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FOREWORD 
 
Welcome to Agent 2007, co-hosted by Argonne National Laboratory and Northwestern University, in 
association with the North American Association for Computational Social and Organizational Science 
(NAACSOS). This is the eighth year of the Agent conference series. As at previous meetings, this year’s 
conference maintains a three-theme organization: (1) methods, toolkits, and techniques; (2) computational 
social theory; and (3) social simulation applications.  
 
The broader theme of the 2007 conference is Complex Interaction and Social Emergence.  
Agent modeling has transformed scientific methodology across a number of disciplines. One of the 
strengths of agent simulation is its ability to represent fine-grain and dynamic interactions among diverse 
types of actors. Because rich interactions are a frequent source of emergent complexities — including 
social norms, institutions, and transformations — this focus has significant theoretical potential and, thus, 
implications for computational techniques and various types of applications, as well. Agent 2007 
encourages researchers to explore and report on their modeling of complex interactions and on the diverse 
forms of emergence that arise from their work.   
 
Our invited speakers — Ian Foster, Rosaria Conte, and Leigh Tesfatsion — are leaders in their fields, 
with contributions in diverse areas of agent-based modeling. Ian Foster is the Arthur Holly Compton 
Distinguished Service Professor of Computer Science at The University of Chicago and Director of the 
Computation Institute, a joint project between The University of Chicago and Argonne National 
Laboratory. At Argonne, he leads computer science projects aimed at developing advanced distributed 
computing (“Grid”) technologies.  
 
Rosaria Conte is a cognitive and social scientist and head of the Laboratory of Agent-based Social 
Simulation at the Institute for Cognitive Science and Technology at Italy’s National Research Council. 
She also teaches Social Psychology at the University of Siena. Her research fields of interest range from 
agent theory and architecture to multi-agent systems, and from game-theory to cultural evolution and 
social simulation.  
 
Leigh Tesfatsion is a Professor of Economics at Iowa State University whose current research focuses on 
agent-based computational economics (ACE), the computational study of economic processes modeled as 
dynamic systems of interacting agents. Her particular interest is the development of empirically based 
ACE frameworks for the study of restructured electricity markets.  
 
The combination of conference presentations will help us to explore the present results and future 
prospects of agent-based modeling. We hope that you will find the conference to be both educational and 
stimulating. We appreciate your participation and look forward to your future contributions. 
 
The Center for Complex Adaptive Agent 
Systems Simulation  
Decision and Information Sciences Division 
Argonne National Laboratory  
 
Charles Macal  
Michael North  
David Sallach 

Northwestern Institute on Complex Systems 
Center for Connected Learning and 
Computer-Based Modeling   
Northwestern University  
 
Uri Wilensky  
Lynne Kiesling  
William Rand 
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ABSTRACT  
The concept of docking agent-based models has been stressed in many venues for a 
number of years.  In the decision-support context docking can take on a very important 
role and we have found docking to be an important exercise not when moving from one 
framework to another but rather when moving from one version of a model to another.  In 
the decision-support context a great deal of time and energy is spent in the Validation, 
Verification, and Accreditation cycle so a model may be trusted for a particular use.  This 
paper describes the docking exercise we undertook in order to move confidently from a 
validated modeling framework to one that had not been face validated.  The methodology 
includes taking very large sample runs from each version of the framework.  Output 
analysis included standard descriptive statistics and non-parametric sample comparisons.  
Of particular note is that at some levels of aggregation the two models appear to behave 
very similarly.  As one disaggregates groups of agents and looks more closely at the 
results, however, one begins to find differences.  This highlights one of the most 
important lessons of our docking exercise: just like agent-based modeling, docking must 
be done at an appropriate level of abstraction for the questions at hand.  One must 
understand the context in which the model(s) are to be used in order to understand what 
differences are of practical significance and what differences can be tolerated.  Our 
output analysis techniques and results will be discussed in detail.   

 
INTRODUCTION 

 
“The purpose of computing is insight, not numbers.” 

~R. W. Hamming 
 
 

In general, there are a number of reasons why one would want to compare, or dock 
(Axtell 1996), models.  First of all, one simply may be curious about the similarities and 
differences between two models.  These models may seem quite similar or quite different at first 
glance and a deeper understanding is desirable.  Second, one may wish to understand the 
theoretic difference between models or to understand which model did a better job of 
representing a common theoretic foundation.  Third, one may wish to utilize a model as a 
decision-support tool and, therefore, must know which model is best and in which contexts.  
Fourth, one may use the comparison to understand the significance of similarities or differences 
found in the output of the models.  This by no means exhausts the reasons one might wish to 
compare models but it highlights some of the major ones. 

 
Things change a bit as we move from the academic field to a decision-support context.  

Here model comparisons become more pragmatic.  In many cases the comparisons are done with 
an eye towards which model is best and in which contexts.  This type of comparison can extend 
                                                 
* Corresponding author address: Matthew Koehler, The MITRE Corporation, 7515 Colshire Dr., MailStop H305, 
McLean, VA 22015, e-mail: mkoehler@mitre.org 
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to different versions of the same model.  Furthermore, in the decision-support context it is likely 
that a model has undergone some sort of verification, validation and accreditation (VV&A).  See 
Koehler, et al. 2006 for a more through discussion of VV&A in this context.  Loosely speaking, 
Verification is determining whether or not you built the model correctly, Validation is 
determining whether or not you built the correct model, and Accreditation is determining if the 
model is good enough to use for its intended purpose (Hartley 1997).  VV&A can be very time 
consuming, difficult, and costly.  Of course effort put into VV&A is a function of the role the 
model will play.  Models that will be relied upon heavily will under go more rigorous VV&A 
than will models that are used for thought experiments or to gain rough order of magnitude 
insights.  When moving from one model to another, especially when it is different versions of the 
same model, any aspects of the original VV&A that can be carried over would be very 
beneficial.  In this particular case we discuss moving from MANA (McIntosh 2007) version 
3.0.39 (MANA3) to MANA version 4.00.2 (MANA4).  Here docking is used as evidence for the 
claim that the VV&A done for one model may be valid for another model.  We have spent a 
great deal of time face validating MANA3.  Now that we are moving to MANA4 we would like 
to make the argument that the face validation from MANA3 can carry over (at least to some 
extent) to MANA4.  This may prove difficult, however, as there have been a number of changes 
made to MANA4.  Table 1 highlights some of the more important changes. 
 
Table 1:  Major changes made in MANA4. 

New in MANA4 
Agents have orientation and bearing 
Agents can move in formations 
Agents have sensor and weapon orientation 
Agents can have multiple sensors 
Sensors can be of multiple types 
Sensors and weapons have look angles 
Sensors and weapons have slew rates 

 
The evidence we will use for this argument will come from a docking experiment we 

undertook between MANA3 and MANA4.  As discussed by Robert Axtell (Axtell 1996) docking 
can be achieved in three basic categories.  Essentially, docking is the alignment of two different 
models to understand if one model can subsume another.  In the case at hand we wish to say that 
the two models (MANA3 and MANA4) are not different.  Axtell proposes three levels of 
docking: identity, where two models produce identical results; distributional, where the two 
models produce statistically indistinguishable results; and relational, where the two models 
produce output that “behaves” in the same way, meaning that similar changes in inputs cause 
similar changes in outputs but the distributions are statistically distinct.  The necessary level of 
docking is a function of the empirical relevance of the models, which, in turn, is a function of 
how the models are relied upon and is the topic of the next section. 
 
 
Specifying the Relevance of an ABM and Level for Docking 
 

Axtell’s Framework of Empirical Relevance (FER) relates a model to its input data and 
output (Axtell 2005).  The relationship is, generally, input data of various types are necessary to 

6



create an ABM; once the model is run it will create output data that will relate to real-world 
phenomena in some particular way.  There are four levels to Axtell’s FER.  Level 0 is, 
essentially, a well functioning program that is bug free.  Level 0 models have qualitative 
correspondence at the agent level.  This means that the agents behave in a manner that is 
logically consistent with the subject being modeled.  Level 1 is the next level of Axtell’s FER.  
Level 1 is macro-level qualitative correspondence to the dynamics of interest.  In this level the 
agent activity generates dynamics, as a whole, that relate to the phenomena being modeled.  For 
example, a group of agents trading with each other may produce a clearing price for the artificial 
market.  This clearing price may not relate to a real-world clearing price but one was found.  
Axtell’s levels continue with Level 2.  Models that fall into this category have macro-level 
quantitative correspondence with the real-world phenomena being modeled.  These models 
produce the correct distributions within their output.  For example, Axtell’s model of firm size 
produces a power-law distribution that is the same as real-world data on the distribution of firm 
sizes in the US (Axtell 2001).  The final level of this framework is that of Level 3.  In this level 
the model not only has macro-level quantitative correspondence but also micro-level 
correspondence.  In general, very few ABMs achieve this level of empirical relevance.  This is 
because it is difficult to specify such a model and even more difficult to obtain the data necessary 
to estimate such a specified model. 

 
In the decision-support context the weight put upon model output and the importance of 

decisions based upon said output will necessitate that the model achieve a particular level of the 
FER.  Here MANA is being used in a decision-support context to aid subject matter experts 
(SME).  MANA is only one part of the whole decision-support infrastructure.  Furthermore, 
MANA is to be very fast turnaround.  Therefore, MANA is understood to provide rough order of 
magnitude answers to what-if analyses.  This places MANA squarely on Level 1 of the FER 
scale.  MANA needs to be in qualitative agreement at the macro-level and have reasonable 
micro-level behaviors.  This implies that identity between MANA3 and MANA4 is not necessary 
to conclude that they are equivalent.  Therefore, distributional equivalence is adequate to 
conclude that these models are equivalent, and relational equivalence may be adequate. 

   
RESULTS 

 
As we have already stated, we are interested in showing distributional equivalence of the 

two versions of the simulation, rather than identity. In our docking experiment, only the versions 
of MANA were different. We used the same scenarios with the same random seeds and ran the 
same number of sample runs through the two versions of the simulation.  

 
We tested several types of scenarios, with variable levels of complexity in terms of 

terrain, agent behaviors, agent interactions with each other and their environments, 
communications, and weapon systems. Our objective was to test a set of scenarios with low, 
medium, and high complexity in both versions. We hypothesized that our results would show 
statistically indistinguishable results between versions since we did nothing to the scenarios other 
than port them into each model and run them a large number of times. However, if significant 
differences occurred, would they happen across all of the scenarios, to include the simplest set of 
scenarios, or would they happen in just the more complicated cases?   

 
The low level complexity scenarios simply exercised important features of the models in 

the simplest manner possible.  The medium level complexity scenario added slightly more 
complicated terrain, weapons, communications, agent and squad behaviors, and contained a few 

7



more squads than the low level complexity scenarios. The high level complexity scenarios have 
the same terrain as the medium level complexity scenario; however they have a much more 
sophisticated communications structure, more types of agents, a much larger variety of more 
complicated weapons, as well as more complicated agent interactions.  We setup our experiment 
to test a variety of scenarios to determine if VV&A should be done on each scenario moved from 
MANA3 to MANA4 or if we could assume based upon this docking experiment that VV&A is 
independent of the MANA version and would transfer from MANA3 to MANA4 with the 
scenario. 

 
Though MANA produces a reasonable set of output data, for the sake of simplicity we 

chose to use the most basic MANA output statistic: casualties.  First, we did a crude comparison 
of raw casualty numbers by scenario, by replicate, and by side between the two versions of the 
simulation and found that identity did not exist for any of the scenarios. However, since we do 
not require identity, the next set of tests explored whether or not the differences between the 
versions of MANA were statistically significant or if we could claim distributional equivalence 
of the versions.  

 
We treated the data as a paired sample for our experiment because we used the same 

scenario with the same random seeds with the before and after elements represented by the two 
versions of the simulation. We ran the parametric Paired Sample t-Test and the nonparametric 
Wilcoxon Signed Rank Test and Sign Test as our test procedures. The Paired Sample t-Test 
assumes the data comes from a normal distribution. The Wilcoxon Signed Rank Test does not 
assume the distributions of data are normal, however it does assume the distributions are 
symmetric. The Sign Test does not assume normality, nor does it assume symmetry, but it has 
less power to detect significance if there is symmetry. Review of the Q-Q plots for each of the 
datasets indicated that most of the distributions had heavy tails, and therefore appeared to deviate 
from a normal distribution. Evaluation of the measurement for skew, which is one indicator of 
how far from symmetric distributions are, clustered the majority of values for each of the paired 
differences in the scenarios tested within the -0.1 to +0.1 range. Since most of the data sets 
appeared inconsistent with a normal distribution and since their values for skew did not tend to 
be too extreme, we are reporting the Wilcoxon Signed Rank Test results in this paper. Of note 
however, in almost every case, the three tests produce the same results with respect to statistical 
significance (Bhattacharyya 1977; Gibbons 2003). 
 
Table 2:  Wilcoxon Signed Rank Test results between MANA3 and MANA4 for the 
highest level of aggregation for each scenario complexity level. 

Complexity Level - Scenario 
Name Pairs 

Wilcoxon Signed 
Rank Test 

Low - Four Groups Blue Casualties MANA V3 to MANA V4 0.279 
 Red Casualties MANA V3 to MANA V4 0.141 
Low - Two Groups Blue Casualties MANA V3 to MANA V4 0.143 
 Red Casualties MANA V3 to MANA V4 0.311 
Low - Two Groups with 
Communications Blue Casualties MANA V3 to MANA V4 0.138 
 Red Casualties MANA V3 to MANA V4 0.980 
Medium - Scenario 1 Blue Casualties MANA V3 to MANA V4 0.797 

8



 Red Casualties MANA V3 to MANA V4 0.000 
 Civilian Casualties MANA V3 to MANA V4 0.259 
High - Scenario 1 Blue Casualties MANA V3 to MANA V4 0.000 
 Red Casualties MANA V3 to MANA V4 0.000 
High - Scenario 2 Blue Casualties MANA V3 to MANA V4 0.000 
  Red Casualties MANA V3 to MANA V4 0.000 

 
In addition to testing several levels of scenario complexity, our experiment also consisted 

of testing the same metric at various levels of data aggregation for the low, medium, and high 
complexity sets of scenarios.  The highest level of aggregation is represented by the Blue, Red, 
and Civilian casualty pairs. Table 2 shows the p-values for each of the pairs tested for each 
scenario between the two versions at the highest level of aggregation. None of the casualty pairs 
tested for the low level complexity scenarios had significant results (all p-values > 0.1), whereas 
all of the casualty pairs tested for the high level complexity scenarios had statistically significant 
results (all p-values < 0.0). The medium level complexity scenario returned significance only for 
the Red casualty pairs between the two versions (Red p-value < 0.0), but the Blue and Civilian 
comparisons were not significant (Blue p-value = 0.797; Civilian p-value = 0.259). At this level, 
what these results imply is that we cannot claim distributional equivalence across the board, but 
we can make the claim for distributional equivalence in some instances. For our experiment, this 
means that the simple scenarios are distributional equivalent. However, this does not hold once 
we increase the level of complexity. Unfortunately, distributional equivalence appears to be 
scenario dependent.  
 

However, is the presence or absence of distributional equivalence only scenario 
dependent or does it also depend on the level of data aggregation? Do the pairs that exhibit non-
significance at the highest level of aggregation also show non-significance for each of their 
respective sub-categories when the datasets are disaggregated? The next step to the experiment 
was to break the data into sub-categories and run the same statistical tests using the same metric, 
total casualties by sub-category by side. This process was repeated for each of the scenarios. We 
did this to see if we could determine the largest contributors to the differences.  For space 
reasons only the data for the medium level complexity scenario is reported.  

 
We hypothesized that we would see the same outcomes when we disaggregated the data 

into sub-categories as we did for the highest level of aggregation. For the low complexity 
scenarios, all of the sub-categories by pair had non-significant results.  As expected, in the high 
complexity scenario nearly all of the Blue and Red pairs returned significant results. 
Interestingly, however, in the medium complexity scenario we found that we did not have 
distributional equivalence when comparing the sub-categories. Tables 3 and 4 display the p-
value results for the medium complexity scenario disaggregated into killer and victim squad 
categories respectively. The data in these tables appear to support the idea that distributional 
equivalence is dependent not only on the scenario and the complexity of the scenario, but also on 
the level of data aggregation. 
 

In Table 2, for the medium complexity scenario we saw that the Blue casualty and 
Civilian casualty pairs did not have statistically significant results between the two model 
versions, whereas the Red casualty pairs were significant. Tables 3 and 4 show mixed results for 
the individual squad pairs for both Blue and Red.  In Table 3, half of the Blue squads had 
significant results and half did not and almost all of the Red pairs returned non-significant 
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results. This data indicates that between the two versions of MANA the Red killer squads were 
the same and had about the same number of casualties attributed to them; however, the Blue 
killer squads were split and did not necessarily have the same number of casualties. If we look at 
Table 4, we see that for the majority of the Blue and Red pairs, we also get significant results, 
which suggests that the victim squads were not necessarily the same between the two versions. 
The results for Red are reasonable because the results at the highest aggregation level for Red 
were significant. However, the results for Blue in Table 4 seem counterintuitive. At the highest 
level of aggregation, the results for the Blue casualty pairs were not significant between the two 
versions, but as we disaggregated from the highest level, the results became significant. These 
outcomes indicate that the victim squads for Blue were not necessarily the same between the two 
versions, even though the overall number of casualties for Blue was not significantly different.  
 
 

Table 3:  Wilcoxon Signed Rank Test results between MANA3 and MANA4 
by killer squad category for medium complexity level scenario. 

Complexity Level - 
Scenario Name Pairs 

Wilcoxon Signed 
Rank Test 

Medium - Scenario 1 Blue Kills on Red . 
 Blue Advance Guard  0.000 
 Blue Cargo Truck 0.360 
 Blue Convoy Commander  0.027 
 Blue Forward Security  0.525 
 Blue Fwd Security Command 0.004 
 Blue Gun Truck  0.837 
 Blue Rear Security Command  0.000 
 Blue Rear Security  0.734 
 Red Kills on Blue  
 Red IED 1 0.259 
 Red IED 2 0.285 
 Red Attack Vehicle 0.000 
 Red IED 3 0.157 
 Red RPG 0.250 
 Blue Kills on Civilians  
 Blue Advance Guard  0.518 
 Blue Cargo Truck 0.892 
 Blue Convoy Commander  0.063 
 Blue Forward Security  0.039 
 Blue Fwd Security Command 0.152 
 Blue Gun Truck  0.148 
 Red Kills on Civilians  
 Red RPG 0.004 
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Table 4: Wilcoxon Signed Rank Test results between MANA V3 and MANA V4 
by victim squad category for medium complexity level scenario. 

Complexity Level - Scenario 
Name Pairs 

Wilcoxon Signed 
Rank Test 

Medium - Scenario 1 Blue Victims . 
 Blue Advance Guard  0.285 
 Blue Cargo Truck 0.000 
 Blue Convoy Commander  0.000 
 Blue Forward Security  0.000 
 Blue Forward Security Command  0.000 
 Blue Gun Truck  0.000 
 Red Victims  
 Red Pickup Truck 0.000 
 Red IED 2 0.157 
 Red Attack Vehicle 0.000 
 Red Rifle Squad 0.000 
 Red RPG 0.006 
 Red Sniper 0.227 
 Red Observer 0.044 
 Civilian Victims  
 Civilians 0.259 

 
 

CONCLUSION 
 

As highlighted above docking can be a difficult undertaking even when comparing 
seemingly equivalent models.  We set out to determine if MANA3 was distributional equivalent 
to MANA4.  Clearly, except in trivially simple cases we cannot make that claim.  Where does 
that leave us?  Ultimately it is up to the decision-maker to decide if any of the statistically 
significant results have practical significance within the decision-support context in question. If 
the models function in a sound manner, and if the distributions of data between versions, even 
though statistically significant, differ by a small amount, then the decision-maker may still 
accept the models as equivalent.  This is the case because the statistical significance may have 
little or no practical significance.  However, one cannot, prima impressionis, claim that a VV&A 
assessment will move from MANA3 to MANA4. 
 

It should be noted, however, that this comes as no surprise given the numerous changes 
highlighted in Table 1.  The most significant of these changes include agent orientation and the 
behavior of sensors.  In MANA3 agents and sensors had no orientation; there was no difference 
between front and back.  In MANA4 agents and sensors have, inter alia, an orientation and a 
speed associated with changing orientation.  Agent success and failure is premised highly upon 
an awareness of the environment.  Therefore, changes to the behavior of sensors and the way 
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agents “look around” the environment will impact scenario results.  MANA4’s inclusion of 
orientation for both agents and sensors significantly increases the verisimilitude of the 
framework.  Finally, as we wanted to make as direct a comparison as possible between the two 
versions of MANA no attempt was made to change default settings in MANA4 to better emulate 
behaviors of MANA3.  Given the higher verisimilitude of MANA4 one, in fact, may not want 
MANA4 to exactly match MANA3. 
 
Table 5: Medium complexity scenario descriptive statistics for MANA3 (Old) compared 
to MANA4 (New) 

Percentiles 

 N Mean 
Std. 

Deviation Minimum Maximum 25th 
50th 

(Median) 75th 
BlueOld 500 4.016 1.68089107 1 15 3 4 5 
BlueNew 500 3.972 1.71262435 2 14 3 4 4 
RedOld 500 16.796 2.264650367 7 22 15 17 19 
RedNew 500 16.16 2.17896668 9 21 15 17 18 
CivilianOld 500 10.404 3.25052547 2 19 8 11 13 
CivilianNew 500 10.162 3.066359588 1 20 8 10 12 

 
Table 6:  High complexity scenario descriptive statistics for MANA3 (Old) compared to 
MANA4 (New) 

Percentiles 

 N Mean 
Std. 

