

economics (namely, transaction-cost economics and principal-agent theory) are inadequate from a biological
perspective: “Such a transposition of ‘the firm’ down into a series of dyadic negotiations overlooks the
institutionalized autonomy of all stable organizations. In organisms, social or biological, rules of action and
patterns of interaction persist and reproduce even in the face of constant turnover in component parts, be these
cells, molecules, principals, or agents. In the constant flow of people through organizations, the collectivity
typically is not renegotiated anew. Rather, within constraints, component parts are transformed and molded into
the ongoing flow of action.”

18 Sabel (1994) recommends squeezing the temporal distance between the two sides of an iterated transaction until
this distinction is effaced. Such relational constraints are consistent with our first conclusion. Regarding our
second conclusion, however, Padgett (1997) demonstrated that joint reproduction, the closest analog in
chemistry to this recommendation, does not succeed in breaking complexity barriers.
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TABLE 1  Growth-of-skill equations for the two-element hypercycle in a
trading dyad

Transformation Structure Spatial Layout

Volume of Rules/Skills: n12 + n21 = N
Volume of Balls/Products: b1 + b2 = B

Growth-of-Skill Equations

1. Nonspatial topology: Unchained

12 21 21 12
12( )

d n n n n
E n

dt N N N N

       = −              

2. Spatial topology: Fixed rich environment, with selective search

(a) Source reproduction of rules

12( ) 0
d

E n
dt

=

(b) Target reproduction of rules

21 12
12

9
( )

64

d n n
E n

dt N N

      = −            

3. Spatial topology: Fixed rich environment, with random search

(a) Source reproduction of rules

12( ) 0
d

E n
dt

=

(b) Target reproduction of rules

21 12
12

17
( )

256

d n n
E n

dt N N

      = −            

n2n1

1 1

2

1

2
2

1    2 2    1
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TABLE 1  (Cont.)

4. Spatial topology: Fixed poor environment, with either selective or random search

(a) Source reproduction of rules

12 21 12
12

1
( ) 8

64

d n n n
E n

dt N N N

      = +            

(b) Target reproduction of rules

2

12 12
12

1
( ) 8

64

d n n
E n

dt N N

     = − +          

5. Spatial topology: Endogenous environment, with selective search

(a) Source reproduction of rules

12( ) 0
d

E n
dt

= , as long as b1 > 0 and b2 > 0

(b) Target reproduction of rules

21 12
12

9
( )

64

d n n
E n

dt N N

      = −            
, as long as b1 > 0 and b2 > 0

6. Spatial topology: Endogenous environment, with random search

(a) Source reproduction of rules

12 21 1 2 1 21 2 12
12

1
( ) 9

64

d n n b b b n b n
E n

dt N N B B B N B N

                = − − −                                

(b) Target reproduction of rules

2 2 2

2 21 1 12 12 12
12

1
( ) 8

64

d b n b n n n
E n

dt B N B N N N

              = − + −                               

7. Spatial topology: Endogenous environment, with either selective or random search

(a) Either source or target reproduction of balls

2

21 12
1

7 1
( ) 1

8 8
d n n

E b
dt N N

            = − −                      
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drifts in random-walk fashion until it eventually crashes into the absorbing
states of either n12 = 0 or n12 = 1.

Here we compare analytic results with simulation outcomes to verify that our
model is behaving as expected. For hypercycles more complex than the two-
element dyad, we can no longer derive solutions analytically. But the
simulations show this basic dyadic finding to be true more generally. Target
reproduction generates higher rates of hypercycle survival than does source
reproduction for all corresponding spatial settings. To repeat, the mechanism
that generates this sizable superiority is the direct “altruistic” repair of
complementary rules by each other.  Target reproduction repairs hypercycles
without intending to do so, once given the precondition of spatial “symmetry
breaking,” which induces the distinction between altruistic and selfish in the
first place.

This conclusion is consistent with anthropological emphases on gift giving in
primitive economies (Mauss 1967, Sahlins 1972). It is also consistent with
sociological observations about the “strange” persistence of generous behavior
in modern economies (Macauley 1963; Granovetter 1985; Uzzi 1996, 1997;
Padgett and McLean 2002). Our explanation for generosity may not be the
only explanation. However, repair is one evolutionary reason for the natural
selection of this behavior in competitive economies of all sorts. Altruistic
learning stabilizes the reproduction of distributed technological skills, on
which all depend.19

3. When altruistic learning is not present for whatever reason, then stigmergy
(the endogenous construction of resource environments) is second best.
Entomologists (e.g., Bonabeau et al. 1999; Camazine et al. 2001) have shown
that stigmergy can flexibly coordinate sophisticated collective behavior
among myopic social insects. We have shown that stigmergy also can regulate
the cancerous growth of selfish learners, keeping even long chains of
distributed skills alive.

Adams (1966a,b) has long argued that cities are crucial to the history of
technology. His exemplar case is Mesopotamia, where spatial feedbacks
between settlements and rivers guided the joint emergence of urban
concentrations, irrigation technologies, and the shapes of the rivers
themselves.20 Even though our model is far too minimalist for real history, it
may illustrate one reason why the spatial reorganization of land into cities and
the development of complex technologies proceeded hand in hand.
Technology causes cities, as we all know; less obviously, the spatial products

                                                
19 This may be news to some rational choice theorists, but it will not come as a surprise to parents.

20 One would not expect the mechanisms of our model to explain the invention of writing. But it is worth noting
that writing, too, was implicated in these co-evolutionary developments.
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of technology channel and regulate the social forces that produce them. To put
it simply: cities stabilize selfishness.21

CONCLUSIONS

We imported a few simple tools from chemistry and developed them for systematically
investigating the co-evolution of distributed technology and social organization. Extreme
assumptions about the absence of consciousness are implied by our specification. The payoff of
such extreme simplification is the discovery of three social-organizational principles that enable
technological evolution. How robust such principles are when applied to alternate specifications
is important to explore in the future. Regardless of the answer to that question, however, we have
demonstrated, at a minimum, that complex cognition is not necessary for the emergence and
functioning of complex economies, just as March and Simon (1958) argued long ago.22
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DISCUSSION:

NETWORK COMPLEXITIES

(October 4, 2004, 9:45 to 11:45 a.m., Session 2)

Chair and Discussant: Fabio Rojas, Indiana University

Empirical Estimation and Multi-agent-based Simulation of a Discrete Choice
Model with Network Interaction Effects: An Exploration of the Role of Global
versus Local and Social versus Spatial Networks in Transportation Mode Choice
Behavior in the Netherlands

Fabio Rojas: Originally Shah Jamal Alam of Saarland University was scheduled to speak
today. He is not able to come, so today we’ll be having David Sallach in his place. And our new
schedule for today will start with Elena Dugundji and Laszlo Gulyas, who will be talking about
empirical estimation and multi-based simulation of a discrete model, choice model. Then we’ll
have John Padgett, Doowan Lee, and Nick Collier talk about economic production as chemistry,
and then we’ll finish up with David Sallach, who’ll be talking about indexicality in agent-based
modeling.

Elena Dugundji: This is work together with myself and Laszlo Gulyas from the
Hungarian Academy of Sciences. I’m at the University of Amsterdam.

[Presentation]

Unidentified Speaker: Would you just repeat what you mean  by endogenous
specification?

Dugundji: No. This is within transportation mode choice. For the first example I showed
you, I used one thick set of perimeters. And I applied that set of perimeters to all the same
networks. For the others, I let, for each network, the perimeters be re-estimated. So how you
could think about that intuitively, for econometricians in the group, would typically be to do
what I’m showing you right here, that you would do your estimation based on the data, in this
case, this created network for each individual network.

The other case would be something like you had estimated your data and then there was
an exogenous shock to the system. The system didn’t have a chance to recalibrate itself, and
therefore it operated on the basis of the coefficients that you had estimated in the first pass.

So this is what is done in the current transportation work. You do some either cross-
sectional or dynamic estimation of your data, and then for the data when you make a prediction,
you change the X variable slightly and you use the betas that you had estimated as input. That’s
what you just saw.

Now I’m allowing them to be re-estimated every time, and here you get very different
behavior. And I will come back to that in the conclusions.
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[Presentation Concludes]

Rojas: Our next presenter is Doowan Lee. While he is setting up his laptop, does
anybody have a quick question …

Unidentified Speaker: So basically your findings, the conventional modeling approach
for the discrete choice, I mean, the conventional logic property model, what kind of
econometrical problem were [they] having in their models? For example, would the coefficient,
the responsible coefficient, be unstable?

Dugundji: The issue with the current models is that they’re not taking this interaction
effect into account. And in particular, adding this coefficient automatically adds a dynamic to the
model, because as soon as your choice is dependent on other people’s choices, once you’ve
estimated your model, then you have a feedback immediately, because people might have
changed their choice. And then that changes the explanatory variable, which is why you get this
feedback automatically. In these simple examples without the negative feedback, there are only
two options: You either get a bell-shaped curve or you get this two-peak behavior, where one
option is chosen or the other one. Adding a nonlinear negative feedback would be very
important, because clearly this type of behavior is maybe not so realistic. What you would expect
to see is maybe some more limit cycle type of behavior. And we expect that adding this
nonlinear negative feedback might be able to give us this limit cycle behavior, which is what you
see more in real life.

Now, the issue with the typical current models that they don’t include this interaction
could have very important effects on your implementation of a new policy. If this is an important
variable, which we think it is, and you’re leaving it out of policy decisions, you’re basically not
taking into account the fact that society is influencing your choice. So your choice is not just an
individual decision that doesn’t affect what your neighbors do.

Clearly, for car-pooling policy to have any kind of effect at all, you really do have to be
able to take into account other peoples’ decisions. I mean, this is a very extreme example,
because if you want to car-pool, you can’t just say, “Oh, I’m going to car-pool” if there isn’t
anyone in your environment or workplace that also wants to car-pool. So your choice is critically
dependent on other people.

You can expect that car-pooling models will certainly be incorrect if you’re leaving this
out of the model. So that’s the rationale for wanting to include these types of variables.

Economic Production as Chemistry

Rojas: Doowan Lee is from The University of Chicago.

Doowan Lee: This work is a sequel to John Padgett’s 1997 article on hypercycles. In that
paper, he was trying to see what kind of conditions are most conducive to the emergence of
hypercycles, or the emergence of skill-based organizations. There he had skills and agents trying
to find some compatible neighbors and then producing some kind of hypercycles or a chain of
organizations.



477

[Presentation]

Unidentified Speaker: A skill is like one to two, two to three, so how long is the chain?

Lee: Actually, we have only binary rules at this point. So each rule will have only two
integers, input and output. In fact, increasing the chain of the rules is an extension we are
thinking about for the next project.

Unidentified Speaker: What’s the complexity?

Lee: Two, tonight. For example, if you set your simulation to two, you’ll have only two
types of skills, right? One to two, two to one. If you set the integer at three, you’ll have one to
two, two to one, three to one, and so on. So at this point, our complexity is limited to binary
rules, as opposed to increasing the chain of those rules.

Unidentified Speaker: So the complexity is just the number of rules.

Lee: So this setting, in terms of the complexity of rules, is called “Solo H,” because
we’re going to allow only one-way permutation, as opposed to back two, three to one, two to
one, etc. So that’s what we’re using here. In terms of width size, it’s set at 10 by 10, so there will
be 100 agents. The interaction mode, as I said before, is more neighborhood. So each agent will
have eight neighborhoods in which to look for a compatible form. The number of goals is set at
200 throughout all our experimental settings. There isn’t a set of 200. Instead we have to see
whether the variation of the volume of each type of rule has an impact on the probability of
hypercycles.

Probably this has to be more dynamic in the future. For example, when you have more
types of skills, perhaps it might make sense to increase the total volume of goals or rules allowed
in the system.

So, for example, when our maximum goal type is at full, we’re going to set the number or
rules at each type at 50, so we’ll have 200 total volumes. Target production is that the recipient
will reproduce its rules and in terms of the resource mode, once. This has sort of been a very
harsh environment, because I started with only ones, or since there’ll be a lot of different types of
rules. Even though you start with only ones, the products will be very diverse as it goes on. So
this is the basic setting.

Unidentified Speaker: What do the numbers in each circle mean again?

Lee: Those are rules, actual rules. So when you see two/three, that means it’s
transforming two or three. And whenever there’s a kind of successful transformation, the green
lights indicate they are networked.

Rojas: This is headed for death.

Lee: Hmm, no. This is just a first pass. Of course, we’ll show you more, some of the
statistics of our experiments that will better represent the findings we got out of the simulation.



478

What I’m trying to show you here is that the simulation is actually doing what we intend
it to do, and actually there’s no pattern with our analytic results, where we use only two types of
rules and then try to show that our findings are analytically attainable as well. And that’s I think
what John mentioned previous in the morning — you start with a simple setting and increase the
complexity of your setting and see whether you have a strong analytic foundation to increase the
complexity, because if you go the other way around, you might have very interesting findings,
but it’s really difficult to show whether those findings are analytically attainable as well.

So this is a basic test run of our model. I’m going to show you our statistics later, but
these are two snapshots. The first one shows you the complexity of skills is at full, is
endogenous, a rich environment that’s set for target reproduction. The bottom one has the same
settings, except it’s source reproduction. As you can see, there’s a drastic difference between
these two snapshots.

[Presentation Concludes]

So any questions, comments?

Rojas: Does anybody have a question?

Shu-Win Chen: Could you define the emergence of form again?

Lee: The forms are not the basic unit of our analysis at this point. They are given. For
example, we start with a 10 × 10 grid, and then you’ll have 100 spots, and every spot is
populated with bins. And those bins will have randomly distributed skills, depending on the
integer we defined for the complexity of skills in the system. So in that sense, forms are
completely given in this setting. What we’re really interested in is, whether these conditions form
any types of industrial districts, if you will, or some kind of production chains, like a
fundamental dependant variable. I don’t think we actually study the concept of the form here
with this project.

Stephen Guerin: Right now, the production rules are one input/one output. Have you
considered more chemistry of multiple inputs/multiple outputs?

Lee: Actually, we haven’t. There are several reasons we stayed with this very simple
permutation at this point. First we were aiming to finish this paper in our given amount of time,
so we decided to start with the most simple setting, which is just one-way permutation, although
we have, as you see in the parameter window, possible permutations option. This is a little bit
more complex, but the problem is it’ll just take a lot of computer power to process those kinds of
settings. So that is something that we have in mind, but in terms of whether we have
implemented multiple inputs and multiple outputs, no. But that’s something probably we can
consider in the future.

Rojas: How long did it take both of you to do your simulations?

Lee: I really appreciate the question, because that that’s when we were sort of pulling our
hair a lot. In terms of the necessary computer power, it depends on the complexity of the skills,  a
two or three. It’ll take just one or two days to go through all permutations of our experiment of
variables. But when we went up to nine, I think one setting took about three days on a
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Pentium IV, in a 2.4 gigahertz computer with 1 gigahertz of memory. So I think for our old
settings, like from two to nine integers, I think it took about two months on this one computer.

Rojas: Right. Elena, how long did it take you to do your simulations?

Dugundji: It’s very comparable. I don’t know if you remember, you saw lots of and lots
of little histograms. An individual line is quick, but when you want to scan over 35 densities,
times four different modules, times 50 networks per histogram, times 20 different networks, then
you have thousands and thousands of runs, and I think it took about three months just to run
through all of them.

Rojas: And you were using similar hardware as Doowan, like a good desktop?

Dugundji: Yes, 1 gigabyte of memory and 2.4 gigahertz. And it was just continuously
running batch mode for about three months. An individual run is very quick, but to do all the
different permutations takes a long time.

Rojas: So both of these projects are similar in that way, that the individual simulations
are pretty short, but going through all the parameters of the model actually …

Dugundji: Particularly because, one, just doing one network isn’t sufficient. You really
want to do at least 20 networks, and then you want to use 50 different random seeds per network.
Then you need 2,000 iterations until you get to the steady-state behavior.

Lee: And that’s not counting all the erroneous [runs].

Rojas: We’re going to hear from David Sallach of Argonne National Laboratory and The
University of Chicago.

INDEXICALITY IN AGENT-BASED MODELING1

David Sallach: Because members of society must actually have shared methods for
achieving social order, and every situation has a different pattern of order that is required for a
coherence of action within that situation, there are characteristics that are reflexive and relational
in the production of meaningful social practices. One of the ways that you recognize the
coherence that’s inherent in the situation is in terms of taken-for-granted expectations.

So my point is that this is a pretty high standard for agent simulation, to begin to do that.
And I don’t mean to suggest that we come anywhere close to approximating that. Infinitely deep
is a long way! But I do mean to say that it’s useful to review this as a standard and then think “to
what extent can these capabilities be approximated?”

Situation theory can be viewed as a variety of information theory. Information theory, as
you know, is quantitative. It has to do with the size of information flow, the size of information

                                                
1 David Sallach’s presentation was a late addition to the program to replace the planned presentation by S. Alam,

who did not attend the conference. Because there is no corresponding paper for Dr. Sallach’s presentation during
this session, his comments are provided in full.
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store, the error rate, and things like that. The original Shannon and Weaver documents recognize
the importance of meaning, but they also recognize that it was a tough problem and that it wasn’t
something that they were prepared to address at that point in time. But as we’ve seen, all social
processes are inherently meaning-oriented; that is, why people do what they do at a given point
in time is dependent upon the meaning that they attribute to the situation. There are continuous
and countless examples of this: was that remark, joke, or insult that, in the right situation, could
lead to war or peace?

There’s a famous Cossack wink that I cite, which is that at the beginning of the 1917
Revolution in Russia, the women were out demonstrating for bread, and one of the Cossack
troopers winked at them. The women they interpreted this to mean that they weren’t going to
ride them down this time as they had in the past, and this event was followed by massive
demonstrations and, ultimately, the February Revolution.

Now, if he was really just trying to flirt, that’s a meaning attribution that got out of
control. Also, just think of all the attributions that go on about why the market was up or down
today: “Well, there was nervousness about crop failure in Australia.” “Well, the market is down
today, but it was just profit-taking.” I’m not saying such interpretations have no substantial basis,
but I am saying that there are thousands of actors that make their own interpretations. All these
interpretations do not necessarily manifest a consensus. On the contrary, in a sense, each is using
his or her own member methods. And so these kinds of processes are really what we talk about
when we consider social processes.

Situation theory gives us the potential to address the meaning of information. It gives us a
formalism that’s strongly contextual, supports indexical processes, and maybe can be used to talk
about how social outcomes are negotiated and how locally effective meaning attribution ends up
creating a basis of attraction for action, if you want to think of it in system dynamics terms. And,
with this formalism, we can relate action to social theories, but also to information theory, to
complexity theory and to systems theories.

So let us just quickly go over what situation theory is. Situation theory is a formalism for
meaning, or sometimes it’s said it’s a formalism for semantic content, or for information flow. In
situation theory, situations are first-class objects that are also “rich.” One of the things that
distinguishes situation theory is that there is, within situation theory, a formal object called a
situation. Therefore, it can be reasoned about, it can be parsed, it can be communicated,
inferences can be drawn about it, and so forth. The fact that it’s logical allows it to be used in
formulaic expressions. The fact that it’s “rich” means that it is built into situation theory so that a
situation cannot be fully defined or described. And the nice thing about that is that it’s a formal
object that’s also open-ended. It’s a formal object that is reasonable to use it as part of a social
process. Then there are resources that can be invoked, and you can learn something about a
situation that you didn’t know before. And if you learn something about a situation that you
didn’t know before, that may change your motivation, your impulse to action, and so on. It is
only a formalism, so in that sense there’s no particular theory associated with it, and so this kind
of discussion concerns what kind of substantive theories would be most appropriate to associate
with situation theory. But it does provide a formalism for reasoning about context and situations
within theory, where it is presumed that situations are individuated or intuited by the agent, and
where “individuated” means “brought to consciousness” (in this case, perhaps there’s an internal
model of the situation), and where “intuited” means that the agent may respond in the context of
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a situation without fully cognizing it. Thus, for example, a dog may love to run in the woods
without having a concept of the woods.

There was originally an ecological aspect of this, saying that information exists prior to
language. In the unit of study as the organism situated in its environment, meaning is located in
the interaction of living things and their environment. This kind of slides over into
biosymbiotics: that organisms anticipate events and, thereby, thrive. Organisms can survive,
thrive and adapt better by categorizing situations, which is one of the reasons we have to have
this skill — at least that’s the argument — and that situation recognition thereby facilitates
adaptation. So, you see, it arises from a kind of ecological realism.

However, that’s a philosophical point, and there are competing philosophical points that
can be made. Barwise and Perry in the ecological interpretation say that meaning is discovered
by animals, not invented or created by them. And that’s a nice simple basis to start from, and
maybe a good focus for certain kinds of simulations. But if we want to invoke Peirce, we say
truth is always “relative to a context of interpretation,” and I think that situation theory can be
applied within that context as well. That’s more or less what Terry Winograd did as part of a
situation-theoretic discourse, saying that ultimate grounding is in “the potential of continued
coherent discourse,” and, thus, we take the attribution of reality as provisional. The nice thing
there is, whatever your philosophical orientation, if you’re a constructionist, a realist, either way,
you’re not precluded from utilizing situation theory.

One interpretation of meaning within situation theory is that it’s a relationship between
two situations. You can particularly see this for causal relationships. If you have a situation in
which a seismograph shows a certain pattern, maybe your next situation is that you’re going to
have an earthquake. Thus, the meaning of the first situation is determined by what it predicts
about the second situation. But this is by no means an exhaustive definition of situational
meaning. I think that from a social standpoint we’re better off at looking at the way meaning is
interactively constructed, but state transition does suggest one way that situated meaning can be
interpreted.

As a formalism, situation theory is actually much like a relational model and relational
database where you can have a series of arguments (technically infons) that define a situation.
But, there is an exception: situation theory adds polarity, where polarity indicates truth. The
interesting aspect of this relative to formal logic is that in the latter truth is viewed as syntactic
and universal, whereas in situation theory, it’s subject to circumstance. Something is true under
one circumstance when an event or a change occurs it’s no longer true. It’s also something that is
attributed by an actor, and so you’re able to express situated actor disagreement as to what is true
rather than to (only) indicate universal truth.

Beyond semantic indexicality, I want to emphasize indexicality of action. It is quite
striking how action is subject to the same types of interpretation that semantics are. The meaning
of an action depends on who the actor is, when and where the action takes place, actor
connections, resource situations, what resources are available, and what can be brought into play
in particular circumstances. And it’s efficient in the sense that the same actions mean different
things because they’re taken by diverse actors in distinct ways, in different times and places.
That’s part of what one would like to capture.
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I should also talk about the social aspect of indexicality. There’s an interpretive
indexicality, in which the meaning of a given act or, of a given communicative act, is subject to
the particular circumstances in which it’s produced. And so we hear people say that something is
true, but sometimes we take that as information about what’s going on: they’re in a room that
you’re not in, they’re talking to you on the telephone, they tell you what’s going on, and from
that you infer what’s happening in that room. But other times, we take what they say as
information about how accurately they can see, whether they’re physically able to see, but also
whether they bring some biases to the situation, so you can then take their report as an indication
about their biases. Which of those interpretations you use is very much an indexical property.

Information is indexical in some fundamental ways. One of the points that I wanted to
make relative to the discussion we had yesterday with Keith Sawyer and David. There was an
undertone in that conversation that indexicality was something esoteric, that every now and then
it pops up, especially in exotic cultures, but we don’t regularly use the concept to handle
situations. But actually indexicality is used in discourse about every five seconds: every time we
use a pronoun, he, she, we or they, it’s instantiated by context. The same thing happens every
time we say “here” or “there,” “then” or “now.” Our entire communicative apparatus is suffused
with indexical interpretation.

Randall Collins makes a point that social structure is also indexical. Property is indexical.
And this is a direct quote, “It mostly takes the form of here and now, inexpressible in general,
except by pointing to a concrete situation; one points implicitly with one’s body when one
occupies, with a sense of appropriating it, one’s own home, one’s place of work and so forth.
This is usually all that it takes, not a lot of high-level processing to keep the macro-structure
intact.”

There are millions of situations that happen every day. From childhood on, we remember
and categorize dozens or hundreds of situations a day, and we might think about what methods
or skills we have available to us (methods in a programming sense, skills in a human sense), to
facilitate that categorization. Then we can see the situational interpretation as a basic skill.

So now let us turn to action selection. I’ve noted that situational interpretation is a basic
skill that we use all the time, that we might like to provide our agents with deeper capabilities,
and that situation theory provides one mechanism for doing that. Joanna [Bryson] talked
yesterday about action selection mechanisms, which are being used in agents, and whereby there
is the possibility of interruption or a change of focus that requires a reprioritization. So it fits
very naturally into attempting to implement a situational focus. We can say in general that an
agent has a field of orientation. You could have a cognitive field, but we should also add an
emotional field as well. Intentionality is multi-focal and attention fluctuates among focal points
and purposes.

This is just a quick view of Joanna’s multi-tier reactive hierarchy, where you’ve got
drives that are constantly competing for predominance, and you may in fact find ways of
combining multiple needs simultaneously. You have competences that are context-relevant.
When a given context occurs, that competence arises as relevant. And then, from a programming
point of view, you have action sequences that are not subdivided, like strong habit or
unconscious skills. They just kick in and operate, giving the system better performance
capabilities.
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So reactive plans or structures that specify subsequent contextual acts, mean, in
particular, that a mechanism is set up so that it handles interruptions, combinations of alarms,
requests, and opportunities. And when that happens, it may require a current sequence to be
reordered; it may require shifting to a different plan.

Relative to this basic reactive plan, I want to call your attention to a priority that’s used so
that information can be compared to other priorities, a releaser. This is the case where you have
to be in a particular context to be able to accomplish something. I mean, if the action sequence is
to eat, then you must be at a place where there’s food. If there’s not food, then that action
sequence would not come into play. That’s the role that the releaser plays. (And then you have a
number of retries and other implementation details.) And I’m just pointing out how that
information is stored, and for now just take a note that this is very similar to the structure of an
infon, so that there’s a potential of this working closely in a situation theoretic context.

And then there is the outer drive, which is also very similar. They have a priority and a
releaser and a current action. They keep track of what action is going on, but it’s not their action.
The basic plan, that action is part of the plan. This is just saying, “Well, no, where are we at?
What are we doing here?” But unlike a basic reactive plan, you can have multiple drives that are
effectively active simultaneously.

From this, we can make a general point about the representation of situated action, and a
strategy for implementing situated action. The situation-theoretic infons, which we’ve seen
before, and the action selection tuples, which we just considered, bear some interesting character
similarities to the relational data model. The relational model also deals with relations where you
have a named relation that carries a number of arguments, each containing information.
However, in some ways, the relational model is much richer in terms of what you can do with it,
because it gives you operators, so you can SELECT, PROJECT and JOIN, which gives you not only
ways of combining information, but ways of creating sets of richly documented information,
generating them on the fly. It gives you constraints so that you can make sure that it’s an entity
of a given type before a particular operator would be effective in relation to it.

I think that truth table may be too high [referring to a slide], but maybe it should be down
below RM/T, but Codd has then extended it to do semantic modeling. And what is happening
here is that it supports graph-theoretic relations. I’m talking about the ability to build networks
here, so there actually is an arguable basis for being here. But so that you can build type/subtype
relations, aggregation relations, event precedence relations (which I think are very interesting in
this context), universal predecessors, universal successors, alternate predecessors, alternate
successors, and so forth. And therefore you can have dynamic data structures that enable situated
responses. And so one way of approaching this would begin to try to say, if you have the
richness of the relational model and all that’s defined and immediately available, then how can it
be best utilized? If you began to articulate situation and use what I would call orientation
theoretic operators using that as a model, if you begin to have some rich operators indeed. It
might then be possible to build a fairly high-level declarative environment that would support
situated action.

You could use that environment, as I’ve already illustrated. That’s the definition of
situation theory. It would be very straightforward to simply implement that using the relational
model, especially using RM/T with its graph theoretic operators, and then have them completely
integrated.
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I’d like to give you a concrete example, so here is an attempt to modify or represent
social structure, in particular social slavery in the U.S. in 1850 and 1870. It actually represents
the abolition of slavery. You have Situation 1 and Situation 2. It is based on a concept of social
structure where you have functionality and hierarchy, and the overlap in the first case and not in
the second case. And it also has the polarity that says it’s true in one case, as well as an
emotional valence. So this might be an internal mapping within an agent in which you’d want the
lower-level one (and not omniscient mapping of external objects); different agents might have
different non-omniscient mapping. Since they’re not omniscient, they don’t know all things
equally, they may get some things wrong, etc. So, you have an internal structure in which the
situation would be represented differently — broadly like social structure and narrowly like the
next context — by different agents.

I don’t have time to dwell on this … what I’m really doing is wending my way back to
why this might be interesting to do in the first place and to say there’s been a whole century of
interaction theory that’s very rich that I think is very relevant to agent simulation. And I believe
that there are enough mechanisms here, and that we can specify it sufficiently that we can do
some interesting kinds of experiments along this line.