Deviation Minimum Maximum 25th 
50th 

(Median) 75th 
BlueOld 394 138.8654822 13.48921637 57 180 134 140 146 
BlueNew 394 128.1395939 3.685237151 116 138 126 128 131 
RedOld 394 259.1142132 3.213307415 248 267 257 259 262 
RedNew 394 270.5025381 2.999786872 261 279 268.75 271 272 

 
This, again, highlights the role of the subject matter expert and decision-maker.  For 

example, if we recall from Table 2, the results for Red were statistically significant. But if we 
look at Table 5 the Red means between the two versions (MANA3 = Old; MANA4 = New) do 
not differ by a large factor and the distributions of data between the two versions are similar.  In 
this instance, a decision-maker may conclude that the results are not practically significant and 
that the models are equivalent. However, this may not be the case for every scenario. Recall that 
in Table 2, the results were statistically significant across the board for the high complexity 
scenarios. The descriptive statistics in Table 6 for one of the high complexity scenarios indicate 
that the distributions of data for the Blue pairs differ by a much larger factor. In this case, the 
decision-maker may deem the results practically significant, because in reality, this may mean 
the difference in whether or not an operation is halted or continued. In this case, carrying over 
the VV&A of the scenario may not be possible; thus, necessitating a new VV&A cycle for 
MANA4.    
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ABSTRACT 
 
We illustrate an objective, non-intrusive method that tracks the behavioral, temporal, and 
spatial data characterizing evolving group processes in children. This work establishes a 
methodology combining behavioral observational data, GIS, and agent-based modeling 
as an aggregate tool to give researchers the ability to establish group typologies according 
to the behavioral and geospatial distributions of its constituents. The proposed integration 
of behavioral coding with GIS, and the subsequent attempt to reproduce this aggregation 
with computational simulation has not been attempted before. As such, this work 
establishes an integrative protocol for measuring peer-to-peer processes and will serve to 
modify the research criteria in scientific fields using behavioral observation of humans.  
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Integrating ABM & GIS to Model Typologies of Playgroup Dynamics in 
Preschool Children 

William A. Griffin, Shana K. Schmidt, Atsushi Nara, Paul M. Torrens, Jennifer H. 
Fewell, & Casey M. Sechler 

 
The current study is an attempt to further the amalgamation of a multi-

disciplinary team that integrates human development, computer simulation, 
biology, and geography. We rely on emerging technologies and methods in agent-
based modeling, social network analysis, and geographical information science to 
address questions of current interest to scientists studying the typology, ontology, 
and morphology of group dynamics. Our model systems consists of young 
children, with each involved discipline contributing towards answering a critical 
societal question, namely, how do children form relationships in the context of 
transitions and change? We propose that children's play partners are multiply 
determined by the combinatorial dynamics generated by a child's own 
characteristics with those of his or her peers and the geo-spatial characteristics 
unique to the environment. More specifically, we are proposing that four discrete, 
yet related, interpersonal dynamics underlie the formation and maintenance of 
group formation in preschool children. These four indices of behavioral and 
affective patterning are the foundation of our ability to track groups as they form. 
Each index provides unique, yet tractable, information about the groups as they 
arise, disband, or maintain levels of stability. In aggregate, these indices provide a 
quantitatively robust dataset that captures complex evolving processes. This 
aggregate -- a compilation of behavior, affect, and geo-spatial location residing in 
time -- is the basis for determining the validity of our computer simulation model. 
Our objective is to reproduce the observed pattern of grouping behavior.  

 
Playgroup Morphology and Ontology: Interaction, Process, 

and Critical Components 
Affect Tone. Children’s affective expression can be viewed as a series of 

affect epochs. From these epochs, two aspects of each participant exchange are 
generated: (1) affect valence and (2) matching rate. That is, for each child, any 
social action with another child, provides an opportunity to generate moment 
statistics (i.e., mean) of affective valence (i.e., positive, neutral, negative), either 
for a specific episodic exchange or over an extended period of observation. In 
addition, by gathering affect on each play partner, it is possible to compare 
affective states between any two individuals at any given time during the 
observation period; in effect, this permits an estimate of affect matching rates 
within a dyad or group. Note that affect matching, a group level characteristic, 
provides very different information about emotion than does the individual’s 
general propensity to be in a particular affective state. In combination these two 
features represent intra-individual and inter-individual affect signatures embedded 
in time, space, and context. 

Bid Ratio. Within group (and within some general exchanges) behavior is 
generated by bid exchanges among its members. At the simplest level, what 
members do (i.e., the type of behavior (e.g., swing, play in the dirt)) is secondary 
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to how a call to action is made .that is, the bid. Group cohesion is generated, not 
from the activity generated by the bid, but by the successes of the bidding process.  
Group maintenance is generated by successful bids; conversely, a series of 
unsuccessful bids jeopardizes the group. Obviously, it is not the ratio of 
successful to unsuccessful bids that inherently destabilizes a group but rather the 
inability of the group members to accurately gauge the social situation exhibited 
through this ratio .that reflects poor judgment, inadequate social skills, and so on. 
Moreover, within our construction and coding of the bid process, we will examine 
the intra-group bid structure.  Specifically, as noted above, a bid can receive one 
of four responses: (1) accepted, (2) ignored, (3) rejected, or (4) counter-bid by 
other members of the group. Because of this potential response set, we expect 
each group and each member of the group to display an unique distribution of 
responses that have evolved from individual propensities combined with group 
level reinforcement histories. 

Intra-Episode Variability. After forming a group, the characteristics of 
the group (i.e., group phenotype; see Fewell (2003) for discussion about group 
level phenotypes) are evident by their affective (e.g., affect matching) and 
behavioral probabilistic structure, or more precisely, the consistency of this 
structure across episodes of play. This consistency, however, does not imply the 
lack of either variability or drift. We should, for example, assume some adaptive 
variability over time; any complex, evolving system typically evidences moderate 
variability in response to fluctuations of endogenous components and exogenous 
influences (Auyang, 1998). For playgroups, such fluctuations would come from 
changes in the environment and the continuous entering and exiting of other 
children in the group. Furthermore, we expect to see a drift in the structure as the 
group matures. Again, this would be expected as group members learn to modify 
their intra-group behavior as a function of history; they would or should be able to 
telegraph bids (e.g., subtle behavioral cues .idiographic to the group .are enough 
to initiate or terminate an action or play sequence). We propose that this third 
feature can be captured using available mathematical tools that: (1) adequately 
capture and describe the relevant socio-affective and behavioral characteristics of 
the groups (see e.g., Griffin, 2000); and (2) parsimoniously elucidates intra-group, 
inter-episode changes .either by estimating changes in probabilistic structure (e.g., 
sequential analysis) or covariance change (e.g., Price’s Equation). 

Time-Space. The set of factors that influence play likelihoods can be 
conceptualized as occupying an n-dimensional space along 4 primary axes: Affect 
Matching, Bid Ratios, Inter-Episode Variability, and time-space. Whereas the first 
three reflect intra-group behavior, the fourth dimension - time/space - represents 
the milieu of these groups. As noted above, play propensity between two or more 
children may be a function of who is available and where they are physically 
located relative to some feature of the playground (e.g., swing set); of course, we 
assume that these two aspects of play behavior are not independent. Time, within 
the conceptualization of play presented herein, has multiple facets. First, there is 
chronological time (e.g., 11:00 am). Second, there is calendar time (e.g., October). 
Third, there is episode frequency (e.g., 3rd time a particular group is seen playing 
together). And finally, there is episode duration. Groups are followed for an hour 
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in the proposed index coding system. Although there is the possibly of left 
censoring, and to some extent, right censoring, the average duration of a play 
epoch(s) is within an hour. We think that the Time-Space axis can be incorporated 
into our conceptualization of playgroup dynamics via the GIS methodology 
described above. 

These four indices of behavioral and affective patterning are the 
foundation of our ability to track groups as they form. Each index provides 
unique, yet tractable, information about the groups as they arise, disband, or 
maintain levels of stability. In aggregate, these indices provide a quantitatively 
robust dataset that captures complex evolving processes. This aggregate - a 
compilation of behavior, affect, and geo-spatial location residing in time - is the 
basis for determining the validity of our computer simulation model. Our 
objective is to reproduce the observed pattern of grouping behavior. 

 
Observational Data Collection 

Throughout the fall and spring, children’s naturally-occurring free-play 
interactions are recorded. Observations are collected for 5 hours/day each 
weekday for the academic school year. The observations commence on the first 
day of classes, and each class has 3-4 coders collecting data each shift. Coders 
rotate throughout the classroom, remaining unobtrusive and uninvolved in 
children’s activities. They record data using handheld computers, with the data 
automatically inserted into a database. Data from the handheld computers are 
downloaded into a desktop computer and converted into files that can be read 
directly into data management software. The advantage of using the handheld 
computers is that time-stamped data can be collected efficiently, entered quickly, 
and recorded with minimal error. 

 

 
Figure 1.  Map of the study site (e.g., outside area with a slide, climbers, 

playhouse, trees) 
 
Interval Coding.  Using a GUI interface, observers identify the first child 

in a randomized list and briefly (for 10 seconds) observe the child, record data, 

20



and then repeat the procedure for the next child on the random list.  During the 
10-second period, the observer codes several dimensions of the child and his/her 
context.  For example, coders record whether the child is alone, with a teacher, or 
with other children.  For solitary, teacher, and peer codes, the target is observed 
for activity (e.g., riding a bike, reading books, etc.), affect (i.e., positive, negative, 
neutral) and the presence of social peers (i.e., peers involved in direct interaction) 
and area peers (i.e., peers in the physical vicinity but not interacting with the 
target child).  On a fine-grained grid that is digitized to a spatial location on the 
tablet PC screen, the start point (X,Y), stop point (X,Y), and farthest distance 
traveled (X,Y) are recorded (see e.g., Figure 1).  Additionally, when a target is 
observed with a peer, we code who the child is playing with, the activity, the 
affective exchange between the group peers, and the physical location of the 
group.  Such data are used to determine if the specific type of activity, affective 
proclivities, and physical location influences the degree to which children interact 
with others (e.g., we can compute separate models for distinct combinations of the 
three factors). 

Group Coding.  Each week, the scan data are analyzed to determine 
cohesive groups.  Once a group is identified, a separate coder is assigned to 
follow each child within the group.  Each day, four one hour blocks (2 in the am 
and 2 in the pm) are allotted for the group procedure.  The coders first identify the 
location of the group members.  In a calibrated database, each coder begins 
recording data into the tablet PCs on their respective child.  In repeated 10 second 
intervals (for 30 minutes), the observer records the context of the event, who is 
present in the episode, the various affect and behavioral codes (e.g., bids, 
referencing, attending), and the physical location of the interval.  Additionally, 
each child (whether group members or not) is randomly selected for 30 minute 
individual increments.  The procedure used for the individual index coding is 
identical to the group observations; this method allows us to make comparisons 
using similar observational methods for children who form groups vs. those who 
do not. 

 
Geographic Information Science and Tracking Playgroups 

Once the field data are collected, they are transferred to a workstation GIS, 
where they are organized into a rich longitudinal database of children’s movement 
behavior.  These data are then coupled to the behavioral observations and 
aggregated and reconfigured as necessary to tease-out group movement, 
clustering, spatial segregation, and spatial polarization.  This can be done on a 
one-to-one, one-to-many, and many-to-many basis for children.  Additionally, it 
can be expressed geographically relative to notable features in the play 
environment:  adjacency to sandboxes, distance from teachers, proximity to the 
outer limits of the play space, etc. 

Applying this methodology has the added benefit of allowing us to query 
the database by spatial analysis and geovisualization.  For example, using spatial 
analysis, we can run a suite of spatial statistics over the data to look for the 
formation of statistically-significant clusters of activity or conditions in the 
model.  We can also test for the tendency of certain behaviors to co-locate in 
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space, or identify group dynamics associated with patterns of spatial segregation.  
Using geovisualization, we can also build-up instance-level and aggregate 
surfaces of  e.g., cooperation or disruptive behavior, and look at these clusters 
relative to the features of the playground.  For example, we can visualize hotspots 
of collaborative activity, or coldspots where children’s play tends to be isolated.  
The formation of databases of this form has the added benefit of providing a seed 
data-set for our agent-based model, as well as acting as a calibration and 
validation resource for our simulation. 

We have developed a system for building time geography relationships 
that captures events in space and time in a robust GIS framework.  This allows us 
to construct space-time paths and space-time prisms for individual, dyad, and 
group behavior (examples using synthetic data for two children are shown in 
Figure 2; this is an accurately scaled representation of the school).  Doing so 
further allows us to build a map of activities in time and space, e.g., in what 
places do young children tend to spend the majority of their play time, how might 
this differ from other children, how does this vary by time-of-day, how does this 
alter when polarizing influences are absent, etc.  These spatially explicit aspects 
provide a critical component to the scenario building implemented in our ABM. 

 
Simulating Playgroups:  PlayMate 

Using dynamic child behaviors to modify the likelihood of interacting 
with another child, PlayMate provides a representation of postulated 
developmental shifts in playgroup formation for children ages three to five years. 
Framed around a state transition model, each child, represented as an agent, can 
be in one of four states: (1) playing with another child; (2) playing with an adult 
(a teacher); (3) playing alone after playing with another child; or (4) playing alone 
after playing with an adult. Play likelihood across the four states is modified 
through Play Propensity and Arousal (i.e., proxies of internal configurations), 
with accumulating values in each of the four states for each child (see Griffin et 
al., 2004, for a review).  
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Figure 2.  Illustrating the spatial (X,Y) and spacetime (X,Y,t) paths of two 

children. 
 
To implement the simulation, a child is selected in round robin fashion to 

play with another child from the available pool (one is randomly removed to 
simulate a sick-day), and upon pairing, child i assesses child j on several 
dimensions determined by the investigator; minimally, these include gender and 
one relevant attribute (e.g., bidding behavior, affect, or a composite of both) being 
examined. The greater the homophily, as assessed by closeness on the variables in 
the model, the less likely the child is to exit the child-playing state and to continue 
playing with other children. Transition rules condition arousal level updates, and 
behavioral and affective exchanges as well as memory are updated through a 
summative value after each play episode. The summative values are entered into a 
tally matrix that, in turn, is converted to a child-to-child probability matrix. The 
tally and probability matrixes are then compared to similar matrixes extracted 
from the actual data. For model validation, PlayMate generates numerous 
quantitative indicators of the structure and composition differences between the 
simulated and real data; these include difference measures of Euclidian distance, 
Mean cell values, Entropy, Uncertainty reduction (a measure of mutual 
information), Solitary play, and row (i.e., child) signal-to-noise ratios. Each 
measure is assumed to provide slightly different information about the 
characteristics of the matrix structure. Our existing work validating PlayMate 
centered on simulating and replicating the peer interaction patterns obtained from 
coding individuals, with the incorporation of GIS and the Index coding procedure, 
we will be developing new validation indices. These will necessarily be complex, 
reflecting aggregate individual, group, and GIS data. 

23



Data Simulation. Prior to running the simulations, each child receives a 
score based on 
the three factors of gender, attribute level, and memory. For gender, each child 
receives a binary number (e.g., 0, 1), and rank orders for attribute scores are given 
based a predefined hypothesis (e.g., similarity in affect across all domains drives 
propensity for play). Finally, integers for memory rankings are based on a list of 
recent play pairings, with a current capacity of five possible pairings. Simulation 
runs typically consist of each child in the class playing 50 rounds in the round-
robin fashion. Subsequently performing the routine 50 times allowed us to obtain 
approximately 120-200 play episodes, characteristic of the numbers obtained for 
each child in the real data within each time frame. State shift and play partner 
propensities are influenced by the three factors, with each variable weighted 
according to the theoretical justification that displayed affect and bidding 
behaviors are the strongest predictors of peer selection. Essentially, increased peer 
preferences are determined by the aggregate of the three factors, with attribute 
level difference modifying the likelihood of being in a child play state. 
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AN INFERENTIAL APPROACH 
FOR VALIDATING AGENT SIMULATIONS 
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K. M. CARLEY, Carnegie Mellon University, Pittsburgh, PA 
 

ABSTRACT 
 

As the size and complexity of the agent-based simulation models increases so does 
the time and resources needed to validate the model. Validation is critical for 
replication of simulation results, which is a basis for scientific advance. Automated 
and semi-automated tools are needed to support validation activities and so reduce 
the time and number of personnel needed. 
 
A tool called WIZER (What-If Analyzer) which embodies our inferential approach is 
implemented. WIZER consists of four parts: an Alert WIZER, an Inference Engine, a 
Simulation Knowledge Space module, and an Empirical/Domain Knowledge Space 
module. The Alert WIZER characterizes simulation data with assistance from the 
statistical tools it semantically controls, compares simulation data to empirical data, 
and produces semantic descriptions of both the data and the comparison. The 
Inference Engine performs both causal and “if-then” rule inferences.  
 
WIZER is run on a simulator called BioWar which models disease spread in a 
demographically-representative city population. The results show that WIZER 
validates in a clear and automated manner the simulation models for the relative 
timing of peaks of influenza incidence and school absenteeism. They indicate that the 
inferential approach underlying WIZER can increase the transparency and reduce the 
time for model validation. 
 
Keywords: simulation validation, semantics, knowledge systems, causality, 
virtual experiments 
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INTRODUCTION 
 

Computer modeling and simulation provides a means of understanding and predicting 
the behavior of real-world systems based on knowledge of basic laws, empirical findings, 
and assumptions. It complements theory and experimentation/observation as the third pillar 
of science. Simulations can be viewed as virtual experiments. Computing advances mean 
better simulation models can be built. Typically, however, simulation results are designed 
solely for human analysis and validation is provided by subject matter experts judging that 
the model “feels right,” possibly after preprocessing the results using statistical tools. This 
process is time-consuming and deficient in clarity, transparency and objectivity. The remedy 
is usually prescribed in the form of a methodological approach (Yilmaz 2006), of which 
Verification, Validation and Accreditation (VV&A) process is one, but validation remains a 
cumbersome process. 

  
NASA lost the Mars Climate Orbiter spacecraft on September 23, 1999. Mission 

specifications called for using metric units, but the Lockheed Martin group sent navigation 
information in English units. The mix-up meant that Lockheed Martin engineers modeled 
navigation with pounds force (the English unit for measuring thruster impulse) while JPL did 
their calculations in newtons (the metric measurement). One pound force is equivalent to 
4.45 newtons. The software for the spacecraft thrusters uses the wrong unit. While 
management failure played a role, this would never have happened if an automated validation 
process existed – one as simple as tying-up each number with its semantics. The error would 
have been caught early if a continuously validated spacecraft and orbital simulations existed. 
Similar problems and misunderstandings happen in the modeling and simulation world where 
researchers rarely are able to replicate others’ simulations quickly, precisely and reliably. 

 
Computational modeling and analysis focuses on employing computers to build 

model specifications, verify code, and execute simulation. Indeed, the notion of 
computational modeling and analysis usually means a quantitative run completed by 
computers and inference/analysis on the results of the computer run completed by human 
experts. Computers are not employed to help automate inference, validation, model 
improvement, or experimental design. Figure 1 depicts this imbalance in automation. Recent 
advances in data mining made automated analysis more common, but data mining deals only 
with empirical data, not with automatic building, validating, and improving models. Machine 
learning approaches can be applied to learning logical, mathematical, and statistical models 
from data, but they have not been extended to automatic construction, validation, and 
improvement of simulation models. 
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FIGURE 1 Automation of Inference, Validation and Model Improvement 
 
We take the road less traveled to automate validation: an inferential approach uniting 

simulation with ontological, causal, and knowledge-based reasoning. A tool is implemented 
based on the approach. This tool is applied to a simulation testbed called BioWar (Carley et 
al. 2003) which emulates how a city’s population reacts to influenza outbreaks. 

  
 

OUR INFERENTIAL APPROACH 
 

Our inferential approach for validation consists of causal reasoning, knowledge-based 
reasoning, ontological reasoning, and the scientific method. We call the tool WIZER for 
What-If Analyzer. WIZER is a knowledge-based tool; the importance of knowledge – and 
the reasoning based on that knowledge – is emphasized. While WIZER uses statistical tools, 
they are used in the context of knowledge bases and inferences. Simulation and its outputs 
are described based on knowledge. Inference rules and descriptions of statistical tools are 
encoded semantically. WIZER consists of an Alert module, an Inference module, and two 
knowledge space modules. Figure 2 below shows the diagram of WIZER. 

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 

Figure 2 WIZER Diagram 
 

The Alert module does two tasks: (1) describing data using statistical and pattern 
classification tools, (2) matching a data description with empirical data, producing semantic 
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alerts. Alerts here are defined as semantic characterizations of numerical data (not just alerts 
in the sense of imminent danger). For example, the Alert module can semantically describe 
the ups-and-downs of a school absenteeism curve taking into account other semantic or 
contextual information such as holidays and weather-incurred closings. While not depicted in 
the figure, the Alert module can also semantically categorize input data and empirical data. 

 
The Inference Engine takes in the outputs from the Alert module, the simulator’s 

causal diagram, a meta-model of the simulation's knowledge space, combined with empirical 
data, domain knowledge, and parameter constraints (of the domain knowledge space), to 
determine which parameters, causal links (Pearl 2000, Pearl 2003), and model elements to 
change – or not to change – and how. The Inference Engine calculates the minimal number of 
perturbations to the simulation model to best fit the outputs. The model (including the causal 
diagram) and any potential alternate models are coded into ontologies and rules. 
Perturbations are implemented as the effects of ontological and rule-based reasoning. An 
inference produces new parameters for the next simulation. This cycle repeats until a user-
defined validity level (which can be defined semantically) is achieved. The user interface 
module is not shown in the figure for clarity. 

 
The Domain knowledge space module provides domain knowledge to the Inference 

Engine. Empirical data can change domain knowledge and domain knowledge can ascertain 
what empirical data are relevant. This depends on the strength of evidence supporting the 
knowledge and the data. The Simulation knowledge space module provides the simulator 
with knowledge such as the causal network of the simulation model. The Inference Engine 
produces new parameter values and possibly new links for the Simulation knowledge space 
module. The simulator influences and is influenced by the Simulation knowledge space 
module. The parameter data is empirical, but this empirical data is used in the simulator. 
Because the empirical data used in the simulator is not the same as the data used for 
validation, the delineation is clear. Both domain and simulator knowledge spaces are 
represented by a graph. We use an RDF-based semantic representation. This semantic 
representation describes and facilitates control of simulation models, knowledge spaces, 
results, inferences, and statistical tools. In the N3 notation, the basic syntax for RDF is a 
simple one: <variable1> <relationship> <variable2>, where variable1 represents a subject, 
relationship a verb, and variable2 an object part of an English sentence. In our 
implementation, the verb “causes” can specify empirical relationships. In a conventional 
ontology and semantics, an ontological and semantic relationship is defined conceptually and 
logically – based on description logics – and not empirically. Scientific method is employed 
to get empirical causal relations. 

 
 

RESULTS OF WIZER RUNS ON A SIMULATION TESTBED 
 
Here we present the results of WIZER runs on the BioWar simulation testbed. 

BioWar (Carley et al. 2003) is a city-wide simulation model of weaponized biological and 
chemical attacks on a demographically-realistic population with a background of naturally-
occurring diseases.  

 
We describe below the results for one validation scenario that examines the relative 

timing of the peaks of the children’s absenteeism curve and the incidence curve. The 
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empirical data for this scenario is gathered from the National Institute of Allergy and 
Infectious Disease (NIAID). 

 
Validation Scenario: Absenteeism Curves 
 

The variables and output values for this scenario are as follows. 
• Outputs for empirical matching: we choose the simulated actual incidence and school 

absenteeism drug purchase curves.  
• Variables: because the onset of absenteeism is influenced by symptom onset and 

symptom severity, these two factors are important model variables. 
 
The knowledge base consists of causal rules and “IF-THEN” rules related to the 

causal ones. The causal conceptual diagram is as follows: 
(causes symptom-onset absenteeism-onset) 
(causes symptom-severity absenteeism-onset) 
(convertible infection-rate incidence-rate); computable from each other. 

 
 Onsets are computed with reference to the time of infection. The rules related to the 
causal relations are as follows: 

(if-then (toosoon absenteeism-onset) (op-lengthen symptom-onset)) 
(if-then (toolate absenteeism-onset) (op-shorten symptom-onset)) 
(if-then (toosoon absenteeism-onset) (op-lower symptom-severity)) 
(if-then (toolate absenteeism-onset) (op-higher symptom-severity)) 
(if-then (tooshort absenteeism-vs-actual-incidence)  

(op-toosoon absenteeism-onset)) 
(if-then (toolong absenteeism-vs-actual-incidence)  

(op-toolate absenteeism-onset)) 
 

The simulation instantiations of variables are as follows: 
(setvalue symptom-onset 2) 
 (setpriority symptom-onset 3); priority for conflict resolution 
(setvalue symptom-severity 3) 
 (setpriority symptom-severity 1) 
 
The simulation instantiations of outputs are as follows. One BioWar simulation of 

Hampton city (population 142,561 persons) with 100% scale is run. The Alert WIZER 
computes the peaks of the actual-incidence and school absenteeism curves. It outputs the 
relative timing of the peaks. The following figure shows the actual-incidence curve. 
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Figure 3 The Peak of Incidence Occurs on Day 128 

 
As shown, the peak of incidence occurs on Day 128. Day 1 is the start of the 

simulation, corresponding to September 1, 2002. In the simulation trial, the relative time 
difference between simulated absenteeism and simulated actual-incidence peaks is 10 days.  

(setvalue absenteeism-vs-actual-incidence 10) 
The empirical data gives 1-4 days as the incubation period for influenza. Absenteeism occurs 
a day after the end of incubation. Thus, the empirical data are as follows: 

(setvalue emp-absenteeism-vs-actual-incidence-lowval 2) 
(setvalue emp-absenteeism-vs-actual-incidence-highval 5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 The Peak of School Absenteeism Occurs on D 
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As shown, the peak of school absenteeism occurs on Day 138. The curve is 
discontinuous on Saturdays and Sundays because schools are closed. Days 115-121 are 
holidays.  

 
The Inference Engine compares the relative timing of absenteeism and incidence 

peaks with the empirical relative timing. After conflict resolution based on the priority value 
(here other weighting factors are not considered), it produces the following inference 

(toolong absenteeism-vs-actual-incidence) 
(op-higher symptom-severity) 

because the absenteeism peak lags 10 days behind the incidence peak; twice as long as the 
empirical maximum of 5 days. 
 

The inference is that the symptom-severity (the relative magnitude of manifested 
symptoms) should be increased. For the next cycle of the simulation, symptom severity is 
increased by 100% using an encoded rule about critical point heuristics. BioWar is re-run and 
then WIZER is re-run. The following figure shows the resulting school absenteeism curve. 
 

Figure 5 The Peak of School Absenteeism after Change Occurs on Day 132 
 
As shown, the peak of school absenteeism now occurs on Day 132. The Inference 

Engine compares the relative timing of absenteeism and incidence peaks with the maximum 
empirical relative timing. After conflict resolutions are performed, it now produces the 
inference of: 

(within-range absenteeism-vs-actual-incidence) 
(op-valid) 
 
The relative time difference between absenteeism and actual-incidence peaks is now 

4 days, less than the previous cycle's relative time difference of 10 days, and now one day 
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shorter than the maximum empirical time difference. Thus, the peak of school absenteeism 
has moved into the valid, empirically bounded range of 2-5 days. The Inference Engine 
announces that the simulated absenteeism curve peak is now valid. 

 
The following figure shows the school absenteeism curves before and after the 

parameter value change. 

Figure 6 School Absenteeism Curves before and after Parameter Value Change 
 
As shown, after changing the parameter value, the absenteeism peak moves closer to 

the incidence peak (as shown by the black vertical line). 
 
 

Validation Measures 
 
Validation is measured based on a piece of knowledge that corresponds to a data 

stream. For the results on school absenteeism above: initially, the simulated school 
absenteeism peak occurs later than it should be. Thus this data stream has zero validity, 
strictly speaking. After parameter values were changed by WIZER, the simulated 
absenteeism peak moved to within the empirical range, achieving validity. 

 
WIZER versus Response Surface Methodology 

 
BioWar has hundreds of parameters. The resulting parameter space is gigantic. 

Suppose that the Response Surface Methodology or RSM (Myers and Montgomery 2002, 
Carley et al. 2004) is used to completely characterize BioWar for validation. Let us assume 
that that BioWar has 200 parameters (a conservative number) and that each parameter can 

School Absenteeism before and after Change 
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have 3 different values (3 levels), the parameter space is 3^200 cells, unmanageable with any 
current technology. As BioWar is stochastic, each cell requires multiple virtual experiments 
(assume here 40 virtual experiments) to achieve statistically significant results. 

 
Experimenters, of course, can divide the system into modules and validate module by 

module, assuming all other modules have reasonable parameter values and the existence of 
some modularity in the system. If this is done for BioWar, experimenters can probe the 
relationships between incidence rate and infection factors such as ailment effective radius 
(initial infection radius), ailment exchange proximity threshold (person-to-person 
transmission of bioagents for contagious diseases) and base rate (initial infection rate). 
Assuming each of these factors has 3 levels (3 possible values) the following table shows the 
number of cells required. 
 
TABLE 1 Cell number for incidence factors validation 

 
 

  Parameter                                                         Categories                               Size 
 
 

Ailment effective radius 500, 1000, 1500 meters 3

Ailment exchange proximity threshold 500, 1000, 1500 meters 3

Base rate 10%, 30%, 50%, 70% 4
 

 
 
As shown, the total number of cells required is 3 x 3 x 4 = 36 for the non-stochastic 

case. Being stochastic, BioWar requires at least 36 x 40 = 1,440 virtual experiments.  
 
WIZER enhances the way experimenters decide which parameters and what 

parameter levels to choose by codifying the knowledge in a form that is clear, explicit, and 
operable by computers. With its inference engine, WIZER can reason about parameters and 
simulation results, producing new inferences. Furthermore, utilizing its knowledge inference, 
WIZER can reduce the number of virtual experiments needed. The above number of virtual 
experiments for RSM of 1,440 is the upper limit of what WIZER needs. Typically, WIZER 
needs fewer due to its inferences about simulation results after each simulation cycle. The 
better the inferences and the knowledge bases, the fewer the number of required simulation 
runs. 

 
The following table shows what WIZER gains when used for BioWar. The gain is 

compared against what normally transpires when humans do the validation. The numbers are 
first-order estimates. The time it takes for WIZER depends on computer speed, memory, and 
storage capacity. In addition to BioWar, we have validate a simulation model of socio-
cognitive co-evolution called CONSTRUCT (Carley 1991) using WIZER with comparable 
performance gains. 
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TABLE 2 Advantages of WIZER versus manual validation for BioWar 
 
 

Aspect of validation                    Manual validation                    WIZER 
 
Time to generate input data Days if not weeks, due to the 

data access rights, usage 
policy, non-disclosure rules, 
privacy concerns, data 
ownership rights, and other 
problems. 

Days if not weeks, and 
longer than what it takes if 
done by human, as the data 
needs to be formatted and 
prepared for computer 
processing 

Number of points in response 
surface  that can be estimated 

1 per 10 minutes 20 per 10 minutes 

Number of data streams One data stream examination 
per 15 minute 

Many more data stream  
examinations (>15) per 15 
minutes, limited only by 
computer speed 

Knowledge management Difficult Facilitated 
Number of rules processed One per 5 minutes 300 per 5 minutes 
Number of causal relations 
considered 

One per 5 minutes 300 per 5 minutes 

Selection of experimental 
variables 

Implicit but good, depending 
on experience 

Explicit and computer 
operable 

Use of statistical tools Depends on experience Encoded in the inference  
Documentation of inference 
and experiment steps 

Need extract work Included in the inference 
trace 

Ability to explain simulation 
results 

Depending on experience Part of inference trace 

Enforced precision No Yes 
Enforced clarity No Yes 
Man-hours Large Medium-to-Large 
Retention of knowledge  Depends on personnel Facilitated 
Large problem solving Possible, e.g., by careful 

analysis 
Facilitated 
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ON THE CONSTRUCTION OF KNOWLEDGE SYSTEMS 

 
 While the automation of simulation validation brings efficiency, there is an upfront 
investment in the construction of knowledge bases and inference rules. There is also a 
research question of how one validates the knowledge bases and inference rules. 
  

Our perspective on the above issues is multi-faceted. The knowledge codification in a 
form that is clear, explicit and operable by computers facilitates replication of simulations 
and their results. Replication of results is critical for scientific progress. Current practices of 
simulation validation (which is usually done by people who construct the simulation) leave 
this critical issue of replication as an afterthought. As a result, it slows down the scientific 
advance of modeling and simulation. The codification of knowledge is necessary to do sound 
engineering and science. Current codification focuses on model specifications and usually 
has a form of formalized English language. (Codification for code verification can be done 
using formal methods.) It is straightforward to require that the codification be done not just 
for model specifications but also for validation specifications and that it be done in a form 
that is operable by computers. It is a simple extension of existing activities to cover broader 
scope. The fact that now the codification allows computer automation will recoup some of 
the time and resources investment spent on codification. Needless to say, this is similar to 
building houses by designing detailed engineering models beforehand. People can build 
houses without detailed designs but this often results in a quality-problem and delays in 
construction. Indeed, quality does matter, not just quantity. Codification also facilitates 
collaboration. To ameliorate the startup investment cost, we are implementing simulation 
infrastructure to help modeling and simulation practitioners encode their model and 
validation specifications in a form operable by computers. 
  

An investment in clear, explicit and computer-operable representation of knowledge 
for specification and validation is also useful because this higher-level of representation can 
help reduce errors in the specification and validation process. This is analogous to the fact 
that high-level languages such as Java helps reduce programming errors and increase 
programmer productivity as contrasted to the low-level assembly language or machine-level 
machine-code. An upfront cost here is the compiler and, in our case, the knowledge bases 
and inference rules. In fact, modeling and simulation itself is an investment vis-à-vis 
construction without models. Boeing is successful in using computer modeling and 
simulation in lieu of physical prototyping in the construction of its latest airplanes. 

 
 Avoiding a conflict of interests, it is a good practice to separate people or institutions 
who build a simulation system with those who validate it. Thus, the validation people will 
build their own knowledge bases for validation. Current validation process has already put 
validation specifications on paper. It is an extension to current activities to put those 
specifications in a form that is clear, explicit and operable by computers. We will have 
knowledge bases from validation stakeholders and from model builders. Comparing these is 
one way to validate the knowledge bases. The fact that we structure our knowledge bases 
according to causality simplifies the validation of the knowledge bases. The issue of 
knowledge bases validation as a whole, however, is a subject for another paper.  
  

Another aspect of validation of large and complex simulations is the need to facilitate 
collaborations among diverse experts located at various locations. For this, an explicit and 
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clear specification of simulation models and results facilitates collaborations. WIZER and 
cyberinfrastructure components can help researchers setup, run and replicate simulations 
with precision and speed. 
  

The conventional knowledge systems have a weakness of being brittle, which means 
that the inferences will go awry if they are employed outside the specified application 
domain. It is also hard to ensure the correctness of knowledge and inferences when new rules 
are added. We address these issues by restructuring rules in knowledge bases using causality 
and by using knowledge systems strictly within their application domains. For large 
simulations such as BioWar, we have multiple knowledge modules representing different 
domains. This is similar to what happens in human problem solving: epidemiologists deal 
with diseases and symptoms, city health officials deal with quarantine and other response 
policies, police deal with how to maintain security and order, first-responders deal with how 
to give first-aid quickly, etc. As causality is empirical, the inferences are grounded on 
empirical knowledge and data. Structuring knowledge bases along causality is one way to 
partition the knowledge bases into smaller, more coherent and more manageable knowledge 
bases. A related work on scaling up knowledge bases is structure-based partition (Amir and 
McIlraith 2005, Ramachandran and Amir 2005). As WIZER is a knowledge-based causal 
system, it can scale well given appropriate knowledge including statistical knowledge. 
BioWar itself is a sufficiently complex model to test validation approaches: it can represent a 
demographically-realistic, spatiotemporally-realistic, and features-rich city with millions of 
people. In the real-world, statistics is used to scale economic models and market indicators 
are used to scale the model measurements. If we would like to have precise world-scale 
validated economic models/simulations, we will encounter the challenge of getting the proper 
data before the challenge of inference. As more and better economic data become available, 
WIZER can scale with the data and help build better economic models. 
  

We have argued above that it is critical and necessary to invest in a clear, explicit and 
automated representation and validation of simulations because we need to have replications 
to do good science. It is also a good engineering practice to have design schematics covering 
the entirety of the system (not just model specifications but also model behaviors and results) 
that can be automatically checked and executed by computers. While it takes time and 
resources to construct knowledge bases and inference rules, Table 2 indicates that once this is 
done we can recoup the investment and get the dividends. The needed investment is also 
reduced as the construction of knowledge bases and inference rules can piggy-back the 
model specification activities.  
 
 
 

DISCUSSION 
 

WIZER is unique in that it pioneers ontological and knowledge-based inference for 
simulation validation and model-improvement. WIZER is a causal and logical reasoning, 
hypothesis building & testing, and simulation control engine with statistical and pattern 
recognition capabilities. It strives to employ deep and structural knowledge by employing 
causal and ontological reasoning. WIZER seeks to emulate scientists doing experiments and 
analyses via the scientific method, rather than providing another methodological approach or 
programming environment. The causal reasoning component provides link to empirical data 
and knowledge of scientific experiments. 
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While other toolkits such as Swarm (http://wiki.swarm.org), TAEMS (O’Hare and 
Jennings 1995, Lesser et al. 2004), and Repast (http://repast.sourceforge.net) provide 
programming environments for agent-based simulation systems, WIZER is designed to help 
with scientific experimentation, validation, scenario analysis, and model improvement. 
WIZER is able to run on top of any simulation system, including those constructed using 
Swarm and Repast toolkits. 

 
The following table compares WIZER and other tools: 
 

TABLE 3 Feature comparisons between WIZER and other techniques 
 
 

                                 WIZER         Swarm/TAEMS/Repast     Evolutionary      Data               
                                                                                   Strategies          Farming 
 
 

Programming 
environment? 
 

No Yes No No

Unit of inference Rule and 
causation 

None Evolutionary 
and genetic 
operators 

Data 
growing 
heuristics 
 

Object of 
operation 

Simulation, 
data and 
knowledge 
 

Code Simulation 
and data 

Data 

Experimentation? Yes, 
automated 

Yes, human operated Yes, 
automated 
(fitness)  

No

Knowledge 
operation? 

Yes No No No

 
 
WIZER differs from evolutionary programming (Fogel 1999), evolutionary strategies, 

and genetic algorithms in that it does not need a population of mutation/crossover candidates 
nor does it need mutation, crossover, or other evolutionary and genetic constructs. Instead, 
WIZER applies knowledge inference to simulations to determine the next simulation run. If 
the result of inferences mandates a radical change, a revolution will occur. From the 
historical point of view, evolution took millions of years to affect change, while the 
application of the scientific method after the Renaissance advanced science and affected 
changes on the Earth’s surface in only a few hundred years. 

 
Our approach facilitates the integration of simulation and knowledge inference. As a 

simulation runs, producing perhaps emergent behaviors, simulation-based knowledge is 
automatically captured and analyzed. As knowledge changes, the simulation can be changed. 
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For social sciences, the inferential approach allows investigation of the foundations of 
social networks, first by the validation of agent-based systems and in future by the validation 
of more realistic systems (e.g., physical models). Unlike the Exponential Random Graph 
Model (ERGM) or p* (Robins et al. 2006) which attempts to characterize the probability of 
social network structures in a top-down manner using pure statistics, WIZER can be used to 
characterize a range of agent behaviors and the resulting emergent social behaviors from 
agent interactions in a bottom-up fashion and within a proper context of the application and 
semantics. Our inferential approach indicates a path toward more profound theories for social 
interactions and group behaviors.  
 

In the scientific community, the explosion of data and the need for collaboration 
paved the way for cyberinfrastructure, which is an infrastructure for data acquisition, data 
management, knowledge sharing, visualization, and collaboration over the Internet for 
scientists and engineers. The linkage between simulations within cyberinfrastructures and 
knowledge inferences is not yet automated. Our approach suggests one way to automate the 
linkage and thus provide a simulation infrastructure for scientists and engineers. This may 
speed up the analysis of massive data sets. Social scientists, artists and humanists in 
particular need a simulation infrastructure to play out and investigate phenomena that cannot 
be described by math, logic and statistics alone. 

 
The inferential approach underlying WIZER for simulation validation facilitates more 

precise research in organization and management sciences. As data become more available, 
aided by high performance computers, the simulations become more precise enabling more 
detailed theories to be built and tested.  

38



References 
 

Amir, E. and S. McIlraith, 2005, “Partition-Based Logical Reasoning for First-Order and 
Propositional Theories,” Artificial Intelligence, 162 (1-2), pp. 49-88. 

 
Carley, K.M., 1991, A Theory of Group Stability. American Sociological Review, 56(3): 

331-354. 
 
Carley, K. M., D. Fridsma, E. Casman, N. Altman, J. Chang, B. Kaminsky, D. Nave, and A. 

Yahja, 2003, “BioWar: Scalable Multi-Agent Social and Epidemiological Simulation 
of Bioterrorism Events,” Proceedings of North American Association for 
Computational Social and Organizational Science (NAACSOS) Conference 2004, 
Pittsburgh, PA, http://www.casos.ece.cmu.edu/casos_working_paper/carley_2003_biowar.pdf. 

 
Carley, K.M, N.Y. Kamneva and J. Reminga, 2004, Response Surface Methodology, CASOS 

Technical Report CMU-ISRI-04-136, Pittsburgh, PA 
 
Fogel, L.J., 1999, Intelligence Through Simulated Evolution: Forty Years of Evolutionary 

Programming, Wiley Series on Intelligent Systems, New York, NY. 
 
Lesser V, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. 

Podorozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang, 
2004, Evolution of the GPGP/TAEMS Domain-Independent Coordination 
Framework. Autonomous Agents and Multi-Agent Systems, Volume 9, Number 1, 
Kluwer Academic Publishers, pp. 87-143. 

 
Myers, R.H. and D.C. Montgomery, 2002, Response Surface Methodology: Process and 

Product Optimization using Designed Experiments, 2nd ed., New York, NY: John 
Wiley. 

 
O’Hare, G. and N. Jennings, 1995, Foundations of Distributed Artificial Intelligence, Wiley 

Inter-Science, pp. 429-448. 
 
Pearl, J., 2000, Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge 

University Press. 
 
Pearl, J., 2003, “Statistics and Causal Inference: A Review,” Test Journal 12 no. 2 

(December): 281-345. 
 
Ramachandran, D. and E. Amir, 2005, Compact Propositional Encodings of First-Order 

Theories, in 20th National Conference on Artificial Intelligence (AAAI'05).  
 
Robins, G., T. Snijders, P. Wang, M. Handcock, and P. Pattison, 2006, “Recent 

Developments in Exponential Random Graph (p*) Models for Social Networks,” 
Social Networks, forthcoming. 

 
Yilmaz, L., 2006, “Validation and Verification of Social Processes with Agent-Based 

Computational Organizational Models,” Computational & Mathematical 
Organization Theory, vol. 12, no. 4, pp. 283-312. 

39



40



COMPARING AGENT TRAJECTORIES 
 

H.V. PARUNAK,* S. BROPHY, S. BRUECKNER 
NewVectors division of TTGSI 

 
 

ABSTRACT 
 

Sometimes it is desirable to measure the difference between the spatial trajectories of two 
or more agents. The naïve measure (the sum of Euclidean distances between locations at 
successive timesteps) increases with the lengths of the trajectories, which is not suitable 
for some applications. This paper explains the problem that motivates such a comparison, 
describes the design of the comparison that we are using, and gives an example of its ap-
plication.  

 
 Keywords: trajectories, prediction, comparison 
 
 

INTRODUCTION 
 

It is often useful to invoke spatial metaphors, such as “location,” “move,” and “trajec-
tory,” in describing agent behaviors. 
 

Like any system, a software agent has a state, the vector of all variables that describe its 
condition. By analogy with the <x, y, z> vector of physical location, we call the set of all states 
that the agent can assume its “state space,” and its current state is its “location” in that space 
(which may be continuous or discrete, and may or may not have a proper metric). For some 
agents (e.g., robots or routing agents), an important component of their state is their physical lo-
cation, but it is also useful to think of an agent searching for information as having a location in 
“semantic space,” or of a planning agent as occupying a location in “task space.” 
 

When agents make decisions, they often change their state, and we say that they “move” 
in their state space. Similarly, successive decisions constitute a “trajectory.” Again, these terms 
are understood literally for physically situated agents, but are applicable metaphorically to any 
agent. 
 

For some applications, an agent’s trajectory is more important than its individual move-
ments, and the set of trajectories of several agents is more important than their individual trajec-
tories. To analyze such systems, we need to compare trajectories and characterize them collec-
tively. This paper offers some tools for this purpose 
 

Section 2 motivates the comparison of agent trajectories in the context of a specific mod-
eling construct, the polyagent. Section 3 describes several measures that can be used to compare 
trajectories. Section 4 gives an example of using the measure.  
 
 
                                                 
* Corresponding author address: H. Van Dyke Parunak, NewVectors, 3520 Green Court, Suite 250, Ann Arbor, MI 

48105; e-mail: van.parunak@newvectors.net. 
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MOTIVATION FOR A MEASURE 
 

Our polyagent technology for predicting the fu-
ture (Parunak and Brueckner 2006) represents each 
domain entity by multiple ghost agents, each exploring 
a different alternative future for the entity. For clarity, 
we assume that the future under consideration is a pos-
sible path through two-dimensional space, though 
paths through more complex structures (such as se-
mantic networks or hierarchical task networks) can 
also be explored.  
 