Panel Discussion

Rojas: I have a couple comments, for all three of the presenters. I will go through them
quickly and have ample time for questions and discussion.

My first comment overall about the entire panel was that these three projects together
represent two different dimensions along which simulation studies could vary. One is what I like
to think of as “how complex is each agent?” So, for example, you have a small number of
variables describing whether people use certain kinds of transportation. Or, for example, you
have certain production rules describing what happens in each room. That’s pretty
straightforward. On the other hand, David’s presenting an entire research program for how you
would describe how one person processes information. And so that’s one way in which you can
vary the simulation: by how complex the agents are.

Last year, Kathleen Carley talked about simplicity versus complexity. She called it
veriticality versus transparency, in the sense that computer simulations can have so many parts.
They can be such large projects. It’s very hard for people to understand how they’re put together,
to understand how the inputs lead to the outputs. But, on the other hand, such complex models
are very useful for policy-making; because they’re so complex, they can actually capture a lot of
the nuances of what happens in actual data and actual things that you observe.

And so I think if people really carry out David’s project, we might end up with an
extremely complex, veritical kind of model. And that’s okay, because how people construct
meaning is a very complex process. However, on the other hand, it’s very easy for Doowan or
for Elena to explain to us very simply how their models work, and you can get a lot of punch out
of it, although in some ways they are not realistic models.

A very nice thing about the first two projects is that they’re thinking of things in terms of
basic social science, but also they have direct policy implications. And that’s a very nice aspect
of these papers; they’re both hitting on basic social science topics: the nature of individual
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choice, instability of patterns of interaction. These are things that have a rich history in social
science. And this is not just interesting for sociologists such as myself, but it could be interesting
for engineers and policy-makers and leaders.

So let me go through a couple specific comments that I had for each of the panelists.

On the Dugundji-Gulyas paper, one thing that I liked in the write-up, which didn’t come
out quite in the talk today, was that we talk a lot about the small world’s property and how
sometimes choosing one property of the network to measure is sometimes easier than getting a
measurement of the entire network itself. So when you present that to other audiences, that might
be nice to emphasize, saying that, “Well, you don’t need to know what every single connection
is. You need to know these kind of more aggregate measures of the network,” and that really
gives you a lot of punch in your model.

Dugundji: It’s a very good point. The reason why I didn’t emphasize that so much is that
the preliminary version of the paper that you read, and on which we drew these conclusions, was
the first half of the talk, where I was describing the small-world network and the random
network before we added the additional explanatory variables. So the result that we found was
that this small-world property or the small-world threshold. This applies for the small-world
network, and then the other critical parameter was the 1 over N, which was the moment when the
giant component emerges in the random network. These two parameters were sufficient,
dependent on whatever of the 20 different networks we did and the 50 different random seeds
that we did per each of the 20 networks. So 100 total per density or per rewiring. These two
parameters, the small-world threshold in the small-world network case and the giant component
emerging in the random network case, were sufficient when we didn’t add the additional
explanatory variables.

So the conclusion that we put in the preliminary paper applies only when you have agents
that are all in some way homogeneous. And they’re heterogeneous in that they are connected to
different people, so their X is varying across, but there are no additional explanatory variables
such as travel cost, travel time, gender, business trip or not, social recreational trip or not. When
we added those variables into the model, then this result didn’t hold anymore, and that’s when
you saw that this is very similar to actually the approach where you saw those envelopes of those
curves of how the beta parameter varied with density. And with some of those networks, the beta
was high enough that we got that two-peak behavior. And for the others, the beta wasn’t high
enough and we got the single-peak behavior.

So the real punch line is, when you add the additional explanatory variables, this original
result does not hold anymore. So that’s the real punch line. And then a really a lot more work is
necessary to understand the effect of all of these additional variables.

We have some hypothesis that when you add these additional explanatory variables, then
the clumpiness of the network becomes important, and you have a random network, but there
still may be some slight variations in the clumpiness of one random network to another. And that
would be a useful parameter that we’re actually in the process of trying to map this and see if this
hypothesis is indeed true. So these slight variations actually matter.

Rojas: Well, let me just run through my other comments very quickly, so I can get
everybody’s comments in. One really nice aspect of this paper is that you vary the network
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structure, the network interaction structure. One of my hobby horses is telling people not to live
in a grid world, because very few things actually look like grids; even geographical surfaces that
we see aren’t really grids.

Oh, I guess this is another criticism of what I read, but was not presented. There’s a
promise of a conceptualization of in-household interactions, and I really wanted to see that,
because that would be interesting. So, for example, if you have a child, maybe some sort of
negotiation at some times, you have to drive the kid to soccer or whatever, and that changes
whether you’ll use car-pooling or not, because it’s a lot harder to car-pool if you have other
household responsibilities.

And then also about the whole mean field framework. When I was rereading some of the
basic literature on diffusion this summer, [I was reminded of] this idea that there are trend-
setters, high-status individuals who may set trends for the adoption of innovations. Treating
everybody the same is a nice assumption imported from physics, but maybe it’s worth thinking
about how you might drop in trend-setting in a parsimonious and succinct way.

We talked a little bit yesterday evening about the bifurcations, going from the unimodal
to the bimodal distributions and the histograms. It’d be nice to have some data showing that this
actually happened, because that’ll be a nice way of saying, “Wow, we’re getting somewhere on
this.”

Okay. Here are my comments for the Padgett-Lee-Collier paper. I found it to be a very
powerful example of how to translate a physical model into a social science model. And there are
a lot of papers I’ve read in recent years where that transition is less than perfect. The authors
have a very clear idea, a very good grasp of what the original model’s about, and a very best way
of translating it into at least some simplified version of an economy. And, yes, they do admit it’s
a very minimalist approach to how they’re doing it, but I found it a very plausible and persuasive
approach, and so I think a lot of people who are starting out might have a lot to learn by reading
this paper, if they want to translate a physical science model into a social science model. So
that’s kind of an esthetic comment.

One criticism I had was the assumption about forgetting of skills, how when one is
adopted, some of the others are killed off. I could see how, for example, a firm might die. If a
firm gets customers, then the other firms go under, but this, even as a simplifying assumption,
seemed very counter-intuitive to me, especially since we think of firms and organizations having
all sorts of mechanisms for memory, that something may go into a library somewhere or some
sort of storehouse. Maybe I’m mistaken and this is actually very intuitive assumption. [I would
add] a footnote or something in the presentation, a little bit more discussion of why that’s a
plausible assumption.

I also think it’s really nice that, in future work, your group is going to start looking at
different kinds of interaction topologies and get away from the grid. I would like to see many
different researchers start from like a grid or other very baseline model, and then change the
interaction topology and see consensus formation models. How do those change? That’s
something I’m working on right now. When do you see changes in the topology, the
establishment of hypercycles in patterns of behavior? How does that change when you relax the
grid assumption? We could go through all sorts of classical models and see how robust findings
are with respect to the basic topology where people are interacting.
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And then I had one complete out-of-left-field comment for this working group. And this
is something that I just thought about last night. When you think about what this paper is really
about, you have a bunch of products and you have a permutation of a number of products. So for
the people who take abstract algebra out there, what you have is product number one, product
number two, product number three and product number four, and then you have these chains:
one goes to two, two goes to seven, seven goes to three, and so forth. That’s called a
permutation. And the set of permutations has an extremely rich algebraic structure.

And then you have a decision rule for what kinds of permutations survive over time. I
could be completely out of my field, and this is a very vaguely worded question or challenge:
what is the connection between the process of survival, survival of cycles, and the underlying
algebraic structure? If you were able to actually come up with a concrete link to analytically
show, or even to numerically show that, for example some subgroup or subset of permutations
on N elements has a very specific profile of survival in this model, then that would be really a
gigantic result, which would be something like John Nash showing that noncooperative games
could be analyzed by solving an underlying fixed-point problem. So there’s some sort of
underlying algebraic structure which is under there somewhere, and then you have the selection
mechanism going through this algebraic structure.

What is the link between these two processes? I have no idea. That could take you a
hundred years to solve or it could take you one year. But if you do that, that would really be on
the level of showing a noncooperative game as really a fixed-point problem. Just show a very
profound link between one kind of mathematical process and another, abstract algebra and this
algorithmic thing happening over here. I’d be interested to see if anybody could solve that, and it
might be easier than it sounds.

And then I have two comments for David Sallach.

First, just a comment I’ve made before, that I really like how you’ve introduced me and a
number of other people to situation theory, because in the social sciences we talk all the time
about meaning. So when I was teaching my Economic Sociology course this week, we talked
about how actors, how the meanings that people have in markets, really affect what they do. So I
talked about Liars’ Poker, the book about bond traders and how the whole idea was that nothing
was stopping people from trading certain kinds of securities for a long time, so it’s just
specifically mortgage bundling. But it was specifically someone who said, “I’m introducing this
new concept called bundling of mortgages, which means that you can now create this new
market.”

But, on the other hand, social scientists haven’t been very good at formalizing meaning,
and introducing this idea to me and to other people, I find extremely valuable, so I wish you all
the success, and I recommend that other people who are interested in these topics start thinking
about it.

And then I kind of had a general social theory comment question for David that, when we
think about meaning in a lot of contemporary organizational theories, especially neo-institutional
theory it’s like a brick wall in sense, right? And if you really read the hard-core early ‘80s
institutionalists, these enforcing mechanisms, as well as Dick Scott’s institutional carriers, are all
this diffusion process, trying to push us towards one solid block of meaning, that we just have to
deal with it, or if we don’t do it we’re just out of the game. It’s as simple as that.
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But in the start of your talk, you talk about almost like the infinite pliability and
playfulness of meaning and creation of meanings and situations. So it seems that, in modern
sociology, we have two contradictory approaches to meaning. One is the kind of macro-
institutionalist approach of, for example, the institution of marriage or the institution of property,
and if you don’t like it, tough. It’s this way. And then you have this very kind of
ethnomethodological approach, which has basic elements, but they’re so pliant. They’re not
completely plastic that there’s no structure at all, but it’s so playful and there’s so much variation
and subtlety to it. And those are two very different approaches to this whole issue of situations
and meanings. I think that would be a really interesting issue to talk about or to comment upon.

And those are my comments. And, as usual, I will type up my comments and e-mail them
to the presenters later, which is my normal habit.

So I’ll open it up to whoever wants to respond or to people from the floor who have their
own comments that they would like to introduce.

Unidentified Speaker: I’d like to respond just to the comments that you gave to us,
which I find really sort of, very interesting. Your three comments were forgetting, network
topology, and algebra.

Let me start with the last, the sort of the left-field one, because actually that’s not so left
field. There’s a guy at Santa Fe Institute, Walter Fontana, who thinks exactly the way that you’re
talking about, and he has a much richer conception of rules, lambda calculus, which generates
rules and so forth. So I understand how what you say would actually be implemented, because I
talk to someone who does that.

This gets back to an issue that I see come up over and over again, which is this KISS
versus verisimilitude issue. Walter, when he did the rich algebra approach, generated incredibly
deep and profound ideas, but they were all of an existence-proof nature, just as this example. So
he would have a rich topology. They would interact, and very algebraic closed systems would
result, and then you would show the existence of the ability of very primitive chemistries to
generate very complex organizational systems.

We actually went much more obviously in the KISS direction, and the reason is that it
was much clearer to generate actual results, that is to say, “Target reproduction has this effect.
Spatial things have this effect. Endogenous environments have this effect.” I mean, this exercise
we went through was possible in our stripped-down model where it was not possible in Walter
Fontana’s set-up because things were so difficult and interactive. And so it goes back to the
verisimilitude versus transparency issue. Everything keeps coming back to that.

Our approach is transparent. You can see, but at the cost of working in an incredibly
stripped-down sort of type setting. So I know that going in the direction of your last comment is
very, very important and very, very difficult, but it gets us back to this issue of how do you
actually generate results in this rich environment.

So that’s not a defense of my position. I’m just saying there are these esthetic tradeoffs.
It’s hard to resolve them.
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On the other points, reasoning backward to your second point, network topology, I’m
totally in favor of everything you said. Let’s not get stuck on the grid and so forth and so on. So
I’m in favor of moving on, the way [Elena] has done and others. But the problem, the issue that
you run into, is the following, that Michael Cohen and a lot of other people in evolutionary game
theory have done this exercise in a prisoner’s dilemma, population sort of world — nonspace
grid, small worlds, clusters. After going through the usual array of candidates, they found in their
set-up, which is not our set-up, that there was this huge effect between nonspatial random
interaction and any form of network. Beyond that are other effects but marginal compared to the
big step from nonspace to space. So from structure to nonstructure, huge effects and from there
on, effects of second-order character. That was the background for me putting off this
exploration of network topology to the future rather than now, because I think that the same
thing’s going to happen in our case, which is not to say that we shouldn’t do it, but as primary
effects go, we think we did what we did.

And back to the first point, about forgetting, there’s one defense and one complete
agreement with your criticism. The defense is that forgetting is interesting. I mean, randomly
killing off rules based on no performance measure is interesting, because that generates powerful
selection effects in spite of the fact that there’s no actual selection for any optimal sort of thing.
So it goes back to the idea of, what is fitness? Fitness in an economist sense is a performance
measure. Fitness in a biologist sense is just relative birth rate. That’s it. And we have fitness in a
relative birth rate and we sort of push away fitness — there’s just complete random death, and
we show that even in that sense there’s powerful selection going on. So in a sense it’s a
rhetorical reason why we do what we do, not a realism reason.

We show that you don’t need selection in the economist sense to generate powerful self-
emergent organizations. But other than that defense, which is a rhetorical defense not a realism
defense, I think we need more robust exploration of different mechanisms.

So I agree with your criticism, but my rhetorical point was to do this minimalist exercise
to show that you can have a lot of powerful evolution, even without systematic selection.

Rojas: Yes, it’s almost like a vector. You don’t have to actually be rational to do rational
behavior. You don’t need to be selected by this one specific mechanism to still have that kind of
interaction.

Were there any other responses from the audience or speakers?

Sallach: I think that where meaning resides and how stable it resides is really a question
of what your perspective is. I mean, when you’re flying at 20,000 feet, you don’t see each
individual field, you don’t see each individual farmer and so forth. You see a big area where
they’re growing wheat. And I think if you look more closely, you get down to the very specific
kind of detailed action.

But note that any of the people, the most ethnomethodological you could ask, say, take
Garfinkel — it’s out of his perspective that the idea of embodied practices arises in which a lot of
things aren’t constantly up for grabs, in which it’s done at a relatively nonconscious level. And
yet he still finds the patterns to be nonrepeatably unique. For example, he encourages his
students to study people standing in line, because every line witness, and the actions taken to
maintain that line, are different.
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I guess what I would say is that meaning construction processes are always potentially
open, down to infinite detail.
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AGENT-BASED RESIDENTIAL SEGREGATION:
A HIERARCHICALLY STRUCTURED SPATIAL MODEL

D. O’SULLIVAN,* J. MACGILL, and C. YU
The Pennsylvania State University, University Park

ABSTRACT

 This paper presents a variation on Schelling’s model of residential location dynamics that
combines two concepts of neighborhood: continuous and bounded. A brief description of
Schelling’s model is included, and the structure of the current model is described in
detail. The effect on model behavior of varying the size of bounded neighborhoods, while
also varying the balance between local- and regional-level effects on agent behavior, is
explored; preliminary results are reported. The scale of bounded neighborhoods
considered by agents in making residential location decisions has important impacts on
overall model outcomes. The range of possibilities for further work is discussed.
 
 Keywords: Residential location dynamics, bounded neighborhood, ABM

INTRODUCTION: SCHELLING’S MODELS OF RESIDENTIAL SEGREGATION

Schelling’s simple model of residential segregation dynamics (Schelling 1969, 1971,
1978) is rightly regarded as a seminal example of multi-agent simulation in social science (Macy
and Willer, 2002). In the fifteen years from 1988 to 2002, Schelling’s “dynamic models of
segregation” (1971) has been cited 125 times; 70 citations occurred from 1999 to 2002 (ISI,
2003). The model’s persistent popularity derives from its simplicity and its compelling
demonstration of the emergence of stable, aggregate, socio-spatial patterns from local
interactions between household agents. In Schelling’s model, households of two types make
decisions to remain at or leave their current residential location depending on dissatisfaction with
that location. Dissatisfaction arises when a household has either too many neighbors of the
opposite type or too few neighbors of its own type. By using this framework, Schelling shows
that strongly segregated large-scale residential patterns can arise even when two groups are
relatively tolerant of one another’s presence.

Neighborhoods are conceived in two different ways in Schelling’s work: continuous and
bounded. In the continuous neighborhood case, households occupy locations on a lattice or
‘checkerboard’ (Sakoda, 1971), and decisions are made with regard to the types of households in
adjacent locations on this lattice. Agents demand that some fraction of their immediate neighbors
on the lattice is of the same type as themselves. Agents that are unhappy under these criteria
move to a nearby location where their residential preference requirements are satisfied.
Unsurprisingly, when households demand many neighbors similar to themselves, the result is
dramatic segregation of the lattice into large regions occupied exclusively by households of only
one type. Schelling assesses the extent of segregation by counting the average number of like
neighbors in the final stable pattern that results (Schelling, 1971, pp. 157–158). He finds that
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“the resulting segregation [is] a rapidly rising function of demands [for like neighbors] in the
range from about 35% to 50%” (Schelling 1971, p. 159). This pattern occurs because increasing
demand for like neighbors leads to additional discontent in random initial patterns, a greater
likelihood that moving households will displace previously content households, and a higher
concentration of households in regions of the checkerboard already densely populated by other
households.

Schelling also investigates the effect of different combinations of household tolerance
profiles in two populations, with respect to bounded neighborhoods. A bounded neighborhood is
a ‘container’ populated by a number of households. Schelling uses the bounded neighborhood
concept to analyze the relationship between residential preferences in the population and the
stability properties of different combinations of numbers of households of each type in a single
bounded neighborhood in isolation. By analyzing plausible  albeit hypothetical  tolerable
ratios between two groups, he demonstrates that the only stable states in many cases are
exclusive neighborhoods where all the residents are from one group or the other.

A number of aspects regarding Schelling’s models deserve comment in the current
context. First, in the continuous neighborhood case, household behavior is governed by
a demand for like neighbors, whereas in the bounded neighborhood case, antipathy toward
different neighbors is the driving force. Although these mechanisms can be combined, it is
difficult to do so without introducing numerous arbitrary parameters (demand for like, tolerance
of different, and so on). In the present model, we adopted the tolerance/antipathy approach for
household behavior at both local and regional scales. Thus, it is the presence of too many
households of a different type whether locally or in a larger bounded neighborhood that causes
household decisions to relocate.

Schelling’s experiments in the continuous neighborhood case seem to have been
conducted by hand, although this is not clear. The most important effect of this on the operation
of the model is vagueness about the order in which households are considered for relocation.
Thus, in Schelling’s description of the rules of movement, he says, “Identify the discontents […]
and, in some order move them to where they are content” (Schelling 1971, p. 156). This tenet is
followed, almost immediately, by an acknowledgment that this makes a difference in detail, but
not in general: “The particular outcome will depend very much on the order in which
discontented [households] are moved, the character of the outcome not very much” (Schelling
1971, p. 156).

Similar comments apply to vagueness in the rules of movement such that a household
relocates to the “nearest” vacant spot within a neighborhood that is acceptable. Vagueness
regarding these points makes it impossible to replicate Schelling’s simulations in
a computational simulation. We therefore use random ordering both of household relocation
decisions and of consideration of equidistant vacant locations to minimize effects that seem
likely to arise from any more structured sequencing of relocation events.

The continuous neighborhood formulation of Schelling’s work has been widely
acknowledged in the multi-agent social simulation community. This acceptance is perhaps
because this approach is suggestive of common devices in contemporary multi-agent work,
particularly the grid-based space in which agents interact (see, for example, the Sugarscape
model [Epstein and Axtell, 1996]). The continuous neighborhood approach is also consistent
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with notions from complexity science about the efficacy of purely local interactions in producing
larger global structures.

Schelling’s work is extremely insightful and thought provoking. The important finding in
the bounded neighborhood case (i.e., that stable racially integrated neighborhoods are unlikely
for many combinations of tolerance profiles) has been confirmed on the basis of empirical data
(Clark, 1991).

COMBINING CONTINUOUS AND BOUNDED NEIGHBORHOODS
IN A HIERARCHICAL MODEL

Description of the Hierarchically Structured Model

We present a hierarchical version of the Schelling model that combines his two
neighborhood types. Household agents not only consider the type of immediately neighboring
households in a lattice of residential locations (the continuous or local neighborhood), but also
the aggregate nature of the bounded neighborhood (or district) that contains their residential
location. The model consists of a number of bounded neighborhoods, each containing a number
of residential locations at points on a lattice. This structure is illustrated in Figure 1.

A B

Bounded
neighborhoods

Continuous
neighborhoods

FIGURE 1  Structure of the hierarchical Schelling model (The
small grid cells represent residential locations with a continuous
neighborhood structure. Residential locations are contained in
bounded neighborhoods, whose aggregate state is also
considered by agents in residential decision-making behavior.
Arrows show relations of influence on decision making.)
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Decisions of agent A, at the center of a bounded neighborhood are affected by
immediately neighboring agents, and by the aggregate state of the containing bounded
neighborhood. An agent B, at the edge of its containing bounded neighborhood, is affected by
neighbors both inside and outside the bounded neighborhood, but only by the containing
bounded neighborhood at the aggregate level.

As far as possible, we retain the simplicity of Schelling’s formulation of households’
rules of movement. In assessing the level of ‘happiness’ with a current or potential location,
household agents determine local happiness hL and regional happiness, hR. This assessment is
made with respect to a single agent parameter called tolerance T, which varies from agent to
agent. Tolerance is a real number between 0 and 1, indicating the fraction of occupied
neighboring locations whose agents may be of a different type from the agent without negatively
affecting its happiness and prompting it to seek an alternative location. Local happiness is the
difference between an agent’s tolerance and the fraction of occupied locations in the agent’s
continuous neighborhood occupied by agents of a different type. Similarly, regional happiness
is the difference between agent tolerance and the fraction of occupied locations in the agent’s
bounded neighborhood occupied by agents of a different type. Formally, an agent Ai has
tolerance T(Ai) and type t(Ai), where

0 < T(Ai) < 1 , (1)

and

( ) { }BLUE,RED∈iAt  . (2)

Color is a convenient visual marker for agent type, but any discrete valued variable will suffice.

If we denote the set of agents in the local (continuous) neighborhood by NL, and the set of
agents in the district (or region or bounded neighborhood) by NR, we can determine local and
regional happiness for the agent from the following equations:
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It is simple to combine happiness values by using a single model-wide parameter local-regional
balance bLR to determine an overall happiness h for the agent, according to

,)()()1()( iRLRiLLRi AhbAhbAh +−= (5)
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where bLR = 0 results in agent happiness depending only on agents in the continuous
neighborhood, while bLR = 1 means that happiness depends only on agents in the same bounded
neighborhood.

Overall, an agent’s rule of movement is to determine overall happiness, based on
neighboring agent types both locally and in its bounded neighborhood. If the agent has an overall
negative happiness score, it is unsettled and tries to relocate. This move involves examining
available vacant locations at successively greater distances in the lattice until one is found where
the agent’s happiness score would be positive. Potential locations at the same distance from the
current location are considered in random order to ensure no directional bias in agent relocation.
As soon as a suitable location is found, the agent moves to that location. It is possible that no
suitable location is available, in which case the agent does not resettle.

Agents are considered for relocation one at a time in random order in one sweep through
the agent population. Each sweep of the population occurs in a different random order.

Implementation Details

The model described above was implemented in the Repast agent modeling toolkit
(Collier, no date). Repast provides a simple bridge to the GeoTools open source package for
displaying and analyzing geographically referenced datasets, and given our interest in exploring
the impact of geographic perceptions on models of segregation behavior, this selection was a
natural choice.

To facilitate future investigation of more complex spatial patterns, the model’s
geographic structure is initialized by reading two geographic information system (GIS) files, one
that represents residential locations in the continuous neighborhood layer and one that represents
bounded neighborhoods. Geographic processing is applied to determine both the continuous
neighborhood relations among residential locations (i.e., the lattice structure), and the nesting of
residential locations in the continuous neighborhood layer within containing bounded
neighborhoods. The resulting neighborhood relationships are stored in a graph data structure that
records adjacency relations between locations and containment relations between bounded
neighborhoods and locations. This design allows agents to retrieve information concerning the
numbers of agents of their own or opposite type in their continuous neighborhood and in the
bounded neighborhood. This approach allows for future investigation of model dynamics with
irregularly shaped locations and districts, although such examples are not considered in this
paper.

RESULTS

Model Input Parameters

The values of the various model parameters used in the reported experiments are
summarized in Table 1.
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TABLE 1  Summary of model parameter settings

Parameter Name Settings Used Comment

Local-regional balance 0.0, 0.1, 0.2, …, 0.9, 1.0 Varied through full range to study effects of
variation in local versus regional behavior

Bounded neighborhood sizes 4 × 144 locations
9 × 64 locations
16 × 36 locations
36 × 16 locations

Varied to study impacts of different bounded
neighborhood sizes on behavior

Tolerance 0.2 to 0.4 Agents initialized from a random uniform
distribution

Occupancy rate 0.75 Fixed

Fraction blue 0.5 Fixed

Model Output or Measurement Parameters

A number of summary statistics are used to track model progress. The dissimilarity
index D is reported with respect to the set of bounded neighborhoods. The value of D is
a measure of residential segregation for population count data reported for zones, which indicates
the extent to which two population groups are not similarly distributed among the zones (Duncan
and Duncan, 1955; Taeuber and Taeuber, 1965, 1976). Given two population groups with total
populations R and B, the counts of the groups living in each zone i can be denoted ri and bi.
These values are combined across all n zones, to give

                                                                                              , (6)

where D has a value of 0 if two populations are distributed identically across a set of zones. It
has a value of 1, if they are completely segregated (i.e., if all blues are located in zones that
contain no reds, and vice versa).

Because D is calculated with respect to a set of bounded neighborhoods, it is possible
even when D indicates little segregation, for agents to be locally segregated such that agents have
neighbors in their continuous neighborhood predominantly of the same type as themselves. Such
local segregation is measured using an average fraction of like neighbors statistic SL (for locally
similar). For each agent, the fraction of occupied neighboring locations whose occupying agents
are of the same type is averaged across all agents.

Both D and SL are pattern measures calculated at any point during a model run. The
remaining two output parameters are cumulative measures of model dynamics over each sweep
through all the agents. The fraction of agents unsettled pU and fraction of agents resettled
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FIGURE 2  Typical outcome
with the local-regional
balance parameter set to 0
(fully local) (Agent states
are shown in gray and white.
Black locations are vacant.)

pR record, respectively, the fraction of all agents in the model that were unsettled and tried to
relocate, and the fraction of all agents in the model that successfully resettled, during a sweep of
the whole agent population. Note that pR is less than pU by definition, since only unsettled agents
attempt to relocate.

Final Stable Patterns

Initially, we observe final stable patterns in the
model to see the differences in outcomes relative to the
patterns of Schelling’s continuous neighborhood case. As
expected, with the local-regional balance parameter set
to 0, outcomes are identical to Schelling’s examples
(see Figure 2), and the bounded neighborhoods make
no difference.

When the local-regional balance is increased to
0.5, final configuration is reached, as illustrated in
Figure 3, for two different sets of bounded neighborhoods.
Agent responses to the composition of bounded
neighborhoods result in a bimodal distribution of bounded
neighborhoods — either predominantly red or
predominantly blue. The change in agent priorities also
means that dissimilar agents may be tolerated as
immediate neighbors in the continuous neighborhood,
along boundaries between bounded neighborhoods with
different majorities. Examples of the opposite effect are
also apparent: single isolated agents of the “wrong” type
are found in some bounded neighborhoods because the tolerable (empty) configuration of their
continuous neighborhood allows them to ignore the majority of unlike agents in the bounded
neighborhood.

(a) (b)

FIGURE 3  Two outcomes with the local-regional balance
parameter set to 0.5: (a) a 3 × 3 grid of bounded neighbor-
hoods, each with 64 locations, and (b) a 4 × 4 grid of bounded
neighborhoods, each with 36 locations
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Other settings of the local-regional balance parameter result in different balances in the
outcome patterns between the tendency to local segregation on the one hand, and to bounded
neighborhood segregation accompanied by tolerance for unlike neighbors across district
boundaries on the other, as illustrated in Figure 4.

When the local-regional balance is set to 1 (completely regional), greater variation in
outcomes is observed. This effect is discussed in greater detail in the following section.

Varying Bounded Neighborhood Size and Local-regional Balance

In this section, we report preliminary findings from experiments where the sizes of
bounded neighborhoods and the local-regional balance parameter were varied. Results are shown
in Figures 5 through 8, as the local-regional parameter is varied from 0 to 1 in increments of 0.2.

The first point to make about these figures is that there is considerable continuity in the
model behavior through all the results shown. The dominant behavior is for the model to
segregate, and to do so rapidly. When the model stabilizes, agents are (usually) no longer
unsettled and are content to stay where they are. Segregation behavior occurs in almost all cases.