We wish to interpret the set of trajectories dis-
covered by the ghosts. In particular, we are interested 
in characterizing their divergence over time. The prob-
abilistic behavioral models of the ghosts emulate interactions of their entities with one another 
and with the environment. Since these interactions are highly nonlinear in most domains, they 
tend to result in phenomena such as divergence and bifurcation, and can also characterize the 
ghosts’ environment. 
 

Figure 1 illustrates divergence and bifurcation. Ghost time is indexed by τ and real-world 
time by t. Ghost simulation begins in an environment whose state corresponds to a point in the 
past relative to t. When τ = t, we compare ghosts with the real entities that they represent, and al-
low the fittest ones to run into the future to form predictions. The upper bundle diverges beyond 
the “prediction horizon” (Parunak, Belding et al. 2007). Detecting this divergence would enable 
the system to avoid wasting resources on exploring further. The lower bundle bifurcates. In this 
case there is still predictive value in running the ghosts ahead, but detecting the branch point is 
crucial for understanding the system. 
 

The degree of divergence depends heavily on the environment. For example, if ghosts are 
exploring possible paths for a pedestrian in the middle of an open field, they will diverge more 
than ghosts exploring paths for the same pedestrian at the bottom of a long, narrow valley. Dis-
tinguishing these cases can enable us to make more efficient use of the population of ghosts, and 
can also provide a useful characterization of the environment in its own right. 
 

For our purposes, a measure of trajectory similarity should meet three requirements. 
 

1. It should be independent of trajectory length, so that we can apply it across trajectory 
bundles of different lengths, and use it to monitor similarity as a trajectory evolves. 

2. It should be tolerant of both temporal and spatial offset. Two trajectories that follow the 
same path but at slightly different times, or that run parallel to one another but not in ex-
actly the same location, should be considered similar to one another, with the degree of 
similarity decreasing smoothly as the differences increase. 

3. It should be efficient to compute. This requirement is motivated by our desire to use the 
measure in a real-time feedback loop to modulate the generation of polyagent ghosts. 

 

Figure 1  Trajectory analysis: Ghosts 
run past “Now” into the future to make 
predictions. The upper bundle di-
verges at τ1, while the lower one bifur-
cates. 
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The gold standard for measuring things is a metric, which is a function d from a Cartesian 
power of a set X to the reals that exhibits non-negativity, identity of non-discernibles, symmetry, 
and subadditivity. In general, our functions do not satisfy all of these conditions, so we call them 
“measures.”  
 
 

DEVELOPING A MEASURE 
 

Our approach to comparing trajectories has three components: measuring the difference 
of a pair of paths, extending this measure to a bundle of trajectories, and converting the un-
bounded measure of difference to a bounded measure of similarity. 
 
Pairwise Comparisons 
 

We will compute our metrics on some ex-
perimental paths. Figure 2 shows the first test set: 
eight trajectories in two bundles, moving from left 
to right. Half of the trajectories in each bundle 
zigzag to simulate stochastic variation around the 
main course of the bundle. We want our distance 
measure to show that these two bundles separate, 
then converge. 
 

The naïve starting point for comparing tra-
jectories is the sum of the Euclidean distances between corresponding points in the trajectories. 
If di is the Euclidean distance between the ith pair of points in a trajectory of length N, the dis-
tance is ∑

=

N

i
id

1
. When we have more than two trajectories, we take the mean of the pairwise dis-

tances. This approach is reasonable when  
• All trajectories have the same number of steps 
• All trajectory steps are of the same time duration 
• All trajectories start at the same location 

The sum of pointwise Euclidean distances is monotone nondecreasing as the length of the 
trajectory increases, since each additional step may add more difference. Thus pairs of long tra-
jectories show a larger difference from each other than pairs of short ones, simply because they 
include more points, violating our first requirement. Some form of normalization is needed.  
 

The obvious normalization is by the length of the trajectory, giving the average separa-
tion per step, 
 

∑
=

N

i
id

N 1

1  

 
If we apply this measure in real-time, the number of items in the sum and thus the nor-

malizing constant increase throughout the run, with undesirable consequences. Figure 3 shows 
the point-by-point Euclidean distances (the upper zigzag line), and the running average separa-
tion (the lower line). In the lower line, while the divergence of the trajectories is clearly marked, 

 

Figure 2  Eight trajectories from left to 
right. Four take the upper path, four take 
the lower. On each path, two go straight, 
while two zig-zag around them. 
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their subsequent convergence is much less 
clear, because the change is diluted by the 
many differences already included in the 
average.  
 

For monitoring trajectory prox-
imity during execution, a running average 
of point-wise trajectory separations over a 
Scoring Window is more effective than 
an overall average. In our tests, a scoring 
window of 4 is long enough to smooth the 
scores. The wider the scoring window, the 
longer it takes for the score to reflect a 
change in path similarity patterns. We use 
the scoring window to normalize scores 
for the various refinements discussed be-
low. Figure 4 shows the behavior of a scoring window of width 4 on the trajectories of Figure 2. 
It smooths out the zigzags and gives a distance profile that corresponds to our intuition about the 
overall behavior of the bundles, but it lags the actual movement of the trajectories by 2 time steps 
(half the width of the window). 
 

The Euclidean measure does not recognize path pairs that follow identical routes with a 
small time lag as being similar, and thus does not satisfy our second requirement. Two alterna-
tive mechanisms can accommodate time lapses, step windows and the Laurinen algorithm.  
 

The step window method uses two parameters, the Past Step Limit and the Future Step 
Limit, to define a window of comparison around the matching point on the paired path. For each 
point on one path, the distance is computed to every point on the other path that falls within this 
window. The shortest such distance is that point’s distance from the other trajectory. Then these 
distances are averaged over the trajectory. 
 

This approach captures the similarity between some lagging paths, but shows discontinui-
ties as paths move within the window, and cannot discriminate between paths that lag at different 
distances if they all fall within the window. These problems result from the abrupt boundaries 
and arbitrary length of the window. In ad-
dition, of the four conditions for a formal 
metric, the step window method violates 
all except nonnegativity. The main culprit 
is asymmetry: the sum of distances of 
points in trajectory A to the closest points 
in trajectory B is not necessarily the same 
as the sum of distances of points in trajec-
tory B to the closest points in trajectory A. 
 

A more general method for align-
ing paths that are not exactly aligned tem-
porally is Laurinen’s algorithm (Laurinen, 
Siirtola et al. 2006), which explicitly in-
cludes temporal distance when measuring 

 

Figure 3  Point-by-Point and Running Average 
Distances 

 

Figure 4  Running average, scoring window = 4 
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the separation between points on two trajectories. Applying this algorithm requires defining a 
mapping from time to space. We multiply the time-distance between the comparison steps by a 
Step Weight Factor and use the result as a third component in the Euclidean distance computa-
tion (along with the x-distance and y-distance components) in selecting the closest matching 
points between two trajectories. (The Step Weight Factor is analogous to the speed of light in 
special relativity, in its role of rendering space and time commensurate.) In our polyagent appli-
cation, agents can move a maximum of five cells at each time step, so we set the step weight to 
1/5 = 0.2. This approach allows lagging paths to score as similar, and provides a smoother func-
tion than does the step window approach.  
 

By itself, this computation is asymmetrical, and violates the same three metric conditions 
as the step window method. To ameliorate the problem, Laurinen computes the distance in both 
directions and chooses the maximum of the two. This approach violates only the triangle ine-
quality. In practice, in spite of this shortcoming, it is serviceable as a well-defined measure of 
trajectory similarity. 
 

Figure 5 shows the effect of these two ad-
justments on time-lagged paths. Four trajectories (a 
straight one and a zigzag one for each of the upper 
and lower branches) are synchronized with each 
other. One straight trajectory for each branch is de-
layed by three time steps, and one zigzag trajectory 
for each branch is delayed by four time steps. The 
upper curve uses a scoring window of 4, but makes 
no correction for lagging, and as a result gives a 
higher distance (about 7) than the same measure ap-
plied to time-synchronized trajectories in Figure 4 
(about 6). The lower two curves, nearly superim-
posed, show the Laurinen measure with step weight 
0.2 (slightly higher) and past step limit = future step 
limit = 5. Both cases greatly reduce the penalty im-
posed by the time lag.  
 
 
Dealing with Bundles 
 

The methods discussed so far define a similarity between two paths. In some applica-
tions, we want to characterize the tightness or looseness of a bundle of trajectories.  
 

The naïve approach (used in the plots so far) is to average the similarity scores of all pos-
sible pairs in the bundle, requiring O(N2) operations. In keeping with our third requirement, we 
prefer a linear time algorithm to enable the similarity score to be used as a live feedback control. 
Various Pairing Strategies can reduce the computation while maintaining the same scoring pat-
tern. We explored four strategies: 
 

1. PATH_PAIRS computes all path-pair combinations (2N(N-1) operations). 

2. MEAN_PAIRS compares all paths against the bundle mean location (2N operations). 

 
Figure 5  Distances of time-lagged 
paths. Top: scoring window 4. Middle: 
Laurinen with step weight 0.2. Bottom: 
past limit = future limit = 5. 
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3. INTO_MEAN measures the distance from 
individual paths to the mean (N opera-
tions). 

4. FROM_MEAN measures the distance 
from the mean to individual paths (N op-
erations). 

The MEAN_PAIRS approach results in a 
score that follows the same trend, but is generally 
lower than the full PATH_PAIRS score, because 
the bundle mean is usually closer to a path than 
the score that path would get when compared to 
all of the paths individually. 
 

Laurinen measures the difference between 
two paths in both directions and takes the maxi-
mum. PATH_PAIRS and MEAN_PAIRS follow this convention (thus the factor of two in the 
number of operations). Notice the impact of this convention when reasoning with mean paths. 
INTO_MEAN uses only the components of the score from each individual path to the mean, 
while FROM_MEAN uses only the components from the mean to the individual paths. The 
mean path naturally tends to be straighter than the individual paths, resulting in a systematic dif-
ference between INTO_MEAN and FROM_MEAN.  
 

Consider comparing the mean path with a path that mostly follows the group, but loops 
out and then back into the bunch (Figure 6). First, consider the INTO_MEAN score from point e 
on an individual path to the mean path. All of the nearest points (a, b, or c) on the mean path are 
far away. But in computing the FROM_MEAN score, points a, b, and c will find close points on 
the individual trajectory (d, d, and f, respectively), and their relatively large distance to point e 
will never enter the computation.  
 

Figure 7 shows all four scores for the trajectories of Figure 2. 
 

This observation enables a further efficiency. Since MEAN_PAIRS uses the larger of the 
INTO_MEAN and FROM_MEAN scores, and since 
INTO_MEAN is usually larger than FROM_MEAN, 
INTO_MEAN is an efficient surrogate for 
MEAN_PAIRS. However, one may prefer to use 
FROM_MEAN instead, for the following reason. The 
mean over a set of trajectories tends to smooth out 
their individual variations, and so FROM_MEAN 
automatically smooths without the time lag imposed 
by a scoring window. Figure 9 compares the 
FROM_MEAN scores with windows of 1 and 4. As 
the distance increases relative to the variance, the 
measure with scoring window of 1 (the left-most 
curve) becomes almost as smooth as that with a win-
dow of 4 (to the right), and without the lag. 
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Figure 6  INTO_MEAN vs. FROM_MEAN. 
Points a, b, and c are on the mean path; 
points d, e, and f are on one of the individ-
ual paths. 

 

Figure 7  Bundle scores. Top: 
PATH_PAIRS. Middle: INTO_MEAN = 
MEAN_PAIRS. Bottom: 
FROM_MEAN. 
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In applications, the use of the mean both to compute 
the baseline trajectory and to combine the differences 
of individual trajectories from the baseline is sensitive 
to outliers, and in practice we prefer to use medians 
for both of these computations. 
 
Similarity Calculation 
 

Our measures so far are unbounded upward. It 
is often more convenient to have a measure that is 
bounded (say, in [0,1]). The naïve transform, to com-
pute the similarity as the inverse of the distance, 1/d, 
would work if our separations were always > 1. When 
computing the distance for a bundle, rather than just a 
pair of paths, or when using a scoring window, the dis-
tance can be < 1, resulting in similarity scores > 1. 
Several approaches are possible. 
 

We could define the similarity to be 1 for any 
distance < 1. The step function generated by this ap-
proach loses information as to whether the computed 
bundle distance is increasing or decreasing for small 
separations. 
 

We could scale the similarity as N/(N+d). This 
transform avoids the step function, and raises the val-
ues to use more of the 0 to 1 range. But the shape of 
the curve still drops off too quickly for distances that 
should all be close to similar. 
 

The transformation we have found most satisfactory is a sigmoid (Figure 8), 
 

)(1
1

doffsetsteepe
similarity −−+

= , 

 
Offset determines the distance that is mapped to a similarity of 0.5, and steep determines the 
steepness of the transform at that point. For our 
test cases, offset = 2 and steep = 2.5 closely fol-
low the naïve 1/d transformation. Figure 10 
shows the similarity obtained by this transforma-
tion from the INTO_MEAN measure with scor-
ing window of 4. 
 
 

USING THE MEASURE 
 

This section analyzes some actual ghost 
trajectories from a military scenario that shows 
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Figure 8  Sigmoid Transformation, for 
steep = 2.5 and offset = 2 

 

Figure 9  Smoothing effect of 
FROM_MEAN 

 

Figure 10  INTO_MEAN distance for Figure 
2 transformed to similarity 
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the effect of the environment on their movement. The terrain includes both open areas and roads. 
When ghosts are on a road, they prefer to follow it, but in open terrain they move more freely. 
Our plots do not show terrain features explicitly, but we will describe them for the examples we 
discuss. 
 

In addition to plotting the INTO_MEAN similarity score, we also plot the option set en-
tropy (OSE). Our similarity scores are global measures, appropriate for centralized use in manag-
ing a polyagent system, but not accessible to individual agents. An agent can monitor its option 
set entropy locally. So the relation between these two characteristics is of great interest. 
 

In this application ghosts live on a square lattice, and make their choices stochastically, 
spinning a roulette wheel with as many segments as they have next possible steps (the “option 
set”) whose segments are weighted in the following fashion. First, the ghost combines a number 
of environmental signals (“digital pheromones”) from each option that it may choose into a sin-
gle attractiveness score for that option. In our application, the options are the cells to which the 
ghost may move in the next step. Then, to adjust the degree of determinism in the system, we 
map the attractiveness to a probability using the Boltzmann distribution, 
 

∑
=

i

tw

tw

i i

i

e
ep /

/

 

 
where wi is the attractiveness of the ith option, pi is the 
probability of moving to that option, and t is the Boltzmann 
temperature. When t is large compared with wi, each option 
has an equal chance of being selected. When t is small, the 
choice becomes more deterministic in favor of the most at-
tractive option.  
 

The entropy over the option set probabilities, nor-
malized by the log of the number of possible steps, reflects 
how much guidance the ghost has at that step. This option 
set entropy (OSE) varies from 0 when the ghost is 
moving deterministically to 1 when it is executing 
a random walk. OSE is a good summary of how 
converged an agent system is (Brueckner and Pa-
runak 2005). Might it serve as a local indicator of 
the convergence of an agent bundle? 
 

Figure 11 shows 19 trajectories that remain 
on a road system. The trajectories all begin at the 
dark area toward the lower-right of the figure. 
Figure 12 shows the similarity1 and average OSE 
across all agents for this system.  
 

                                                 
1 INTO_MEAN, Laurinen step weight 0.2, scoring window 4, transformed through sigmoid with offset = 2 and 

steep = 2.5. 

 

Figure 11  Ghosts on a road 
system 

 

Figure 12  Similarity (descending curve) 
and OSE (gently rising curve) for Figure 
11 
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Consider first the similarity. The trajectories diverge initially as 
the ghosts spread out. Then, between time 20 and 30, they come closer 
together, before continuing to diverge beyond time 33. At time 20 the 
ghosts reach the crossroads. Because they have several options avail-
able (note the small peak in OSE at time 20), they tend to loiter in the 
area for a few moments, and their local trajectories converge. Once 
each ghost converges on a road to follow out of the crossroad, the simi-
larity again falls.  
 

The OSE rises gently until the ghosts reach the crossroad, 
where it reaches a local maximum, then levels off for the rest of the 
run. The initial increase reflects the ghosts’ initial exploration. The 
peak reflects their contemplation of the crossroad, and the final level 
portion corresponds to their constrained exploration of the various 
roads. 
 

Now consider the 59 trajectories in Figure 13. Figure 14 shows 
similarity and OSE. The ghosts, again moving 
from south to north, begin in open terrain where 
they spread out, reflected in decreasing similarity. 
The OSE is constant during this time: the environ-
ment does not constrain the ghosts, other than a 
general attraction toward the roads at the north. At 
time 12, some trajectories discover the road emerg-
ing from the right-hand side of the main cluster, 
and this constraint causes similarity to level off. At 
time 17, further roads branch out. Because the 
ghosts have multiple roads from which to choose, 
similarity begins to drop again, while the addi-
tional movement constraints from the roads cause 
the OSE to drop. The rise in OSE from time 22 to 27 corresponds to the first wide spot on the 
left-hand road, offering ghosts more options. Because they loiter in this region, the decline of 
similarity is less pronounced. OSE again decreases as the ghosts follow the roads leading from 
this wide spot, then increases gently again after time 33, as they discover the wider set of options 
at the end of the left-hand road. 
 

These examples show that while OSE and similarity are sometimes correlated, they 
measure different things. OSE reflects how constrained individual ghosts are, while similarity re-
flects how close they are to one another. All four combinations can occur. Highly constrained 
ghosts can be close to or far from one another, as can ghosts that experience little constraint. 
Correlations emerge when ghosts that are generally traveling in the same direction reach a deci-
sion point, which increases their OSE and at the same time allows them to catch up with one an-
other, increasing their similarity. 
 
 

CONCLUSION 
 

It is often desirable to characterize the trajectories exhibited by a set of agents. In our 
work, these trajectories represent alternative possible futures being generated by a polyagent, and 

 

Figure 13  Shift from 
open terrain to roads 

 

Figure 14  Similarity (steadily decreas-
ing) and OSE (varying) for Figure 13 
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the degree to which they converge is an important index of the quality of the predictions. Such 
measures may be useful in other applications as well (for example, clustering targets into groups 
within which the behavior is similar). We seek measures that are independent of the trajectory 
length (so they can be used for real-time control of the agents), tolerant of both temporal and spa-
tial offset, and efficient to compute. Naïve measures do not satisfy these requirements, but the 
transforms presented in this paper provide a rich toolbox that we are using in analyzing predic-
tive trajectories. 
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ABSTRACT 

 
In this paper we present a new technique for simulating mega-scale Agent-Based Models (agent 
population sizes exceeding one million) at interactive rates.  We achieve this performance by leveraging 
the computing power of Graphics Processing Units (GPUs).  To test our system, we implemented 
SugarScape, a simple model with many common ABM features. We are able to achieve over 50 updates 
per second with agent populations exceeding 2 million on an environment with a resolution of 2560x1024 
with visualization.  
 
Keywords: ABM Simulation toolkit, GPGPU, Parallel Computing  
 

INTRODUCTION 
 

Due to the emergent nature of Agent-Based Models (ABMs), it is critical that the population sizes 
in the simulations match the population sizes of the dynamic systems being modeled [1]. In domains such 
as social modeling, ecology, and biology, the agent population can exceed several million. However, the 
performance of current agent simulation frameworks is inadequate to handle such large population sizes.  
Single core CPU performance has stagnated due to physical limitations. This fundamentally limits the 
performance of all serial frameworks for ABM simulation.  Parallel computing frameworks designed to 
run on computing clusters suffer due to the bandwidth limitations [2]. Issues such as load balancing and 
synchronization can severely degrade performance [3]. Moreover, visualization is inefficient in 
distributed systems because of the amount data that must be communicated to the computer node that 
handles the display. 

 
In this paper we investigate Graphics Processing Units (GPUs) as an alternative platform for 

ABM simulations.  GPUs are powerful parallel processors designed to perform graphics functions such as 
rigid body transformations and special effects such as lighting. Driven by the 3D gaming industry, GPU 
computing power has been growing at a rate far exceeding Moore’s law [4]. New generations of hardware 
have opened up more features for programming allowing GPUs to perform tasks other than graphics 
computations.   
 

GPUs are appealing for large scale ABM simulations for two reasons: one is the sheer number 
crunching computational power. An NVIDIA GeForce 8800GTX  has an average throughput of 512 
GFlops [5], while a top-of-the-line Intel Xenon 2.6 Ghz quadcore processor has a theoretical maximum 
throughput of only 63 GFlops.  More importantly, the memory bandwidth of the GeForce 8800GTX GPU 
is rated at 820.9 Gbps, while the Xenon is rated only at about 68 Gbps. The second major advantage is 
cost. The GeForce 8800GTX GPU retails at $600 while the Xenon processor costs over $1000. 
Additionally, Xenon processor suffers from cost overheads due to custom mother boards. Graphics cards 
on the other hand can be mounted on much cheaper computer hardware. 

 
Because of the high degree of parallelism, the computational model of GPUs is very different 

from traditional programming.  Taking advantage of the new data-parallel architecture is non-trivial and 
requires radically new algorithms.  In this paper we investigate ABM simulation using the GPU. To the 
best of our knowledge, this is the first attempt at using GPUs for ABM simulation. The following sections 
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will briefly describe the implementation of SugarScape [6], an ABM model that captures most of the 
behaviors of social sciences ABMs. 

 
APPROACH 

 
 The act of forcing a GPU to perform computational labors beyond computer graphics is known as 
General Purpose GPU (GPGPU) programming. This technique requires a radical shift from traditional 
serial programming techniques [7].  While older GPUs only supported a limited set of behaviors, modern 
graphics cards have rich programmable functionality. By exploiting these capabilities, it is possible to run 
general numerical computations on specialized GPU hardware. GPUs follow a single instruction multiple 
data programming model, which does not fit conventional programming methods.  
 
 In GPGPU terms, textures (used to store image patterns) act as memory. Color channels in each 
texel (smallest data element) are used to store values of variables.  Updating data values of textures is 
typically accomplished using shaders. In our implementation, variables for agent states are stored in agent 
state textures (Figure 1). Variables representing the environment states are stores in environment state 
textures.  At each step, the environment and agent state textures are updated using pixel shaders. To make 
the updates iteratively continue throughout the simulations, a method called ping-ponging is used [8].  
Using framebuffer objects, results of the updates is written back to another texture without 
communicating with the CPU. Since all computations are done by the GPU, our method is not hampered 
by the slower bandwidth of the connection (PCI express) between the CPU and GPU. CPU is involved 
only in processing some user input, and issuing rendering commands to the GPU.  

 
Figure 1 Agent state textures  

 
SUGARSCAPE ON THE GPU 

 
In this paper, we implement SugarScape to show that GPUs can be used to simulate large scale 

ABMs efficiently. SugarScape is an extremely relevant model since its has most of the  important 
components of social simulation. Agents in SugarScape have a number of attributes such as vision and 
metabolism, and are capable of adapting to varying environments. We implemented rules G (sugarscape 
growback), R (agent replacement), M (agent movement), S(agent mating), P (pollution formation), and D 
(pollution diffusion). In the following sub-sections, we briefly explain the implementation of each of 
these rules. 

 
Sugarscape Grow Back (G) 
 

Sugarscape grow back is by far the simplest rule to implement on the GPU.  To do this, we store 
the current level of sugar inside one of the color channels within the world texture, and the maximum 
sugar level within another channel.  Re-growing the sugar then becomes an image processing operation, 
where the sugar-level channel is replenished at a given rate until it reaches saturation.  Supposing that the 
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sugar-level is stored in the red channel, while the limit is stored in the green channel, we get the following 
simple shader written in GLSL shader language: 
 
vec4 next_sugar(vec4 prev_sugar, float regrowth) 
{ 

return vec4(min(prev_sugar.r + regrowth, prev_sugar.g), prev_sugar.gbr); 
}  

 
Movement (M) 
 
 Updating an agent’s position can be performed using a pixel shader applied to the agent state 
texture with the current world state as input.  The basic idea for this operation is similar to that used in 
various GPU particle system [9], with the added twist that the agents are moving according to the state of 
the sugar-level in the outside world texture.  Assuming that the sugar is stored in the red channel of the 
texture, and that the agent vision range is given by the constant VISION, the following code updates the 
agent’s position. 
 

vec2 next_position(vec2 prev_position, sampler2DRect world) 
{ 
 vec2 best_position; 
 float best_sugar; 
 
 for(int i=-VISION; i<VISION; i++) 
 for(int j=-VISION; j<VISION; j++) 
 { 
  vec2 p = prev_position + vec2(i, j); 
  float s = texture2DRect(world, p)).r; 
 
  if(s > best_sugar) 
  { 
   best_position = p; 
   best_sugar = s; 
 
  } 
 } 
 
 return best_position; 
}  

 A somewhat more difficult task is the problem of performing environment agent interactions.  To 
do this, we must use a separate rendering pass to perform a scatter operation [10].  The idea is to write the 
agents into a separate agent collision map using a separate rendering pass [11].  From this collision map 
we can locate agents directly based on their spatial position, which makes environment and agent-agent 
interactions possible. 

agent state texture 

collision map 
 

Figure 2 Agent scatter 
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 Scattering the agents is typically performed using a vertex shader.  A vertex array of indices with 
the same dimension as the agent state texture is initialized.  Using a series of shaders, this array is then 
drawn into the collision map to determine the positions of each agent.  There are two basic methods for 
scattering using a vertex shader.  The most primitive is to use the render-to-vertex-buffer extension, and 
directly scatter the agents in such a fashion.  A much simpler and faster method is available on the latest 
GeForce8 cards using vertex-shader-read-from-texture.  With this feature, the vertex array is allocated 
and initialized once, and subsequent scatter passes simply read from the agent state texture as they are 
scattered. Figure 2 illustrates the scatter operation. 
 
Replacement (R) 
 

Handling agent death is accomplished using a state flag.  If set to dead, then the agent is simply 
not updated, and not scattered during other phases.  Using conditional branching, this test can be made 
extremely efficient.  For simple replacement, the position and attributes of the agent can be randomized 
upon death, rather than killing off the agent. However, this strategy is not compatible with mating.  
Therefore, we only implement the death aspect of replacement, and allow mating to create a dynamic 
population. 
 
Mating and Reproduction (M) 
 

Agent replication is one of the most difficult aspects of any agent based model to implement 
properly.  Making it work on the GPU is one of the key difficulties inherent in realizing efficient models.  
The basic problem is analogous to memory allocation.  Given a new agent, we wish to place it within an 
empty (dead) agent cell within the state texture. A simple sequential algorithm to perform this replication 
is to traverse the set of all agents until an open space is found, then place the new agent into the first 
available memory location.  Unfortunately, this is not likely to perform well for any realistic models given 
both the enormous number of agents, together with the enormous amount of replications per update. 

 
 
 

Figure 3 Stochastic memory allocation process (a) initial state (b) 
mapping (c) state after 1 iteration 

(a) 

(b) 

(c) 

 
 Further improvements on the basic sequential allocation technique are possible, using objects 
such as freelists, but none of these are suitable for parallel allocation.  In order to gain the necessary 
amount of speed, we use a novel stochastic parallel allocation strategy.  The key to this approach is to 
relax the assumption that all allocations must succeed immediately.   Agent replication is initiated by 
setting a flag within the agent state texture that signals that the agent is gravid or about to reproduce (Fig. 
3(a)). The basic goal of the allocator is to place each newly created agent into one of the empty cells. In 
other words, it must match each gravid cell to a unique empty cell (Fig. 3(b)). This can be accomplished 
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by defining a random invertible map, from the agent state texture onto itself. For the purposes of the 
GPU, a linear shift is sufficient.  A single iteration of this technique with an offset of 3 is shown in Fig. 3.  
In this iteration, the map “*” is successful while as the map “**” is unsuccessful (Fig. 3(a), Fig 3(c)). 
Subsequent iterations with different offsets may solve this.  As the number of iterations increases, the 
probability of success quickly converges to 100%.  
 
Pollution Formation and Diffusion (P &D) 
  
 Implementing pollution once again requires use of the collision map.  Assuming that the 
concentration of the pollution is stored within a separate color channel of the world texture, it is possible 
to blend the collision map together with the information contained in the agent state texture to add more 
pollution to the environment.  Pollution diffusion is handled using finite differences over the background. 
Both processes can be carried out simultaneously within the world texture, and evaluated at the same time 
as the environment growback. 
 

RESULTS 
 

 In our prototype implementation, we have achieved over 50 updates per second with agent 
population size exceeding two million on an environment with a resolution of 2560x1024 with 
visualization. Figure 4 shows a screen shot of the visualization. Figure 5 shows the scalability of our 
system. We are able to freely interact with the simulation as it runs, and dynamically change model 
parameters without any perceptible degradation in performance.  
 

 
Figure 4 Sugarscape screen shot 

 
 All simulations were carried out on a single desktop. The computer hardware consisted of AMD 
Athlon 64 bit CPU with 1GB of main RAM running Ubuntu7.0 operating system. The graphics card is an 
NVIDIA GeForce 8800 GTX. The total cost of the system is under $1,400. 
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Figure 5 Scalability  

 
CONCLUSIONS 

 
 We have successfully implemented an ABM simulation on the GPU. Our simulation runs entirely 
on the GPU and takes full advantage of the ultra high memory bandwidth and computational power. To 
the best of our knowledge, there are no single computer ABM frameworks that can deliver the 
performance of our prototype system. We suspect that our prototype will outperform High Performance 
Computing (HPC) clusters as well. Currently, statistics calculation is not implemented. However, we are 
working on an algorithm that is based on image histogram generation, a topic well researched in computer 
graphics [12]. While the simulation performance of GPUs is phenomenal, programming them is 
completely counterintuitive. In the future we plan to develop libraries for essential ABM functions to ease 
deployment of ABM simulations on GPUs. 
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ABSTRACT 
 

This paper explores the ability of a team of autonomous software agents to deal with 
changing optimization environments by evolving to use the most successful algorithms at 
the points in the optimization process where they will be the most effective.  The 
communal agent team organizational structure employed in this work allows cooperation 
of agents through the products of their work and creates an ever changing set of 
individual solutions.  An evolutionary approach is used, but evolution occurs at the 
strategic rather than solution level.  As an application of this work, individual solutions 
will be tours in the familiar combinatorial optimization problem of the traveling 
salesman.  With a constantly changing set of these tours, the team, each agent running a 
different algorithm, must evolve to apply the solution strategies which are most useful 
given the set at any point in the process.  As a team, the evolutionary agents produced 
better solutions than any individual algorithm used. 

 
 Keywords: Evolutionary agents, adaptive optimization, traveling salesman problem  
 
 

INTRODUCTION 
 

For many complex optimization problems such as combinatorial optimization problems, 
exact algorithms and solution strategies for determining the optimal solution often don’t exist or 
are so involved that they are only practical for specific applications under specific conditions.  In 
other words, it is very difficult to determine for each possible starting point in a highly multi-
modal design space, what is the best strategy for moving the solution closer to the global 
optimum.  The conditions that motivate using specific solution strategies, if they’re even known, 
may change rapidly as the design space is traversed.   

Thus we argue that solution strategies should evolve dynamically as conditions change, 
i.e., as new solution states are discovered during the optimization process, the best strategies may 
be employed at the correct time to achieve maximum improvement of individual solutions.  
Evolution is not a new concept, but the use of evolutionary processes on the solution strategies is 
very different from typical genetic algorithms where genetic operators reproduction, mutation, 
and selection are usually applied to the solutions.  Here, the solution strategies are recombined, 
altered, and removed through these genetic operators based on their success in improving 
solutions. 

However, in order to ensure that a globally superior solution is obtained, evolving 
strategies should also be organized and coordinated in such a way that the design space is 
explored in as many promising directions as possible when new solutions are presented.  The 
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idea of cooperation of strategies for design space exploration, in addition to their evolution for 
maximum effectiveness, has led to the assertion that strategies should be embodied in 
independent, autonomous software agents, which evolve at a population level to determine the 
best solution strategy for a given set of solutions but also cooperate to more thoroughly explore 
the design space.   

The evolution of agents, representing solution strategies, at a population level is a rather 
unique concept.  Grefenstette (1992) explored the evolution of solution strategies for predator-
prey scenarios, but with the goal of producing a single ‘super strategy’ from the evolution of a 
population of strategies (a strategy consisting of a set of decision rules) which could then be 
applied to the predator-prey scenario (which was the simulated to determine the fitness of 
individual strategies).  Our aim is to evolve an efficient team of agents.  Because of the 
constantly changing set of solutions, the presence of agents in the team which run inferior 
strategies, even in diminished numbers, strengthens the performance of the entire team: again, no 
one agent can accomplish what the team as a whole is capable of. 
 

TRAVELING SALESMAN PROBLEM 
 

The Traveling Salesman Problem (TSP) was chosen as an application for the proposed 
framework because it is such a well known and straightforwardly defined problem, though the 
goal of this work is not to present an algorithm which solves the TSP better than any other 
algorithm thus far.  The objective of the TSP is, given a set of cities and a cost function for each 
pair of cities, to find the round trip tour with the lowest cost that visits each city once and only 
once.  For the problems we will explore in this paper, the cost, or distance, function between 
cities is a ‘pseudo-euclidean’ function described by Padberg and Rinaldi (1987). 
 Though more successful algorithms have been developed (the reader is referred to 
Applegate et. al (2006) and Laporte (1992) for descriptions of the best known and most current 
algorithms), for this work only a few have been chosen in three categories of algorithms, 
construction, improvement, and reduction.  Construction algorithms are so named because they 
take, as input, an incomplete or partial tour and return either a complete tour or a longer partial 
tour after adding cities in a predefined manner.  For this study three simple and straightforward 
construction algorithms, nearest insertion, farthest insertion, and arbitrary insertion, were used 
(Golden et.al. 1985).  Improvement algorithms, as their name would suggest, improve an existing 
partial or complete tour by rearranging the order of the cities in the tour based on different rules.  
There were three improvement algorithms used in this study, 2-Opt (Bentley, 1990), 3-Opt 
(Syslo et. al 1983), and a simple mutation.  Reduction algorithms break down complete tours into 
partial tours.  In this work, two very basic reduction algorithms are employed.  The first of these 
is random reduction, which involves simply randomly removing a random number of cities in the 
tour.  Best partial reduction, the second reduction algorithm, returns the best partial tour (the tour 
with the shortest average leg length) containing half of the total number of cities in the same 
consecutive order as the original tour.   
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METHODOLOGY 
 
Evolutionary Agents 

 
To perform genetic operations such as crossover and mutation, individuals in an evolving 

population are most easily represented by binary strings.  The binary string defining an 
individual agent in the evolving team of the proposed framework represents the decisions the 
agent will make in its lifetime.  We argue that decisions should be the primary element of an 
agent’s genetic makeup because autonomy, the ability of an agent to make decisions on its own 
without being told what to do, is essential to the definition of an agent (Wooldridge et. al. 1995; 
Sachdev 1998).  For the particular application of the TSP, agent decisions were defined as 
follows: 
 

1. From what memory will a tour be chosen, 
2. Which tour from that memory will be worked on, 
3. How will the chosen tour be worked on (i.e. which algorithm will be run), and 
4. Where (which memory) will the new tour be put once work is completed on it.  

 
Thus, the genetic string of each agent consists of four binary chromosomes identifying these 

properties (see Figure 1).  The choice methods define the characteristics of a tour which an agent 
will choose, i.e. if the agent will choose the best tour, the worst tour, be biased towards better 
tours, or be biased towards worse tours.  The significance of the memories will be discussed in 
the next section.  
 

 
Figure 1  Structure of proposed evolving agent genetic string 

 
Agent Organization: Creating an Evolutionary Multi-Agent Team 

 
The agent system architecture developed is similar to the asynchronous team architecture 

developed by Talukdar, et. al. (1998) in that it incorporates the idea of shared memories, which 
allow agents to cooperate indirectly by providing a place for agents to present their work so that 
it is visible and available to others.  However, in those systems the characteristics of each agent 
and the rules for their relationships to the memories are specified a priori (Sachdev 1998; De 
Souza 1993).  In the proposed system the agent-memory cycles are evolved by including input 
space and output space decisions in the agents’ chromosomal representations (toMemory and 
fromMemory).  For the specific application of the Traveling Salesman Problem, only two 
memories were used: one for partial tours (tours that do not contain all of the cities) and one for 
complete tours.  The tours in these memories evolve over time through the genetically 
determined actions of the agents, rather than through recombination and mutation within the 
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population of solutions as would occur in a typical genetic algorithm (Grefenstette et. al. 1985; 
Potvin 1996). 

 
ALGORITHM DESCRIPTION 

  
Our proposed Evolutionary Multi-Agent System (EMAS) algorithm simulates temporal 

asynchrony by dividing the overall process into discrete iterations.  Each iteration, all agents 
undergo activation, at which point they make decisions and perform actions based on their 
genetic sequence.  After all agents have been activated, reproduction occurs, in which parents 
are selected and new agents are created.  Reproduction and activation both involve a simple 
operator for mutation.  Finally, the agent community undergoes selection, where the weakest 
individuals are removed from the population.  In this section, each of these important functions is 
discussed in detail. 
 
Mutation 
  

In the proposed framework, mutation is used for two purposes.  The first purpose, 
common to most evolutionary and genetic algorithms, is to make the system more stochastic – 
mutation allows a more thorough exploration of the design space for individuals by introducing 
randomness into their creation.  In the proposed framework individuals are also mutated when 
they are not being successful.  This secondary mutation is a way of allowing individual agents to 
adapt to an environment by trying new decision methods, achieving diversity by variation.  Both 
types of mutation are random, meaning that a single randomly chosen bit is altered in the binary 
gene.   
 
Activation 

 
Each iteration, all agents are activated.  Activation of an agent consists of verification that 

it is able to work (some memory-algorithm combinations are incompatible, i.e. construction 
cannot be performed on a complete tour) and simulation and testing to determine if it will make a 
positive difference.  Simulation is an important step: agents will not place a solution they know 
will decrease the average solution quality into their destination memory.  This keeps the quality 
of solutions in the memory high (i.e. keeps the average tour length low).  As stated earlier, if an 
agent is unsuccessful, i.e. unable to improve the average solution quality, after three tries, the 
agent undergoes mutation.  If an agent is successful in coming up with a solution that increases 
the average solution quality, it then inserts the new tour into its destination memory.  A flowchart 
of agent activation is shown in Figure 2. 
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Figure 2   Flowchart of agent activation 
 

 
Fitness 

 
A key principle in both selection and reproduction is the concept of fitness.  It is often 

difficult to establish a meaningful method for deciding who should live and reproduce and who 
should not.  Thus, before going into detail on the procedure for reproduction and selection, it is 
important to establish the method of evaluation of individuals.  In the proposed framework, the 
indication of an agent’s success is embodied in its score.  Score is based both on the amount of 
improvement made by the agent to the average solution quality in its destination memory and the 
number of times it has been activated (its ‘age’).  When agents mutate, their score is reset to zero 
but their age remains the same. 
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Reproduction 

 
After activating each agent in an iteration, agents with a score above zero are paired up as 

parents and allowed to reproduce. Each agent may only reproduce once in an iteration, and 
during reproduction is subjected to crossover with a randomly assigned partner at a single 
random crossover point.  The resulting two children each have a 50% chance of being mutated.  
After they are created, the children agents are activated.  
 
Selection 
 

When new agents are added through reproduction, the worst agents are selected from the 
population to be eliminated, keeping the population size constant.  Selection begins by sorting 
the agents by score from lowest to highest.  Agents with the same score are then sorted by age, 
the oldest on the bottom and the youngest on the top.  Once sorting is complete, agents are 
removed from the bottom of the list until the population is back to its original size. 
 
 

RESULTS 
 

Though our primary goal in this work was not to develop a method for solving TSP to 
optimality, the quality of the solutions reached by the evolutionary team of agents proposed in 
this work was very good compared to the performance of the individual algorithms on their own.  
The solution quality reached by our Evolutionary Multi-Agent System (EMAS) algorithm were 
consistently better than those reached by the other base algorithms and hybrid algorithms (a 
priori designated construction algorithm followed by improvement algorithm).   

The base construction algorithms nearest and farthest insertion always produce the same 
final optimization solution for a given starting city, so running these algorithms for each of the 
starting cities is a good measure of the average effectiveness of each of these base algorithms.  
Similarly, the same starting tour will always lead to the same final optimization solution after 
running any of the base improvement algorithms presented.  Though the random order of city 
addition in arbitrary insertion makes the final tour different even for the same starting city, 
testing each starting city still provides a good estimation for the effectiveness of this algorithm as 
well.  Thus, for the 48-city problem, EMAS was run 48 times (100 iterations each time) and 
compared to the solutions resulting from running construction algorithms from each starting city 
and then running improvement algorithms on the resultant tours.  Table 1 clearly indicates that, 
on average, the solution quality produced by the EMAS algorithm is much better than any of 
these hybrid algorithms.  Similarly, the histogram in Figure 3 shows that the majority of 
solutions reached by the EMAS algorithms were within 1% of optimal, whereas only two of the 
other hybrid algorithms had any solutions at all in that range.    
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Table 1  Mean and standard deviation of hybrid algorithms compared to EMAS algorithm for 48-
city problem 
 
 

 
 

 
 
Figure 3  Histogram of 48-city problem comparing best solution consistency of EMAS to that of 
hybrid algorithms 

 
 
 The consequence of this increased quality of solutions was computation time.  Because 
EMAS involves running several of the base algorithms each iteration, it is expected that the 
amount of time required to reach the solutions generated is much higher.  A single run of 3-Opt 
on any individual starting tour for ATT48 would take less than a second, whereas a single trial of 
EMAS run on ATT48 for 100 iterations takes an average of around 8 seconds.  As mentioned 
earlier, however, it doesn’t matter how many times this algorithm is run on the same starting 

Algorithm Mean (% from Optimal) St. Dev. (%) 

3-Opt+NI 3.27 2.67 
3-Opt+FI 3.47 1.52 
3-Opt+AI 3.08 1.32 
2-Opt+NI 9.61 2.32 
2-Opt+FI 6.68 1.1 
2-Opt+AI 6.09 2.06 
EMAS 0.68 0.61 
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tour, it will always produce the same final tour, which as we have just shown for the base 
algorithms (construction only and improvement only) is usually worse than the result of the 
EMAS algorithm.  We show in Table 3, however, that even running the same number of 
algorithms as would be run during a single trial of EMAS (10 algorithms * 100 iterations) in 
random order without employing the evolutionary aspect of the EMAS algorithm will still result 
in worse solutions.   
 
Table 2 Comparison of EMAS to randomly generated algorithm activation order for ATT48 
(Averages of 50 trials) 
 

 Mean (% from Optimal of 
average tour in Complete 

memory) 

St. Dev. 
(%)  

Avg. Time 
(sec) 

1000 Randomly Ordered Algorithms 4.83 0.354 2.45 
EMAS 4.38 1.66 8.33 

 
 

SUMMARY AND DISCUSSION 
 

The results present a convincing argument for the evolution of agents in a team at the 
population level.  Decisions have likewise proven to be a useful genetic property of agents in 
such an evolutionary setting.  The evolutionary teams evolved to generate better solutions than 
the base algorithms alone.  We have also shown that the strength of the EMAS algorithm lies in 
its ability to evolve the best team each iteration.  Evolution and activation within this team 
results in solutions that are better than simply running the same number of algorithms randomly 
on a similar set of solutions.  We thus argue that the use of evolutionary agents to determine the 
best solution strategies dynamically is a strong approach to adaptive optimization. 

We have also begun to test this strategy with a much larger, 532 city TSP with even 
better results in terms of solution quality.  In so doing we have identified patterns in how the 
EMAS algorithm allocates types of agents throughout its run.  We hypothesize that we can take 
advantage of such patterns to improve run time in future work. 
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ABSTRACT 
Does how much an agent thinks about its own actions affect the global properties of a 
system? We use the El Farol Bar Problem to investigate this question.  In this model, the 
El Farol Bar represents a scarce resource.  Does the amount of computational ability that 
agents possess affect resource utilization?  For instance, if agents attend the bar randomly 
on average 50 people will go to the bar. On the other hand, if agents act as neoclassical 
economics suggest, its not clear what the average attendance at the bar will be, but in this 
paper we will argue that it will also be near 50.   In Arthur’s original model, he showed, 
using a simulation involving an ecology of strategies, that the average attendance of the 
bar converged to 60. Fogel et al. gave their agents more computational power and let 
them use a evolutionary algorithm; they showed that the average attendance at the bar 
was 56, not 60.  If we examine these four results of  (1) random agents, (2) perfect agents, 
(3) Arthur’s agents, and (4) Fogel et al.’s agents, we can ask whether there is a 
relationship between computational effort and attendance at the bar (e.g. the utilization of 
a public resource).  To investigate this question we look at a model where we can control 
the computational power that each agent has to predict the attendance each week.  