Two differences are observed as the local-regional balance parameter is increased. First,
the final stable state exhibits patterns that are increasingly segregated as measured by the
dissimilarity index and decreasingly segregated as measured by the average fraction of like
neighbors. This phenomenon was already noted above, whereby increasing emphasis on the
bounded neighborhood allows agents to have dissimilar immediate neighbors across district
boundaries. This fact is a direct result of the presence of bounded neighborhoods “steering” local
segregation to fit inside the boundaries, so that a higher dissimilarity index is observed.

(a) (b)

FIGURE 4  Typical outcomes with a 4 × 4 grid of districts and
the local-global balance parameter set to (a) 0.25 and (b) 0.9
(Note that all the images in Figures 2 through 4 are based on
the same initial random number generator seed setting of
1061992058618.)



501

0

0.2

0.4

0.6

0.8

1

Dissimilarity

Av.frac. similar neighbors

Frac. unsettled

Frac. resettled

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Completed sweeps

0 1 2 3 4 5

Completed sweeps

b
LR

= 0.4 b
LR

= 0.6

b
LR

= 0.0 b
LR

= 0.2

b
LR

= 0.8 b
LR

= 1.0

FIGURE 5  Summary results for 16 location bounded neighborhoods, as local-regional balance
is varied from 0 to 1 in steps of 0.2 (Pattern measures [dissimilarity and average fraction of
similar neighbors] are shown as line graphs with values recorded at the end of each sweep
through all agents. Dynamic summary measures [fraction of agents unsettled and fraction
resettled] are shown by bars, and record these values summed over a sweep through all
agents. All four statistics include an error bar indication of the range of values between the
10th and 90th percentile over 100 randomly generated runs.)
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FIGURE 6  Summary results for 36 location bounded neighborhoods as local-regional balance
is varied from 0 to 1 in steps of 0.2 (See Figure 5 caption for further explanation.)
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FIGURE 7  Summary results for 64 location bounded neighborhoods as local-regional balance
is varied from 0 to 1 in steps of 0.2 (See Figure 5 caption for further information.)
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FIGURE 8  Summary results for 144 location bounded neighborhoods as local-regional balance
is varied from 0 to 1 in steps of 0.2 (These cases have longer time sequences, and the results
are based on running only 50 random sequences.)
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The second point is that as the local-regional parameter increases the time taken for the
model to stabilize decreases. Thus, in the first row of all diagrams with bLR set to 0 or 0.2, there
is relocation activity over about four sweeps of the agent population; in the second row (bLR

equal to 0.4 or 0.6), relocation activity occurs for only around three sweeps; and in the third row
(bLR equal to 0.8 or 1.0), stabilization happens after only two sweeps of the population in most
cases. This is a result of the combination of bounded neighborhoods and regional-level behavior
causing agents to relocate to districts that are tipping into a state where all agents are of the same
type. Once settled in such locations, agents do not move again. When more local considerations
are dominant, it is possible for an agent to initially resettle in a location that is locally congenial,
but which subsequently becomes less desirable as the bounded neighborhood starts tipping into
the opposite type of agent.

Clearly, this relatively neat picture of the model’s behavior breaks down in the last plot in
Figure 6 (with a 36-location bounded neighborhood, and bLR = 1.0) and is similarly inadequate
for high values of bLR in both the 64- and 144-location bounded neighborhood cases (Figures 7
and 8, respectively). With these combinations of settings, a wide variation in outcomes across the
sets of random runs is evident. In a significant fraction of cases, the model becomes stuck in
a configuration where bounded neighbors are incompletely sorted so that the dissimilarity
index D is not near 1. In these situations, many household agents remain unsettled but are unable
to find preferable locations and so do not resettle. At present, it is unclear if any statistic
anticipates this outcome, although large numbers of unsettled households failing to resettle
during the first agent population sweep is a promising candidate predictor.

The last plot in Figure 8, which has a large bounded neighborhood (144 locations) and
the local-regional parameter set to 1, exhibits the most extreme form of this behavior  no
relocation is seen at all. This result occurs because agents care only about bounded neighborhood
states; with only four neighborhoods to choose from, there is a strong probability that randomly
initialized bounded neighborhoods will be judged the same. Large bounded neighborhoods make
all model locations effectively the same, so that little or no relocation is observed even though
virtually all agents are unsettled.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Both bounded neighborhoods and variations in agent local-regional behavior have
significant effects on Schelling-type model dynamics and on the resulting stable spatial patterns
observed.

Small bounded neighborhoods have a relatively limited impact on the model, except to
alter the details of final stable patterns if agents are attentive to bounded neighborhood effects.
As agent attention to bounded neighborhoods increases, however, the speed with which the
model stabilizes increases because of preferential movement into neighborhoods that are tipping
into exclusive occupation by one or the other type of agent. This observation could be partially
confirmed by measuring the average distance moved by relocating agents to see if agents move
farther as the local-regional balance parameter is increased.

For larger bounded neighborhoods, it is possible for the model to get stuck in
a configuration where agents are unsettled but unable to relocate because no alternative location
is judged preferable. This dilemma appears to be a result of initial preferential relocation into
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tipping neighborhoods, leaving unsettled agents with a choice of locations in the remaining
neighborhoods, which are all judged similar to one another. These effects occur only when the
local-regional balance is tilted toward regional effects because no local preferences enable
habitable niches to be established by a series of local relocations.

Clearly, this model is extremely abstract, so that interpretation of these findings is tricky.
Perhaps the most useful way to think about the results is in terms of communication processes
among agents. When local behavior is dominant, segregation is slower (but surer) because agents
only attend to nearby locations and local niches can be established gradually that enable eventual
complete segregation. When regional-scale behavior is dominant, segregation is more rapid (but
less sure) because preferred new locations are rapidly identified. However, depending on the
scale  the bounded neighborhood size  overattention to only larger-scale neighborhoods can
prevent segregation from occurring completely.

In this light, the model seems to be a useful vehicle for exploration of the important role
of information in residential location decision making. In the current version of the model,
bounded neighborhoods are fixed, but we intend to remove this limitation in future developments
so that the dynamics of emerging local property markets can be explored. Modeling of the
behavior of other agents operating at different spatial scales in the residential location context
(realtors and banks, in particular) is also planned. In fact, in the current implementation agent
relocation is handled by a global realtor class to facilitate exploration of these aspects in revised
versions of the model.

In addition, abstraction from the current model to a more general class of geographic
agent models using the Repast architecture is planned. The difficulty of understanding the
behavior of even this relatively simple model may be greatly reduced by closer integration with
dynamic visualization environments. We intend to pursue this direction in the medium term.
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IMPLICIT COOPERATION IN CONFLICT RESOLUTION FOR SIMPLE AGENTS

P. SCHERMERHORN* and M. SCHEUTZ, University of Notre Dame

ABSTRACT

 Conflicts over resources can be resolved in many ways, from fighting to sharing. We
introduce a very simple mechanism for implicitly taking turns, called the 2-turn-taking
rule. Agents adjust their tendencies to fight over a resource on the basis of the outcomes
of previous encounters. Agents that possess this mechanism are shown to be effective in
competition with agents that lack the mechanism, indicating that there is some benefit to
fairness, particularly when it comes at such a low computational cost.
 
 Keywords: Conflict resolution, turn-taking, cooperation

INTRODUCTION

In real life, agents (humans and animals) have different needs and desires of varying
urgency, which they attempt to satisfy. These needs and desires can range from very basic ones
in all animals, such as the need to eat, survive, or procreate, to more complex ones, such as the
desire to be respected or the need to have social relationships. Needs and desires typically
involve resources (the objects of the need or desire). When fewer resources are available than
there are agents who need or desire them, agents would likely be in conflict over these resources.
In its most general form, a conflict would end in one of three ways: (1) some agents win, and
others retreat; (2) nobody wins the resource (everybody loses); or (3) the resource is shared
(everybody gets some, but not all, of the resource). In this paper, we examine encounters of the
first kind and study a mechanism that allows agents that implement item 1 to reach item 3 (over
multiple encounters) while avoiding item 2; skipping item 2 would be of benefit to the entire
population.

Previous work with agents that display their action tendencies (whether to continue an
encounter or to abort it) has shown that taking other agents’ displayed action tendencies into
account leads to better group outcomes (Scheutz and Schermerhorn, 2004). For example, if it is
obvious that an opponent is very likely to continue to fight over the resource (i.e., it has a high
action tendency to fight) and ultimately win the encounter, it is not in an agent’s best interest to
enter the fight when it is less likely to continue to fight (i.e., it has a lower action tendency to
fight) and win the encounter, thus wasting resources fighting while gaining no benefit. Retreating
immediately may also be costly, but compared with the cost of prolonged fighting, it is in the
agent’s best interest to retreat. Furthermore, it is in the more aggressive agent’s best interest for
its opponent to leave early because prolonged fights reduce the net benefit of the resource being
contested.

                                                
* Corresponding author address: P. Schermerhorn, Artificial Intelligence and Robotics Laboratory, Department of

Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA; e-mail:
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So-called “rational” agents that can determine immediately who is likely to win an
encounter (by comparing their own action tendencies with their opponents’ displayed tendencies)
tend to have higher survival rates than agents whose ability to predict is worse, given a random
distribution of action tendencies (Scheutz and Schermerhorn, 2004). This advantage is especially
pronounced in competition with “asocial” agents (i.e., agents who do not attempt to take their
opponents’ action tendencies into account). In an evolutionary environment, however, perfect
prediction can lead to problems. Perfect predictors with high action tendencies win more
encounters than agents with lower action tendencies, and, therefore, have access to more
resources than others. They are then more likely to reproduce and pass on the higher action
tendencies to their offspring, causing the average tendency of the population to skew upward. As
time passes, successive generations continue this arms race until every agent has an action
tendency of 1, at least in the absence of external pressures. Once every agent has a 100%
probability of fighting, however, fights continue until one or more agents is unable to go on.
Extended conflicts are very costly, and the population either declines or becomes extinct as
a consequence.

One strategy that could overcome this problem is turn-taking (Neill, 2003). In
a two-agent environment, for example, if each player would gain the resource benefit every other
turn while paying only the retreat cost every other turn, both would benefit while avoiding costly
fights. Thus, players obtain the benefit of perfect prediction (i.e., fewer resources spent on
fighting) and the added benefit of fairness, so that the most aggressive agents would not hoard
resources, and the arms-race scenario described above would be avoided. Generalizing the
turn-taking strategy to environments with more than two agents is made difficult by the fact that
agents do not enter conflicts with the same opponents every time. It is possible that both agents
in a conflict took turns at losing in their respective previous encounter, so both would expect to
win in the current encounter. An effective turn-taking strategy must resolve this issue. This paper
describes a strategy for implicit turn-taking based on modifying action tendencies in response to
wins and losses for multi-agent environments.

THE TURN-TAKING RULE

A fair turn-taking rule can be implemented in number of ways (see, for example, Iizuka
and Ikegami, 2002). An agent can dedicate memory and processing resources to remembering
with whom it has interacted and whose turn it is to win next. Over its lifetime, however, an agent
can interact with dozens or hundreds of other agents. Requiring an agent to set aside resources
for all of these agents in such an explicit turn-taking mechanism can be quite burdensome,
especially for very simple agents. A mechanism that ensures fairness without consuming
a substantial proportion of the available resources can flourish in “selfish” populations, given its
potential benefits and low cost.

We introduce the 2-turn-taking rule (2TTR), which allows agents to keep track of their
wins and losses by using the simple computational procedure described in the following.

Definition: Let r be the rest value of agent A, and let m be the action tendency. Then
2TTR(m)+ is defined (for losses) as:

If m ≥ r, then 2TTR+(m) = m + (1 – m)/2.
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If m ≤ r/2, then 2TTR+(m) = 2*m; else 2TTR+(m) = r + (2m – r) (1 – r)/2r (this maps
values in the interval (r/2, r) into [r (1 – r)/2]). Similarly, 2TTR(m)- is defined (for wins) as
follows:

If m ≥ r + (1 – r)/2, then 2TTR-(m) = m – (1 – m).

If m ≤ r, then 2TTR-(m) = m/2; else 2TTR-(m) = r/2 + r (m – r)/(1 – r). This maps
[r, (1 – r)/2] into (r/2, r).

Corollary 1: Let 2TTR+,n(m) [2TTR-,n(m)] denote the n-fold (recursive) application of
2TTR+ (2TTR-) to m. Then 2TTR-,n [2TTR+n(m)] = m and 2TTR+,n [2TTR-,n(m)] = m, where
2TTR+,1: = 2TTR+ and 2TTR-,1: = 2TTR-.

Proof: We show only the first part by induction on n, the second being analogous. For
n = 1, we consider all three cases:

(1) If m ≥ r, then 2TTR+,1(m) = m + (1 – m)/2 ≥ r + (1 – r)/2;
hence, 2TTR-,1 [m + (1 – m)/2] = m.

(2) If m ≤ r/2, then 2TTR+,1(m) = 2 * m < r; hence, 2TTR-,1(2 * m) = m.

(3) If 2TTR+,1(m) = r + (2m – r)(1 – r)/2r; hence, 2TTR-,1 [2TTR+,1(m)] =
r/2 + {r[r+ (2m – r)(1 – r)] – r}/(l – r) = m.

Now suppose the statement is true for k = n – 1. Then:

2TTR-,n[2TTR+,n(m)] = 2TTR-,1(2TTR-,k{2TTR+,k [2TTR+,1(m)]})
= 2TTR-,1[2TTR+,1(m)] = m,

by definition, induction hypothesis, and base case, respectively.

For the following, let P denote a population of rational agents with the 2-turn-taking rule,
and let |P| = n be its size. Furthermore, let @A denote the action of an agent A, and let @(t)
denote the set of action tendencies of P at time t, called “configuration.” Finally, we assume that
the action tendencies of the initial population of agents are at their rest values, all of which are
between 2TTR+(min) and 2TTR-(max), where max is the largest and min the lowest action
tendency/rest value in P, and we define region 0 to be the interval given by [2TTR-(max),
2TTR+(min)]. Positive regions k > 0 are then defined inductively by [2TTR+,k(min), 2TTR+,k+1

(min)], and similarly, negative regions are defined by [2TTR-,k+1(max), 2TTR-,k(max)]. The
regions are defined such that when an agent competing against another agent in the same region
k loses, the 2-turn-taking rule updates the agent’s action tendency such that the losing agent’s
action tendency is in region k + l, and the winner’s action tendency is in region k – 1, as shown
by Corollary 2.

Corollary 2: Let a be an action tendency in region k. Then 2TTR+(a) is in region k + 1,
and 2TTR-(a) is in region k – 1.
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Proof: Let a be an action tendency in k. We distinguish three cases. Suppose k > 0, then
mink = 2TTR+,k(min) ≤ a < mink+1 = 2TTR+,k+1(min). Then applying 2TTR+ to all parts of the
inequality given that 2TTR+(a) is strictly monotone,

mink = 2TTR+,k+1(min) ≤ 2TTR+(a) < mink+2 = 2TTR+,k+2 (min);

that is, 2TTR+(a) is in region k + 1. The other cases are shown analogously.

We can now show that the 2-turn-taking rule in combination with the rational agents is
fair in a clearly specified sense: the difference between wins and losses is bound by int(n/2) + 1,
where |P| = n is the size of the population of competing agents. First, observe that all action
tendencies are less than 2TTR+,int(n/2)+1 (min) and greater than 2TTR-,int(n/2)+1 (max) for
rational agents. (This lemma essentially uses the rational agent’s decision rule and is not true of
other agents, e.g., probabilistic agents.)

Lemma 1: For every agent A in population P size |P| = n of rational agents, all action
tendencies @A are less than 2TTR+ int(n/2)+1 (min) and greater than 2TTR-, int(n/2)+1 (max).

Proof: The following lemma shows that the spread is at least n/2 in each direction.

Lemma 2: For each n there is exactly one configuration, in which each positive and
negative region n/2 inhabits exactly one agent (with the 0-region also inhabiting one agent for
odd n and empty for even n) and the configuration can be reached from the initial configuration
(with all agents inhabiting region 0).

To see that the spread is at most n/2 in each direction, suppose that there is an agent A
whose action tendency @A=a is greater than 2TTR+, int(n/2)+1 (min), i.e., a ∈ region int(n/2) + 1.
Then A must have lost a fight against another agent with a higher action tendency than
2TTR+,int(n/2) (a) in region int(n/2) given the rational decision rule. However, that means that
two agents were in region int(n/2), which is not possible. Suppose it were possible, then by
backwards induction using the above argument, that at least two agents must have inhabited
region int(n/2) – 1 at some point, and so forth. Eventually, after int(n/2) steps, we reach region 1,
which also must have two agents in it, but that is impossible, since it means that there is a total of
2 ⋅ (int(n/2) + 1) > n agents (given that positive and negative regions are symmetric for the
maximal spread).

Now we can prove that the difference between wins and losses is bounded by a fixed
parameter d for all agents for any number of interactions.

Lemma 3: For an agent population P of size n, a d exists such that |wins – losses| < d for
all agents in P for any configuration.

Proof: First, observe that losses − wins denotes the region the agent is in at any time,
given that the agent started out in region 0 (as we assume for all agents). Whenever an agent
wins/loses, the agent is put in a lower/higher region and its number of wins/losses is
increased/decreased. At the best/worst, the agent can be in the highest/lowest region
int(n/2)/−int(n/2), corresponding to int(n/2) losses/wins. Hence, the largest possible difference
between wins and losses, |wins − losses|, is bounded by int(n/2) for every agent.
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This fixed bound d implies that in the long run the difference between the agent’s
accumulated utility is at most the constant given by int(n/2) * (w −  l), where w is the utility of
winning, and l the utility of losing. This leads to a definition of what it means for an agent’s
action tendency update rule to be balanced for an agent group P.

Definition: Given an agent group P with a uniform update rule, R = @A of A’s action
tendency for every agent A ∈ P. A is balanced if a fixed bound d exists such that for any number
of random interactions of agents in the agent group |wins −  losses| < d, for all agents in P.

The above definition captures the best possible balance in an agent population that is
continuously engaged in competitive interactions. Although the best distribution would be
achieved if all agents inhabited region 0, which would imply that |wins − losses| = 0 for all
agents, this is not always going to be the case, given that competitions occur. The worst possible
distribution would be one in which |wins − losses| = d for all agents, but this is fortunately only
possible in the two-agent population (where there are only three classes). In any other
population, only two agents can have d at any given time (the others must lower their
differences). If interactions are chosen at random, in principle, nothing prevents an agent
population from assuming any of the possible configurations determined by the initial
distribution of agents and their population sizes.

We now can state the main theorem of this section, which follows from the above
lemmas and corollaries:

Theorem: The 2-turn-taking rule is balanced for rational agents.

The theorem is valid for rational agents as described above who make a determined
decision based on the action tendencies of both agents in a conflict. These agents basically treat
the action tendency as a counter that keeps track of how many wins or losses an agent has. The
asocial agents, on the other hand, use the action tendency as a probability that they will decide to
fight. For this reason, it is still possible for both agents to flee, for both agents to fight, or even
for the agent with the lower action tendency to stay while the other retreats. The 2-turn-taking
rule serves as a nondeterministic place-keeper whose behavior could, in the short run, appear
unfair, but, in the long run (as the number of encounters approaches infinity), should be fair. In
fact, experimental results described below indicate that even over the relative short run, in which
agents average only a handful of conflicts over their lifetimes, the probabilistic version of the
turn-taking mechanism provides its holders with an advantage over “selfish” agents. The details
of the formal argument are currently under investigation; however, at this time, the results
outlined below support this hypothesis.

EXPERIMENTAL RESULTS

A series of experiments were run to test the effectiveness of the turn-taking mechanism.
The experiments took place in the SimWorld artificial life environment (Scheutz, 2001).
SimWorld provides a world in which agents forage for food, procreate asexually when they are
sufficiently old and have enough energy stores, and interact with one another during the pursuit
of these goals. Agents in close proximity are considered to be in conflict over whatever resources
are present (if any). In a given cycle during a conflict, an agent may decide to retreat or fight.
Each action carries with it a substantial cost. The benefit of retreating is that the cost is paid only
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once, whereas the cost of fighting is paid as often as both agents decide to fight. Agents who
fight until their opponents retreat (or die!) obtain the benefit of whatever resources are in the
immediate vicinity.

Agents decide how to react in an encounter on the basis of their action tendencies for
conflicts. Each action tendency is mapped onto the range from 0 to 1, and can be thought of as
the likelihood that an agent will decide to stay and fight in an encounter. Some agent types
(so-called “asocial” agents) consider only their own action tendencies when making decisions
about fighting, so their action tendencies map directly onto their probability of fighting. Others,
however, mediate their probability of fighting based on a comparison of their own tendencies
with those of their opponents. For these agent types, the probability of fighting increases when
the agent’s action tendency is higher than that of its opponent and decreases otherwise. The
“rational” agent is an extreme case of this type that will fight if and only if its action tendency is
higher than that of its opponent.

In addition to these rational and asocial agent types, turn-taking versions of each type
based on the 2-turn-taking rule are tested. The first set of experiments tests the agent types in
homogeneous environments. Each agent type is placed in an environment containing only agents
of its own kind. The environment is unbounded; however, food is randomly generated in only
a 1,440 × 1,440 area; agents may wander out of this area, but must return to replenish their
energy stores. New food sources are generated at random locations within the food region with
a probability of 0.5 per cycle. Agents reproduce in roughly 350-cycle generations; the
simulations were run for 10,000 cycles. Twenty agents are generated and placed at random
locations within the food region at the beginning of each experimental run; performance is
measured by counting the number of survivors at the end of an experimental run. The numbers
given here are averaged over 80 experimental runs with differing random initial conditions.

Each agent type was tested using two methods to determine initial action tendencies or
action tendency rest values (for non-turn-taking agents and turn-taking agents, respectively). The
first method assigns a value randomly chosen in a Gaussian distribution centered at 0.5 to ensure
diversity in the action tendencies and rest values throughout the experimental run. The results
from experiments using this method are given in Figure 1. The first four columns depict the
average number of survivors of each of the four types (asocial, asocial turn-taker, rational, and
rational turn-taker) in homogeneous environments where they compete against only agents of
their own kind. For both asocial and rational agent types, the normal agents outperformed their
turn-taker counterparts. In the absence of turn-takers, it would appear that the unfair approach is
more efficient.

Placing normal and turn-taking agents in the same environment yields mixed results. The
six columns on the right in Figure 1 are paired to indicate that these results are from
heterogeneous environments in which two agent types competed. The first pair (asocial vs.
asocial turn-taker ) compares asocial agents with asocial turn-takers; the turn-taking agents enjoy
a pronounced advantage over the normal asocial agents. The second pair (rational vs. rational
turn-taker) shows that no significant difference is evident between rational agents and rational
turn-takers. The third pair (rational vs. asocial turn-taker ) is of interest in light of previous
results (Scheutz and Schermerhorn, 2004) in which normal asocial agents failed to average even
one survivor against normal rational agents. The improvement to averaging more than
15 survivors with the addition of the turn-taking mechanism is testimony to the benefit of the
mechanism.
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FIGURE 1  Survival rates for Gaussian-distributed action
tendencies for asocial, rational, asocial turn-taker, and rational
turn-taker (the four bars on the left indicate results from
homogeneous environments, whereas the six on the right are
results from heterogeneous environments)

Initial experiments used only the Gaussian method for determining action tendencies and
rest values. We predicted, however, that in an evolutionary context, agents would engage in
a self-destructive arms race, driving their action tendencies up to the point where the population
could not sustain itself. To explore this possibility, further experiments were conducted in which
agents of both kinds inherited their tendencies and rest values. This experiment gives the normal
agents a chance to raise their own action tendencies, albeit over a longer time scale than the
turn-takers, and in all likelihood in only one direction. The agents in the initial group of a
simulation run were given values using the same Gaussian distribution, but thereafter the values
were inherited by their offspring (without modification). The idea is to test whether this
turn-taking mechanism is really an effective method of conflict resolution that could avoid the
trap of a destructive arms race.

Figure 2 presents the results of this set of experiments, which we find to be encouraging.
The advantage of the normal agents has vanished in the homogeneous environments. In fact,
rational turn-takers outperform normal rational agents, which is in line with our prediction that
an unrestrained increase in the average action tendency would eventually prove costly. In the
mixed environments, the asocial turn-takers retain their advantage over normal asocial agents
(although the gap closes somewhat). The other two pairings are more dramatic. Rational
turn-takers now perform significantly better than their non-turn-taking counterparts. Asocial
turn-takers also now perform significantly better than normal rational agents (recall that normal
asocial agents perform very poorly against rational agents). These results support the hypothesis
that fair turn-taking can be an effective strategy for avoiding inflation of action tendencies to
destructive levels.
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FIGURE 2  Survival rates for inherited action tendencies for asocial,
rational, asocial turn-taker, and rational turntaker (the four bars on the left
indicate results from homogeneous environments, while the six on the
right are results from heterogeneous environments)

CONCLUSIONS

We describe a simple method for implicit cooperation via turn-taking. The 2-turn-taking
rule specifies that an agent should modify its behavioral tendencies in response to winning or
losing an encounter with another agent. The 2-turn-taking rule is guaranteed to be fair for
encounters between two agents that employ a deterministic decision procedure (i.e., who use
their action tendency values as counters to keep track of wins and losses).

When implemented with simple artificial agents, the mechanism provides an advantage to
its possessors, particularly when agents are allowed to take part in an “arms race” of inheriting
the action tendencies of their parents. Such an arms race leads to progressively higher action
tendencies, on average, which is destructive to non-turn-takers who have no mechanism to back
down from time to time, and so become engaged in costly extended conflicts.

The results of our simulation indicate that fairness can be a winning strategy against
selfish agents, and that, moreover, the proposed mechanisms—the 2-turn-taking rule—can even
be implemented by agents who do not or cannot take other agents’ action tendencies into
account, while retaining its benefits for the entire agent population.

It is important to note that the turn-taking mechanism is a very simple one whose cost is
small enough that, for all practical purposes, it can be ignored. In the evolutionary environment,
this is key because it indicates that the substantial benefits outlined above will not be offset by
equally substantial costs as would be the case for a more sophisticated turn-taking mechanism,
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one that, for example, relied on memory to recall the history of an agent’s interactions in order
make good decisions about whose turn it is to win. On the basis of Figures 1 and 2, this
extremely low-cost method of ensuring fairness would almost surely invade any unfair
population in which it arose.

We are currently exploring further the theoretical properties of the probabilistic version
of the 2-turn-taking rule and expect that long-term evolutionary investigations (including the
ability to mutate) will reveal its advantage in a great variety of environmental settings and
conflict types.
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SECTIONALISM INDEX FOR ORGANIZATIONS: ANALYZING SECTIONED
RANDOM NETWORK MULTI-AGENT MODEL

K. YUTA∗ and K. SHIMOHARA, Advanced Telecommunications Research
Institute International, Kyoto, Japan

ABSTRACT

 A new model is presented for indexing the sectionalism, or “clanism,” in a unit of
a section. This model involves the metaphorical walls between sections, which should be
regarded as pathology of an organization. It is beneficial to understand organizational
conditions among sections to assist in conflict management and to enhance cooperation
between them. A sectional conflict in an organization is thought to result from cultural
gaps between sections. These gaps are based on differences of specialty and
communication density inside and outside those sections, respectively. The model is
designed by using multi-agents, which consist of sections and have sectional specialty,
and an alternative network that is sectioned in a random network. Empirical results show
that the proposed index is superior to conventional indices with regard to capturing the
sectioned organizational network conditions. Furthermore, the model clearly illustrates
the effect of cross-sectional links on sectionalism by following the so-called “power
law.”
 
 Keywords: Sectionalism index, conflict management, sectioned random network,
network multi-agent model, power law of cross-sectional link

INTRODUCTION

Use of the term “sectionalism” in the context of human organizations implies the
phenomenon of a sectional “wall.” When sectionalism is a problem, the members of the section
think and act only for their own section’s benefit. This problem raises issues about optimization
based on biases of members, especially those biases reinforced by sectional division. It is like
excess adaptation. If there is no need to cooperate with other sections, a section performs well
because of local optimization; this is far from global optimization, which should occur across the
entire company. Although it is important that sections specialize to increase efficiency, a human
network divided by sections with apportioned work results in overspecialization.

Bureaucratic entities and large traditional companies in Japan are often cited as prime
examples of this sectionalism problem. Although their importance is recognized, little is known
about organizational models of sectionalism. To study sectionalism, it is necessary to analyze the
sections that constitute a company, not the individual nor the entire company.

For example, suppose a company has three sections: Sales, Manufacturing, and
Operations. The signs of typical sectionalism are discussed below. Members of the Sales
Department say that they actually earn the organization’s money. In their view, the
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Manufacturing Department merely produces the goods. Sales would be unlimited if the products
were more customer-oriented. On the other hand, members of the Manufacturing Department say
that they produce the products; thus, benefits are derived from their work. They think the Sales
Department performs poorly, and, with sufficient sales power, their quality products would sell
in unlimited quantities. Experience proves that indirect communications between Sales and
Manufacturing relayed by Operations is apt to increase this type of bias.