 
 Keywords: machine learning, agent-based modeling, El Farol Bar Problem, genetic algorithms 
 

INTRODUCTION  
 

 Truly adaptive agents are one of the promises of agent-based modeling, but they are 
rarely used.  This is particularly surprising since adaptation is one of the advantages that many 
people list as a reason to use ABM instead of other modeling techniques. When Holland (1995) 
discussed complex adaptive systems (CAS) and their relationship to ABM in Hidden Order, he 
devoted an entire chapter to adaptive agents, and specifically mentioned internal models as one 
of the mechanisms that define a CAS, and one of the most classic agent-based models, the El 
Farol Bar Problem, utilized adaptive agents. 

 
In 1994, Arthur posed a problem he called the El Farol Bar Problem.  The El Farol Bar is 

in Santa Fe, New Mexico and on Thursday nights it plays Irish music.  There are 100 people in 
Santa Fe who like Irish music, but if more than 60 of them attend the bar then the bar is too 
crowded and no one enjoys the bar.  If everyone attends the bar randomly, i.e. each Thursday 
they flip a coin to decide if they should attend, then the bar will be underutilized since on 
average 50 people will go to the bar.  In other words, if the agents spend no computational effort, 
the bar is underutilized.  On the other hand, we could consider what would happen if the agents 
act as neoclassical economics suggest and each agent does their best to predict the attendance of 
the bar (i.e. uses an infinite amount of computational effort).  In this case, there seem to be two 
possible results, either (1) each agent predicts exactly the same attendance at the bar, in which 
case every agent will either go to the bar or stay home, or (2) since there is an infinite number of 
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ways to predict the next number in a finite sequence each agent will have a different prediction; 
assuming that half of these predictions are that the bar will be crowded and half that it will not be 
crowded, then half of the ‘neoclassical’ agents will go to the bar, and half will stay home.  In 
either case the average attendance at the bar will be 50, and the bar will be underutilized. 

 
Arthur (1994) suggested a third model.  He gave each agent a ‘bag of strategies’ that they 

could use to predict the bar attendance and every week the agents used the strategy that would 
have worked the best had they used it in the previous weeks.  Arthur showed, using a simulation, 
that the average attendance of the bar using this ‘ecology’ of strategies wound up being 60 and 
thus under this model the bar was maximally used.  At the end of his paper, Arthur speculates 
that if he had used an evolutionary algorithm instead of the ‘bag of strategies’ technique that the 
results would have been similar. 

 
Fogel et al. (1999) decided to take up Arthur’s challenge and re-ran the El Farol 

simulation but allowed each agent to use an evolutionary algorithm with 10 strategies that 
evolved over 10 generations each week.  Fogel et al. showed that in their model the average 
attendance at the bar was 56, not 60.  The agents were doing better than random, but the 
attendance was not at 60, as Arthur had originally suggested. 

 
If we examine these four results of  (1) random agents, (2) perfect agents, (3) Arthur’s 

agents, and (4) Fogel et al.’s agents, we see that there is a different amount of computational 
power being employed and a different average attendance at the bar.  Is there a relationship 
between  computational effort and attendance at the bar (e.g. the utilization of a public resource)?  
We will investigate this question in this paper.  We begin by examining some related background 
to the question at hand.  From there we pose a possible hypothesis and postulate what it would 
entail.  We then build a model to test this hypothesis, where we can control the number of 
evaluations that each agent carries out each week (i.e., the amount of computational power given 
to each agent).  We explain how this model fits within our general framework for agent-based 
modeling and machine learning, and we discuss the design of this model.  We then present the 
results of an experiment where we varied the computational effort of each agent.  Finally we 
conclude by discussing these results within the larger context of adaptive agents, and the trade-
off between computational effort and resource utilization. 
 

BACKGROUND 
 

Arthur’s original paper (1994) was more concerned with critiquing neoclassical 
economics than it was with investigating the particular properties of the El Farol Bar Problem.  
However, his research still represents one data point in our investigation into how computational 
power affects resource utilization.  Fogel et al.’s extension (1999) of Arthur’s work was more 
concerned with questioning the stability of the attendance at the bar and how randomness and 
evolution of strategies affected the long-term dynamics of the El Farol Bar Problem.  Still this 
work has also started to answer the question of how computational ability affects resource 
utilization.  Wolpert et al. (2000) examined how to automatically configure agents to best utilize 
a bar.  Whereas we are interested in how computational capabilities affect the overall 
performance of the system when the agents do not care about the overall resource utilization, 
Wolpert et al. take a more engineering approach to the question at hand, and design a system that 
attempts to optimally utilize the bar.  There has been other work on the El Farol Bar Problem 
(Edmonds, 1999) and its refined version, The Minority Game (Challet et al., 2005), but the 
relationship between computational power and resource utilization is rarely investigated.    

72



 

HYPOTHESIS 
 

Our relationship of concern is the correlation between computational power and resource 
utilization.  Though the connection between these two variables may be impossible to discover in 
general, we can begin by investigating it within the scope of the El Farol Bar Problem.  As we 
laid out in the introduction, there are four data points that we already have to help us investigate 
this relationship.  The first is random agents, which result in an average attendance of 50.  The 
second is neoclassical agents, which we argue will result in an average attendance of 50.  The 
third and fourth data points are Arthur  (1994) with an attendance of 60 on average, and Fogel et 
al. (1999) with an attendance of 56 on average.  How exactly to relate these to computational 
power is difficult, but clearly random agents possess the least computational power, since they 
do no computation except flipping a coin, and neoclassical agents possess the most 
computational power, since they are assumed to have infinite resources.  The results from Arthur 
and Fogel et al. both fall somewhere between these two extremes.  If we think of computational 
resources as the number of evaluations that we allow each agent to perform on its pool of 
strategies with the current history of attendance then we can actually quantify this resource.  In 
Fogel et al.’s case this is easy.  Each agent runs an evolutionary algorithm each week in which it 
evaluates 20 strategies (10 parent strategies and 10 child strategies) for 10 generations, resulting 
in 200 evaluations.  In Arthur’s case this is more difficult since he does not specify how many 
strategies each agent has in his original paper, but he lists as example numbers of strategies, 6, 
12, and 23.  Since Arthur’s model does not create new strategies and just evaluates the extant 
strategies, then we can use 6, 12, or 23 as an approximation to the number of evaluations 
Arthur’s agents carry out each week.  Regardless Arthur’s agents use less computational 
resources each week than Fogel et al.’s but more resources than the random strategy.  We can 
graph these (rough) data points on a figurative plot (see Figure 1). 

 
 In Figure 1, there is a line representing a possible relationship between the number of 

strategy evaluations and the average attendance at the bar.  This line is a hypothesis, but it is a 
reasonable hypothesis.  The general reasoning is that if the agents have too little computational 
power then their behavior is essentially random.   However, if the agents have too much 
computational power then their predictions start to resemble each other.  Since the number of 
data points that the agent is using to evaluate each strategy is small (usually around 10), there is 
only so much data that the agents possess.  As a result, after a certain point additional refinement 
of strategies does not result in an improved prediction.  If agents were able to remember which 
strategy they had used in the past and make sure and choose a different strategy then the results 
might be different, but in the current model if the agents have found a strategy which correctly 
predicts the previous attendance then they will stay with it regardless if the same strategy failed 
them in the past.  As a result, in the end the strategies of all agents will start to look similar.  The 
more similar the agents’ strategies look, the more likely all of the agents are to take the same 
action.  In the extreme, if all agents take the same action then each week they will all go to the 
bar or all stay home, assuming they stay home or go to the bar with a uniform probability, this 
will result in an average attendance at the bar of 50.   

 
On the other hand, if the agents are boundedly rational, and only possess a limited 

amount of computational power their strategies will likely be very different from each other.  
This will result in each agent choosing a strategy that works fairly well, but if also likely to be 
different than the other agents.  This will create the ‘ecology’ of strategies that Arthur discusses.  
Given limited computational power it is unlikely that the agents will find an optimal strategy for 
the past n weeks and thus they will all converge to suboptimal solutions.  The hypothesis 
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expressed by Figure 1 is that this heterogeneity of solutions in boundedly rational agents will 
result in some agents attending but not all of them. 
 

 
FIGURE 1 Computational Resources vs. Average Attendance. 
 
 To investigate this hypothesis we examined the El Farol Bar Problem with a group of 
agents where we could control the number of evaluations that each agent carried out each week.  
Before we get to the details of how this experiment was carried out, we will examine how we 
placed this model within the larger ABM-Machine Learning framework that we previously 
developed (Rand, 2006). 
 
 FRAMEWORK  

 
At a high level, ABM and Machine Learning (ML) (Mitchell, 1997; Hastie et al, 2001) 

utilize fairly simple algorithmic structures to control their flow of operation.  Roughly these 
algorithms can be described as: initialize the system, observe what is happening, refine the 
system, take actions, and repeat until time is up.  As a result it is easy to examine how these 
systems can be integrated.  Let us use the El Farol Bar Problem as an example. 

 
 Arthur’s original model included a simple ML technique in it.  In Arthur’s model all the 

agents had a group of strategies.  They would take this set of strategies and see which strategy 
would have done the best of predicting the bar attendance if they had used it in the past.  Since at 
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each time step a new data point is generated it is possible that the actual strategy from the group 
of strategies that each agent will use can change at every time.  This is a very simple ML 
technique.  Initialize the population of strategies by generating some random strategies, like take 
last week’s attendance double it, subtract the third to last week’s attendance from last weeks, or 
take a running average of the last three weeks attendances. Then at each time step the algorithm 
observes how the strategies have done on the current set of training data, i.e. the previous bar 
attendances.  After that, the algorithm refines the internal model by selecting the best strategy 
given the new data.  Finally the algorithm acts on the strategy that reflects the refined model and 
repeats.  As Arthur speculated (1994) and Fogel et al. showed (1999), the original El Farol Bar 
algorithm of a ‘bag of strategies’ could be replaced by another standard ML technique. 

 
We wanted to make use of a different ML technique than the one Arthur described.  

There are many different ML techniques and there is no obvious best technique, but partially 
since it was originally suggested in Arthur’s paper, we decided to investigate the use of an 
evolutionary algorithm, and employed the genetic algorithm (GA) as originally devised by 
Holland.  As we have mentioned, Fogel et al. had previously explored a similar technique within 
the El Farol Bar Problem.  The GA makes sense in this context because it has the ability to create 
a fairly robust time series predictor (by doing simple regression) and it is similar to Arthur’s 
original technique, in that it considers a population of solutions, evaluates them, and decides 
which strategy to use. In addition the GA is often described as manipulating schemata and thus 
may be similar to the human process of induction (Holland et al., 1986) which is what Arthur’s 
original model was intended to emulate.  As a result of all of these factors we chose the GA. 

 
We then placed the original El Farol Bar Problem and the GA within the context of the 

Integrated ABM-ML cycle that we had previously described (Rand, 2007).  The result is 
illustrated in Figure 2. 
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FIGURE 2 The El Farol Bar Problem and a GA within the context of the Integrated ABM-ML 
cycle. 
 

EXPERIMENT 
 

We used the framework description from Figure 2 to guide the development of an 
implementation of the El Farol Bar Problem in NetLogo (Wilensky, 1999).  Similar to Fogel et 
al. (1999), we used an auto-regressive (AR) model, whereby a strategy consists of a list of real-
valued numbers; these numbers are weights (in a weighted linear combination) that are used in 
predicting the attendance at the bar, based on attendance in previous weeks.  Specifically, for a 
given strategy S with AR coefficients (w0, w1, ... wL), where L is the number of preceding weeks 
considered when predicting attendance, we have the following prediction formula: 

 
In this equation, p(t) is the prediction for the attendance at week t, and a(t – i) is the 

actual recorded attendance at week (t – i).  For our experiment, we fixed L at 10 weeks.  Each 
agent had its own population of 10 strategies (initialized with weights drawn uniformly at 
random between -1.0 and 1.0), which we evolved over time using a real-valued genetic 
algorithm.  Our model differs from Fogel et al. (1999) in several ways.  Fogel et al. created 
offspring solely through asexual reproduction – each of the weights in the parents’ strategy was 
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mutated by adding a zero mean Gaussian random variable with standard deviation 0.1.  While 
our simulation also used this method for mutation, mutation was not the primary genetic 
operator.  Each weight was mutated only with probability 1 / (2L).  Instead, staying closer in 
form to the simple genetic algorithm (Holland, 1975), our primary genetic operator was 
crossover, whereby two parent strategies (lists of weights) are split and recombined to form new 
offspring.  Fitness evaluation for a strategy consisted of measuring the sum of the prediction 
errors, if the strategy had been employed for the last L weeks.  Each agent uses 2L weeks worth 
of attendance history, so that it can perform this evaluation.  Specifically, the fitness of strategy S 
at current week t is defined as: 
 

 
In this equation, we employed a linear error function where any error is weighted equally.  

This differed from Fogel et al., who used squared error for fitness, biasing selection toward 
strategies that do not make egregious errors.  In order to evaluate fitness in early weeks, we 
provided “false” historical data – that is, a(-1), a(-2), ... a(-L) were each initialized to random 
numbers between 0 and 100.  We used a strictly generational GA, where a generation of 10 
parents is replaced by 10 children in each generation, whereas Fogel et al.'s method evaluates 10 
newly created children and 10 parents from the previous generation and chooses the 10 best 
strategies to create the next generation.  Finally, we used tournament selection with a tournament 
size of 3. 
 

The primary goal of our initial experiment was to examine the relationship between 
society-wide resource utilization (formalized as the bar attendance) and the amount of 
computational effort expended by the agents (formalized as the number of generations of 
strategy evolution the agents were allowed per week).  Whereas Fogel et al. (1999) fixed the 
number of generations per week at 10, we allowed this parameter to vary from 0 to 20.  Note that 
in the 0 generations per week case, no evolution is occurring at all.  In this case, each agent has 
only a fixed set of 10 strategies to choose from, which is, in some respects, similar to Arthur's 
model (1994).  We ran the model for 500 weeks per run and carried out 30 runs for each 
parameter setting.  Fogel et al. found that the behavior of his system reached a “steady-state” of 
chaotic oscillation after 100 weeks, so our choice of 500 weeks seemed sufficiently large. 
 

In several details, our experimental set up has deviated from that of Fogel et al., and it is 
important to note that we are not attempting to exactly replicate their experiment or results.  
However, by investigating the same problem and using a similar strategy representation, our 
work is comparable to theirs, and differs mainly in some particular details of the evolutionary 
algorithm, which Fogel et al. admitted were chosen somewhat arbitrarily. Thus despite these 
differences, a secondary goal of our experiment was to determine if our results support the 
general findings of the prior work by Fogel et al (by showing them to be robust despite variations 
in the general evolutionary algorithm). 
 

RESULTS AND DISCUSSION 
 

For each run, we measured the attendance at the bar in each of the 500 weeks.  Since the 
early weeks could be skewed by the random initial conditions, we decided to concentrate on the 
attendance behavior during the last 100 weeks of each run.  The first metric we examined was 
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the mean attendance, as this was the quantity focused on by previous work (Arthur, 1994, Fogel 
et al., 1999).  This is shown in Figure 3.  

 

 
FIGURE 3 The mean (over 30 runs) attendance at the bar in the last 100 weeks versus the 
number of generations evolved each week. Standard error bars are shown. 
 
 Fogel et al., using 10 generations of evolution per week, found a mean attendance of 
56.32.  Our result for 10 generations per week was 56.52.  The difference between these values is 
on the border of statistical insignificance, and given that we made several differing choices in our 
experimental setup, we feel our results support the previous findings of Fogel et al.  Furthermore, 
our model exhibited the same non-convergent oscillations around the mean, found by Fogel et al.  
In addition, as we noted above, the 0 generations-per-week case is similar to Arthur's model of 
bounded rationality.  However, as shown in Figure 3, even without evolution, our mean 
attendance was only 57.69, falling well short of Arthur's predicted convergence around 60. 

 
While making comparisons to previous results is interesting, our primary goal, which was 

not investigated by Fogel et al. (1999) and Arthur (1994), is to determine the effect on mean 
atttendance of varying the amount of computational effort given to agents, i.e. the number of 
generations-per-week.  Figure 3 generally supports the hypothesis that we explained earlier.  As 
we increase the computational power of the agent, the average attendance at the bar decreases.  
As can be seen in Figure 3, the difference between consecutive  points on the x-axis is not 
always statistically significant, but the general downward trend is statistically significant.  As we 
explained previously, one possible explanation is that as the amount of computational power 
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increases the agents’ strategies start to converge, which drives down the average attendance at 
the bar.  Thus Figure 3 lends some credence to this hypothesis but further work is required to 
confirm this hypothesis.  In future work, we plan to investigate the diversity of strategies being 
employed across all agents. 
 
 This result was interesting, but it also prompted us to question whether mean attendance 
is the best metric to capture “resource utilization.”  For instance, consider that there are two 
qualitatively different attendance ranges – if 61 people attend the bar, then no one is happy, 
whereas if 59 people attend the bar, then 59 people are happy.  It is not clear that it makes sense 
to simply average the values 59 and 61, when computing resource utilization.  For this reason, 
we defined a separate metric, which we shall call “societal benefit”, which is simply the number 
of happy bar patrons per week.  When the bar is overcrowded, the “societal benefit” for that 
week is 0.   We measured the average societal benefit across the last 100 weeks, and the results 
are shown in Figure 4. 
 

FIGURE 4 The average (over 30 runs) societal benefit in the last 100 weeks versus the number 
of generations evolved each week.  Standard error bars are shown. 
 

Similar to Figure 3, the relationship is that resource utilization decreases as we increase 
the amount of computational power given to the agents.  The trend here is even more apparent.  
Part of this trend is obviously due to the decrease in attendance at the bar, but that is not the 
whole story.  We know from the previous work of Fogel et al. (1999) that toward the end of the 
run, the average bar attendance usually fluctuated wildly.  One explanation for the decrease in 
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societal benefit might be that these fluctuations result in fewer people attending the bar when it is 
below capacity.  To investigate this hypothesis, we examined the standard deviation of the 
attendance at the bar.  Figure 5 illustrates the standard deviation of the mean attendance at the 
bar over the last 100 weeks versus the number of generations of evolution per week.  As can be 
seen the standard deviation does increase as the computational resources increases – that is, 
allowing the agents more time to evolve their strategies results in a greater amplitude of the 
chaotic oscillation in attendance.  This supports the idea that the population is fluctuating wildly 
and that is why the societal benefit is decreasing.  However, precisely why additional 
computational resources causes an increase in the size of the fluctuations remains a subject for 
further study. 

 
FIGURE 5 The average (over 30 runs) of the standard deviation of the mean attendance in the 
last 100 weeks versus the number of generations evolved each week. Standard error bars are 
shown. 
 

FUTURE WORK AND CONCLUSION 
 
 These initial results are tentative, and there is more work that needs to be done to 
substantiate the hypotheses that we have suggested.  For instance, the number of generations per 
week might not be the deciding factor that influences the societal benefit and the mean 
attendance at the bar.  Another possible factor is simply the total amount of evolution.  For 
instance, in the 5 generations per week case at week 500, each agent has undertaken 2500 
evaluations, while in the 20 generations per week case at week 500, each agent has undertaken 
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10000 evaluations.  One possible explanation is that the behavior of the 5 generations per week 
case at week 500 is comparable to the 20 generations per week case at week 125. Initial 
investigations indicate this is not the case, but additional verification is warranted.  Investigating 
the diversity of the final strategies employed by the agents would also help substantiate some of 
the claims that we have discussed.  Finally, it would be useful to look at the entire attendance 
distribution histogram rather than just aggregate measures like means and standard deviations. 
 

Still, we have begun to investigate what the relationship between computational power 
and efficient resource utilization is.  This experiment is a first step toward understanding if there 
are general claims to be made about this relationship.  These tentative results indicate that it 
might be possible for simple machine learning algorithms to be given a limited amount of 
computational power and still achieve an ecology of strategies that produces a greater resource 
utilization than a more complex learning algorithm with greater computational power. 
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ABSTRACT 
 
With so many toolkits available, the choice of which one is best suited for your project 

can be overwhelming.  Moreover, different communities of users prefer different aspects 
of a toolkit.  This paper is a survey of the toolkits that are available today and how they 
compare to each other from a multi-stakeholder perspective.  Our goal is to provide users 

the ability to better choose a suitable toolkit based on the features abstracted from various 
documentation and the first hand experiences of a broad range of communities of users 
and compiled into an easy to use compendium.  In addition, we expand the Agent Based 

Modeling body of knowledge to include information about a breadth of characteristically 
and historically diverse platforms.   
 
Keywords:  Agent Based Modeling and Simulation, Agent Based Modeling Toolkits, 
Multi-stakeholder Community 
 

INTRODUCTION 
 
 Agent Based Modeling (ABM) toolkits are as diverse as the community of people who 
use them.  With so many toolkits available, the choice of which one is best suited to a project can 
be overwhelming.  Current toolkit surveys are helpful but are limited to four or five mainstay and 
characteristically or historically similar platforms (Railsback et al 2006; Tobias et al 2004; Castle 
et al 2006).  Moreover, recent surveys are presented from the point of view and for the intended 
audience of one or two communities of interest (Railsback et al 2006; Tobias et al 2004).  
However, different groups of users prefer different and sometimes conflicting aspects of a 
toolkit.  For example, social scientists, who may have little or no programming experience are 
concerned more with ease of use, the degree of programming skills required, and the inclusion of 
intuitive interfaces to manage simulations.  Many, in general, are not concerned about whether 
the software is open source or restricted open source.  To computer scientists, however, the type 
of license that comes with the toolkit is a big consideration; they want the ability to “get behind 
the scenes” of a toolkit and to have the programming flexibility to modify or extend the software 
with third party applications if necessary.  They also generally prefer saving execution time by 
programming simulations themselves rather than using built-in interfaces.  Teachers of ABM, on 
the other hand, want packages that are easy to learn, that offer pedagogical insights, and that 
provide the student with the ability to transition to more difficult and comprehensive toolkits in 
the future.   
 