As for organizational issues, work has been performed in various research fields, such as
motivation, management, and economics (Milgrom and Roberts, 1992; Lazear, 1998). If related
to conventional research, sectionalism would fall under the domain known as “conflict
management.” Little research on conflict management, however, has been conducted using a
quantitative network approach. Sociologists have performed most of such research on
organizations as conventional human networks, and analysis of important people by such means
as sociograms has produced plenty of useful knowledge (Yasuda, 1997). Whereas individual and
entire network analysis is very important, as reported by Torenvlied and Velner (1998), even that
study is lacking in its investigation of sectionalism.

In recent years, models such as the Small World Network (SWN) and the Scale-free
Network (SFN) have helped to expand knowledge of networks (Albert, et al., 2000; Barabási,
2002). These can be qualitatively called homogeneous networks. In our research, a conservative
random network is designed to improve sectioned structures, each node has the property of
belonging to its own section, and nodes are set as in a simple multi-agent model (reaction only,
no learning nor evolution).

By using this network model and applying a multi-agent model as reported by Wei
(1999), this study focuses on sections and networks in organizations. We also design an index to
grasp the emerging output of this structure, called “sectionalism,” in excessive case. Computer
simulation is issued to complete three tasks:

1. Verification of whether a simulation expresses the behavior of sectionalism,

2. Comparison of conventional network indices, and

3. Investigation of the influences of cross-sectional links for sectionalism.

NETWORK AND INDICES

This section briefly and informally describes the type of network and its index related to
this research. In this study, the network is characterized by three conventional indices for
comparing a presented index. One of these is the average degree D. The other two are the
average path length L and the cluster coefficient C, as reported by Watts and Strogatz (1998).

The average degree D is the arithmetic average of the edge, which the nodes of all
networks have. This index indicates how many nodes and links are linked per node.

The average path length L is the average of the course length d(ij) for the group of nodes
of all networks. It is the number of edges that the path length d(ij) needs to connect node i and
node j (i ≠ j) along the shortest path. By using the average, it is possible to search for the average
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path length L(i) of node i. Therefore, L(i) is calculated for all nodes, and the average path length
L of the entire network is acquired by averaging them. These formulas are as follows:
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The cluster coefficient C quantifies the gathering condition of the node that constitutes
the network. A cluster consists of three nodes whose edges are linked to form a triangular
structure. If node i has k(i) edges, a realizable cluster is formed from a number of combinations
that choose two nodes from k(i) nodes. Then, the cluster coefficient of node i is defined by
dividing the number of clusters E(i) that actually exist in a certain node by the number of
possible clusters. The cluster coefficient C of a network is obtained by performing it for all nodes
and calculating an average. These formulas are as follows:
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The most fundamental structure in network research is a random network as proposed by
Erdös and Rényi (1959). This model has links by probability rp  to all nodes. The average degree
of all nodes is calculated when the total number of nodes is N and the average degree is set to
N × p. The degree of each node becomes a Gaussian distribution centering on the average degree.
As a character, the cluster coefficient is small and its average path length is short. The trait of
this random network is that there are very few cliques because members become acquainted
uniformly and broadly; moreover, one can become acquainted with others with just a few relays.

DESIGN OF ORGANIZATION MODEL OF SECTIONALISM

Architecture

We first describe the sectioned network design and architecture of agents and simulation.
To initialize a simulation, a sectioned network structure is constructed by extending the random
network design method. A multi-agent simulator then obtains information on link, section, and
initial data, which depend on sectional traits where the agent belongs. Interaction is repeated
until the sectional change converges. Finally, deviations of agent data in each section are totaled
to obtain the sectionalism index.
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Design of a Simple Sectioned Random Network (Simple SRN)

It is better to design a model that is as simple as possible to avoid confusion. Since the
network considers interaction among those sections, at least three sections are needed so that
influence can extend indirectly. (Recall the example company above, which includes three
sections: sales, operations, and manufacturing.) A simple SRN needs at least 100 nodes to enable
calculation of the probability of links with an error of 1%. The organization design is then set
with three sections of 100 nodes each, giving a total of 300 nodes for the simplest model.

Sectioned random networks need two types of probability. A self-section link probability
is fixed first, followed by two other probabilities of links to cross-section nodes set to half of the
remaining non-self-section link probabilities from 100%, as shown in Figure 1. At this time,
when the self-section link probability is set at 33.3%, it is equal to two remaining cross-sectional
link probabilities. This uniformity is important for a sectioned network. Consequently,
a uniformity coefficient UC is introduced. The formula below exists for the general case wherein
a symmetric sectional random network has N sections. A UC of 100% means a conventional
nonsectioned random network. A sample image of SNR’s adjacency matrix is shown in Figure 1
for uniformity coefficient UC:

.
1

)1(
N

N
PselfUC

−
−≡

The property of this simple SRN is shown in Figure 2. A decrement in UC causes the
cluster coefficient to increase, but the average path length does not change. Degrees are designed
to maintain the average. Each degree is then totaled and checked, with results showing
a Gaussian distribution.

FIGURE 1  Simple SRN adjacency matrices, with setups of (a) 100%, (b) 30%, and (c) 0%
of UC, respectively (The black dots were plotted when nodes i and j are linked. UC is the
uniformity coefficient, and Pself is the probability of a self-sectional link.
Shown is a 30-node matrix for easy understanding.)
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FIGURE 2  (a) The relation between a cluster coefficient c and uniformity coefficient
UC, (b) the relation between average path length and UC, and (c) the distribution
of degrees (The standard deviation of the average degrees from 10 trials was 4.26
from a degree average of 99.28.) Shown is a 100-node simulation.

Design of Agents and Interaction

This section describes the agent and its interaction mechanism. An agent’s initialization
acquires link information first. An agent then has two additional pieces of information: a section
code and a sectional culture set. For example, a company that consists of three departments 
sales, operations, and manufacturing  has three typical sectional culture factors, and these three
factors make one sectional culture set. All agents have their own sectional culture set initializing
[100, 100, 100], meaning each section culture [sales, operating, manufacturing]. The section
code indicates the agent’s job and sets the tendency of his own sectional culture factor to
increase. After initialization, the simulation starts to act on management and continues until
1,000 turns have been completed, resulting in an experientially obtained convergence turn
number.

At each turn, all agents have two opportunities to change their sectional culture set. The
first is under the influence of the section to which the agent belongs. The agent can be infected
with its own sectional culture factor, which enlarges the factor value and causes a 10%
probability per one turn. The second opportunity is interaction with a linked agent. An agent
interacts with another agent at each turn. Both agents simultaneously recognize the difference in
their sectional culture set. Thus, they share a 25% decrease in the difference between each
other’s set. A total of 300 sectional cultures are maintained. The impact of the self-sectional
tendency is 30%. An example of infection by a self-sectional culture is as follows. Sections A, B,
and C have sectional culture factors fa, fb, and fc, respectively. Each agent has a culture set of
[fa, fb, fc]. Agent ‘Agt’ belonging to Section A is initialized Agt[100, 100, 100]. If this agent
obtains the self-sectional tendency at the first turn, it would be Agt[130, 100, 100]. The sum total
is 330, which is the overflow capacity of one agent. This number is then normalized and reset to
300 Agt[118, 91, 91]. Finally, fa increases by ~18.

An example of interaction between two agents is described next. When agent A[150, 100,
50] and agent B[120, 80, 100] interact with each other, they recognize the difference d[−30, −20,
+50] between them. If A puts d in its self-sectional culture set, A joins the same set as B. This
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means that A has been completely influenced by B. If d is 50%, it is a completely shared model.
In this research, we set 50% as a completely shared model. This percentage represents a 25%
change for each agent. In this process, the agent does not care about its target section or its own
section. This mechanism has a strong effect when the difference is large and a weak effect when
it is small. Against an agent in same the section, the effect of the self-sectional culture tends to
spread quickly. Meanwhile, for interaction with another section’s agent, it takes a role of
rectifying the deviation. Figure 3 shows the simulation result of agent interaction in a Simple
Sectioned Random Network Multi-agent Model (simple SRNMAM).

Since the simple SRNMAM has a symmetric structure, charts for Figure 3 show
Section A only. For cases with no cross-sectional link, other sectional cultural factors (scf’s) are
washed out by the 300th turn. The tendency for uniformity also increases as cross-sectional links
grow in number. Considering the indication of the deviation of the scf in a section’s unit, it is
a perfect sectionalism index. This chart also shows that 1,000 turns is enough for convergence to
occur at this setting.

Sectionalism Index (SecSD)

In this section, we describe the design and calculation of a sectionalism index. For
a symmetrical network structure, such as a simple SRNMAM, it is simple to understand
sectionalism by using the standard deviation. As a result, the average of each scf is the same as
for the total of all sections: [100, 100, 100], as shown in Figure 4a.

This approach, however, is not available to measure in asymmetric network structures
because it is strongly influenced by a constituent number and its links. Furthermore, deviations
arise in fa, fb, and fc for the entire company average; this is the so-called corporate culture
(see Figure 4b).

To grasp the section level accurately, several procedures are followed. We focus on the
variances of each factor with respect to the average for the entire company. First, variances of all
factors are totaled for each unit in a section. Second, the total variance is divided by the number
of agents in a section. Third, that number is divided by three, which is the number of sectional
cultures. Finally, the square root of the number is taken and considered as the sectionalism index
of this research, and this number is the extended standard deviation. We now refer to this index
as “Sectionalism Standard Deviation” (SecSD), the standard deviation by which a section is

FIGURE 3  Simulation result of Simple SRNMAM (SCS = sectional culture set;
scf.A = sectional culture factor of Section A)
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FIGURE 4  (a) Image of symmetric network simulation result, such as a simple SRNMAM,
and (b) image of asymmetric network simulation result, such as a complex SRNMAM
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Then, a group G that includes O has g agents. The sectionalism index of group G is calculated as
follows:
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SecSD G≡  sectionalism standard deviation as “sectionalism index.”

Design of Complex Sectioned Random Network (Complex SRN)

In this section, the network structure that can verify the performance of an index of
grasping sectionalism in a section’s unit is designed manually as shown in Figure 5.
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FIGURE 5  The complex SRN design from Org1 to Org4 with each adjacency
matrix (manual setting of section, links, cross- or self-sectional link probability)

The purpose of this research is to optimize the capability of this index. It consists of three
sections: Section A has 60 nodes, Section B has 180 nodes, and Section C has 120 nodes, for
a total of 360 nodes. There are 720 interacting links between Sections A and B, 360 between B
and C, and no links between A and C (Org1). The general structures between these sections are
invariant. Furthermore, each section has internal links set between subdivisions. For example,
Org2 divides Section B into two smaller classes  60 + 120. Org3 divides Section B into three
even smaller classes  60 + 60 + 60. Org3 has separated subsections of B from both A and B.
Org4 contains additional divisions to Org3, where Section C is divided into three subsections. In
Figure 5, A, B, C, etc., show the connection probability of a link, respectively, and b, c, b1, b2,
and b3, and c1, c2, and c3 show the self-section link probability. The symbol ab shows the
connection probability from a to b.
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EXPERIMENTAL RESULT

Validation of Sectionalism Index (SecSD) via Complex SRNMAM Simulation

The simulation result of complex SRNMAM is shown in Figure 6. The degree of
sectionalism in each section or the entire organization can be verified. When the composition of
the set in each section is investigated, it is found that there is no difference between the
compositions of the entire organization and the organizations Org1-4. The composition of
sections, however, reflects differences in internal structures.

Although the entire organization acquired the same composition with a sectional culture
set in each of Org1-4 (see Figure 6c; each Org1-4<ALL> is the same), SecSD proves there are
differences. In this model, each agent interacts without losing all its sectional culture set.
Therefore, the final total average depends on the number of constituents in each section.
Otherwise, an internal structure is affected by the diffusion speed of the sectional culture and the
volume of relay that changes the sectional deviation between sections (see Figure 6c, pentangle-
attached bar of each 1-SecC ,…, 4-SecC).

This sectionalism index measured the different sizes of organizations simultaneously (see
Figure 6 where each Org <ALL> SecA, B, C is compared in the same graph). When the entire
organization is put into a larger organization, the former organization becomes a section.
Therefore, it is meaningless if the index becomes impossible to use as a means of comparison
between sections and entire organizations. The index’s important features are its flexibility for
size and consistency for measurement. The index proposed here avoids the problem by asking
for the deviation of sectional culture set per single agent.

FIGURE 6  Complex SRNMAM simulation result for (a) the organization structure summarized
for reference, (b) the value of SecSD for each section and for the entire company, and (c) the
composition of each sectional culture factor average in each section
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Table 1 and Figure 7 show the comparison between SecSD and the conventional index.
They verify that the proposed index is far more sensitive than the usual network index for
determining organization sectionalism behavior. SecSD has the additional influence of the
cluster coefficient. The structure of a cluster causes deflection between sections, which has
a greater effect on SecSD. Consequently, SecSD also reflects the differences in sectional
cultures. In the case of structural change from Org1 to Org4, the separation between Sections A
and C has a more considerable effect on SecSD than the cluster coefficient, especially in this
organization design, which keeps the total links between sections for the entire Org1-4. This
means that the division in Section B decreases the speed of sharing these sectional cultures. The
internal share in Section B acts as a relay between A and C. The decrease in relay increases the
deviation between Sections A and C in the sectional culture.

TABLE 1  Network index of four organizations of complex SRNMAM

Organization
Cluster

(%) toOrg1a Length toOrg1a SecSD toOrg1a Degree

Org1 24 1.00 2.05 1.00 9.17 1.00 43.11
Org2 29 1.20 2.19 1.07 12.41 1.35 42.77
Org3 32 1.31 2.41 1.18 16.20 1.77 43.01
Org4 43 1.76 2.56 1.25 19.42 2.12 42.95

a In this table, toOrg1 indicates the rate of sensitivity to each index
of Org1.

FIGURE 7  Comparison of indices’ sensitivity
performance to different organizational structures
(Note that the structure becomes more complex
from left to right.)
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Power Law of Cross-sectional Link Effectiveness for Sectionalism

Incremental cross-sectional links are effective for reducing the sectionalism tendency in
this model as well as in real companies. The cross-functional team focused on the field of
management as reported by McDonough (2000) and is considered to be one example of
sectionalism reduction. We present the simplest model to study this reduction. The relation
between SecSD and UC is investigated in this simple SRNMAM. Results show that at a UC of
10% or less, the index value rises rapidly, but a UC greater than 20% is enough to reduce SecSD.
Focusing on this matter, when both axes in the graph are changed to a logarithmic scale,
a straight line  known as the power law  is observed, as shown in Figure 8.

FIGURE 8  Power law of effect of cross-sectional links to sectionalism index, SecSD

Why did the uniformity coefficient carry out the power law distribution to SecSD? There
has been no explicit setup in which an exponential effect is derived. The power law is thought to
influence the effect of section structure on a network. Since the members inside a section greatly
influence each other, the influence of a single agent is shared at high speed. Where little
connection occurs between crossover sections, then one new link of a crossover section will
influence all links of the target. The power of the second link seems to serve as an exponential
influence.

DISCUSSION AND FUTURE DIRECTION

The power law is important in organizational design in an actual company. This model
shows the effectiveness of power of the cross-sectional link, in which 15% of the links initially
reduce the 85% risk of sectionalism like a Pareto law. This reduction effect is exponential. In the
human resource management division of a real company, these types of cross-sectional
communications and events imply costs in time, money, and workforce. We believe that this type
of indicator would help cut such costs.

We plan to expand this model to include organizational hierarchy, such as manager-
subordinate interaction; change from an undirected graph to a directed graph to represent the
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network; and addition of weights to links. When the above knowledge is synthesized with a real
survey, this model also expresses “the robustness of headhunting” and “the degree of
organizational openness.”

CONCLUSIONS

In this research, we present a sectioned random network multi-agent model and
sectionalism index for organization with four achievements:

1. An illustration of sectionalism behavior,

2. A sectionalism index in order of section level and size-free,

3. A higher performance of SecSD than usual, and

4. Finding of the power law for determining the effectiveness of a cross-
sectional link in reducing sectionalism.
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DISCUSSION:

POLITICAL PROCESSES

(Saturday, October 4, 2003, 1:00 to 3:00 p.m., Session 1)

Chair and Discussant: Richard Cirillo, Argonne National Laboratory

Agent-based Residential Segregation: A Hierarchically Structured Spatial Model

Richard Cirillo: Good afternoon, everyone. I think we have some interesting papers this
afternoon to discuss the application of agent-based modeling to political processes, which I think
is something that we’re all particularly interested in, particularly as we get into an election year.

The first speaker will be David O’Sullivan, from Pennsylvania State University.

David O’Sullivan: Before I get started properly, I should probably just say that the real
motivation for the model that I’m talking about today was sort of methodological rather than
applied, in the sense of, we’re interested in the processes that this model looks at in terms of
neighborhood formation in urban settings and residential segregations of populations and all of
those sort of longstanding applied substantive issues. But we’re also interested in developing,
from a relatively well-known starting point, a model that we can build on over time to explore
some methodological issues having to do with getting more substantial geography into agent-
based models. So in some senses this paper could have sat fairly comfortably in the “Methods,
Models and Toolkits” sessions on Thursday.

[Presentation]

Cirillo: Thank you, David. Do we have any questions? Comments?

Greg Madey: That was very interesting. A couple questions or suggestions. Have you or
anybody, I’m just curious, looked at asymmetric tolerance?

O’Sullivan: You may have noticed in the demo that we had tolerance down there as
something we could play around with. And we initially when we were getting the thing up and
running we were playing around with that, and we sort of steadily realized that we needed to
keep some things fixed. And so we haven’t really explored any of that. Schelling’s work, that
bonded neighborhood stuff with the intersecting parabolas, the whites and the blacks, he explores
different assumptions about the two different populations’ tolerances for one another, how that
affects the state space and its dynamics and sort of shows that there are stable combinations,
given sufficient tolerance of one population or the other. For our work, we’ve just kept the
tolerance stuff fairly fixed.

Madey: Then one more quick question. I remember a few years back in some
communities I lived in, the local city council passed laws that said you couldn’t put “For Sale”
signs on your property. And so the other thing to look at is the velocity of the communication.
How fast did the information transfer or become aware [that people are leaving], so even before
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someone left, people know someone’s planning on leaving. Or maybe a fuzziness where maybe
you’re not even sure. And then I guess multiple populations, more than two colors.

O’Sullivan: Oh, certainly. There’s dozens of people messing around with models of this
kind. There’s a guy at Texas A&M, Mark Fosset, who’s actually got commercial software
emerging out of stuff that he hasn’t really published. And he has multiple different groups and
this whole kind of configuration of stuff. We wanted something that we could build ourselves
and work up from, rather than borrowing from that.

Cirillo: One more question?

Unidentified Speaker: You made a comment about lattices. Are you implying that
you’re considering three-dimensional structures so that you can account for social hierarchy as
well? Is that what your suggestion is?

O’Sullivan: Well, I guess, in much the same way that Tom Howe talked about and
relations being potentially, you know, arbitrary. What we’re focused on is spatial rules for
building the lattice, things like contiguity, neighboring within some certain distance, and
relations of containment between spatial units in a hierarchy, but there’s no reason in general
why those need to be kind of planar or two-dimensional. So by implication, yes, you can move
on to that three or higher dimensional types of lattice.

Cirillo: One more?

Unidentified Speaker: I’d be interested in seeing something where you combine some of
what you’re doing with some of the stuff that Ed MacKerrow talked about earlier, the dry grass
model and the grievance model. There are some areas in Chicago where pretty much everybody
knows that if you’re of the wrong race you’re in deep yogurt if you wind up in the wrong area.
“Wrong” meaning black in white, or maybe white in black, for all I know. It has the obvious
connection with the level of dissatisfaction and stuff like that.

David O’Sullivan: Right.

Unidentified Speaker: And you could measure, you know, propensity to nasty incidents,
whether racial or similar to the Palestinian/Israeli conflict or any other number of groups.

O’Sullivan: There’s actually a group in Israel at Tel Aviv who don’t seem to be known
much outside the geography community, Vival Portugali and Itzhak Beninson, and they’ve done
really quite detailed modeling. They started out 10 years ago with reds and blues and greens, and
then they kind of came out of the closet with what they were really doing, when they made it
geographical. They have this very detailed plot level data for Yafo, which is a suburb of Tel
Aviv, and they have Jews and Arabs in that setting. And they have some very similar dynamics
going on there, but it’s very much their own particular tool, and they have access to very, very
detailed individual-level data for Tel Aviv which they’ve been working with. So, yes, you’re
exactly right.

They also explore something which is very interesting, which I didn’t really get to talking
about, the sense in which as a neighborhood changes, how people’s tolerances change: they learn
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different tolerance from living in a certain kind of neighborhood. So the individuals are altered
by the nature of the space, which is a really interesting sort of feedback.

We’re interested also in how what are generally perceived as coherent neighborhoods
might change over time. As you get persistence over time of one group dominating a particular
area, and maybe around the edges of it, well, then, perhaps it starts to be perceived as a bigger
space or a smaller space. So that sort of ghetto formation, or gentrification would be the opposite
sort of a fact.

Implicit Cooperation in Conflict Resolution for Simple Agents

Richard Cirillo: Our next speaker is Paul Schermerhorn, from University of Notre
Dame.

Paul Schermerhorn: Thanks. I guess this is a little bit of a change of pace, because what
we are talking about here are very simple agents. And what we want to talk about specifically is
a mechanism that we’ve used to impose an implicit cooperation upon them.

[Presentation]

Cirillo: Do we have any questions?

Dan Kunkle: If the turn-taking might be robust against collusion and group-formation in
other agents, could that group of colluding agents take away the benefit that turn-taking agents
seem to bring to the system?

Schermerhorn: I haven’t thought about that. I’m not sure. You probably have an idea
about how that would work?

Kunkel: Yes, a suggestion for future research. It would be based on a coalition of selfish
agents who agree to, say, not hurt each other and share with each other, but try to take out the
turn-taking agents. Some such agreement could overcome the system.

Schermerhorn: That could be. I guess the only thing that I would say about that, is that
these are really simple agents. They’re basically reactive agents that just map their perceptions
onto actions. So if they see food, they go to food. So I would worry about the cost of doing that,
as far as whether that would be plausible or not. But that is a really interesting idea. Thanks.

Aaron Frank: Have you considered something along the lines of pack behavior, as
agents form groups and hunt in packs but also perhaps change their character over time; that is,
so younger agents can be more aggressive than older agents. And so over time you can see what
part of a life cycle agents are most aggressive, or specifying and seeing how changes over time
within the agent affect its behavior.

Schermerhorn: No, we haven’t thought about that. That’s also a very interesting idea.

All that we’ve looked at so far is the general idea of whether an agent becomes more
sated or something like that if wins build up and it becomes less likely to be interested in
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fighting; whereas, if an agent has lost for awhile, maybe it’s hungry or something like that and
becomes more desperate. So it’s all in a much shorter time scale than what you’re talking about.
But your idea would be very interesting. Thank you.

Sectionalism Index for Organizations: Analyzing Sectioned Random Network
Multi-agent Model

Richard Cirillo: Our next presentation is by Kikuo Yuta from the Human Information
Sciences Laboratory, Advanced Telecommunications Research Institute.

Kikuo Yuta: This research is on a governmental supported research project named
Communication Mechanism, and what I would like to talk about is sectionalism index for
organizations.

This sectionalism does not mean provincialism or localism in national politics. Here this
sectionalism means sectional war in the companies, like a company and organizations.

First, I will talk about the mechanism on the behavior of sectionalism. And after I’ll show
the simple model using a random network agent model. Next, I’ll show the more practical
sectionalism indexes and the variations.

[Presentation]

Panel Discussion

Cirillo: I’d like to ask the authors to join me up front for a minute. This is the fourth
conference that we’ve had on agent-based modeling in social simulation. Four years ago when
we started this, one of the questions asked at the conference was, is agent-based modeling and
simulation ready for prime time? That is, is the technique developed enough to be able to provide
useful information and insight to key decision-makers who would use that type of result? Is the
agent-based modeling approach good enough to give to a policy-maker or decision-maker?

At that time, there was some skepticism as to whether the methodology was far enough
along to be able to do that. In the presentations we’ve seen this afternoon, there is obviously a
movement toward taking some of this technique and methodology and putting it to work in very
practical applications. In one case, the issue of housing segregation, in another case the issue of
conflict resolution, and in another case the issue of organizational structure and communication
between organizational units.

And so I’d like to ask each of the authors if they would comment on how far along you
believe the approach and the methodology that you’re using is, in order to be able to provide new
insight and new information to decision-makers in the particular area that you’re working in.

David, in your case, for example, can you provide new insights into the city of
Philadelphia in developing their housing or desegregation policy? Paul, in your case, can you
provide information to the State Department and the Defense Department on how to approach
conflict resolution? And Mr. Yuta, in your case, can you provide information to Mitsubishi
Corporation on how to use these results in structuring its organizational system?
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Each of you has, I think, made some comments in the course of your presentation that
indicate that there is some indication of the applicability of this technique to these very real-
world problems. David, when you started off, one of the comments you made was that the results
in the early Schelling work seemed to indicate that people did not have to be super-intolerant in
order to develop a segregated housing pattern. Paul, in your presentation, you made the comment
that it seemed the more the agents took the others’ displays into account, the better they were
able to perform in terms of their survival. And Mr. Yuta, you made the comment that companies
spend a lot of money on enhancing the communication between different sections and
departments in their organizations.

So these are all very real-world problems, and we as modelers would hope to be able to
shed some new light and some new insight into that. And so I’d like to ask each of the speakers
if you would comment on how your particular approach or model would be able to provide a
very real type of decision-making information.

O’Sullivan: Okay. I guess I’m not sure of the answer. I think going back to Shelling’s
original work, there’s certainly genuine insight there. This whole issue of super-segregated
residential areas isn’t necessarily indicative of any micro-level motivation toward that. And
that’s a possibly useful understanding, although, of course, the model doesn’t prove that people
aren’t intolerant, because very intolerant people will also segregate in that way. So in terms of
whether it provides useful policy guidance, I’m not really sure. I think certainly the model that
we’re developing needs to have complexity added in terms of the mechanism — I mean, the
most obvious missing aspect of the model is that there’s no actual housing market. Everybody
who wants to move can look around; if there’s somewhere they would be happy they can move
there. There’s no question of how much money they have. Can they get a loan? What’s the value
of their property? You know, there’s a whole market dynamic that we’d need to be on top of ,
and issues of segregation by income. So, as I say, I’m not really sure.

I think beginning to understand that there are points in the neighborhood dynamics at
which things are kind of on an edge, where relatively small injections of money or relatively
simple policy interventions could make big differences — this whole kind of tipping
phenomenon. Possibly, if you evolve these kinds of approaches a lot further, it might enable
identification of neighborhoods and places that are approaching those edges. So I guess there’s
possibly something there in a very general sense. I’m not sure if the model that we’re working on
is the platform on which that would be achieved. And certainly there are people building much
more complicated, fully realized models of housing markets. I’m agnostic at the moment on that.

Cirillo: Would it be fair to say that one of the things that could be perceived from just the
results of the simple model that you’re using, that the awareness of local effects versus regional
information has an impact on the decision? Would that imply to a decision-maker that
information to people is an important factor in helping them choose their housing location?

O’Sullivan: I think it’s certainly important, but it’s something that doesn’t necessarily
lead to outcomes that would be agreed to be better, because more information can allow you to
behave in ways that are perceived as being less helpful, as well as in ways that are perceived as
being more helpful.

For me, one of the points of departure for starting to look at this model was sort of a
casual observation that there’s an important role for the concept of neighborhood, and for
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perception of neighborhood — shared perception of the nature of different neighborhoods — in
the way that housing markets develop. You see it in gentrifying neighborhoods: realtors
intervene and invent new neighborhoods that nobody knew existed. Something like Soho in New
York. It [started as] a marketing fiction by realtors that now has a real existence because people
responded to the marketing. So I guess there’s a point of leverage there, that you can create new
phenomena by saying that they exist, publicizing their existence, and drawing certain populations
into them.

So I think the whole issue of information about the nature of places has a big role to play.
And I could certainly imagine a city government waking up to that fact. I saw somewhere in the
literature speculation that Washington, D.C., should be marketing itself as a place that’s ripe for
gentrification, as a way of co-opting people who have money into regenerating the place. That’s
an idea I’m interested in exploring. I’m not sure if an agent model is the only useful tool for
doing that, though. I think you need much more detailed local empirical study to really get inside
what’s going on there. I think that the modeling tools are a part of things, but I don’t think that’s
the whole story.

Cirillo: Anyone care to comment or add to that?

Unidentified Speaker: I think that you might be right to discount agent models at this
point. But I think when you can introduce some of the things that you said were missing, like
costs, expectations and market forces, I don’t see any intrinsic reason why that can’t become part
of the model.

O’Sullivan: I’m quite skeptical about the classical notion of prediction from models like
these. I see the role as being much more to do with policy people developing a sense of the
dynamics of the systems that they’re engaged in trying to manage through interacting with
models of these types. So they build up experience — without screwing up the real world — of
how systems might respond to certain kinds of intervention. I think that’s one of the important
roles for these kinds of models.

SimCity is a “jokey” example of the kind of thing I’m talking about. But people
develop a sense of the role of being a city manager through messing about with a game like that,
how developing different kinds of land use affects how people feel about the city, how taxation
policies and spending policies affect the system.

Now, the rules in SimCity are hidden and slightly Darwinian and so on, so we might want
to build models that are more grounded in observation and allow policymakers to play games
with those to develop the kind of understanding that then enables them to see opportunities that
they might otherwise miss.

But I think in getting too obsessed with the models, we lose sight of [the fact that] people
engaged in policy understand cities pretty well. They have experience of working with people in
communities and so forth, and there is a risk in getting so obsessed with this kind of technical fix
that we lose sight of the knowledge and the different ways of knowing that are available. I mean,
statistics and math and quantification aren’t the only way of understanding how things work.
And those are important types of knowledge to make use of as well.
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Desmond Saunders-Newton: I think as I listen to the responses to your question about
whether agent-based models or any models actually reflect agency, I think you’re selling
yourself short in a variety of ways. Number one, probably one of the world’s biggest users of
models and simulations is the U.S. Government, period. Right? If there’s any community which
is willing to embrace and to actually make that a part of their work process, or their
contemplation process, it would be the U.S. Government, at the federal level.

Having worked also at the state and local level, there has been an increasing move within
various governing structures to actually be much more consistent by using these more rational
decision-making processes. They’re much more defensible within the context of how decisions
are made. I worked with this with the Commonwealth of Virginia when I was a research
methodologist for the state, and also when I was over the activities for the LACD Board of
Education, which had a budget of $8.4 billion. So my job was to make sure that seven locally
elected officials didn’t look particularly bad in the context of how it is that they couldn’t spend
money in alternative ways. And how did we do it? We did it with models.

So I think in some ways the real issue here is how you actually create a better bridge
between this particular community of individuals who are involved in the modeling process and
the individuals who actually really have a desire and need to have this type of rationalization
process associated with them.

Cirillo: I think the whole process of taking any sort of modeling activity and modeling
results and putting that in a form that a decision-maker or policymaker can use is a whole field
unto itself as to how you use that.

Okay, Paul, [assume] you’re now advising Secretary Colin Powell and Secretary Donald
Rumsfeld. What new insights can you offer?

Schermerhorn: I’m not really sure that the stuff that we talked about is particularly
applicable. And I’m not sure that it’s so much because it’s not ready, although you might argue
that, too, but more because the agents that we’re looking at are such simple agents. I made the
comment that you could throw a lot of resources at the problem, but that this wasn’t an
appropriate response for very simple agents, because that cost is going to be too high relative to
whatever resources the agent has.

Well, we don’t have that problem, right? We typically can keep track of who it is that
we’ve lost to, who owes us what and who we owe, right? And, furthermore, the way that we
resolve conflicts is a lot more complex than what we’re modeling. So our stuff, you know, I’m
not sure that I have much to say to Secretary Powell.

As far as the applicability in general of agent-based models to political problems, I don’t
see any problem in principle with that. It’s just this specific work uses much simpler agents. And
in order to extrapolate from where we are, I think you have to make some really hard arguments
that I think are actually going to be impossible to make.

Cirillo: Any comments? Okay, moving to the corporate world. Kikuo, you’re advising
Mitsubishi or the Nippon Telephone Company. What results would you be able to give them, or
what insights?
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Yuta: About Sony and Mitsubishi and Toyota, there are a lot of sections, 500 and more,
200 or more. So it is very difficult to understand or comprehend what’s going on about sections’
status, especially for the closed or open. So it’s very difficult to comprehend. This method I
presented, it is possible to measure the all sections in only the one graph. It is possible to explore
which party is most dangerous and risky and which party is okay. Of course, I have to develop
the model more, but there is a possibility to do such kind of things.
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RECIPROCAL VERSUS GROUP ALTRUISM AMONG VAMPIRE BATS

M. PAOLUCCI,* LABSS, ISTC-CNR, Rome, Italy
G. DI TOSTO, CESSBA, ISTC-CNR, Rome, Italy

R. CONTE, LABSS, ISTC-CNR, Rome, Italy

ABSTRACT

 This paper explores two interpretations of altruism — group selection and reciprocal
altruism — in populations where exchanging help is necessary to face an infrequent, but
lethal, scarcity of food. This study, which was inspired by the food-sharing habit of the
vampire bat, examines the role of groups as units of selection and reproduction. Findings
indicate that when different groups compete for reproduction, altruistic, rather than
nonaltruistic, groups are fitter. Grouping contributes to the fitness of the altruistic
population because cheaters, although they perform better than altruists, favor the
extinction of all groups that contain them.
 
 Keywords: Social simulation, agents, altruism, reciprocity, groups

INTRODUCTION: THE THEORETICAL CONTEXT

Following Group Selection Theory (GST), it must be possible for biological evolution to
operate on groups, not only individual organisms. Aggregates of individuals are said to work as
units of selection and reproduction. Although popular during the 1970s (Williams, 1971), GST
was subjected to severe critiques from sociobiologists. Inspired by the principle of inclusive
fitness, in which individuals are seen as vehicles for genetic reproduction (Dawkins, 1976),
sociobiologists explained altruism among non-kin in terms of reciprocal altruism (Trivers, 1972)
(i.e., the probability of donors being reciprocated when needy).

Recently, GST has been proposed again by Sober and Wilson (1999). The main argument
for the revival of GST is that if individuals are the recipients of genes (e.g., machines for their
reproduction), groups (or other high-level entities) are the recipients of the recipients of genes.
Much like individuals, groups can be characterized in terms of a genetic pool to which all
individuals contribute to a different degree. In addition, groups can compete on the same
evolutionary stage and act as units of selection. A given habit or trait that characterizes one
group can increase its fitness and therefore its preservation, but as the following discussion
shows, the presence or absence of groups can influence or even dictate the performance of
a population. As the group-selection argument goes, adaptive groups flourish and eventually
produce a constellation of new groups that maintain the same characteristics and share the same
genetic pool. Conversely, groups that do not have the adaptive trait or habit decline until
extinction or disaggregation (its members migrate, dispersing the genetic heritage).
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The controversy around GST remains harsh (see, for example, Palmer’s [2002] review of
Field’s book [2001]), sometimes because of an equivocal and collectivist interpretation of the
theory. Rather than sharing this interpretation, we prefer to use the definition provided above;
that is, groups are high-level units of biological selection.

ALTRUISTIC BEHAVIOR IN NATURE

Examples of altruism abound in nature (see, for example, Brembs, 1996). Interspecific
mutualism has been documented among lycaenid butterfly larvae and ants (Leimar and Axén,
1993). A predator inspector in shoaling fish is another well-known case in which different
individuals leave the shoal together and swim toward the predator, gathering information about
its precise location and current motivational state (Milinski, et al., 1990). Through cooperation,
they share the cost of actions that cannot be performed alone.

Among mammals, the most famous example of prosocial behavior is blood-sharing in
vampire bats, a behavior that favors starving, unlucky hunters (Wilkinson, 1984). In addition,
many controversial examples exist among primates and humans. Ethological observations and
even simulation experiments, such as those by Wilkinson (1990), are often interpreted as
supporting the inclusive fitness explanation, based on the evidence that animals (in this example,
vampire bats) will help individuals they recognize (possibly, once donors).

The evidence in favor of reciprocal altruism, however, is not fully satisfactory. Is it
possible to use natural experiments to differentiate between individual versus in-group
recognition if a group is small enough so that individuals are allowed to meet all others at
least once?

A brief explanation helps to capture the rationale of reciprocal altruism. This
phenomenon, and its related theory, is a twofold concept. First, reciprocity can occur in the direct
form (i.e., when the current donor receives help from its current recipient). Second, reciprocity
can occur in the indirect form (i.e., when the current donor receives help from someone that
received help from a current recipient). In its indirect variant, reciprocity circulates in the group,
increasing the fitness of donors. This second variant of reciprocal altruism poses two questions:

• Circularity makes reciprocity inherently fragile: at any step, the chain can be
interrupted either by cheaters or by accident (noise). Direct reciprocity,
however, is more robust because the number of steps is reduced, and cheaters
(non-reciprocators) are immediately found out after one defection.

• Consequently, indirect reciprocity appears to be more irrational from the
individual point of view:

- Why should self-interested agents give away a share of their current
probability of reproduction if the chance of getting it back is remote and
uncertain?

- What kind of guarantee is needed for agents to participate in chains of
reciprocity?
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To our knowledge, no fully convincing answer to the latter question is available.
Essentially, the sociobiological answer is as follows: agents act altruistically because they are
programmed to do so. If altruists reproduce to a higher degree than nonaltruists, their genes
spread over the population. Consequently, the altruistic behavior not only survives, but also finds
increasingly less hostility because cheaters tend to be replaced by the more prolific altruists.
Under this perspective, reciprocity (either direct or indirect) is an emergent effect of altruism,
rather than a condition for its execution, that reinforces its occurrence. Altruists do not aim to
obtain reciprocity nor calculate its probability. If altruism spreads, altruists survive and
reproduce. Emergent reciprocity should work so that donors and/or their future generations are
refunded. In this case, the altruistic act increases the donors’ individual fitness.

Under what conditions does reciprocity emerge? Does reciprocal altruism account for this
emergence? If not, which theory provides a complementary or alternative explanation? Can
group selection play a role in this sense?

Simulation — proposed by Axelrod (1997) as a new way of doing science — offers an
experimental instrument for testing both theories, refining existing hypotheses or, possibly,
formulating new ones.

THE SIMULATION EXPERIMENT

Our simulation experiment is based on the vampire bat example. The species studied by
Wilkinson lives in Central America in small groups (a few dozen individuals) that share the
cavity of trees. We call this basic unit group a “roost.”1 The group’s daily diet consists of
ingesting fresh blood, which they suck from herbivores. Each night, however, about 8% of the
adults do not find prey to parasite. On those occasions, the bats can survive because of luckier
fellows who regurgitate for them a portion of the food ingested. Wilkinson (1984) actually stated
that such behavior “depends equally and independently on [the] degree of relatedness and an
index of opportunity for reciprocation.” Now, which thesis receives stronger support from this
evidence — inclusive fitness or group selection?

By using the Repast simulation platform,2 we constructed a pilot experiment that mimics
the vampire bats’ behaviors in what we perceive as their essential traits. We introduce two
different algorithms: altruistic (food sharing) and selfish or cheating (no food sharing). The
former mimics the behavior of lucky hunters that give away an extra amount of the blood
ingested, if any, to the benefit of starving fellows asking for help. The latter reproduces the
behavior of selfish animals that refuse to help their unlucky fellows, which then starve to death.

In the simulations, only starving animals are allowed to ask for help; they receive help
from their addressees if these are both altruists and satiated. No bluff is allowed. Agents have no
memory of past interaction and cannot calculate the probability of reciprocation. No explicit
mechanism for punishment of cheaters is implemented. In such conditions, how can reciprocity

                                                
1 To be more precise, real vampire bats move in subgroups around several cavities, creating a fluid and territorial

group system. Usually, roosts contain only one alpha male, plus several other males and females in a rigid
hierarchy, but we do not model this level of detail in our simulation.

2 For information on Repast, visit http://repast.sourceforge.net.
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emerge as a mere “objective” effect, implying neither computation nor deliberation on the side of
altruists?

To answer this question and explore the effect of groups on the evolution of altruism, we
ran simulations with mixed populations (both algorithms in variable combination) initially
distributed over a given number of roosts. During the simulation, roosts can grow or collapse,
depending on the survival and reproduction rates of their members, which in turn depend
exclusively on social attitudes (whether altruistic or not). Ecological conditions are equal for all
roosts. At given times, roosts give rise to new roosts if the number of young individuals reaches
a given threshold. This option was meant to be an operational simplification of the notion of
group selection and reproduction.

THE SIMULATION MODEL

The agents — bats — are modeled as objects. In nature, bats live in roosts, which are
physical sites (usually tree cavities). They return to their roosts in the day after hunting during
the night. Bats reproduce and perform social activities (nursing, grooming, and sharing food)
inside the roosts. In our simulations, the roost is a social space that contains any number of bats.
“In-roosts” are allowed to share food and groom. No other social activity has been modeled.

Each simulation turn (in Repast language, each tick) corresponds to a 24-hour period and
includes one daily and one nightly stage. In the day, the simulated animals perform social
activities (grooming and food sharing). At night, they hunt. In our model, “hunt” is defined as an
ecological parameter. In accordance with real-world data (Wilkinson, 1990), its default value is
set to 93%. In substance, each night 93% of the population finds food, which permits them to
survive until the next hunt. The remaining 7% begins (or continues) to starve unless they receive
help from some fellow (under the form of regurgitation). Vampire bats do not accumulate
resources: they hunt only for short-term food consumption. In addition, although the average
lifetime of these animals is about 14 years, starvation and death are a constant threat because
each good hunt gives them no more than 60 hours of autonomy. As a consequence, for a bat in
isolation, two failures in a row are fatal. These harsh conditions characterize the life of bats,
which face infrequent (in the simulation, about 1.65 episodes of double unsuccessful hunts per
animal per year), but lethal, food scarcity. The only way to prevent starvation and death is to
receive help from fellows, which is what these animals appear to do in nature.

As for daily activities, the rationale of grooming is at least twofold: animals familiarize
themselves with other bats thanks to and during grooming and assess their respective physical
shape. Because satiation increases body volume, a lucky hunter may grow to even twice its
normal size, which is easily detected by its grooming partners. A starving bat is also likely to be
recognized. Bluff would immediately be found out in such extreme life conditions.

Each day, animals choose one partner from the roost population. In our model, as in the
real world, grooming has the effect of increasing the probability for food sharing among
in-roosts: a starving bat will turn to grooming partners for help and will avoid death if a partner
is found to be full (having had a good hunt). Because of the bat’s metabolism, the donor loses
much less than the recipient gains. In the simulation, the agent loses an amount of energy worth
six hours; this amounts to losing a chance to ask for help during the last day, given two failures
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in a row following donation.3 In this set of experiments, we limit the number of partners per day
to one.

The numbers obtained are in accord both with what is known by ethological observations
in the presence of mutual help (the annual mortality for adults is about 24%) and with the results
of a simulation carried out by Wilkinson (1990) in the absence of help. As noted, help is rare, but
critical: in roosts in which all individuals deny help, population is reduced 80% per year.
Figure 1 shows typical simulation results with and without help. In one-year experiments, both
with and without food sharing, no roosts are lost, meaning that each roost still has at least one
vampire; the situation with food sharing gives figures similar to the mortality rate among adult

FIGURE 1  Four typical simulations. Left: The reciprocal help system is deactivated. Above:
360 ticks; below: 3,600 ticks. Total population and roost numbers are shown. Although not
frequent (agents look for help 1.65 times per year), help is critical for the population.

                                                
3 The brief amount of time lost can be misleading. In our simulations, approximately 50% of total mortality comes

from donations, followed by a couple of failures to find food.
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bats, while the other one reproduces Wikinson’s simulation results. After 10 years, both
populations are substantially extinguished, but the one with help has been around much longer.

The case under study presents two key characteristics:

• It is exceedingly difficult to accumulate any kind of wealth. Energy coming
from a meal is dissolved after two nights, so there is no such thing as a
wealthy individual. The lucky hunter of today has the same chances as
everybody else of starving tomorrow.

• Direct retaliation is simply impossible in the present setting. The victim of
cheating dies on the spot; asking for help is the last resort, and given our
restriction of one helping partner per night, a cheater (i.e., an agent that
refuses to help) is a dangerous killer that is very difficult to find out.

These points make the experiment exceptionally significant for investigating the
conditions under which altruism spreads. Indeed, the impossibility of direct retaliation seems to
make the system extremely fragile to the introduction of cheaters. The only way out would
consist of third-party enforcement, which is usually obtained by means of cognitive artifacts,
such as image or reputation (see Conte and Paolucci, 2002). Is added cognitive complexity the
only way out? To answer this question, we describe in greater detail the relevance of groups and
roosts.

Reproductive Algorithm and Roost Formation

In nature, female vampire bats may give birth to one child at a time; they reproduce about
every 10 months. Newborns leave the roost as soon as they are able to care for themselves, but
they are never found in isolation; the chances of survival for a lone individual are extremely low.

In the simulation, individuals are identical at birth and sexless. They reproduce by
cloning every 10 months, starting with the 20th month, in order to model the juvenile phase. To
obtain a reasonable rate of reproduction, at each occurrence each agent has a 50% probability of
cloning. Although poorly realistic, this minimal condition allows for roost formation, which is
the focus of our study.

As for roost reproduction (scission), we avoided the additional complexity of entrance
criteria, which should be met for a newcomer to be accepted in an established roost. In our
model, the formation of new roosts is allowed only when a critical mass of new individuals is
reached. We have fixed this threshold at 20 individuals. The rationale underlying roost formation
is reproductive success: the more the in-roosts, the higher the number of new roosts formed.

HYPOTHESES

The objective of this study was to test different interpretations of the evolution of
altruism by using simulation. The reference example in the real world is food sharing by vampire
bats. As previously noted, this species offers clear evidence of the advantages of altruism on life
expectancies. Wilkinson’s simulation findings, also reproduced in our simulation, show that the
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probability of survival each year is around 78% of the population when food sharing is activated,
as opposed to a mere 20% with no food sharing. How does one interpret these findings?

In line with the sociobiological theory of reciprocal altruism (Trivers, 1972), one could
say that bats survive to such a greater extent when sharing food because of reciprocity (Dawkins,
1976), which adds to the individual fitness of donors much as altruism adds to the fitness of
recipients. In other words, giving help acts as an “investment,” although neither deliberate nor
acknowledged, on the part of the altruist, which accumulates credits to be refunded by
reciprocity. Since bats do not accumulate food, donors that are reciprocated later on in their lives
will survive longer than if they had not performed an altruistic act. Whereas the initial donation
caused a mere reduction of the time interval before starvation, the following reciprocation
prevents immediate death!

However, it is unclear whether and to what extent bats take measures against cheaters.
Wilkinson’s findings refer to the comparison between a condition in which all bats cooperate
versus a condition in which all bats are defectors. What happens in intermediate conditions?
What is the minimal share of altruists for obtaining an increase in the survival rate with regard to
the all-defector condition? Moreover, does the increase in the rate of survival effectively
correspond to an increase of donors’ fitness, or is it redistributed over the entire population? And
if so, are individual donors always refunded or do they sustain a share of the costs of
redistribution?

The latter question is crucial because if donors are not always reciprocated in person or
along their future generations, there is reason to question the reciprocal altruism interpretation
and to look for concurrent explanation. One good candidate is the group-selection theory. In this
theory, aggregates of non-kin individuals are considered as units of biological selection and
evolution. Under this perspective, a given trait, such as altruism, is accounted for in terms of its
contribution to the fitness of the group rather than to the fitness of individual members.
Consequently, food sharing vampire bats can be seen as a habit that evolved as a result of the
positive effects on the fitness of roosts taken as a whole, rather than on the individual fitness of
donors.

In short, the reciprocal altruism theory proves adequate if donors are almost always
reciprocated in their lives or in the lives of their offspring. In such a case, the altruistic gene
spreads because the genes of donors survive and replicate through generations.

Instead, the concurrent group-selection theory proves right if (1) the survival rate
increases in altruistic roosts although donors are poorly reciprocated both in their lives and in
their offspring, provided (2) the altruistic roosts as wholes are fitter than their nonaltruistic
competitors. How can one measure a roost’s fitness? Roost formation is a possible solution. In
this sense, the higher the number of roosts that are formed from an original roost, the fitter the
latter roost, provided the rationale for roost formation is reproduction. The higher the number of
reproductions of a parent roost, the higher the number of offspring roosts.

EXPERIMENTAL CONDITIONS

In the experiment, the same conditions (stated above) apply, except that food sharing is
always allowed in all roosts, and reproduction is possible. Moreover, a percentage of cheaters is
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introduced to check the robustness of the altruistic strategy and to obtain insights about its
evolutionary stability. Cheaters never give help when asked, even if they are full; unlike altruists,
they sustain no costs. Because a retaliation mechanism is not modeled, a first expectation might
be that cheaters prosper, thus reducing the efficiency of the system as a whole. Indeed, this
happens in the short run, but when longer simulations are considered, the scenario changes
dramatically.

In addition to the effects of cheating, we were also interested in a measure that would
allow discrimination between group selection and inclusive fitness. To this purpose, we tracked
the lineage of the agents from the beginning of the simulation. Reproduction by cloning allows
for clear tracks; if the mortality rate of one lineage is equal to or lower than the average in the
same roost (but this produced a significantly higher number of offspring roosts than under the
control condition), then group selection seems an adequate interpretation of vampire bat altruism.
Instead, if donors’ lineages show a mortality rate that is significantly lower than the average in
the same roost, and the number of offspring roosts is not significantly higher than in the control
condition, then reciprocal altruism provides a more adequate interpretation.

FINDINGS

Simulations were run for a number of cycles corresponding to around 40 years, which
includes about four generations of vampire bats. Figure 2 shows some typical examples of what
happens during the run for different initial shares (from 5% to 40%) of cheaters.

Clearly, the food-sharing condition has the reproductive advantage. Selfish bats are sure
to die in a few generations, leading also to collapse of their roosts. They play a destructive role
by gradually reducing the reproductive capacity of their roosts until global extinction occurs.
When either the distribution of the two behavioral modalities (cheating and altruism) is such that
altruists far exceed cheaters, or some demographic catastrophe (triggered by cheaters
themselves) leads to earlier extinction of cheaters, however, the reproduction of altruists begins
again and the number of roosts grows in proportion. This happens after a critical period during
which cheaters extinguish, and the global fitness of the entire population is nearly on the verge of
collapse. After cheaters have been totally extinguished, the population starts to grow rapidly and
indefinitely.

This observation leads to an appraisal of the role of roosts. In fact, if the entire population
were sharing one roost (see Figure 3 for an example), the presence of cheaters would lead them
to certain extinction. With single roosts, most simulations converge to zero after some time with
or without later resurgence. In any case, the presence of cheaters increases until they cause
a catastrophic lowering of the population, after which they start to increase again until extinction.
No reciprocity could emerge in a world in which cheaters are allowed to repeatedly exploit
others, without incurring retaliation or isolation.

Under these extreme conditions, in which help exchange is vital, after having exploited
their altruistic in-roosts to death, cheaters find no way to face adversity and are soon bound to
share the same fate. Those few altruists that might survive the extinction of cheaters soon take
off, repopulate the roost, and produce new ones. If no one survives cheaters, which is the most
likely event since they survive longer than their good fellows, the roost extinguishes.
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(a) (b)

(c) (d)

FIGURE 2  Four typical experiments showing total population, number of roosts, and number
of cheaters (multiplied by 10) for (a) 5%, (b) 10%, (c) 20%, and (d) 40% cheaters at startup.
Each simulation starts with 300 agents in 10 roosts for 6,000 ticks.

On the contrary, the phenomenon of roosting radically modifies the situation. Due to the
presence of cheaters, most of the roosts disappear. If at a certain point, however, any roost
without cheaters appears, it grows and repopulates the world. This phenomenon is shown in
Figure 2 after a demographic catastrophe.

To determine whether the evolutionary advantage of food sharing is better explained by
inclusive fitness or group selection, several methods of discrimination were tried. A clear signal
in favor of group selection would be given if we were to find that helpers (i.e., agents that often
helped others during their lifetime) had less offspring than other altruists. The problem here is
subtle because agents that have had more chances to reproduce (i.e., have lived longer)
automatically have had more chances to help others. So the correlation between help and fitness
— defined as both the number of descendants and the number of living descendants — is
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FIGURE 3  Single roost with 300 agents, no new roost
formation, 10% cheaters, and 20,000 ticks.

obviously positive and therefore of no significance in distinguishing the two explanations. In
further trying to pinpoint the effect, we selected a subset of the initial agent population,
characterized by death, old age, and not being cheaters. In the simulation, 10-year-old agents are
automatically removed from consideration. By tracking their descendants, we can look for
a correlation between the number of helps and the size of the offspring.

We ran a set of 100 simulations, containing 10 roosts with 30 agents each. The number of
cheaters is 10%; simulations stop at 5,000 ticks, and we extract only values for agents that were
present in the beginning and that lived to the maximum age possible in the simulation. For them,
we track the number of times help was given and the number of agents in the entire lineage up to
the end of the simulation. Only a very low factor (0.07) of positive correlation was found
between these measures. In substance, there is not a linear relation between the number of times
help is given in life and the total number of offspring in the simulation for the subset we
analyzed.

DISCUSSION

The findings presented above point in two distinct directions. The first direction concerns
the fact that altruistic roosts survive longer and reproduce by far more than mixed roosts, which
include cheaters. Indeed, cheaters tend to cause the extinction of their roosts, while extinguishing
themselves. This result is not particularly original, since it essentially confirms what Wilkinson
(1990) found through his simulation study of food sharing in vampire bats. Although distribution
of cheaters over the roost population makes a difference in terms of the reproductive success of
the entire roost, even one cheater may be enough to lead the roost to extinction. This fact occurs



553

because of two reasons: first, cheaters usually survive longer than their fellow altruists; second,
in a competitive environment, any roost that by chance finds itself cheater-free will generate
more offspring, both in terms of roosts and in terms of individuals. In this sense, the roost is
a critical unit of selection, whose efficiency in finding out and eliminating cheaters is amazing.

The relevance of roosts could be lessened by a different kind of cheater, not included in
this study: a roaming cheater that distributes the cost of its presence over the roosts it has access
to. In nature, however, individuals requesting entry in a new roost find it very hard to be
accepted by the new roost inhabitants; an entrance fee could then have co-evolved to protect the
altruistic mechanism.

The second direction in our findings concerns the role of the roost in the evolution of
altruism. In this respect, grouping, or better roosting, seems to matter. If altruistic groups survive
longer than nonaltruistic ones, the reverse is also true: altruists have better chances of survival if
they roost together. In a one-roost world, inhabited by cheaters and altruists, the chances of
survival of altruists — and of the entire population — would be proximal to zero. Conversely, in
a multi-roost world, where altruists happen to co-exist in variable distribution with cheaters, an
interroost competition for reproduction occurs. Since cheaters lead to the extinction of their
roosts, only altruistic ones will survive to reproduce, and these will soon populate the world. This
perspective seems to support the group-selection argument. Groups act as units of selection and
reproduction, much like individual organisms.

However, this finding per se does not say much about the internal rationale of altruism. If
it supports group selection, it does not disclaim the concurrent sociobiological theory of
reciprocal altruism. Indeed, precisely because no rule for reciprocity is explicitly represented in
our simulation model, the only way for altruists to survive is to roost together, waiting, so to
speak, for cheaters to extinguish. In this sense, and rather tautologically, reciprocity emerges
only when cheating disappears.

Our findings at this point also indicate that actual donors do not reach a significant higher
rate of survival and reproduction than the rest of the population; indeed, the correlation factor is
too low to make conclusions in this matter. No negative correlation has been found, giving no
definitive support to the thesis of group selection. Apparently, then, the global increase of fitness
of the roost population is not obtained at the expense of one share of it (the actual donors).
Conversely, the final generations do not necessarily include the lineage of the actual donors. This
finding might be due to the simplicity of the algorithm, which does not allow for a specific rule
of reciprocity. On the other hand, it corresponds to the simple rationale of reciprocal altruism, for
which agents neither aim nor calculate the probability of reciprocity, which should be an
emergent effect of the altruism fitness. If actual donors are not reciprocated, however, their
fitness decreases to the benefit of the global fitness. If this is the case, as it appears to be in our
findings, inclusive fitness does not account for the spread of altruism. Indeed, group selection
theory gains the ground that is lost by the reciprocal altruism theory. Grouping matters and helps
altruists to survive and reproduce even in the presence of cheaters. Under the shelter of their
roosts, animals helping each other increase their chances of reproducing, although some, finding
themselves in roosts with high numbers of cheaters, will pay dearly for such good behavior.



554

ACKNOWLEDGMENTS

The authors are grateful for contributions from the Fifth Framework European Projects
ALFEBIITE and FIRMA.

REFERENCES

Axelrod, R., 1997, The Complexity of Cooperation, Princeton, NJ: Princeton University Press.

Brembs, B., 1996, “Chaos Cheating and Cooperation: Potential Solutions to the Prisoner’s
Dilemma,” Oikos 76:14-24.

Conte, R., and M. Paolucci, 2002, Reputation in Artificial Societies. Social Beliefs for Social
Order, Boston, MA: Kluwer.

Dawkins, R., 1976, The Selfish Gene, Oxford, U.K.: Oxford University Press.

Field, A.J., 2001, Altruistically Inclined? The Behavioral Sciences, Evolutionary Theory, and the
Origins of Reciprocity, Ann Arbor, MI: The University of Michigan Press.