 In this paper, we survey the current state of the art in ABM toolkits, and we compare 
them to each other from a multi-stakeholder perspective.  Our goal is to provide users the ability 
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to better choose a suitable toolkit based on the features abstracted from various documentation 
and the first hand experiences of a broad range of communities of users and compiled into an 
easy to use compendium.  We use a combination of both scaled and quantifiable evaluations to 
create a taxonomy of toolkits for each characteristic of interest.  This is followed by a text 
explanation of each feature, including how and why a feature is ordered in each paradigm.  Some 
of the characteristics we evaluate include supported platforms, programming language and 
degree of programming skills required to create a model/simulation, major domains for which a 
toolkit may be used, type of license the toolkit includes, ease of use and completeness/robustness 
of a toolkit, the maximum number of agents supported, and the ability to extend a toolkit with 
third party software.  We also capture a history of the toolkits, explaining the influences that 
united to produce them and how different parallel threads of the ABM community emerged over 
time.    
  
 This paper is structured as follows.  In section I, we provide a short introduction to ABM.  
This is followed in section II by a description of our methodology; In section III, we include a 
preliminary compendium of taxonomies.   
 
 

BACKGROUND 
 

Agent based modeling is a framework for modeling a simulation based on creating a set 
of autonomous objects, called agents or entities.  An agent is “an abstract or physical 
autonomous entity which performs a given task using information gleaned from its environment 
to act in a suitable manner so as to complete the task successfully.  The agent should be able to 
adapt itself based on changes occurring in its environment, so that a change in circumstances will 
still yield the intended result.”1  The goal of agent based modeling is to have a many simple 
entities, by which we can discover the emergent behavior of a system.  In this paper, we evaluate 
the toolkits on the market today which use this framework for modeling and simulating agents.     
 
 

METHODOLOGY 
 
Goals 
 
 We began this research by studying survey design techniques (Arsham 2002; Creative 
Research Systems 2006; US GAO 1993; US GAO 1992; Walonick, 1997).  First we outlined the 
specific goals we hope to achieve through this survey so that we could identify our measurement 
variables, and structure our question designs appropriately. The specific goals of this research 
are:   

1. to help multi-stakeholder users choose an ABM toolkit based on the characteristics 
available 

2. to compile a broader list than is available of toolkit characteristics into one easy to use 
reference for users 

3. to find out why type of classes of users are using each ABM toolkit 
4. to ascertain what characteristics different communities of users when choosing an ABM 

toolkit 
 
                                                 
1 there are many different and equally valid definitions of ABM, but for the purposes of this research, we will 
choose this one.  This one is an informal definition by G.W. Lecky-Thompson quoted in (Hermans 97). 
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Population Sample 
 

Next we selected a sample population to achieve each of the goals.  In order to achieve 
goals 1 and 2, we have decided to contract a developer from each toolkit under consideration.  
We have developed a specific survey for this group and this set of goals.  (See appendix A for a 
list of toolkits under consideration)  In order to achieve goals 3 and 4, we have decided to sample 
the users of each toolkit.  We will sample about 5-10 users from each toolkit.  We will achieve 
this by contacting the user’s groups and/or the mailing list of the toolkits.  We have developed a 
specific survey for this group and this set of goals.   
 
 
Data Analysis 
 

In order to analyze the data, we will use three main analysis techniques: measures of 
central tendency; measures of distribution, measures of association, and measures of causation.   
In order to facilitate this, we have designed the survey questions to facilitate these types of data 
analysis.  For example, we have structured the survey with as few open ended questions as 
possible.  For most values, we have a list of qualified answers.  We also have incorporated many 
questions from an open ended format to a qualified, anchored scale.   
 
 
Sources of Error and Countermeasures 
 

The major sources of error in this research are various forms of biases that may be 
inadvertently or intentionally introduced.  In order to reduce inadvertent biases introduced in the 
structure of the questions themselves or from the respondents, we researched and applied proven 
survey design techniques that address exactly these issues (Arsham 2002; Creative Research 
Systems 2006; US GAO 1993; US GAO 1992; Walonick, 1997).  For example, we familiarized 
ourselves with the population by reviewing the literature on the subject and talking with subject 
matter experts.  We specifically selected the sample populations and determined sample sizes to 
eliminate biases and errors and be able to generalize to the population at large.  We developed 
the goals and identified corresponding measurement variables and then designed our questions to 
evaluate the measurement variables and achieve our goals.  We determined appropriate sample 
populations and sample sizes.  We also structured the questions such that we addressed the 
limitations of each type of question to reduced its inherent biases.  Some of the techniques we 
used include writing clear questions, using syntax and linguistics to facilitate question 
understanding and respondent recall, developing unscaled response lists, developing questions to 
minimize question bias and memory error, tailoring questions to minimize respondent bias, 
tailoring questions to minimizing measurement error, using odd numbered Likert scales to allow 
for neutrality in decisions by the respondent, quantifying all scaled values, anchoring our scaled 
lists, allowing escape choices for the respondent, including room for additional comments, 
incorporating a pledge of anonymity, avoiding inappropriate questions and questions that do not 
contribute to the goals, including an incentive, organizing the line of inquiry to maintain user 
interest and avoid bias, categorizing topics by heading, using lists to avoid biases in memory 
recall, qualifying the alternatives equally to avoid question biases, avoiding “yes” biases, asking 
more specify questions at beginning and more broad question at the end of the survey, initiated 
plans for follow-up for respondents and non-respondents, designing the questionnaire layout and 
graphics to facilitate user satisfaction and interest in the survey, defining words that could be 
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construed in a non-standardized way or in a different context to facilitate standardization 
interpretation of the questions, and finally pretesting the questionnaire to help validate our 
survey.   
      

In order to eliminate potential intentional bias, we only ask the developers to evaluation 
their own toolkit; we let the user’s evaluate comparable toolkits on the market.  However, 
because the developers can be biased toward their own software, in order to validate answers to 
these questions, we ask the users directly to evaluate important characteristics of the toolkit and 
comparable toolkits on the market.  In order to eliminate skewed sample data toward one or two 
major platforms, we have chosen samples from each toolkit user’s group.  
 
 
Data Validation  
  

We will use current literature and expert opinion to validate developer and user 
responses; we also will use information collected through open source channels and expert 
opinion to validate the responses.   
 
 
Potential problems noted 
 
 The major potential problems we may encounter are low response rate.  In order to reduce 
non-responses, we plan to implement proven techniques to make the surveys easy, simple, 
understandable, standardized, and pleasurable to the user.  We also have included an incentive:  
at the end of the collection period, we will have a drawing to give away three $20 gift certificates 
to developers who respond to the survey.  In addition, we will have a drawing for three $20 gift 
certificates for users who complete the survey.  We will attempt follow-up contacts with the non-
respondents per the survey design guidance.  If we still do not have a response, we will try to fill 
in the missing data as best as we can.  A similar problem we may encounter is if people do not 
answer questions or if answers to questions are unclear to the authors.  In order to account for 
missing data and information for which we need respondent clarification, we will attempt to 
contact the individual, if follow-up contact has been authorized by the respondent.   
 
 
Limitations 
 

Some of the limitations of this research are that we have a relatively small sample size, so 
the extrapolation may be less accurate for the entire population.  There are general limitations of 
survey data and of this form of questionnaire, which include missing data, non-responses, 
question biases, memory biases, respondent biases, unstandardized interpretation of the 
questions.  Another limitation is that we assume that all toolkits written in different languages by 
the same developers or development groups have congruent capabilities.  For example, we 
assume that anything one can do with the objective C swarm toolkit can also be implemented 
with similar results in Java based swarm.  In reality, there are subtle differences and nuances 
between the two that may be important to users of the toolkits.  Fourth, this survey is more of a 
broad study of the ABM field rather than an in-depth study of one or two platforms.  As such, we 
do not go in depth for any one toolkit.  Finally, the current list of important characteristics that 
are being evaluated for each toolkit are based on current literature, which is has been geared 
mostly toward the social science community.   
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Preliminary Results 
 

Then we gathered and assembling as much information as possible on various toolkits 
from open sources and documentation.  Taking some the questions that are important based on 
current literature (Railsback et al 2006; Tobias et al 2004; Castle et al 2006), we use the 
following list of characteristics that commonly are traded off in choosing a toolkit.  Some of 
these characteristics include platforms supported, programming language required, degree of 
programming skills required, ease of use, maximum number of agents supported, license 
employed, ABM history/roots.  Note that this list is not complete and may change as the 
responses from our questionnaires direct.  They simply are a starting point and a preliminary 
point of validation for this research.  (See appendices B-E for beginning taxonomies for several 
characteristics) 
 

Completion of the taxonomies and more in-depth explanations will follow when as we 
obtain and validate results from our surveys.  Note, in the final results, we also will include a full 
representation of features for each toolkit in an easy to use matrix format that allows for quick 
and comprehensive comparison of particular characteristics across different toolkits, or an 
examination at all characteristics across one specific toolkit.     
 
 

FUTURE WORK 
 

Currently, we are in the pretest phase of the survey design.  In the next step, we will 
deploy our surveys, collect the responses, and start analyzing and interpreting the results.    
 
 

CONCLUSION 
 
Different communities choose a toolkit based on various sometimes conflicting and 

contradictory aspects as other communities.  In this work, we explore what aspects different 
communities value in choosing a toolkit.  We also survey the current capabilities of the toolkits 
that are available today to help users choose an appropriate toolkit for their purposes.  We 
explore a breadth of the current state of the art, and we organize the information into a 
compendium of taxonomies for easy access and comparison of features.  When we complete the 
work, we will include a tabular formulation of the results as well.   
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Appendix A 
 

Toolkits Under Consideration 
 

ABLE 
Act-R 
Ada 
Agent Development Kit 
AgentBuilder 
AgentKit 
AgentSheets 
AnyLogic 
Ascape 
Brahms 
Breve 
Cormas 
Cougaar 
DeX 
DOMAR 
ECHO 
ECJ 
iGen 
ISAAC 
JADE 
JAS 
JASA 
JCA-Sim 
jES 
JESS 
LSD 
Madkit 
MAGSY 

MAML 
Mason 
MAS-SOC 
Matlab 
MIMOSE 
Moduleco 
NetLogo 
OBEUS 
openStarLogo 
oRIS 
Ps-I 
Quicksilver 
Repast 
SDML 
Sim++ 
SimAgent 
SimBioSys 
SimPack 
SME 
SOAR 
StarLogo 
StarLogoT 
Sugarscape 
Swarm 
TeamBots 
Vensim 
VSEit 
ZEUS 
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Appendix B 

 

Programming Language Required 
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Appendix C 

 
Domain Designed For 
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Appendix D 

 
License Employed 
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Appendix E 

 

History/Roots of ABM Toolkits 
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ABSTRACT 
 

The success of a large-scale agent-based model and simulation (ABMS) depends on 
finding the right development tools for each phase of its development lifecycle.  To that 
end, the authors spent three months evaluating free agent-based modeling software, with 
the goal of acquiring a tool set that would start with rapid prototyping and would progress 
to parallel and distributed runs on a cluster-type computing environment.   The products 
we reviewed during this study include NetLogo, Repast J, Repast Simphony, and 
ProActive.  In this paper, we describe the efforts required to create and maintain various 
models within each of these products, along with their respective strengths and 
limitations.  We present our results as a progression through a candidate tool set that will 
serve as our foundation for upcoming ABMS efforts.  

 
Keywords: Repast, NetLogo, ProActive, cluster  

 
 

INTRODUCTION 
 

During the development lifecycle of an agent-based model and simulation (ABMS), 
different needs arise at each phase.  Initially, a “quick-and-dirty” prototype is required to verify 
the problem domain with the customer and to preview the simulation’s look-and-feel.  After 
feedback is received, what follows is the formulation of the model and a subsequent semi-robust 
implementation.  Once it is working sufficiently, providing reasonable results for a small input 
set, the model is pushed to its computational limits and beyond, requiring the eventual use of 
large-scale computational hardware.  The success of the simulation depends on finding the right 
development tools for each phase.   
 

To that end, the authors spent three months evaluating free ABMS software, noting the 
steps required to utilize each tool and to transition the simulation to another tool.  The goal of 
this research is to acquire a tool set that would start with rapid prototyping and would progress to 
a system capable of parallel and distributed runs on a cluster-type computing environment.     

 
Our requirements include the capability of deploying a prototype model developed on a 

Windows workstation to a distributed-memory Linux cluster.  In addition to investigating the 
issues with cross-platform development (e.g., Windows workstation to Linux workstation), we 
also discuss the issues with transitioning to parallel models (e.g., Linux workstation to Linux 

                                                
* Corresponding author address: Tobin A. Bergen-Hill, The MITRE Corporation., 7515 Colshire Drive, McLean, 

VA 22102-7539; e-mail: tbergenhill@mitre.org. 
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cluster).  Using the parallelism terminology found in North and Macal (2007), the initial goal for 
the cluster capability is “coarse-grained” parallelism, i.e. a parameter sweep for a trade study or 
objective function analysis for parameter optimization (Fujimoto 2000, Lin 1994).  The eventual 
goal is a “fine-grained” parallel simulation, i.e., the use of separate processes within the model 
itself. 
 

In this paper, we describe the efforts required to create and maintain various models 
within each of these toolkits, along with their respective strengths and limitations.  We note 
which products have the ability to co-exist in a simulation.  Where there are conflicts or issues, 
we investigate whether the problems are intrinsic to the tool itself or whether they stem from the 
ongoing development of the tool.  We present our results as a progression through a candidate 
tool set that will serve as our foundation for upcoming ABMS efforts, and we discuss the 
decisions made for selecting the tools. Our hope is that others within the modeling and 
simulation community who are at the initial stages of a project and who have considered any of 
these tools can benefit from our experience and recommendations, and that they can apply our 
template to make their project a success. 
   
Related Work 

 
One of the more similar efforts we’ve found is the HLA_GRID_Repast system from a 

consortium led by the University of Birmingham (Zhang et al. 2005).  As a system for executing 
large-scale distributed ABMS over the Grid, it is definitely relevant.  However, we did not want 
to be bound by a single protocol for network communication nor by a specific target system. 
We’re seeking a flexible framework that allows us to choose the network protocol for the 
situation and to run on a variety of operating systems and hardware configurations. 
 

Another similar effort is the MACE3J testbed.  According to Gasser and Kakugawa 
(2002), it is designed for multiple granularities of parallel execution and can run on a variety of 
work stations.  We recognize that MACE3J is a likely candidate for further evaluation; however, 
our time constraints for a related, development project restricted the number of toolkits that 
would receive detailed attention. 
 
 
 

RESEARCH 
 

 Seeking a progression of toolkits that would lead us from prototype to a massively 
parallel ABMS, we reviewed multiple existing tools across different development environments 
and systems.  We started with the list of free toolkits cited in the ABMS text by North and Macal 
(2007), and narrowed it down to a handful of candidates.  Before presenting our review notes, 
we’ll briefly discuss our approach to simulation parallelization. 
 
 
Parallelization Approach 

 
When refactoring a simulation to a distributed architecture, there are numerous tradeoffs 

to consider.  In a shared-memory parallel (SMP) environment, threads can utilize shared memory 
to exchange data.  But in a distributed-memory implementation, agents don’t have access to 
shared memory and must have an explicit communication facility, which yields model design 
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overhead as well as runtime communications overhead.  Also, the spectrum of parallelization 
granularity ranges from trade study/parameter sweeps (e.g., batch mode) to simulation-level 
granularity (e.g., HLA integration) to fine-grained distribution of a single agent. The most 
suitable level of granularity again is a factor of the desired quantity of network communications 
verses computational power.  

 
In our investigation, we have kept in mind general parallel design approaches (Buyya 

1999): partitioning of a model, inter-process communications, mapping to the hardware, and 
agglomeration of results.  In the modeling and simulation domain, this general approach distills 
to determining, for a given model, the best approach to partitioning that model in a manner 
which diminishes run-time overhead (communications), while still enabling distribution across 
processors in a cluster environment.  We describe our partitioning scheme in the Findings section 
of this paper.    
 
 
Product Review 
 

The products we reviewed during this study include: NetLogo 4.0 beta, Repast J v3, 
Repast Simphony Alpha 2, and ProActive v3.2.1. A summary of our notes can be found in Table 
1 below.  The rest of this section expands on the strengths and limitations of these toolkits. To 
help contrast the simulation architecture of each toolkit, we provide a comparison of different 
demonstration models in Appendix A: Demo Model Comparison.  

 
 
Table 1 Toolkit Comparison Chart. 

Toolkit Strengths Limitations 
NetLogo • Easy-to-use language 

• Java interface 
• 2D & 3D display 

• Not meant for large scale 
simulations 

• No multithread support 
• No distributed simulation support 
• No batch run support 

Repast J • Handles medium-scale numbers 
of agents 

• Contains several useful 
simulation classes 

• 2D display 
• Supports multithreaded events 
• Supports distributed batch runs 

• Designed for single host execution 
per run, not for distributed 
simulation 

• No 3D display 
• Made obsolete by Repast Simphony 

Repast S • Handles medium-scale numbers 
of agents 

• Contains several useful 
simulation classes 

• 2D & 3D display 

• Still in development 
• No distributed simulation support 
• Bound to only one development 

environment (Eclipse) 
• Currently cannot function with 
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• Supports multithreaded events ProActive in a distributed fashion 

ProActive • Supports distributed processes 
(and consequently large-scale 
simulations) 

• Minimally intrusive API 
• Configure distribution through 

XML file 

• No simulation architecture 
• No visualization capabilities 
• Clutters the command line 
• Makes debugging difficult 

 
The selection of these toolkits over others warrants explanation.  One toolkit similar in 

purpose and structure to Repast is Swarm (Minar et al. 1996); however, we chose to review 
Repast because of its availability in Java and because of our familiarity with Repast.  We also 
selected NetLogo to review instead of StarLogo (Colella et al. 2001) because of our existing 
proficiency with NetLogo and because of NetLogo’s ability to interface with native Java 1.5 
applications. 
 
 
NetLogo 
 

An ideal rapid-prototyping toolkit for ABMS is NetLogo (Wilensky 1999).  We started 
with version 3.1.4 and migrated to version 4.0 beta 5 halfway through the summer.  NetLogo has 
many strong points.  Its script language is easy to use, which is no surprise given that it was 
originally developed for educational purposes. It features a “Java extensions” interface that links 
the NetLogo script with external Java routines. The display, which is essential to understanding 
and debugging the simulation, can switch between 2D and 3D, although the simulation is based 
on a 2D grid.  And there are over 150 models that come with the distribution, to serve as 
examples.  
 

As a prototype tool, NetLogo is not meant for large-scale simulations.  There is no 
support for multi-threading natively in NetLogo, only through farming the work to threaded Java 
code.  Similarly, NetLogo is not set up to support distributed simulations; its HubNet feature is a 
form of participatory simulation meant for human interaction, not high performance computing. 
 
Repast J 

 
Repast, or the REcursive Porous Agent Simulation Toolkit, is a medium-scale ABMS 

toolkit that has various forms (North et al. 2006); for our study, we focused on Repast for Java 
(Repast J) and Repast Simphony (Repast S).  Repast J provides an execution environment with 
an optional GUI for controlling the execution and monitoring of the simulation.  It features 
several useful simulation classes including a discrete-event scheduler, representation of the 
model space, batch-mode utility classes, and a built-in 2D visualization capability.  For agent 
representations, Repast J has no explicit agent class, but it does offer adaptive behavioral tools. 
 

For our purposes, we used a subset of the Repast J classes: 
 

- SimModelImpl: This is a partial implementation of the SimModel interface, through 
which Repast drives the simulation.  Each Repast simulation must provide a SimModel 
subclass. 
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- Schedule: This serves as a discrete-event scheduler.  The simulation can specify the order 
in which events (or “actions”) are executed. 

- BasicAction: All simulation events inherit this interface class in order to be stored and 
executed by the scheduler. 

- SimInit: This class is responsible for loading and executing the model, with optional GUI 
controls or batch mode operation. 

- DistributedSimInit: This experimental stand-in for SimInit uses ProActive to distribute 
batch runs of the model across a given set of hosts. 

- Random: This class encapsulates CERN’s Colt random number utilities.  An instance of 
this is placed in SimModelImpl, and the seed can be either generated from a timestamp or 
explicitly specified for reproducibility. 

 
Both versions of Repast feature a scheduler that supports concurrent actions, simply by 

specifying a non-zero duration argument.  But there are no constructs to support a distributed 
simulation, only distributed batch runs.  The Parameter Wizard makes it easy to specify 
parameter sweeps for batch runs.  It produces a parameter file, which can be passed in on the 
command line arguments to the SimInit class. SimInit will run the model in batch – but in serial 
fashion, not simultaneously.   
 

To perform simultaneous distributed batch runs, Repast-J provides an undocumented 
mechanism that utilizes ProActive. DistributedSimInit establishes the virtual nodes from the 
ProActive descriptor and creates RemoteBatchController instances on each virtual node.  The 
HomeController class tells the group of RemoteBatchControllers which model to instantiate and 
run; it also hands them the parameters to use for that run.  We’ve noted how to run simultaneous 
batch runs in Appendix B: Simultaneous Multi-Host Batch Runs In Repast J. 
 
 
Repast S 
  

Currently in the alpha stage of development, Repast Simphony is a complete redesign of 
the Repast toolkit.  As described by North and Macal (2007), “the Repast S runtime is designed 
to include advanced features for agent storage, display and behavioral activation, as well as new 
facilities for data analysis and presentation.”   
 

Repast S makes use of configuration files (model.score and scenario.xml) to specify the 
roles of the classes in a simulation model.  As stated in its preliminary documentation, the central 
class is the Context, which organizes the agents, denotes the relationships of its members 
(through “projections”) and holds numerical data in data layers.  There is also the 
ContextBuilder, which does the work of storing information in the Context.  The configuration 
files identifies the ContextBuilder, the agent classes, and which Context to use. 

 
Of the toolkits reviewed, we encountered the most platform-related issues when working 

with Repast Simphony and Eclipse, the development environment to which Simphony is tied.  
The case of the file names, ISO encoding of data files, and use of Java annotations (e.g. 
@override) created compile and run-time issues on Linux systems.  Also, Simphony binds us to 
a specific Java version; on Fedora Core 5, SELinux inhibits the use of Sun’s Java. Most 
importantly, though, is the different packaging used for the platform-independent distribution of 
Repast Simphony versus Windows, which uses the intrinsic Eclipse packaging system.  Luckily, 
we found workarounds to these issues to allow us to continue research. 
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When integrating the ProActive toolkit into our Repast Simphony simulation, we 

experienced interference from the Repast Simphony runtime environment – something that we 
didn’t encounter with Repast J.  First, in order to allow third party JAR files to be used, we had 
to place them within the directory containing the repast.simphony.core package, and we had to 
explicitly add the names of the JAR files to that package’s manifest and build properties.  (With 
Repast J, it was sufficient to include the JARs in the ProActive descriptor’s class path variable.)  
Second, when we configured the simulation to spawn separate processes with their own JVMs 
from within the simulation, any serialized application-level class that is passed to these processes 
results in an exception.  The spawned Repast S process cannot resolve the temporary ProActive 
“stub” class.  (The Repast J spawned processes had no problems with class resolution.)  Finally, 
we could not locate the means for activating code upon simulation end.  This is required in order 
to properly clean up the ProActive processes.  While the ModelInitializer interface provides a 
“hook” that is activated upon startup, no such “hook” exists for shutdown – even overriding 
Object.finalize() did not work. 
 