Fog, A., 2000, “Simulation of Evolution in Structured Populations: The Open Source Software
Package Altruist,” Biotech Software & Internet Report 1(5) 226–229.

Leimar, O., and A.H. Axén, 1993. “Strategic Behavior in an Interspecific Mutualism:
Interactions between Lycaenid Larvae and Ants,” Animal Behavior 46:1177–1182.

Milinski, M., D. Külling, and R. Kettler, 1990, “Tit for Tat: sticklebacks (Gasterosteus
aculeatus) ‘Trusting’ a Cooperating Partner,” Behavioral Ecology 1:7–11.

Nowak, M.A., and K. Sigmund, 1998, “Evolution of Indirect Reciprocity by Image Scoring. The
Dynamics of Indirect Reciprocity,” Nature 393, June 11.

Palmer, C.T., 2002, “Review of Field, 2001,” The Human Nature Review 2:92–94, March 11.

Sober, E., and D.S. Wilson, 1999, D.F. Unto Others: The Evolution and Psychology of Unselfish
Behavior, Cambridge, MA: Harvard University Press.

Trivers, R., 1972, “The Evolution of Reciprocal Altruism,” Quarterly Review of Biology
46:35–57.

Wilkinson, G.S., 1984, “Reciprocal Food Sharing in the Vampire Bat,” Nature 308:181–184.

Wilkinson, G.S., 1990, “Food Sharing in Vampire Bats,” Scientific American 2:64–70.

Williams, G.C., 1971, Group Selection, Chicago, IL: Aldine.

Wilson, D.S., and E. Sober, 1994, “Reintroducing Group Selection to the Human Behavioral
Sciences,” Behavioral and Brain Sciences 17(4): 585–654.



555

AGENT-BASED MODELS OF LAND USE AND COVER CHANGE IN THE
ATLANTIC COAST REGION OF NICARAGUA: EXAMINING

THE AGENTS OF TROPICAL DEFORESTATION*

L.E. FERNANDEZ, University of Michigan

Previous studies of deforestation dynamics primarily focused on modeling approaches
that used remotely sensed data at regional scales. Few efforts integrated household-level social
data with regional-scale spatial models. This paper presents results from a study that used an
integrative approach, combining logistic regression analysis, social science surveys, and agent-
based land-use modeling. It focused on the lowland rain forest region of Pearl Lagoon,
Nicaragua. Its objectives were to (1) identify eco-physical and aggregate socioeconomic
variables and their effects on the pattern of land-use change, using logistic regression analysis;
(2) determine key factors used by farmers to select land, through social surveys; (3) model key
decision factors in an agent-based land-use-change model; and (4) determine the strengths and
shortcomings of these approaches and present linkages between them in an integrative
framework offering the advantages of each approach. The paper presents results from a land-
cover-change detection analysis of the study landscape over 37 years and logistic regression
analyses of several independent influencing factors associated with forest loss over this period. A
main hypothesis is that an integrated approach combining the high frequency and cost-
effectiveness of remotely sensed data with more culturally accurate community-level data
provides more accurate results in multicultural developing regions undergoing rapid changes in
ethnic composition. The development of agent-based models (ABMs) to simulate land-use
decision-making processes of peasant farmers allows exploration of this hypothesis in an
innovative, effective manner. The ABMs, developed in Swarm and NETLOGO, effectively
model the complex economic, social, and cultural networks in which farmers operate. They are
used to study how land-cover patterns change in several possible policy and migration-pattern
scenarios.

                                                
* At the time of publication, the full paper for this presentation had not been received.
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AGENT-BASED MODELING FOR VEGETATION SUCCESSION
AFTER OPEN-CUT MINING: STAGE 1, A STUDY IN PROGRESS

X.F. SU* and J.A. DUGGIN, University of New England, Armidale, Australia

ABSTRACT

 Agent-based modeling and geographic information systems are used to describe plant
colonization and community development for species diversity and changes in
community structure and composition over both spatial and temporal scales. The model is
used to develop a predictive pattern for ecosystem succession following open-cut mining.
A trial box cut on Leard State Forest on the northwestern slopes of New South Wales,
Australia, is used as the case study. The model was built to represent dynamic
interactions between individual plants with different capacities for habitat occupation and
competition on two different substrates  one covered with topsoil and the other bare
overburden. Both environmental influences and biotic factors were incorporated into the
model. The results of the simulation show that two contrasting plant communities
develop, one similar to the surrounding forest, the other a shrubland likely to persist for
considerable time if no further disturbances occur. Thus, the use of topsoil in
rehabilitation produces an effective vegetative cover, but it also creates a problem in that
shrublands, rather than forests, develop. Further developments in the model are outlined
to make it more interactive for mine rehabilitation management purposes.
 
 Keywords: Vegetation succession model, forests and shrublands, design process and
parameters, predictive patterns, mine rehabilitation, agent-based modeling

INTRODUCTION

Open-cut mining causes significant environmental changes. The removal of soils and
vegetation and the disposal of mining waste have long-lasting effects on ecosystem development
(Fox, 1990). Early mining activities had little regard for the environment (Farrell and Kratzing,
1996), and this practice resulted in many abandoned mine sites through Australia that need
rehabilitation (DEST, 1996). The goal of mine rehabilitation is to return the disturbed area to
a vegetated and productive condition that is ecologically sustainable over the long term.
Recovery is a complex process and takes considerable time to demonstrate ecological
sustainability. During this process, the community, scientists, and the industry at large strongly
emphasize that rehabilitation should be monitored to make sure it satisfies the aims and purpose
of use for which it is intended (Brooks, 1981; Unwin, 1985, 1988). Therefore, an ecological
model is needed that has strong simulation and predictive abilities that can address different
management strategies and ecological states within the successional process. Results from such
a model will provide basic information to support decision making during site rehabilitation and
management. Classical ecological models are unable to fit this requirement.

                                                
* Corresponding author address: Xianfeng Su, Ecosystem Management, University of New England, Armidale,

NSW, 2351, Australia; e-mail: xsu@metz.une.edu.au.
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The aim of this study is to use agent-based modeling and the technology associated with
geographic information systems (GISs) to describe species colonization and community
development over both spatial and temporal scales by means of simulating the dynamics of
invasion, establishment, competition, and adaptation of individual species to a changing
environment. In this way, the model can be used to predict patterns of ecosystem succession. The
study uses information gained from periodic measurements of vegetation development over the
past 20 years on different soil materials, preliminary studies on soils and overburden for plant
growth, together with results from germination, survival, and early growth of different species to
develop the parameters and rules used in the model. In addition, results from the scientific and
technical literature are used to provide additional basic information relevant to parameter
estimations.

METHODS

Model Framework

Repast, which was created and developed by Social Science Research Computing at The
University of Chicago, provides a library of Java code for creating, running, displaying, and
collecting data for agent-based simulations (Collier, 2003). It has been used predominantly for
social science simulation but has the potential to be used for ecological studies. Repast has been
selected as the framework for simulating vegetation succession after mining and has been
coupled with GIS technology to import space objects into the model and to store and display the
results.

Study Area Location, Vegetation, Soil, and Climate

Leard State Forest, on the northwestern slopes of New South Wales, Australia, was used
as the case study. Two experimental spoil heaps were left after a trial box cut into coal seams
was made during mine exploration and the assessment of the potential for commercial
development. The spoil heaps are approximately 3.1 ha in area, and were mostly covered with
stockpiled topsoil to depths varying from 0 to 20 cm, leaving some patches of bare overburden.
A fence was constructed around the research site to exclude kangaroos and wallabies from the
area during the early years of rehabilitation.

The vegetation in close proximity to the spoil heaps is a dry sclerophyll, open forest and
woodland, dominated by mixed communities of eucalypt and cypress pine (Croft, 1979). The
soils are alkaline or sodic duplex soils (Wiram, 1979). The long-term average annual rainfall is
607 mm with a summer dominance. The summers are hot while the winters are mild with an
average of 35 frosts over winter.

Experimental Design and Data Collection

Six transects (10 × 30 m) were established in 1981 to monitor the recolonization by
native shrubs and trees (Figure 1). Germination, height, and mortality of all individuals were
recorded periodically from 1981 to 2002 to develop records of life histories for each species. The
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distribution of each individual was mapped in
the earlier stages and later recorded by global
positioning system (GPS) and then transferred
into the GIS for mapping. In addition, all
individual trees across both overburden heaps
were recorded by species and their growth
measured periodically. The study concentrated
on the main species developing on the
overburden heaps. Included were the tree
species Eucalyptus pilligaensis, E. crebra,
E. albens, E. populnea, Callitris glaucophylla,
and Casuarina cristata, and the shrub species
Acacia deanei, Cassia nemophila, and
Dodonea viscose.

An additional seven transects
(20 × 50 m) were established in the natural
forest surrounding the spoil heaps in 2002,
and data were collected to describe its
structure and composition. Height, diameter,
and stratum of individual trees and shrubs
were recorded by species.

MODEL DESIGN AND OUTPUT

Model Design and Establishment

A succession model was developed based on individual life histories for each species.
The model was based on simulating invasion, establishment, persistence, and competition (both
intra- and interspecific competition) for each species. Since Repast is an agent-based model and
is object oriented, the basic elements are the objects. Consequently, for this application, the
objects include the seed, plant, species, forest, soil, and space (Figure 2). Ecosystem
development and spatial and temporal dynamics are then described by combining the objects for
the study area.

The individual plant (tree or shrub) is the basic agent used to describe and develop the
dynamics of vegetation succession. Each individual plant in this model changes over time as
a result of germination, growth, adjustment to the environment, competition between individuals
of the same and different species, and mortality. This is based on the knowledge of the life
history of each species. Because each plant changes its status over time, so too do the condition
of the vegetation and the environment that surround it.

T7

T5

N

T1
TS

TS

B/O

NF

B/O

Road and box-cut
mining area

T3

T4

T6

TS  –  Topsoiled area,      B/O –  Bare overburden area,
T    –  Transect,                 NF  –  Natural forest

FIGURE 1  Overburden site and the location
of transects used for vegetation monitoring
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FIGURE 2  The model design showing the development of parameters and
rules; model structure with the simulation component, emphasizing the
relationships between objects (ovals) and functions (rectangles), and
outputs; and the validation and use of the output (The model application
example shows how the simulation can be used to predict ecosystem
development over time using several starting points, the first moving from
the initial condition and other two starting from undesirable states.)

The seed object is used to keep track of the species name and has the parameters of seed
production, viability, dispersal, and germination for each species. The species object is
a description of the life history for each species under study and includes information on seed
rain, seed germination, seedling establishment, and growth rates within the space object.

The space object, where individual agents live, is treated as a two-dimensional lattice of
grid cells of 2 × 2 m. The soil object and its characteristics (namely, whether the area was
covered with stockpiled topsoil or was bare overburden) is described in the GIS and can be
imported into the model to overlie the space object. This was then used to describe the
environment in which the plant develops. Results from the fieldwork and literature were used to
develop different parameter estimates for each soil type for such components as seed
germination rates, seedling establishment rates, and seedling mortality.

The forest object is divided into a young forest and a mature forest. The young forest
transfers to a mature forest over time as the dominant plants reach maturity. Old trees die as they
reach their life expectancy, and they leave space for disseminated seeds to germinate and
develop into saplings. Intra- and interspecific competition is involved in the forest object and can
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result in premature deaths through competition and the creation of additional space for
recruitment of new individuals.

Parameters used for each species object in the model are described in Table 1. Values for
the parameters were derived from research results involving periodic measurements over the past
20 years on vegetation development on different soil materials, from soils-overburden studies, as
well as germination, survival, and early growth studies of each species (Gouvernet, 1980;
Duggin, et al., 1982; Grigg, 1987). These data were then supported where necessary with results
presented in the scientific and technical literature.

A schematic diagram of the model is shown in Figure 2. The first component of the
diagram identifies the parameters and rules used in the model for each object. Spatial data are
stored in the GIS and can be retrieved and imported into the agent-based model as an object. The
second component is the model simulation and shows each object and its relationship as well as
the functions that interlink those objects. The third component addresses model application,
initially by providing graphical and map outputs followed by its evaluation and validation and
then its use in management for mine rehabilitation purposes. The model application diagram
shows ecosystem development over time starting from its initial state and moving through a
range of conditions to the desired state along the successional trajectory (Hobbs and Norton,
1996; Grant, et al., 2001). It also shows two examples of undesired states and how their
successional development is simulated over time to come back onto the desired trajectory.

TABLE 1  Parameters for each species used in the model

Parameters Explanation

Seed production The amount of seed produced by a species in a good seed year
   (seeds per unit area)

Viability The proportion of viable seeds (% viability)
Viable seed yield The number of viable seeds produced (production × viability)
Seeding frequency The time from one good seed production event to the next (years)

Seed rain

Dispersal distance The dispersal distance from parent tree (m)

Germination rate Seed germination rate for each soil type (% germination); the soil type
   is read from soil object.

Seedling survival Number of seedlings surviving over the first three years; soil type
   affects seedling survival.

Seed
germination and
establishment

Competition mortality Competitive ability of two plants in a cell; affected by species, height,
   and age

Growth Annual increment in height (m)
Height Cumulative height growth; height influences competition
Age Increases with each time step (yr)
Maximum height Growth terminates when the height of a plant reaches maximum

   height (m).
Maximum age The plant reaches its life span and is then removed from the

   model (yr).
Shade tolerance A criteria for growth and competition (a ranking of relative tolerance)

Species
persistence and
dominance

Mortality rate Random mortality applied to mature plants (5%); species dependent
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The model is designed to incorporate the
ecological processes of seeding, germination, growth,
mortality, and competition (both within and between
cells of the space object) and simulates how a disturbed
site regenerates and develops over both spatial and
temporal scales. Measurements and observations on
vegetation development during the first two decades
showed that the topsoil provided a seed bank dominated
by shrubs, while the nearby natural forest provided the
seed source for tree species. Consequently, tree density
across the overburden heaps decreases with distance
from the seed source. Different buffer zones were used
in the GIS (Figure 3) in calculating seed rain onto each
space object and then transferred into the model. When
individual plants reach maturity for that species, they
provided an additional seed source that could be
dispersed according to the parameter estimates used in
the model for that species.

Simulation Results

The objective of this model is to simulate the
natural regeneration process and to predict spatial and
temporal patterns of different successional states that
can then be used in decision-making strategies for mine
rehabilitation options. One-year time steps were used in
the simulation. Each space cell can contain up to one
mature species, one sapling and many seeds, or
alternatively two saplings with many seeds. Dynamic
changes for every individual plant in each time step
follow a set of rules based on the ecological processes for each species.

Results of simulations after 100 and 200 years highlight the spatial and temporal
variations in community structure (Figure 4) and floristic composition (Figure 5). In general,
trees and forests developed around the margins of the site, while shrublands dominated the
interior and persisted for considerable periods of time. The abundance of species across the study
site suggests that particular species of shrubs are driven by pulses of regeneration, while others
show an initial increase and then become relatively stable (Figure 6). Consequently, community
structure and composition appear to stabilize over long time periods, particularly in the absence
of exogenous disturbances such as fire, extremes of climatic variations (droughts or abundant
moisture), wind damage, or heavy grazing. These findings imply that the initial floristic
composition is a strong determinant of community structure and composition over long time
periods (Deutschman, et al., 1997).
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individual trees are shown as
different colored dots.)
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FIGURE 4  A map of community structure after simulating vegetation development for
100 (left) and 200 years (right)

Sensitivity Analysis

A variety of information sources are used to estimate model parameters, such as seed
dispersal distance, seedling mortality, seeding time and frequency, height and growth rate. Seed
dispersal and time of seeding appear to be important parameters that influenced the initial
floristic composition in this model. Most of the study site was covered with stockpiled topsoil,
which contained an important seed bank for shrubs. When environmental conditions are suitable,
the seeds of shrubs germinate and seedlings establish over the topsoiled area. However, tree
seeds are dispersed from the natural forest that surrounds the site, and their germination and
growth depends on the time of seeding and dispersal distance. After only three to five years,
shrubs begin to produce seeds and disperse them in the immediate vicinity of parent plants. Over
several generations, they begin to occupy larger areas. Trees tend to grow on the bare overburden
site where shrubs are absent and on some topsoiled areas where shrub development has been
sparse. Competition between trees and shrubs restricts tree growth on topsoiled areas,
particularly if there is no further disturbance. Sensitivity analyses need to be completed in
Stage 2 of this project to evaluate and understand which interactions make significant
contributions to the development of the structure and composition of the plant communities.
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Year 100 Year 200

FIGURE 5  Overstory species composition in the forests and woodlands after simulating
vegetation development over 100 (left) and 200 years (right) (Different shades of grey
represent different tree species emphasizing the restricted distribution around the
margins of the site.)

STAGE 2 – FUTURE DEVELOPMENTS

Stage 1 results demonstrate that the concepts and principles of ecological succession can
be modeled in Repast and provide meaningful results. However, additional work is required to
refine the model and experiment by modifying conditions to evaluate their impact on community
structure, composition, and spatial distribution.

Further developments to be considered in Stage 2 include:

• Develop rules and functions for competition between individuals in adjacent
cells, so that large individuals can occupy more than one cell.

• Refine parameter estimations through additional quantitative analysis of
ecological data.

• Evaluate the potential to introduce stochasticity for important parameters.

• Continue the sensitivity analyses for parameters, rules, and functions to
evaluate those interactions that most contribute to the spatial and temporal
dynamics for each of the recognized vegetation communities.

• Attempt to isolate sources of uncertainty emanating from errors associated
with parameter estimations and stochasticity.
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• Validate output against the conditions observed and measured in the
surrounding forests and ensure that the simulation predictions are ecologically
sound and consistent with contemporary knowledge of forest and shrubland
dynamics.

• Develop a protocol to transfer the output from the model into the GIS and map
community structure and floristic composition.

• Vary the initial conditions at the commencement of the simulation to represent
different landform designs (e.g., slope, aspect, overburden, types) and
management strategies (e.g., site and soil preparation, introduction of seed
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mixes of different composition, introduction of vegetation manipulation
strategies).

• Introduce disturbance regimes into the model by using different kinds of
disturbances over a range of frequencies and intensities.

• Make the interface more interactive and user-friendly (menu-driven) so users,
such as rehabilitation officers without programming skills, can use the model
to evaluate the likely end result from adopting different management
strategies to suit local conditions (such as site variations, different forest
endpoints to match the pre-mined forests, and antecedent climatic conditions).

DISCUSSION AND CONCLUSIONS

Agent-based modeling, coupled with GIS, can be used to simulate vegetation succession
across a range of sites with different environmental conditions. In this study, only one
environmental character was used (soil condition) but others can be incorporated, particularly if
they are influential in driving ecological processes and vegetation development (e.g., slope,
position on slope, aspect elevation, soil moisture regimes, soil fertility, and climatic variables).
The procedures developed here highlight the way in which spatial information in a GIS can
be incorporated into the agent-based model. Likewise, the buffer zone function in the GIS can be
used to determine spatially dependent parameters, such as seed dispersal from natural forest
boundaries into the study site. Parameters and rules must be developed to explain how each
environmental variable will influence and control each species object and affect competition
within and between species.

Establishment of individuals depends first on seed rain onto each space object across the
study site, then the ability of each species to germinate and establish, and finally on the ability of
each species to persist through competition and become dominant in that space object. Further
development will be needed to expand competition of individuals from within the cells to
between cells in the space objects so that community structure and composition can then be
identified.

Species composition on topsoiled area differs from that on the bare overburden as a result
of initial propagule composition differences and the competitive ability between trees and
shrubs. The topsoil introduces a seed bank dominated by shrubs, whereas the tree seed is poorly
represented and mostly comes via dispersal from parent trees. Once the shrubs are established,
they generally outcompete the less tolerant tree species. Trees can occupy gaps created by the
death of a shrub, but again, they have to compete with shrubs for the site. Thus, the use of topsoil
in rehabilitation is an appropriate procedure to gain vegetative cover and stabilize the site, but the
shrublands will persist for long periods of time and restrict forest development unless
management intervention strategies are adopted.

The simulation results indicate that the developing vegetation has several prominent
forms  forests, woodlands, and shrublands. Once established, these forms tend to be relatively
stable. The floristic composition within each community also stabilizes and shows little change
over the period of simulation. These results are similar to other models for forest succession. For
example, Deutschman, et al. (1997) used the SORTIE model in southern New England forests,
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where the spatial distribution of species demonstrated relatively slow dynamics over the
1,000 years of simulation. However, when disturbance was introduced into the model, the
floristic composition varied and favored those species able to take advantage of the gaps created.
The introduction of disturbance to our model may well change the development of different
communities in terms of both structure and floristic composition, and a reduction in shrublands,
with a subsequent increase in mixed forests.

For rehabilitation after mining, different strategies can be adopted to develop
communities suitable for the desired endpoint and subsequent land use. The development of this
model can then be used to predict the likely communities that may develop with each
management strategy. For example, the model may be used to predict community development
on areas sown with different seed mixes (varying in species composition and abundance).
Alternatively, the site may be prepared by using different techniques and substrate materials so
establishment conditions can influence the success of different species. Also, fire could be
introduced at various stages in ecosystem development. In this way, management decisions can
be made as to the strategy that would best achieve the desired ecologically sustainable endpoint,
and at the same time avoid development of undesirable states.
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DISCUSSION:

ECOLOGICAL INTERACTIONS

(Saturday, October 4, 2004, 1:00 to 3:00 p.m., Session 2)

Chair and Discussant: Pamela Sydelko, Argonne National Laboratory

Simulating Land-use Entelechy Using the Multi-agent-based Environmental
Landscape (MABEL) Model1

Pamela Sydelko: I think we have a really great session ahead of us. As a set-up, I
thought one thing I would mention is that it seems to be that there’s a mix of using agent-based
modeling in the digital, virtual laboratory sense, to actually uncover what I think is to basic
understanding of ecology, and then there are others who are using it more as policy-making or
decision-analysis types of tools. And I think that’s interesting, because that tends to be in this
field two different philosophies that tend to sometimes clash.

And so I’m interested in seeing the way that we’ll kind of grapple with that, because I
think ultimately modeling a simulation has always been thought of as prediction.

To start us off, Kostis [Alexandridis] is going to present his group’s paper. I will assume
that if there are any co-authors in the audience, you can go ahead and introduce them yourself.
And we’re talking about simulating land-use entelechy using the multi-agent-based behavioral
economics landscape, MABEL, model.

Konstantinos Alexandridis: I would like to thank the organizers of this conference for
this great opportunity to present some of our work. I would like to introduce the co-authors of
this paper: Dr. Brian Pijanowski, who’s the greater organizer of this effort, because it requires a
lot of collaborative effort in that, and Zen Lei, who is our developer of the group we have. We
used to be at Michigan State University, but now some of us are going to Purdue.

[Presentation]

Sydelko: We have time for questions. Does anybody have some questions? Yes.

Mike North: You’re saying that you’re using the Microsoft belief network to do
Bayesian analysis behind the scenes. One thing I was wondering is whether the graphs were all
the same for similar type of agents, so the farming agent would have the same belief network?

Alexandridis: The graphs are for agent classes. So they correspond to land-viewed
classes. We chose to group it that way because that corresponded with a Swarm construction of
MABEL. So it’s easier for each class of agent to call a specific belief network. And I think it
makes sense in reality. We can construct, if you have the data and the whole process, belief
networks for even smaller classifications of agents.

                                                
1 This topic was also presented during the workshop on Thursday, October 2; see page 65 for the full paper.
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North: Right. But under the circumstances you’d really have no information to make
those networks more specific, I would think. So it sounds like a reasonable thing to do.

Alexandridis: Yes, and sometimes you have to put a line and say this is the obstruction
that I have, the hypothesis that I have, or the assumption I have to make to create a realistic
model.

Zien Lei: When you search for the optimal policy, what’s your performance index, or
otherwise, what’s your objective function?

Alexandridis: Well, to solve the mathematics, after you go through the belief network
assessment and the fitter, you define a list of actions that are optimized actions. To choose the
action and maximize utility, we have a set of static ways, since we ran a dynamic programming
Markov decision process that converges into the action that maximizes the utility and has the
relationship with the transition metrics and the reward faction.

Claudio Cioffi-Revilla: I am familiar with only one other model of land use and cover
change, which is Fearless of the McCauley Institute of Gary Bohill and Nick Gotz, and it strikes
me that your model is far more complicated in the internal structure than theirs is. What
additional phenomenology is this ABM producing that the far more simple model of Fearless
can’t do?

Alexandridis: I think it has to do with the modeling approach you take. I think how we
build the model is by first sitting down and assessing what’s important and how we get there.
Then we put equal emphasis on the modeling component as well as the realistic group
representation of reality. So I think it’s a very good question. I think it emerged at some point.

Brian Pijanowski : That’s an excellent question. In our lab, we’ve got our MABEL
model and then we have our Land Transformation Model, which is this kind of black box, neural
net model. We’re not simulating any process — we’re interested in just fitting a curve. So in the
next year we’re going to be spending a lot of time trying to figure that question out, because it
intrigues us, all of us.

Unidentified Speaker: So the evolution of this is not a projection of the future?

Alexandridis: Yes, it is. We embedded the agents with some properties, but they drove
their properties from the data. That’s what the Bayesian classifier is doing. It takes the data,
classifies them and gives some meaning to the data according to some other variables that, as I
said, are associated with belief. So the agents are adoptive in that when you update, you do an
inference back to the network. The agents define their own variables, a variable that’s 10 time
sets were significant to identify the agent behavior might end up not being significant after 10
more sets.

Cioffi-Revilla: Okay, so then the land use change that we observe on that region is a
future evolution of the system, not the replication of the past.

Alexandridis: No. The historical data are used on the model initialization state.
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Xu-Hen Su: Have you also generated transaction data, and if so, can the transaction data
be actually comparable to the reality you observed?

Alexandridis: Well, that’s the sensitivity analysis that needs to be done. We start talking
about running the model a thousand times and having all the range of results and compare what
kind of properties you see there and how you can group them together for comparison. That’s the
next stage—unfortunately, building a model like that takes a lot of time and effort and data
mining processes. So that’s one of the things that we are working with.

Unidentified Speaker: I saw lots of computational intelligence stuff being part of your
building of the sophisticated agent. For example, you have a belief network that can maybe
replaced by some other CI techniques. Have you considered alternatives?

Alexandridis: Well, yes, a lot of those techniques were used traditionally on robotics and
artificial intelligence. The earlier version of the model didn’t have the data fusion. We had the
problem of addressing long-term goals while projecting step by step. When faced with problems
like that, you search and find the best solution, so it’s a trial and error process, and I think a lot of
modeling processes are like that. But I’m sure there might be other things that we haven’t tried,
and we are very open to exploring those horizons.

Pijanowski: I think you made a very good point. One of the things that we’re very
interested in doing is modularizing the different tools. And so we’ve created an environment that
will allow us to do that and to do it fairly efficiently, because it’s in a nice clean client-server
mode and everything’s managed on the server side. So what we can do is just plug in a new tool,
just to see what that tool could do for us in terms of understanding the system, increasing
predictability, and studying the patterns that emerge from that type of simulation environment.

Reciprocal versus Group Altruism among Vampire Bats

Gennaro Di Tosto: My name is Gennaro Di Tosto, and co-authors of this work are
Mario Paolucci and Rosaria Conte, of the Institute of Cognitive Science and Technology of
Rome. The main topic of this work is altruistic behavior, and we designed a simulation using a
multi-agent system and tried to point out some of the important issues concerning altruistic
behavior.

[Presentation]

Sydelko: Do we have any questions for Gennaro? Mike?

Mike North: That was a very interesting paper, particularly the vampire blood-sucking
angle. One question I have, though, as you mentioned at the beginning and then alluded to at the
end, and that is to say, how do groups of cheaters form in the first place? In particular, in the
studies that Wilkinson and others did, was it typical in a roost to have a mixture of cheaters and
altruists?

Di Tosto: In nature, things are not so simple. Let’s say that between groups, it’s possible
to have some kind of migration, and it is also a fact that we can simulate, but inside a group, we
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have that altruistic behavior is common and is the rule for defining an agent. The question is how
is it possible for a simple animal like vampire bats to avoid exploitation by shooters?

In nature, Wilkinson had studied that there is particular mechanism to avoid the
newcomer, which can enter freely in a roost. So there is a cost to sustain, to become a member of
a group. But without this, the question is still there. How a group composed only by altruists can
pop up in a population. So do we have to account for a role played by groups in this mechanism?
Or is it possible that, well, the simple interaction between agents can account for this?

North: But it seems that the answer you’re providing is that it’s actually a random
process, in the sense that groups will die out until you happen by chance to get a group that’s
completely altruist. And then that group will then survive. And so it’s kind of a random watch.

Di Tosto: It’s not a random process, because we have a mechanism for selection.

North: Well, right. But what I was trying to say, though, is that given your mechanism
for selection, you start out with a given population, and essentially anyone, any group that had —
considering groups now as individuals — a cheater in it is doomed basically. Then, whichever
one happens to sort of win the lottery and be all altruistic is going to succeed, and in that sense
the mechanism is basically random.

Di Tosto: In groups, I always establish a cost for the presence of a selfish agent. So the
problem is how to avoid that kind of agent. And, yes, without any mechanism based on the
complexity of the agent, like memory and individual recognition, we have to find another way to
give account for that mechanism. And maybe group formation is one of the possible answers.

North: That’s very good, thanks.

Sydelko: We might have room for one more question, a short one.

Cioffi-Revilla: As you know, the empirical social science research on within-group and
intergroup conflict and cooperation is enormous. It’s really huge. Think just for example in terms
of in anthropology, all the data that exists in the human relations area files and things of that
nature.

How is this research project planning to incorporate what we know empirically about the
way in which groups, roosts work together. Is there a plan to build on that empirical base for
validation purposes and so on?

Di Tosto: Well, this work was born after another simulation in which we tried to put a
different kind of agent. We tried to implement in that agent an accounting for the emergence of
offers based on the reciprocal altruist mechanism. We presented that work at the conference for
the European Social Simulation Association, and it’s possible, according to you, to obtain the
same result without that mechanism, but only by a simple underlying structure. Well, we try to
give an answer to that question with this other experiment.

The path forward will be to integrate this process and provide more sophistication for the
model of the behavior of these simple animals, including also parental caring that we do not
consider in this simulation and also migration between groups.
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Agent-based Models of Land Use and Cover Change in the Atlantic Coast Region
of Nicaragua: Examining the Agents of Tropical Deforestation

Luis E. Fernandez: I would just like to thank the organizers of this group for a
wonderful meeting. I’ve met a lot of interesting people, and I’m especially pleased about the
range of topics that are covered under this conference here. Also, thanks to Kostis for letting me
borrow his high-tech device so I don’t have to be tethered to my laptop.

This is my dissertation work from the University of Michigan. I’m just going to very
briefly go over the overall project — the agent-based model is just one component of the project
— and then go into the description of the social system I studied, specifically deforestation in
Central America. Then I’ll talk about the agent-based modeling, some “philosophical constructs”
that I used in designing the model (I think I wanted something a little more empirical), the
environment, the agents and the interactions between the agents, and finally some patterns in the
model runs and how they relate to other results and other parts of the project.

[Presentation]

I’m out of time, so I’m just going to throw out some acknowledgments. Thank you,
University of Michigan, and the people I’ve worked with there, and some Fulbright recipients.
I got some money from UCA. These people who are our workers are Nicaraguans who don’t
really get the kudos that they should; they are in very under-funded agencies. I’ll be happy to
take any questions.

Sydelko: Who wants to start?

Unidentified Speaker: I have two questions. What kind of a spatial regression method
do you use? What’s the window or the size of data you use?

Fernandez: The data that I used, and actually I have a listing of them, are part of a larger
presentation. The data were from various sources, so I had landscape, land site data, soil,
gradient, roads, rivers; there’s a greater list actually. And they were all digitized, rasterized, and
brought to 30- × 30-meter resolution. I ran logistic regression when I took a look at whether it
was forested or deforested. I also did multivariate to take a look at what the direction or the
trajectory of land use change was. And I did it for three periods. That was 1959 to 1986, 1986 to
1989. In the interim, there was a large hurricane that basically went right over the area. It was
extremely catastrophic, deforesting the area to a certain extent, or defoliating it, I should say.
And then from 1989 to 1996. And these also correspond to political periods. One is the Samosa
period, which is a dictatorship; the second is the Sandinista period, which was the very famous
socialist-communist regime; and then the last period was the rise of the neo-liberal model and the
switch from a communist-socialist central system to the neo-liberal model that’s in place now.
And I have another presentation that goes into how that affects the forest tremendously. The neo-
liberal model actually just seems to correspond with a tremendous increase in deforestation.

I tried to “segment down” spatial autocorrelation as well. I tried to “detrend” the data a
little bit. Those were the results that I showed: those four—there were actually six, but since I
wanted to be a little conservative, I wanted them connected with the information that I got from
the survey.
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Unidentified Speaker: The second question is really, have you had a chance to look at
the deforestation process from the percolation?

Fernandez: I haven’t actually, no.

Unidentified Speaker: So in your study area, is there any forest law that imposed …

Fernandez: There isn’t, actually. The only thing they have is forest concessions, very
large blocks of land that are drawn in Managua and sold off or given to curry political favor, for
development. The Mezzo-American Biological Corridor Project is something that’s being started
to try to maintain these areas. So I didn’t show the borders of them, but most of this area actually
falls within an ecological preserve. But it’s one of those famous paper parks or preserves, where
there really isn’t any protection at all. Theoretically, no one should be living there, no one should
be using it, but nobody that lives there actually knows that it’s a preserve.

Unidentified Speaker: So are you going to involve some kind of policy intervention in
your model?

Fernandez: I go back and forth with CITCA, which is my counterpart there, but they
don’t have an awful lot of power, and the folks in Managua don’t, and I’ve talked to people at
the Agricultural Ministry in Marena, which is sort of the natural resource agency, and I guess
they’re a little jaded because there are lots of agencies that are doing studies. I haven’t seen that
much [interest in policy studies].

Agent-based Modeling for Vegetation Succession after Open-cut Mining:
Stage 1, A Study in Progress

Sydelko: Our last presenter this afternoon is Xung-Fung Su, who is going to be talking
about agent-based simulation for vegetation succession in open-cut mining.

Xung-Fung Su: Thanks. My name is Xung-Fung Su, from University of New England,
Australia. And this topic is a part of my Ph.D. Here I should say that I have a Chinese and
Australian accent, so if you can’t hear clearly, please feel free to ask.

Okay, the topic is about agent-based simulation of vegetation succession after open-cut
mining. Just now we heard about a very attractive and big model, but here I’d like to give you a
more simple model in a smaller area.

[Presentation]

Sydelko: Okay. Are there any questions?

Alexandridis: Something wasn’t very clear about your intentions on the agent-based
modeling. Are you studying just the vegetative cover or are you studying the ecosystem as a
whole, because I noticed you said there are study areas that have been isolated from animate life,
like animals and kangaroos and things like that. So the question is what are you really studying
and is it realistic to say there will be succession without having any animals moving in and out.
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Su: Good question. Most mining sites were just left there, without any management or
other disturbance, so the question is “how can these sites be recovered?” from natural forest to
mining production and then back to the natural forest. And so the fence is used to keep the
kangaroos and the wildebeest out of the site, to prevent another disturbance, because the
kangaroos can eat the seedlings, which would involve another problem for the site. Also it
should be noted that there are farmers who just go inside and cut down trees for the wood; if
there is no fence, the recovering vegetation is too easy to destroy.

Sydelko: Along the same lines as that, is there any thought on trying to look at feedback
loops. I don’t know if you use soil fertility as initial data to look at establishment, but it seems to
me if you’re doing a 200-year simulation, there certainly are some feedback loops between
establishing the soil as well as the seed bank. It also provides nutrients and organic matter, and
over time, you’d think the soil itself would then actually evolve and you wouldn’t be using the
initial soil conditions anymore. You’d actually have a different soil over time, and if there’s any
thoughts on how you’d introduce those kinds of changes, those dynamics into the model.

Su: Companies are required to first remove the soil and keep it in a particular site other
than the mining site. After logging and mining is complete, the waste, we call it burdened waste,
is disposed of on the site and the top soil is then laid on top. So, yes, it’s true that I only used the
soil as any other factor. If they haven’t got enough soils, some burdened waste is left [exposed]
and then that site has properties more like the waste and chemicals.

Sydelko: Right. I would be interested in the physical properties, too. I’m just specifically
interested in this. I did my thesis on strip mine reclamation, and when you put the soil back out
and mostly the compaction’s a very big deal, and over time that becomes less of a deal. And it
could be that part of your selection for shrubs and grasses is that they are more able to establish
themselves because of compaction, but over time the tree species might actually have a better
competitive advantage in a swell that is not as compacted, because over time, you’re seeing some
feedback loop in the sense that there’s some establishment of a certain kind of vegetation that
will actually change the soils, and that’s part of succession that actually opens it up for another
stage of succession, being the forest, because the conditions are changing also.

So something that I think would be interesting to add, some of those dynamics just to see
what would happen to your model.

Su: Yes, in the future this change of conditions will be introduced more and more …
There are no computations from the shrub to the tree species, because there is no top soil. There
is a forest and a few shrubs growing there and dropping seeds in there, but because there was no
top soil in there, seeds couldn’t even germinate to become established in that site.

Sydelko: Oh, that’s interesting.

Su: And, yes, but inside the topsoil sites there are many kinds of many trees and shrubs
in as little as two years — they germinated just when the environment was suitable for them to
quickly germinate and occupy that area.

Sydelko: Obviously, the different kinds and methods of putting the topsoil back on
causes a great deal of compaction below the topsoil layer and then on top again, so there’s layers
of compaction, then there’s relatively little, and then there’s compaction again. And it’s very
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difficult for establishing roots in those kinds of soils. And it also seems that over time we noticed
that as organic matter is built up again and the texture was changing, that then it became a
natural thing, that the soil itself, even without ripping or anything, would establish a better
environment.
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CLOSING PANEL

(Saturday, October 4, 2003, 3:45 to 4:45 p.m.)

David Sallach, The University of Chicago
Desmond Saunders-Newton, University of Southern California

Claudio Cioffi-Revilla, George Mason University

Moderator: Welcome everyone to our closing session of Agent 2003. We have a
distinguished panel to address the challenges in social simulation, which, of course, is the theme
of our conference.

We have on the panel David Sallach from the University of Chicago and Argonne. David
is also the Vice President of the North American Association for Computational Social
Organizational Sciences, NAACSOS, as well, in case that wasn’t mentioned earlier in the
conference.

We have Desmond Saunders-Newton, whom many of you know of … as he said earlier
in the day, he wears several hats: DARPA, DIA and USC, University of Southern California. He
is also the Associate Editor for the Social Science Computing Review.

And then, thirdly, we have Claudio Cioffi-Revilla of George Mason University. Claudio
is the Director of the Center for Social Complexity at GM.

So with that, I’m turning things over to the panel.

David Sallach: All of us are going to be very brief, because what we really want to do is
open it up to a general discussion, because what we’re thinking about is that the theme has been
the challenges in social stimulation, and we should all discuss what those challenges are, what
our greatest needs are, and where we’d like to see the most progress. You know, when we meet
again next year and over the next several years, what would we consider to be progress, success,
and so forth. So we’re all just going to say a few things to focus the discussion initially and then
open it up.

So I just have a couple of slides that have to do with, first, substantive and theoretical
progress; second, technical innovation; and, third, institution building.

In the area of substantive progress, I would like to see us begin to have our papers focus
more on ontological exploration. That’s not too surprising that I would think that, since I think
our ontologies are not consistent with how progress has historically been made in areas like
quanta and genes and tectonic plates, and so forth, but I also think that there are some ontological
advances that we might [achieve] by getting to the right type of explanation at the right level of
abstraction.

I’d like to see us have an increasing emphasis on endogenous social dynamics, a greater
emphasis on socially coordinated and self-organizing processes, dynamically blended entities as
opposed to discreet entities. And that might include agent capabilities for conceptualization and
classification.
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I’d like to see us intensify the discourse among social and computational scientists. I
think that the qualitative richness of substantive social science should be incorporated into
complex models. Increasingly, models need to be driven by and provide feedback to theories,
and those theories might include social theories, complexity theory, information theory, and
system theory, but also the dialogues among those theoretical frameworks.

In order to do some of these things, we need technical innovation as well. And I think
that one thing that might be helpful is for us to identify the kinds of areas where we need it for
the substantive social science, but it will actually be an achievement in computer science as well.
And I think there are areas like that, and those are areas that are naturally fertile for dialogue.

This means that we need to raise our abstraction level for modeling and program design
and things like that, including ensemble representation and high-dimensional visualization. In
my view, high-dimensional visualization would be very, very nice.

I think that we have underutilized constraints to this point, because constraints give us
constraint programming, gives us a fairly high declarative form of specification, and there are
needed areas in constraint programming that we have not developed at a computer science level.
And I’m thinking of things like context-sensitive constraints, which could go a lot further than
we’ve seen to this point, and endogenous constraints. I’ve seen nothing on endogenous
constraints, and yet think how nice that would be to have that available as a tool.

And, of course, since I said something about it once or twice, you know that I’d like to
see development of semantic and pragmatic processes. They pervade perception,
communication, action, and interaction. And the technical area there might involve meta-
reflection and auto-instantiation along multiple or complex dimensions.

Regarding ontological experimentation via generative dynamics … Roger has, I know,
been active in this area. And I think that when we talk about generating families of models, that’s
one way of pitching everything at a higher level of abstraction, whether that’s at the architectural
level, where it would be nice to have support for extensive prototyping of simulation types; at the
design level, where perhaps agent identities and preferences can be generated via frequency
distributions and, of course, parameter sweeps; and at the agent level, where abstract action types
can be indexically invoked. My basic argument here is that the realization of some social science
goals will require computational advances.

We also need to think about institutional support. Frankly, in academic and other
institutions, the support for computational social sciences is fairly fragile and peripheral. So we
need to think about how that can be addressed. I think that some help can come from
professional societies and professional associations like NAACSOS, which has an annual
meeting in June 2004 in Pittsburgh. The call for papers has not been announced yet, but I
encourage you to keep an eye on that. But this conference was, as you know, partially organized
by the SIGs from NAACSOS: the Methods, Techniques and Toolkits SIG, the Simulation
Application SIG, Computational Social Theory SIG and Computational Organization Theory
SIG. And within that context we could do things like organize model curriculums.

In addition to that, to the extent that it’s feasible, we should look for opportunities to do
program-building in the area of social computation. Social science students need cogent and
integrated training in emerging methodologies, which would probably include data warehousing,
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data mining, spatial statistics agent simulation, and software development. Computer science and
engineering students need and want effective exposure to substantive social science. So there’s a
need for blended or transdisciplinary programs and departments. They crop up under different
names. Claudio heads one, so he’ll probably be more concrete than I am, but I’m referring to
social informatic, social complexity, and computational social science programs. I think it would
be great to have a really solid Master’s program that can either go in a technical direction or in a
more substantive social science direction. There’s all kinds of room, I think, for innovative
doctoral programs as well. But they won’t be created automatically or randomly. They need to be
coordinated initiatives.

And one thing I might mention here is that computer science departments are morphing
into schools and colleges. I’m working on a study of the creation of the new schools and colleges
— this will be in the Communications of the ACM next year — of computing and information
technology, where computer science is merging with a number of other schools, information
science and so forth. It comes up under a lot of names. What you can see on the left [referring to
a viewgraph] is the number of new schools and colleges that have been created in the last few
years; on the right is some of the names that those programs have had and some of their
academic coverage. But I think that as they expand, the exemplar here is bio-informatics. I mean,
bio-informatics is one area that has been extremely active, and I think that social informatics or
computational social science could do that as well.

I don’t know if this is true, but I am struck by the fact that for a lot of the technology
institutes — MIT, California Institute of Technology, Illinois Institute of Technology — their
social science programs are kind of service; they provide service courses at the undergraduate
level and so forth. But they exist; they’re there. And I wonder given that they’re fairly technical
in their orientation, if that might not be a good place to build up a dialogue between the social
sciences and the computer and information sciences and strengthen those social science
programs, but strengthen them so that they’re computational social science programs. Just a
thought … not really my area.

So those are just a few ideas. And, as I said, if we could have progress in those areas, that
would be great.

Now I’ll turn it over to my colleagues.

Desmond Saunders-Newton: Good afternoon. As mentioned before, I wear multiple
hats. And I’m actually going to focus on one of my other hats, the hats which actually are more
of my practitioner activities in this particular presentation.

At DARPA, I am the senior science advisor for one of the technical offices. It was
formerly known as the Information Awareness Office, but as of the end of September 30, it no
longer existed, so it has been wiped from my memory and yours as well. However, I do still hold
that position and am waiting for whatever that next office shall be.

I am also the Senior Program Manager for Advanced R&D, focused on modeling and
simulation, at the Defense Intelligence Agency. So I’m kind of on loan from the University of
Southern California.
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What I’d like to talk with you is about some of the thoughts that I’ve actually picked up
in reflections on today. A number of the presentations followed general themes: utility, agency,
issues of environment, processes, interactions and dynamics. On my more academic days, it’s a
satisfying itch I get scratched, so to speak. But when I actually go back into the office where
people start thinking about what will agent-based modeling do, than I have to kind of answer
some interesting questions. And I’d like to kind of cast these into challenges and some things for
you to think about in terms of people, tools, uses and the speculative.

In terms of individuals, some notion of finding individuals who we will call social
simulationists, as opposed to simulationists in a general sense, is that they are in short supply,
both in terms of how people are actually become parts of the academy, but also in terms of the
practice.

Now, I use the particular phrase “simulationists,” because I actually came from the
military OR community before I started practicing this whole notion of agent-based models. In
that community are actually a group of people who are called “simulationists.” Some are system
scientists, some are operations researchers, but they actually have this kind of interesting title;
people who are transdisciplinary in the sense that they don’t actually claim any one particular
field, but they have a tool set that they like to use. And simulation models have actually been a
really big part of defense industries in general.

And so part of the challenge is for agencies who are attempting to bring in people who do
agent-based models … and when I say “agent-based models,” it’s not just about the tools that
most of us have been talking about today, but also social network analysis and the use of
physical science and analog models, for example, reaction diffusion, IC models, looking into
migration, and issues like that. But there’s been a real challenge in being able to find those types
of individuals who can both do those techniques well and also can tightly couple, and I
emphasize clearly couple, this with social science theory.

So the grounding in both the areas, whether it be CS, mathematical physics, or
computational physics, with social theory is actually something of a challenge. And as it turns
out, a lot of people who reside in these agencies don’t have a true appreciation about the culture
of a fragmented academic institution. They believe that all university people are laid back, that
they get together and all talk to each other. But as it turns out, people don’t talk to each other,
and it’s really hard for these agencies to find the right places to connect and bring these
individuals in to work on these types of problems. So the mere fact that a physicist wouldn’t be
spending quality time with a sociologist doesn’t strike them as being something that’s really
understandable, particularly given they’re all on the same campus.

And, again, that leads to my next notion of what is an agent-based model? … because we
all have different definitions. And that’s generally methodologically driven, much less in terms
of this notion.

Now, for my definition, and I just offer this because this is Desmond’s definition as
opposed to anything that lies on everyone else’s radar, which is that the big distinction, in terms
of the tool sets that have been typically associated with the practice of the craft known as social
science research, is that we are moving from doing research on the level of the aggregate, where
we aggregate things on large numbers of individuals, down to the notions of agency. So
whatever methodologies you choose, this whole notion of agency-based modeling, as opposed to
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agent-based modeling, may be the way to think about this. And also in terms of how it is that we
think about training and individuals that we connect with, and how do we actually imply notions
of individual-level activities or individuals acting in groups of various types; so whatever
groupings that are of interest to you, whatever types of institutions that they form.

And then this whole notion of how do you bridge between these various practice
communities? If you have individuals who view themselves as practitioners, they really want to
practice. They have things they wish to accomplish. For those who actually are much more
concerned with living in a life of mine, where that’s actually a much more leisurely timeframe,
there are some real interesting challenges. And we discover quite often when we try to have
contractual relationships with folks in the academy is that those timelines are actually very
different than individuals who may be in the private sector or the public sector. And so this
whole notion of bridging these two communities is actually also a challenge as well.

The tools. Well, I’m not just going to focus on individual, specific models. However, I do
want to think about this whole notion of development environments. And that actually turns out
to be a really interesting challenge. As of late, we’ve been focusing on at least a number of
agencies with whom I’ve had involvement, are focusing on what I call the LCD approach, Lesser
Competent Developer. Some of the models that we’ve actually been seeing here actually require
people who are actually quite adept, either in coding or in terms of inferencing. They can see
things in their model that the average mortal can’t see. That is not the average analyst who
resides in a lot of these institutions. We have to have individuals who are going to create these
models, but essentially the tool itself is going to have to provide flags to support them.

One of the models, at least one of the structures that people were thinking about using, is
much akin to the tertiary curve model. As it turns out for those of you who have the unfortunate
need to work with a physical therapist or occupational therapist, you quickly discover the person
who does most of your work is either a PT assistant or a certified occupational therapy assistant,
because the medical model thus far has moved individuals away from using the people who are
the most adept. Their job is now to manage.

Well, this is also happening in the analytic community, within the intelligence and the
operational research community in DOD, for example. Basically, you have one master or well-
adept analyst looking over the shoulder of some erstwhile bachelor’s degree-holding person who
basically says, “Well, I don’t understand this piece.” Or asking the right questions, like, “Why is
your data corrupted?” and those types of issues. So that’s what we’re actually looking at, which
argues for different types of development environments for the models that we’re talking about
here.

What’s also important to remember, when you have communications between those who
view themselves as being experts or sage-level with respect to modeling, is that the second
language of the analyst, while it may be Spanish or Arabic or Pashtun, is not models and it is not
computer code? Bridging that gap is actually quite interesting. And this whole notion about
learning curve in terms about what it is to craft models and how do models fit with the real world
is actually something of an interesting challenge. And right now there are people thinking that
tools to develop an environment specifically is one way of actually kind of bridging this gap. Is it
the right way? I’m not certain. But we are talking about a credible investment activity here.
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Issues of use. Not to rework too much of what Steve did yesterday, because he and I both
resonate quite greatly on this, but it should be emphasized on the following. Number one, one
model or one discipline does not solve all the problems. More specifically, as it turns out — and
I’ll pick on economists for a moment … economists actually have a lot of leeway in terms of the
models that they bring to the table. So one of the areas of particular interest to me is conflict
prevention. You start looking for root causes why conflicts happen; if you talk to people who are
at the World Bank, their issue with that is all about the economics, right? If you had more
resources, this would work out.

Now, it turns out that if you left for the World Bank and you just go directly east for
about seven miles, you’d be at the University of Maryland with Ted Gurr, who actually believed
that all this is related to ethnic conflict. Whether you believe it or not is another issue. But if you
left from Ted Gurr’s shop and went someplace else, another individual would argue that other
structural components are responsible for conflict.

As it turns out, all these people were right and they’re all wrong. Right? Because
basically these disciplines actually only cover a small part of the picture. So the question is, how
do we actually begin thinking about appropriate ways to use models from various disciplines
concurrently? How do we actually infer from this meta-model structure, things that arise from
running multiple models. I know people are thinking about issues of docking. But that doesn’t
resolve the entire issue about, how do you do the right mix of the different types of model
structures and how do you do the right collection of computational experiments? Do you actually
combine results from various models of similar problems?

Another issue for us in terms of use is this notion of flipping the collection analysis
presentation cycle. Back in the late ‘70s or early ‘80s there’s a study with the intelligence
agency, and it applies for other types of analysis as well, about how people spend their time. And
as it turns out, it’s something of an interesting U-shape, and we call it the tub. Collection takes a
large chunk of time, analysis we don’t give much time, presentation takes a large chunk of time.

There’s something wrong with this picture. A large portion of our work in terms of
investment, and particularly in collaborative analysis, is actually flipping this over. So basically
most of the time of the analyst is spent on analysis. Data collection becomes a small portion of
this, and of course presentation becomes smaller as well. Given a preponderant number of
PowerPoint charts, particularly in the government, the templates are pretty much the same. It
shouldn’t take long to actually figure out the right format that people want to see. But there are
some interesting things around presentation and thinking about notions of multidimensional data
and multidimensional outcomes.

Now, all that being said about some of the challenges, I would like to at least note for you
that there are really some interesting opportunities and events which are happening. One is the
Preconflict Management Technology Program, for which I’m the deputy director. We’re actually
looking at how to couple together fairly advanced models of various types of preconflict, as well
as models of elites, and coupling that with a collaborative environment to suggest how it is that
we can actually prevent conflict, and if we can’t prevent it, at least reduce the amount of time
spent in conflict and move it toward more successful post-war outcomes.

This is a real use of this, and we’ve actually been in this particular program for at least
eight months. And this is a test of principle within Central Asia. And it’s actually one of the most
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interesting things, which is one of the reasons I felt somewhat obligated to state, we shouldn’t
sell ourselves short, because we’re actually invested in this. And at this point we’re not trying to
get the perfect model, or the best model; we just want some models. And we just get better at the
process along the road. This is a spiral development cycle, and this is how we’re going to
approach this.

On the activities in terms of collaborative analysis, we’re actually beginning to think
about how to help people on a variety of ends with this particular U shape that I mentioned to
you before, when in terms of what’s real-time data collection, and what does that mean in
context of performing analysis? You think about the typical data sets that we work with in social
science. They’re generally about five, six, seven, eight, 19 years old. They’ve been vetted,
they’ve been cleaned. But what if you had a real-time data stream that isn’t necessarily clean, but
it could produce some really interesting results, and that were based on indicators, which are
actually taking advantage of the real-time data stream.

In terms of the analysis and collaborative analysis, how do I actually bring together other
nodes in this whole collection of individuals, of people who are actually serving almost like
processors? Analysts are actually working with data. They have their own inference patterns,
they have their own cognitive frames for taking in information. And it’s actually quite
interesting, because now what if I have competing analysts? I can actually think about how to
use the analyst in competition amongst individuals in terms of what’s a better analysis or how
people are asking their questions — what’s their underlying assumptions? So we’re thinking
about that as well.

On the presentation piece … what we’re thinking about, we jokingly call it the “What if
Harry Seldon was real?” For those of you who are not science fiction fans, that’s an allusion to
The Foundation by Asimov. But some of the more recent work is thinking about these huge
multidimensional spaces where, in my vision, someone can basically sit in the midst of it and
touch certain parts of time or space. They can actually begin pulling down more data, because
they have a much more graphically connected notion of what’s possible. And our option space
for analysts or for decision-makers is no longer three bullets on a decision memo. It now
becomes maybe 250 options, in some graphical form, which is actually consumable. So that’s
some of the things that we’re thinking about on that front.

And last of my notions is speculative … One of the challenges I think for us is to rethink
the linkage between theory and methods. It is important to keep in mind that some of the
methodologies that exist are truly a function of how we could … with respect to our theories. So
if you think about why it is that linear aggression models used in the social sciences tend to be
quite parsimonious, with very few explanatory variables, because they follow the KISS principle
for the one reason. But it’s also because we tend to not always have the data to actually flesh
those out. And it gets more and more difficult to start thinking about 15 variables as opposed to
three variables.

But one of the things it would be neat to consider is that, since we’re moving away from
these, we’re actually thinking about other sets to choose besides just closed-form solutions and
the like — are statistical twos strictly statistical twos? — is what would be an algorithmic social
science? How would you recast social science theory in a context of using algorithms?
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Rob Axel and I had a conversation about this a little while back, and I remember both of
us saying that is there any equivalent social science problem that would suck up all available
processing power the way that you can in the physical sciences? If you think about the grand
challenges in terms of fluid mechanics and weather problems, is there some equivalent where
you can actually just suck up all the processing power in the social sciences? We couldn’t come
up with one. It would be kind of neat to think about what it would be, particularly given the
availability of great computing constructs that exist and will continue to exist.

On my last bullet, this is my kind of like true speculative bullet, we’ll call this “the other
world inferencing.” Again, I’m a big science fiction fan. This is a series of books by Tad
Williams. And basically these old guys decide they would instantiate themselves in the form of a
computer and create their own special little worlds, and they called it “Otherworld.” And so they
have all their spaces they had to live in — one guy had his reign in Egypt and another wanted to
live in a bug’s life, as a bug.

However, somewhat similar to that and not so tongue-in-cheek, one of the big efforts now
by the Defense Department is to take advantage of massive multi-player online gaming
environments; not to run our own, just to be able to figure out how people form teams, how
people form strategies in the context of EMOS. It’s actually kind of an interesting notion. It’s a
different type of inferencing.

As it turns out, social science has a lot to offer this, because this is the type of work that
many people who are anthropologists who have been involved in naturalistic research have
always thought about. So the question is watching for patterns and thinking about this. Can we
discern this? And the nice thing about EMOS is that it is always leaves a track of all the
interactions that occur. Can you infer from it? Maybe, maybe not.

And along the same lines, what if we could actually solve this problem about not having
enough data to deal with in different types of cultures. Artificial culture is something that is of
interest to a number of people in DOD. And we haven’t quite figured out what that means yet in
terms of representing artificial cultures; somewhat akin to Nick Gessler’s work out from UCLA,
I think may be one way of thinking about this. It is based on this whole notion of, if we could
create a thousand alternative worlds and situate them in a context of virtual reality and let them
run persistently, where do they go? What’s their trajectory? If they’re that rich, what will we
actually see? That might be an interesting thing to do inferencing from. I’m not quite sure what it
is, but it’s one of the things that we’re actually just kind of playing with and saying “What if?”
And that’s what I get paid to do at DARPA, which is kind of fun.

So anyway, those are my thoughts, in the context of challenges. Thanks.

Claudio Cioffi-Revilla: You should know that we had no coordination on this at all.
Okay? So these are three independent samples of ideas from this conference. But I would
encourage you to start drawing the intersection of these comments, because I think it’s not empty
for sure. And I think that’s quite interesting.

I just have a few ideas in terms of research teaching and organizational issues, motivated
in large part by meetings here at the agent conference, this year and also some of the previous
ones, as well as the NAACSOS meetings.
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I think that a good idea in terms of the research program of this community is every so
often set some explicit research challenges out there, sort of benchmarks against which to have a
sense of progress. And the reason I say that is because, absent that, one sort of meanders and
drifts into research directions, which has its function as well, but I think it is useful to have some
fairly specific things that would be shared as important things to discover and to make progress
on.

Another has to do with making sure that we maintain a great deal of high-standard quality
control as we gain altitude and lift in this large project. That paid off handsomely in the earlier
two ways of doing science. In statistical and econometric research programs and also in classical
mathematical formal modeling approaches, where today, compared to what we had 50 years ago,
there is really marked scientific progress, but it was won at a very hard and tough price. And I
think that that should always be foremost in mind.

I think we should also test the formal modeling epistemologies that were so successful in
achieving a great deal of progress in mathematical social science. We should test this in the
ABM environment. I’m not saying that we should stick to it alone, and in fact new
epistemological ideas are yet to be developed out of the computational social science research
program taken as a whole. But some very classical and important ideas probably translate very
well.

Just to mention one example, the ideas taken from Lakotas in terms of research programs.
What constitutes positive and negative heuristics in a research program in computational social
science? What constitutes a truly progressive problem shift, in terms of Lakotas and so forth? I
think these are important ideas to consider that, again, I think are quite valuable.

I guess an early start on this was given by one of my former students, Chuck Tabor, who
very clearly in that little green sage book on computational modeling leaned on Laban March,
who in a different app book, writing only about mathematical models, had proposed a criteria of
truth, beauty and justice. And he defends these criteria as also applicable to computational social
science. So that’s the sort of thing I mean.

By this I don’t mean that epistemology is frozen, by no means. I think computational
science will develop epistemology for a very long time, along directions that are not yet all that
clear.

I think we also need to develop and strengthen research alliances with non-ABM
computational, nonetheless computational social science. There are many examples of these. One
that I like to point to often is work by folks like Phil Schrodt and Doug Bond, who are using
certainly computational methods for carrying out event data analysis. Phil was one of the first
users in the social science community of Holland classifiers. The credentials are pretty clear on
that. Nonetheless, that’s not commonly thought about as being computational social science, and
I think that we should have that type of inclusive definition, notwithstanding the fact that agent-
based modeling is obviously perhaps the major engine that is driving the discipline at this point.

And finally, along terms of research, we really need to support and focus on peer review
publication. That’s very important, and it has made, judging from the past in statistical and
mathematical social sciences, a very, very big difference in having some truly fine journals,
including the Journal of NAACSOS (the computational and mathematical organizational theory),
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the Journal of Artificial Societies and Social Systems, Social Simulations, and the Social Science
Computer Review, which, as many of you know, began about 30 years ago as kind of an SPSS
paper type of journal. But in recent years it has really followed some of the frontiers and begun
to publish ABM and more modern computational research, which is great.

A few ideas on teaching … A lot could be said about this, and David and also Des
mentioned many of these ideas already. We need to develop new core computational social
science courses that include agent-based modeling, but as I mentioned earlier, also other varieties
to expose our students to the landscape of computational social science. And part of this should
also be historical, beginning with the roots of computational social science in systems dynamics
days and even earlier than that. We need to exchange syllabi.

I have no idea how many syllabi already exist in computational social science; you know,
probably less than 100, but I would be willing to bet more than 10. It’s not too soon to begin
some of this exchange and conduct more educational workshops. This meeting has done a
wonderful job over the years in a dissemination pedagogical mode, even in some of the sessions,
but certainly in the early days of the meetings, during the repast workshops and in the toolkit
sessions on Thursday and so forth. I think more of that is necessary, even in an ad hoc manner;
summer workshops and so forth. Some of this had been anticipated in an ITR grant that didn’t
work so well, but, nonetheless, we should pursue that. My center is certainly very supportive of
this, and I’d be happy to collaborate with others in sponsoring these activities.

One thing that I think we should do is more collaboration in sponsoring events like this.
This is cosponsored by the University of Chicago and by Argonne. Other similar cosponsored
events ought to take place instead of putting the burden on a single institution to carry off these
things.

I also think that we need to get to young kids at the high school level. I don’t know about
many of you, but, personally speaking, I made up my mind to become a scientist when I was in
high school, not when I was at the university. I went to the university already having decided that
I was not going to be a philosopher, a historian, or a musician. I wanted to be a scientist. But in
those days if you wanted to be a scientist you have to be a physicist and that was it, and so on.
And I didn’t discover social science until when I was forced as a physics major to take some
credits outside of physics and math or I would not be able to graduate. And then I did and I was
captured and hijacked by social science. And my social science advisor recycled my physics and
math into some social science modeling. But the point is that there are many kids at the high
school level that we need to inform about the existence of this field. And I know that some of
that is already taking place and should be pursued.

I would like to put a plug in for the wonderful book that Nigel Gilbert and Klaus
Troitzsch have been preparing. It’s coming out in a new edition very soon. And I have used it
twice already, and it really works very well as a core graduate textbook around which you can
build other readings. And Nigel is very helpful in providing additional ideas.

Finally, in terms of organization, how many of you are NAACSOS members already?
Very good. That’s a great start. So those of you who have not yet joined, tell your friends about
it, have them come to meetings, visit the website. There are a lot of nice people in NAACSOS.
It’s a very supportive and friendly scientific society that has to be promoted. It creates a lot of
public goods and positive externalities. Float that with your economist friends. NAACSOS also
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in organizational terms should look into the question of developing some kind of certification
standards in the future. As the organization grows, I think that’s a very useful thing it could
provide. This may take place in a more or less formal way, but take place nonetheless.

We need to lobby the National Science Foundation much more vividly. They are
obviously following very closely what’s happening in computational social science. You all
know that there is a new priority area in human and social dynamics. I ran into Aretha Caldwell a
few weeks ago at the Italian Embassy at a party that the science attaché was giving. And I gave
her an earful about NAACSOS and CSS and how wonderful it was that they had now funded the
priority area in computational social science. She is personally very excited about CSS, and she
took a great deal of pride in the role that she played in having the social and behavioral sciences
initiate this new priority area. So she’s not alien to this. She’s not ignorant about it. She is, as you
know, a biologist. And so that should be pursued and we should flood the NSF with grant
requests. That’s the major leverage that program directors and others have there. When they have
a huge flood of proposals they use that to turn around and show their bosses the demand in this
area. A lot of people are not aware of those kinds of behaviors, but they really are very effective.

We should do a better job of linking to colleagues in Europe, in Latin America, and in
Asia. The European Social Simulation Association just had its inaugural meeting a few weeks
ago in Groningen, and I hear reports it was very successful. And they are proceeding in parallel
at a very, very fast pace. Eventually we’ll need to create some kind of a world federation among
these associations, and there is plenty of other social science experience in this area. Sociology,
economics, and political science have major international federative structures. We don’t need to
reinvent the wheel from scratch, and we can simply collect some of the best ideas and be aware
of some of the major pitfalls in terms of organizing the government of these institutions.

So those are my two cents on this, and I thank you all.

Moderator: … open it up? What are your thoughts …

Mike North: This is responding to one of Des’s comments, and maybe a little more
generally to the panel as well.

I really liked what you were talking about in terms of developing people, or developing
toolkits, I should say, that are usable in a variety of different levels, and I think that’s important.
At the same time, and this also goes to the education comments, producing a range of different
types of skills, people with different skills, is important. Not every analyst is going to need to
build a model. Many are also going to be using either models or, even better, ensembles of
models, as Steve had talked about. And so I think that’s an important thing to keep in mind when
we talk about levels of modeling. For most analysts, they’re never going to have to write a
model, but they need to understand how the models work and what they’re doing with the
models. And there’ll be other people who are tasked with actually creating the models, but
probably not using them as often.

Saunders-Newton: As a quick addition to that, one of the challenges is that as we
attempt to get more of these tools on people’s desks, this whole notion about making them quasi-
user-friendly is one of the issues here. And I concur. As it turns out, there’s a lot that you can get
out of models because you’ve been trained in a right fashion for them. But, on the other hand, it
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doesn’t do us a lot of good that you craft them, because no one’s going to use them. So we have
to make tradeoffs in always looking for the right balance on that.

Joanna Bryson: Mike’s comment just made me realize that that particular goal ties into
something I wanted to say about Claudio’s idea, which is my personal vision, what I’d like to do
before I retire or something. Right now we’re trying to make these tools so that other researchers,
nonprogrammers, can use them. But I would love to have tools in high schools. And I model
modular theories of individual intelligence, so I was thinking about helping people to understand
their own conflicting goals and things like that. And I started getting interested in this field and
thinking about social interactions and things like this. But if we get that to the schools, it would
have so much social benefit, just because of self-understanding, understanding friends, peers —
all those sorts of things. But it could also help, I just realized, if we start much earlier with tools,
basically, then we’ll have more skills, and we’ll have those analytic things.

Edward MacKerrow: We talked, David and I, a bit about this, but maybe I could just
pose it to the panel. It seems to me that getting social simulation into the schools is a really
important key step. And I’m wondering what you guys think it would take to get it into, say, an
economics curriculum, maybe in grad school or maybe in undergrad, I don’t know. But what do
you think would have to happen for that to take place?

Saunders-Newton: I’m going to give you an example from public policy on that one, Ed.

Aaron Widavsky before he passed — he was at Berkeley at the time — wrote a book
called In Speaking Truth to Power. And in that particular book what he spoke to was an
interesting notion, how they would change the way we have been currently practicing
government, particularly at the federal level. And he said basically that we’ll send them master’s
students, chunks of Master’s students who would ultimately take over government and so assure
good government. In some ways, he achieved that, because in much of the analytic community,
regardless of whether it’s DOD or Department of State, you have lots of students who have
Master of Public Policy or Master of Public Affairs degrees.

Now, as it turns out, these programs are always trying to figure out, what’s the next
wave? what’s the tool set? I’m affiliated also with the Association of Public Policy Analysis and
Management. Every year for our national conference we have an entire day dedicated to new
additions to the curriculum. I don’t think there’s been a tool workshop, basically like agent-based
models, in at least six or seven years. These people are practitioners; they will all actually go into
the field to use these tools. I think it would be quite interesting to actually get students of this
type, and your basically applied social science students, and it would be a part of either
economics classes or the like. But it would be an interesting way … to take advantage of some of
the ways of introducing this into the fields.

The other thing that we’ve done is to go door-to-door. We go to the University of
Michigan, to what’s now the Ford School, as well USC’s program, where I teach in their school
of Policy, Planning and Development. And basically, we just say, “You really should have these
tools as a part of your class. And we’ll make sure that you get people trained up.” And that’s one
way of doing it, too. Now, that’s actually fairly time-intensive. I don’t have time to do that one as
much. But I do think going to the major conferences may be a slightly less time-intensive, but it
also may be quite helpful in doing that. So that’s one suggestion, at least on the graduate school
level.
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Sallach: I was just going to say I wouldn’t target a department type, economics,
sociology, or that kind of thing, because the cross-disciplinary, transdisciplinary nature of
computational social science is one of its great strengths, regardless of what subdiscipline or
discipline you’re in, GIS, data mining, data warehousing, agent simulation, and so forth. So I
think that the goal is to build cross-disciplinary programs that to the existing social sciences look
like a supportive methodology program; to the computer sciences it looks like a specialization in
social algorithms of one type or another, and that within its own confines it begins to define a
new set of goals that are neither totally defined by computer science or social science.

Cioffi-Revilla: You know, one of the fun things in high school was the lab, the physics,
biology, or chemistry lab, with all the wizardry you could do there. We don’t have labs in social
science, and it’s one of the things that makes social science studies boring in high school. I mean
really, really boring.

I think an obvious application from a pedagogical point of view of computational social
science and agent-based models is to provide a laboratory environment, to carry out social
experiments in machina. And there also happens to be a fair amount of funding for science
reaching down to the high school level, at least, that has been really under-utilized by the social
sciences. So this is another tool that could be used, and I think to great advantage.

Saunders-Newton: On the undergraduate level, I’ve actually started a couple of tracks
with the National Society of Black Physicists, as another one of those reformed physicists in the
room, on sociophysics. Now the physics review letters are actually printing large chunks of
mathematical physics around this, this is actually kind of an interesting time to talk to students
about alternatives other than being in weapons labs. No knock on Los Alamos, mind you.

Bryson: May I have a quick follow-up question, about residence? … After I already said
that, I realized that the answer to Ed’s question is minus 10, right? that the residents have already
been doing this for a decade. So has anything come out of that? Are those kids now super-
modelers or something? Are they in university?

Cioffi-Revilla: I would extend this also to the systems dynamics community, by the way,
which is alive and well. In July, they had their annual meeting. If you put in systems dynamics in
Google and look at the annual meeting, there are thousands of people attending this world
conference in New York. John Sternman just finished publishing a huge major textbook on this,
on the side of business and management, etc., but nonetheless systems dynamics. I attribute a lot
of that vitality to Stella and how it really facilitated the simulation of systems dynamics coming
out of the dynamo tradition.

But there are people like Sternman, for example, who should be at these meetings. He
came to the NAACSOS meeting; I thought that was very good. I’ve never seen Mitchell Resnick
show up here. Perhaps a personal invitation from the NAACSOS president would be in order, or
the vice president, in absence of the president. Things like that, I think, would be very valuable,
because Resnick’s experience in teaching pre-college modeling is enormous.

Sallach: Okay, one comment. Throw out minus 10; I’ll throw out three.

If you look at all of the models, or many of the models that we present and talk about,
everything is displayed in two dimensions. Our world, unfortunately, is not in two dimensions.
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Lars-Erik has mentioned topography, and it makes a big difference in how things work. I think if
you look at computer gaming, for example, real-time gaming systems, online gaming systems,
three-dimension real-time computation is the thing of the now and the future. And three
dimensions becomes important. I think computer gaming is the key to getting high school kids
involved; there’s no high school kid who is not into that.

One of the models we’ve been playing around with, for example, is we have these
artificial Anasazis who run around in three-dimensional environments looking for things. And
whenever high school kids come in, they just love to watch this guy, you know, running around.
And it’s just one guy. But they can do it in real time and they can sort of observe and they can
participate. And participation is the key. You need to have a lab where kids can participate and
learn, and three dimensions, visualizing beyond two, is really a necessity, which means our
models — games they are to me, I guess — need to be real-time, they need to be fast, they need
to be visually striking, and they need to have that third realistic dimension.

Moderator: Any other comments, or does anyone want to respond to that?

Saunders-Newton: As a quick addition to that, one of the areas that we’re exploring
across all the model use areas, is basically visualization of social model output. How do you
actually deal with this? I mean, some of this relates to the ensemble of model issues raised by
Steve, because basically it’s a lot of information. How do you deal with this? And at this point,
one of the challenges is that a lot of the tools that are actually available for it are actually spin-
offs from past activities, like Starlight from Pacific Northwest Labs, which really wasn’t
designed for this type of work. It had a very different intent in terms of its creation.

Some of the work comes out of scientific visualization, where you’re trying to look at
spectral analysis and the like. The question is trying to craft those and think about how is it the
average user, what resonates with them, and, importantly, how that differs across type of user. So
as it turns out, the type of information that an analyst would desire is actually very, very different
than what a one-star general wants.

We quickly discovered that. We call it the PowerPoint chart rule. When we used to go on
the road, for any one project we would carry three PowerPoint briefings. One was basically a
50- or 60-page PowerPoint briefing for the techno dweebs. The second one was for the executive
officer, or the general, which was probably about 10 to 15. And then for the general, it was just
three. Title page, a page with a pretty picture on it that says something funny, and then the third
one was basically, “What did you want?” I mean, that was it. So basically you get a 30-minute
meeting, you get five minutes to do the three charts, and he chats for the rest of it. But this is the
way it works out.

But this whole notion about what information you present to what type of user is actually
incredibly important here. And this whole notion of 3-D is very important, because it’s quite
immersive.

Moderator: Other questions, or comments people have?

I’d add in one more quick comment or question, especially with returning to Joanna’s
minus 10. And I think that it’s definitely true it has been out there, has been used. But I think it
also depends on how deep the use has been, in the sense that if you look at any one program, was
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it a week-long activity? Was it a day? Was it an entire term, perhaps a series of years? And that
makes a big difference. Also, I’d say availability’s an issue. Can you come to a lab after school
or something like that, or at other times?

Bryson: Most of that stuff, as I remember it, is relatively simple. It’s not the model.
You’re not getting the charts and everything. But it was absolutely about trying to get kids to
recognize things. I think it was all run in schools, and they still have the stuff ongoing.

In fact, they’re particularly interested in disadvantaged schools in Boston and things like
this. And I believe they run longitudinal classes at school. And there are some afterschool
activities, a computer clubhouse thing. I think that’s a separate project, but I assume it’s the same
software.

Unidentified Speaker: So I think that there was a wider range of use. And, of course, it
depends on the number of states that are involved in the range.

Coiffi-Revilla: There’s a precedent, a precursor of this that comes to mind, too, in the
area — not in the computational area, but in the area of mathematical social science.

Years ago, the NSF funded a New England consortium called COMAP — I don’t know
how many of you remember that. It was a consortium for mathematics and applications. And
they also had a journal called UMAP, Undergraduate Mathematics and Its Applications. I think
COMAP and UMAP are still alive and well. They started out in Newton, Massachusetts. So
these were modules that were used in high school programs. And they were field tested and very
sophisticated and very effective in the dissemination of mathematical social science. There was
one I remember on differential equations applied to arms races.

Bill Griffin: They also had a national contest that they would publish the results in the
little books, the little subsequent publications. I subscribed to it, and I would, because it was
simple enough, take it into a classroom of undergraduates and say, “Look at this.” They did a
very nice job.

Cioffi-Revilla: You know, not to spend all the time on pre-university teaching issues, but
getting back to the visualization points that Bob was mentioning, on a purely research level this
is something we need to think about, not just in terms of software, but also in terms, as the
resources for this discipline become more substantial and as computational power increases and
the size of the modeling that is feasible becomes more and more advanced, we need to give some
serious thought to the actual scientific environments, the physical environments in which this
research will be conducted 5, 15, and 20 years down the road.

We are not experiencing this kind of stuff in the social sciences. The only colleagues are
perhaps the new breed of experimental economists that are designing laboratory facilities for
carrying out this kind of work, but not really in social simulations.

I have a pressing need on this, and if anybody has any ideas along those lines, please
share them with me. Our center will be moving to a brand new science computational facility in
two years. I’m working with the architects and the engineers of that environment to make sure
that we have a really efficient facility where you have not just the usual accoutrements of desks
and tables and so on, but something which is really conducive to collaborative interdisciplinary
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computational research. And this requires a great deal of learning, certainly on my part, about
things about data displays and hardware and control room engineering and things like this, that
it’s not too soon to start thinking along these lines. And there are many other people here that
have a lot more experience about that than I do.

Sean has begun to give me some dos and don’ts about that sort of thing, and it’s been
very helpful.

James MacGill: I’ve been out of the agent side of things for about five years, so it’s
good to be coming back into it again. But in the meantime, what I’ve been doing, particularly at
Penn State since I moved there in January, is looking at developing visualization toolkits and
interaction environments and collaborative environments for dealing with real social data. So
we’re visualizing the census data, we’re visualizing remote imaging. We’re probing visualization
environments to do those kinds of things, and the real world is a hell of a lot more complex than
most of the models we’re building. And yet, because we’re simulating social models in most of
those cases, the same toolkits that we’re developing to do that can be mapped onto those tools.
And, you know, there’s a wealth of research in that direction.

Among the things we’re doing, 3-D’s been mentioned. We have environments for
speech-gesture interaction with data sets. We have graphing and charting techniques for dealing
with these kinds of data sets, and the chance to talk with the Repast team and look at how we can
hook those things together means that we can take what we’ve done in terms of probing the real
world and use the same things to probe the simulated worlds that we’re doing.

Unidentified Speaker: That’s great news. That is very encouraging.

Lars-Erik Cederman: I wanted to turn the attention away from the pedagogical
dimension to the research puzzles. And since you all mentioned targets and challenges, it will be
interesting to see whether people can identify these puzzles, because I think it may be very
helpful for the whole field if we set up certain targets, if there were, as I say, disputes and
debates about results and findings, organized around very clear topics, because in the past I
would say, having surveyed the field on computational modeling, the most exciting work has
probably been done in areas where you’d had a pretty clear problem definition.

If we take, for instance, Axelrod’s early work on cooperation theory, that’s something
that’s created a phenomenal cottage industry of studies going well beyond computational
modeling. After all, the most interesting puzzles from the perspective of, as I say, diffusing
computational modeling may actually be those that have an anchoring outside computational
modeling. If you can show that with computational tools you can see things that were not
obvious before, that, I think, is a much more powerful way of selling our tools here than almost
any other, as I say, more supply-driven type of measures.

So I think actually it’s possible to identify other candidates here. Certainly, within the
network literature computational modeling has made a big difference, and people like Barabasi
and Duncan Watts have helped, as I say, promote this kind of thinking, with analytical and/or
computational tools. But there must be other areas.

Another type of format for inquiry would be, who is going to be the first one to create a
model that exhibits the emergence of X, whatever X may be? For instance, the first actor, truly



595

emergent actor, including now its boundaries, its rule sets, self-consciousness or whatever. It can
be almost as ambitious as you want. This will be, as I say, the social science answer to A-life.
But I don’t think we have been, how to say, bold enough in setting those challenges. And
although I find that the A-life literature can sometimes become a bit flaky and speculative, still
there is something laudable about setting up completely utopian goals. And I think we have more
work to do along those lines.

Cioffi-Revilla: I think of this in terms of two sources for that sort of challenge. One
source of challenge is the areas where classical social science using the earlier two ways of doing
science has stumbled. And those are opportunities.

For example, in actor interaction problems there are now known analytical solutions in
closed form. This problem came up in international relations with end-country arms races that
were so interactive that had no … so one thing is, those areas, those problems in social science
where classical statistical and mathematical approaches have failed to make a breakthrough
because they’re simply incapable, there’s no tractability. That’s one generic source.

The other generic source, in terms of parsing all of these sources, is in the new puzzles
and new questions that we can now address through computational methods. And here I’m
thinking in terms of, for example, the same thing that happens in biology and in astronomy in
pushing completely new frontiers that would have been unimaginable. These are not just
problems in which astronomers were failing to produce new results, but they were completely
new areas of astronomy that were inaccessible; for example, including rational mechanics of
worlds that violate known laws of physics on purpose in order to understand those that actually
do work the way they are.

Saunders-Newton: Lars-Erik, I have two thematic examples which would really get me
excited if I actually saw people who were doing this.

The first one would be to revisit what used to be called the societal instability literature or
modeling. Our new euphemism is social fragility, right? But actually revisiting these tool sets as
opposed to, like, the dustbowl empiricism models from the ‘50s and ‘60s, but to actually revisit
this whole notion of why are certain countries more frail, either as the result of the governing
structure, a lack of infrastructure, whatever it is, but actually have an activity. And then the
metrics that come out of that would allow us to do an interesting type of risk assessment, where
we can actually make a strong argument for why it is better to act early than to act late, in terms
of investing in countries so that they don’t fall into civil war or that ilk. So that would actually be
one.

In the second one, which falls into the more utopic category, is basically how do you
grow utopic societies? Let’s say that the desire is actually that as a globe that we would like to
spend less than 1% of our global GNP on weapons. What would a structure like that look like?
And it would be interesting to actually see whether there some type of modeling structure that we
can address. Those would be interesting grand challenges, I think, to consider.

Mark Diggory: As a software developer, I wanted to possibly just bring out some basic
concepts from my experience that relate to some of the issues related with these various toolkits.
And something that I’ve learned here today from interactions with James and with geo tools and
Sean, dealing with the Mason platform, is that we have to deal much better with interoperability,
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and primarily in the areas of not reinventing the wheel for every single framework. And with that
in mind, I want to suggest that as separate projects working on separate platforms, we think a lot
more about interacting with each other and the interfaces and capabilities that we want to provide
to the community without the persona of “our project’s here and it’s the be-all/end-all and we’re
going to take over the world with it.”

Bill Lawless: I think Lars-Erik raised a really good point. Some of the problems I see in
that regard is that we’ve got — like in the case of Steve, he’s got proprietary problems that are
being solved, and it’s very difficult for us to deal with the nuts and bolts of how that can actually
be applied in general. Or in the case of Ed’s model, which I think is really good, too, there’s
classified information there, so you can’t really run out and do much with it.

But, nonetheless, I think you hit on a critical point that unless we can find a problem like
launching the first aircraft at Kitty Hawk, and we can compete to solve that problem, and
actually solve the problem, then I don’t think we’ll get that far, other than winding up with a
wonderful mechanism for explanation, with great explanatory power, but very little
demonstrative or predictive power.

And I think this is a problem that will be solved, so I’m not trying to cast a bleak outlook.
I think it’s a problem that will be solved; otherwise, we’ll never have these social systems of
agents going hot out in a battlefield or these systems of agents landing on Mars or other planets
or going to other systems and actually taking on complicated, ill-defined problems and solving
them by themselves.

So it will be a bleak future to me if we can’t solve these, and I think you’re right on.
These are things that we have to solve. Mind you, we’re not the only discipline with these kind
of problems. In social psychology, my field, there are very few replicable group phenomena,
social phenomena, that have stood the test of time. One of them is Bibb Latinay’s diffusion of
responsibility problem that is still today one of the very few accomplishments in social
psychology. This has been around for over 30 years. But nonetheless, I think that we’ve got to
find a problem that we can solve, and then other people have got to be able to go out and
replicate that solution, and then somebody’s got to win a Nobel Prize for that. And once that’s
done, hey, we’re not going to have any problems attracting people into this field.

Moderator: Well, do we have other questions?

One thing I’d like to add to this, and it also goes to Desmond’s question about what do
you do with all the computational power that’s available? Well, one thing I’d say is we do have
existing models. They don’t answer all of the grand challenge questions but things like
Sugarscape, which really hasn’t been fully analyzed. Now, you can do humongous parameter
sweeps and there might be interesting things that are found. And if nothing interesting is found,
that’s a finding, too. So that would be one use that is available now. But I totally agree with you,
in the long run we also have to find these other challenges and make them fairly explicit as to
what we’re trying to solve.

Other comments, questions before us? Chick?
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Charles M. Macal: I’d like to thank very much our closing panel. And I’d like to thank
the audience for the interesting and very thoughtful discussion that followed. Thank you very
much.

Moderator: I have a few closing comments, just for the most part administrative and
related items to cover.

On behalf of the Agent 2003 Executive Program Committee, I’d like to thank all the
invited speakers that talked during the conference. The presenters and the authors of the papers,
the discussants, the session chairs, and, again, the audience for your attendance. We appreciate
the fact that you’re here, and your comments that you’ve given throughout the conference I think
were very substantive and allow us to come to some synthesis potentially of, and consensus
even, perhaps, on some points that we can all agree on and hopefully be goals for us to move
forward in the field. So, of course, one of the goals would be to not be here again next year
talking about the same things in terms of what needs to be done in the future because we haven’t
made any progress in the past year, for example.

I also just have some other thanks to go around. I’d like to thank in particular Kathy
Ruffatto for excellent administrative support in logistics.

I’d like to thank the Abstract Review and Selection Subcommittee of the Executive
Committee. You know who you are.

I’d like to thank the AV Technical Support Committee, including especially Kay Sitarz,
who is with us here. I’d like to thank the Conference Booklet Design and Preparation
Committee, the Webpage Design Committee, and the Webpage Development and Update
Committee, which was a separate committee.

I’d like to thank the Proceedings Editing and Publication Committee, especially Margaret
Clemmons, who many of you have corresponded with, perhaps only by e-mail. And a note on
that: we will be publishing proceedings as we have done in the past years. So if you have not
provided your final copies of your papers to us, we will relentlessly pursue you. That is
guaranteed. And we have 100% success rate, based on previous years’ conferences, so you might
as well just relent immediately and give up your paper now.

I’d like to thank the Speaker Interaction Subcommittee, again, of the Executive
Committee. And that was led by David Sallach, of course, so we should give David a hand.

I’d like to thank Tom Wolsko, who is the Director of the DIS Division of Argonne for his
executive support that made this whole effort possible. I’d like to thank especially Mike North
and Tom Howe for teaching the Repast training course, which occurred earlier this week.

Again, I’d like to thank Mike North for putting together the NAACSOS-sponsored
sessions on Toolkits and Methods Day, which occurred on Thursday afternoon, as well as the
toolkit developers’ meeting that occurred on Thursday morning. And there was huge amounts of
after-midnight work that was going on all week, as you can imagine. And so, Mike, our hats are
off to you for all your work and effort. Agent 2003 is officially adjourned.
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