We also attempted to investigate the batch run capability of Repast Simphony on a Linux 
environment.  But, following the instructions provided in the Alpha release, we were 
unsuccessful.  Again, we anticipate that the next release will hopefully address these issues. 
 
ProActive 

 
As described by Baude et al. (2006), ProActive is “a Java-based middleware 

(programming model and environment) for object and component oriented parallel, mobile and 
distributed computing.”  It provides a minimally intrusive interface to managing distributed 
object instances.  Consequently, it does not have any built-in simulation architecture or 
visualization capabilities, which makes it an ideal supplementary package to Repast. 
 

To distribute an object, the application uses a ProActive method to turn it into an “active 
object” which can then be placed on a specified host, or “virtual node”.  The application interacts 
with the object through the normal method calls, as long as the arguments to the methods can be 
serialized.  Return values from objects cannot be immediately accessed, since they are only 
proxies to the value.  The application can check whether the proxy’s value has arrived prior to 
accessing it. 
 

The main configuration file for ProActive applications is called the Descriptor (or PAD), 
because it describes which machines are available and how many JVMs to run on each.  It also 
describes the class path for the spawned processes.  The file is not quite platform independent; 
on Windows machines, none of the specified paths should contain any spaces. 
 

To support load balancing, ProActive provides the means to migrate active objects 
between virtual nodes.  There is a fair amount of overhead to each active object, however.  For 
large-scale simulations that need to migrate agents, an alternative is to make the agent 
serializable instead of an active object.  Then the agent can be passed between virtual nodes 
using regular method invocations. 
 

Running a ProActive-enabled application requires the use of extensive scripts that 
configure environment variables, add many JAR files to the class path, and JVM command-line 
arguments.  Consequently, debugging a ProActive application within an IDE (such as NetBeans 
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or Eclipse) is difficult because all these run-time parameters must be reproduced.  We have yet to 
be successful in using a debugger with ProActive. 
 

Both distributions of Repast come with ProActive file.  However, this version is not 
current.  In the case of Repast-J, which includes ProActive classes within its JAR file, this causes 
problems  on Linux with NetBeans: when specifying the JAR files in the Libraries section of 
NetBeans, ProActive.jar must appear above repast.jar in order to use the more recent version. 
 
 

FINDINGS 
 
From the set of toolkits reviewed, we have found two potential paths of progression for 

an ABMS, as illustrated in Figure 1.  The “current” path reflects what is possible with the current 
state of the toolkits; it is a complete progression from prototype to a large-scale distributed 
simulation.  The “future” path is based on promised capabilities from the Repast Simphony 
development team. 
 

 
 

Figure 1 ABMS Development Progression Paths. 
 
Current Path 
 

Using the toolkits in their current state, we have had success with the following 
progression of development: 
 

• Stage I: Prototype in NetLogo 
• Stage II: Pure Java  
• Stage III: Repast J simulation 
• Stage IV: Distribute simulation via ProActive 

 
The next few sections discuss the transition between these states. 
 
 
Stage I to Stage II 
 

Current Path

Future Path

NetLogo Manual 
Java Port

Repast J ProActive 

NetLogo ReLogo Repast S ProActive 
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Going from NetLogo script to Java code is currently a manual process.   Initially, this 
process can start by using Java extensions from within the NetLogo script for key components of 
the simulation’s business logic.  But to go completely to Java, the NetLogo representations of 
turtles and patches require a Java counterpart, along with the visualization and event loop.  The 
turtle classes will require movement methods, and both the turtles and patches will need 
NetLogo-like query operations.  It turns out that the turtle classes become the simulation’s agent 
classes. 
 

It is debatable whether it is necessary to put the simulation into an intermediate pure Java 
form, or whether to go directly to using the Repast J classes.  It is easier to debug the 
simulation’s logic when in pure Java.  However, the port will produce temporary classes that end 
up being replaced by their Repast J counterparts (e.g. schedule, visuals, and terrain). Working 
directly in Repast will prevent redundant work. 
 

Once the port is complete, the NetLogo prototype can still be developed, as long as the 
changes are tracked and reproduced on the Java side.  But at some point, modifications must stop 
flowing down. 
 

 
Stage II to Stage III 
 

Adapting a Java simulation to the Repast-J framework is relatively straightforward 
because the requirements are minimal: 
 

- Provide a subclass of SimModelImpl with the begin() and setup() methods overridden 
- Schedule events using the Schedule and BasicAction classes 
- Fire a stop event when the simulation has finished 

 
Repast J does not have an agent interface class, so there are no restrictions on the agent 
representation.   
 

With regards to visualization, the simulation could use the 2-D visuals provided by 
Repast J.  In order for agents to be rendered, the agent class must implement the Drawable 
interface.  Also, the SimModelImpl subclass must create some representation of the model space 
(e.g. Object2DTorus), a DisplaySurface and an Object2DDisplay.  Alternatively, the simulation 
could use a third-party visualization toolkit, such as Java3D. We chose to use Java3D because 
there are certain advantages to having the viewpoint at the agent level (e.g. obscuration of field 
of view affecting agent logic). 
 

Another reason to use a separate visual toolkit is to prepare the simulation for a 
distributed, batch run.  The results can be logged to data files and replayed through the visuals.  
If there’s a need to see the visuals during the simulation run, then a communication link can be 
established between the Repast process(es) and the visual process. But this will introduce a 
performance penalty. 
 
Stage III to Stage IV 
 

Going to a distributed framework is the most difficult transition to make because of the 
impact on the simulation’s architecture.  The simulation engineer must determine how to 
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partition the execution across different machines while keeping the amount of network traffic to 
a minimum.  The initial impulse is to make the agents themselves become separate processes; but 
if the agents require constant communication with its neighbors, the overhead of the supporting 
network communications will outweigh any benefit to be had by distributing the simulation.   
 

Instead, we recommend that the engineer work at a larger level, deciding how to carve 
out large pieces of the simulation that can operate nearly independently, which we’ll call a 
“domain.”  Each domain will be responsible for managing all agents within an area – in the same 
process.  To address the boundary condition problem - e.g., when an agent travels between 
domains – we can learn from parallel battlefield simulations and define the domains 
geographically (Nicol 1988).   Each domain should also write its results to a uniquely named log 
file. When running on a cluster environment, we recommend writing to a file on the local file 
system.  Otherwise, the cost of writing to a NFS-mounted drive negates the performance benefits 
of distributed processing. 
 

Since the SimModelImpl subclass cannot be serialized and passed to the domains, 
another class is required to act as a coordination object.  Domains would send any needed run-
time statistics to the coordination object (in addition to logging data locally); however, this 
should be kept to a minimum because it is a major performance bottleneck.  Domains can also 
notify the coordination object when they’ve finished, which can signal Repast J that the run has 
ended. 
 

When the simulation begins, the following should occur within the SimModelImpl 
subclass’s begin() method: 
 

- Read in the PAD file 
- Activate the virtual nodes 
- Create the domains as a ProActive group, using the list of available virtual nodes 
- Create the coordination object as an active object and pass it to the domains 
- Schedule an action whose execute() method performs the following: 

o Check with the coordination object to see whether the domains have finished, and 
if so, fire a stop event 

o Display statistics (if enabled) 
o Update the domains 
o Schedule another action 

 
Once the simulation ends - either because the domains indicated that they have finished, 

or because the user presses the stop button - a stop event will be triggered.  The SimModelImpl 
subclass needs to handle this event by cleaning up the ProActive active objects and killing all the 
JVMs on the virtual nodes. 
 

After the simulation has been outfitted with ProActive, it must be tested to make sure the 
functionality has been preserved.  We recommend using the following progression of PAD files: 
 

- One virtual node that is using the same JVM as the Repast application 
- Multiple virtual nodes that are using different JVMs but on the same host as the Repast 

application 
- Multiple virtual nodes, each on a different host 
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The final step is adding the ability to perform simultaneous batch runs using Repast J and 

ProActive.  For details on how to accomplish this, see Appendix B: Simultaneous Multi-Host 
Batch Runs In Repast J. 
 
 
Future Path 
 

Based on the limited information we’ve heard about the next release of Repast Simphony, 
we anticipate that the following progression will be possible: 
 

• Stage I: Prototype in NetLogo 
• Stage II: ReLogo 
• Stage III: Repast Simphony simulation 
• Stage IV: Distribute simulation via ProActive 

 
The next few sections explain the transitions between these states. 
 
Stage I through Stage III 
 

Our speculation is that Repast Simphony will be packaged with a utility dubbed 
“ReLogo”, which will parse NetLogo script and turn it into Repast Simphony Java code.  This 
will make obsolete the manual process of converting NetLogo to Java from the “current” path.  
The anticipated release of ReLogo is November 2007. 
 
Stage III to Stage IV 
 

As in the “current” path, the process of outfitting a Repast simulation with ProActive 
constructs is still performed manually.  The intent was to demonstrate at summer’s end the 
ability to run a Repast Simphony simulation in a distributed fashion.  However, we were unable 
to successfully invoke methods on active objects that reside in a separate JVM (either on the 
local host or a remote host). 
 

The test application we used is a modified version of ProActive’s n-body simulation.  We 
added the minimum constructs necessary to convert it to a Repast S simulation.  For detailed 
steps on this procedure, see Appendix C: Repast Simphony – ProActive Integration Notes. 

 
 

NEXT STEP 
 
While we are content with using the “current” path as a template for our ABMS work, we 

look forward to the streamlined process featured in the “future” path.  We hope to see the 
ReLogo mechanism in the next release of Repast Simphony, and we hope to solve the issues 
preventing ProActive from reaching its full potential in Repast S. 
 

We wish to explore other ideas to reduce the work involved.  Since the use of ProActive 
centers on properly configured descriptor files, we would like to construct a tool to compose and 
generate PAD files.  Another improvement would be to write a better parameter sweep 
mechanism in Repast that would vary parameters while running on different groups of hosts; this 
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would require removing the group name as a parameter and providing it through some other 
means of input.  This custom parameter sweep could also support varying multiple parameters 
per run, going beyond what is provided in Repast. We are also seeking ways to incorporate 
ProActive constructs in a semi-automatic fashion, perhaps as custom hooks within the ReLogo 
conversion process. 
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APPENDIX A: DEMO MODEL COMPARISON 
 

The comparison of various demonstration models distributed with the toolkits can be 
found in this appendix.  These examples supplement the discussion of the toolkits found in the 
Product Review section. 
 
 
NetLogo MouseTrap 
 

One model that comes with three of the toolkits is the MouseTrap simulation, which 
originally came from the Swarm toolkit (Minar et al. 1996).  The version for NetLogo (Wilensky 
2002) is simply represented by three functions: 
 

- setup: resets the traps (i.e. the patches) and the balls (i.e. the turtles) 
- go: controls the triggering of the traps and introduction of new balls 
- move: move the ball in a random direction up to a specified maximum distance 

 
 
Repast J MouseTrap 
 

The Repast-J representation of MouseTrap takes the form of three classes: 
 

- MouseTrapModel: a subclass of SimModelImpl. This class manages the simulation, 
houses the simulation space and display, and tracks the current number of active balls.  
The begin() method constructs the model out of MouseTrap classes.  During the run, its 
scheduleTrigger() method schedules a TriggerAction for each trap that fires. 

- MouseTrap: the representation of the “agent”.  The trigger() method randomly chooses 
which neighboring traps are triggered by the balls launched by the trap, passing them to 
the model’s scheduleTrigger() method. 

- TriggerAction: a subclass of BasicAction, this holds a reference to a MouseTrap instance. 
The execute() method triggers the trap and updates the display. 

 
 
Repast S MouseTrap 
 

The Repast S representation of MouseTrap includes the following core classes: 
 

- MouseTrap: This is the agent representation, as designated in the model.score file.  Its 
trigger() method is similar to the Repast J version. 
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- MouseTrapsCreator: This is the ContextBuilder for the demo and is designated as such in 
the model.score and scenario.xml files.  It creates a grid projection for the context and 
fills it with MouseTrap agents.  It also adds a data layer to the grid projection. 

- TrapInitializer: This ModelInitializer subclass triggers the first trap.  The scenario.xml 
file identifies this as the model’s initializing class. 

- TrapTrigger: Implementing the IAction interface, this class is similar to the 
TriggerAction class in the Repast J version. 
 

 
ProActive n-Body 
 

Unfortunately, there was no MouseTrap simulation that came with ProActive.  Instead, 
we’ll use an n-body simulation to demonstrate how a ProActive ABMS is structured.  Below is a 
description of the main classes used in the n-body simulation: 
 

- Domain: This class manages each Planet in the simulation, calculating the forces exerted 
on it by its neighbors.  It relies on distributing the resulting sum to all other Domains (and 
their planets).  It then notifies the Displayer to update the planet’s position.  This is one of 
the “active objects” in the simulation. 

- Start: This class reads the PAD file and activates the virtual nodes, then creates the 
Displayer, the Planets and their Domains.  It launches the Domain processes on the 
virtual nodes, using the ProActive group construct.  When the Domains finish the 
specified number of iterations, they notify this class. 

- Displayer: Acting as a wrapper for the planetary display, this class is handed to each 
Domain by the Start class.  Like the Domain, this is also an active object. 

- Planet: This is the “agent” of the n-body simulation, and has several physical properties 
to regulate its motion. 
 

 
APPENDIX B: SIMULTANEOUS MULTI-HOST BATCH RUNS IN REPAST J 

 
This appendix discusses how to utilize Repast J and ProActive to perform simultaneous 

batch runs.  The main difficulty is to prevent each run (which itself uses multiple hosts) from 
executing on remote hosts that are currently executing other runs. To accomplish this, the 
DistributedSimInit class can be used in combination with a special parameter sweep: 
 

1. Make multiple virtualNode mappings in the XML file: 
- “remote”: these are the nodes that will have the SimModelImpl subclass 
- “WorkersN”: these are the groups of nodes that will perform the work; N is the number of 

nodes in the “remote” group 
 

2. Add a property: vnMapping; this will indicate which virtual node mapping for the model 
to use for its workers 

 
3. Define a property sweep file where the inner-most sweep is the vnMapping property; 

have it cycle through the different WorkersN values. 
 

4. In the model’s main() method, have it instantiate a DistributedSimInit class.  Call its 
open() method giving it the PAD filename, the model class name, and the sweep file. 
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Since vnMapping is a parameter that is being swept, and since the sweeping mechanism 

only varies one parameter per run, the same parameters will be run across all workers sets, which 
limits its usefulness. However, each run will use a different random seed, though – based on 
time.  
 

HomeController creates a persistent DataWriter, but does not specify its file name.  After 
all the batch runs occur, it tells DataWriter to write the current time at the end of the file; since 
the filename is null, the exception occurs.  To work around this, create a DataRecorder in the 
model’s begin() method.  This will automatically set the filename of DataWriter, so when the 
batch runs finish, no exception will be thrown, and everything is cleaned up properly.   
 
 

APPENDIX C: REPAST SIMPHONY – PROACTIVE INTEGRATION NOTES 
 
The following notes reflect the steps needed to incorporate Repast Simphony and ProActive into 
an ABMS.  They are geared towards a Windows environment. 
 

- Repast S (and Eclipse) must be stored in a path that does not have spaces in it.  For 
example: c:/program files/RepastS will cause problems with ProActive, but 
c:/projects/RepastS is fine. 

 
- Create a new project in Eclipse according to the write-up 

 
- In the model.score file, point the Base Path at ../../repast_workspace/PROJECT_DIR 

 
- Add attributes only to the model.score file; nothing else is required by RepastS 

 
- Have the main model file inherit ContextBuilder, and provide a build() method 

 
- To the project, add external libraries for ProActive: 

o Right-click on the project and choose Build Path->Add External Archives...  
o Browse to the ProActive directory and add the following: 

 ProActive.jar 
 ic2d.jar 

o Repeat and browse to ProActive/lib and add the following: 
 xercesImpl.jar 
 bouncycastle.jar 
 javassist.jar 
 jsch.jar 
 log4j.jar 

o Repeat and browse to ProActive/lib/components and add the following: 
 fractal.jar 

o Copy these ProActive JARs to RepastS/repast.simphony/repast.simphony.core/lib 
 

o Add fractal.jar, xercesImpl.jar and bouncycastle.jar to the RepastS runtime 
component   
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o In Eclipse, locate the repast.simphony.core project and open the MANIFEST.MF 
file 

o Of the various tabs for the manifest, choose Runtime 
o In the Classpath section, click New... then enter lib/your_lib.jar and click OK.  
o NOTE: This will add it automatically to the MANIFEST.MF file as well as the 

build.properties file 
o In Eclipse, open the plugin_jpf.xml file in the repast.simphony.core project 
o At the end of the <runtime> section, add a line for your JAR file, e.g.: 

 <library id="your_lib" path="lib/your_lib.jar" type="code" /> 
 

- Add a PROJECT.launch file to your project 
o Click on the pull-down menu for the Run button and choose Run... 
o Select the "SimpleHappy" run configuration and click the Duplicate button 
o Rename it to your project 
o On the Arguments tab: 

 Set the Program Arguments to "../../repast_workspace/nbody/scenario.rs" 
(without the quotes) 

 Set the VM Arguments to "-
Djava.security.policy=file:c:/projects/proactive/scripts/proactive.java.polic
y" (without the quotes) 

 [Note: adding  -
Dlog4j.configuration=file:c:/projects/proactive/scripts/proactive-log4j 
actually prevents the log from appearing in the console] 

o On the Common tab, click the Browse button next to "Shared File" and choose 
your project 

o Click the Apply button, then Close 
 
This will allow you to run the simulation with a single virtual node running on the local JVM.  
When the active objects are placed in a different JVM, the active objects are created without 
problems.  But when an active object is passed from the main process to the other process, 
ProActive throws a ClassNotFound exception.  The error still appears even when the application 
classes are explicitly added to the classpath section of the PAD file. 
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ADAPTIVE SIMULATION: A COMPOSABLE AGENT TOOLKIT FOR WAR GAME 
ADJUDICATION 

 
D. DUONG,  ∗ US Office of the Secretary of Defense  

 
ABSTRACT  

 
The Office of the Secretary of Defense/Program Analysis and Evaluation 
Simulation Analysis Center is exploring war games and war game adjudicators, to 
improve its ability to analyze irregular warfare.  Adaptive simulation is a 
suggested technique of composing simulations of cause and synchronizing them 
through connections found in correlational studies.  This toolkit of composable 
simulations will be a hybrid of agent based models and fuzzy rules, that may be 
used to adjudicate war games or play them without humans in the loop (HITL).  It 
may be used in an adaptive, quick turnaround modeling process in which models 
are quickly assembled upon HITL moves that can adjudicate moves based on a 
consensus of social theories. 
  

 
 Keywords: Agent Toolkit, Agent Based Simulation, War game, Constraint Satisfaction, 

Social Simulation, Computer Adjudication, Irregular Warfare, Fuzzy Systems  
 
 

INTRODUCTION  
 
The factor that is most significant to the type of computer analysis used on a war game is the 
factor of how adjudication is performed.  If the all of the moves of the game are expressed in the 
computer, and the computer adjudicates all of the moves, then the computer may be able to play 
the game on par or superior to human players using game trees.  Such a game can be entirely 
automated and analyzed by computer, and needs no human play.  On the other hand, if humans 
adjudicate, or the computer adjudications are ignored because of “psychological” moves that are 
not adjudicated by computer, then the computer can learn from the moves of the humans in the 
loop (HITL), but statistically significant analysis is more difficult to obtain.  The X-game, the 
extended game played by in the office of the secretary of defense to test irregular warfare 
strategies in the global war on terror (Dunlap 2007),  is more of the later case.  This paper 
presents a methodology for using computer technology to make the X-game more like the former 
kind of game, thereby bringing it into the horizon of analysis 
 
In a war game, someone or something has to make an educated guess on how groups of persons 
will behave in situations.  Subject matter experts (SMEs) would use heuristics on classes of 
persons to make generalizations.  SMEs are not able to walk out the individual choices that 
humans would make to the degree that a computer could, but  are more flexible in interpreting 
the meanings of events and applying heuristics in context.  A better computational ability to draw 
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a picture of the social environment by walking through the implications of social actions would 
enable a full automation of analysis, without the need for HITL.  Full automation would allow a 
complete statistical analysis of the robustness of strategies, as well as support the discovery of 
new strategies through data farming and data mining the results. Short of improved technology, 
duel analysis can be done, on both human and computer adjudicated games.   
 
Advantages that Computer Adjudication has over SME Adjudication 
 
Besides the obvious advantage of saving human resources, being around when SMEs may not be 
able to, and achieving a statistically significant number of runs, computer simulation can do a 
number of things that SMEs find difficult.  Agent based computer simulation gives the same 
advantage that war gaming itself gives to analysis: the ability to walk problems through.  A SME 
will tend to use heuristics to generalize about the attitudes of citizens, rather than walk through 
their individual reasons, choices, and actions. Agent based simulations allow individual 
behaviors to be walked through, so that the higher order effects of those behaviors are calculated. 
Macro effects of micro actions are the forte of agent based simulation. 
 
It has been said that we only have a tactical understanding of irregular warfare, making the 
macro effects of micro actions the central mystery of irregular warfare science.  Studies have 
shown that SMEs have great difficulty in predicting how populations will react to events.  This is 
because social science does not have good theories of micro macro integration.  Agent based 
simulation can help develop theories of how micro actions effect macro level social phenomena 
in irregular warfare scenarios.  If there is no reliable way to connect the micro actions of warfare 
to macro social attitudes, then walking out the micro actions of irregular warfare in the X-game 
becomes of questionable use.     
 
Many adjudications of the X-game could have been more accurate and less frustrating if agent 
based simulation was used instead of a spreadsheet adjudicator.  For example, participants could 
not adjudicate comprehensive effects across national boundaries well, and international effects 
were the purpose of including very many nations in the game.    X-game participants divided 
their assignments into individual countries without sufficient crosstalk, because complexity at 
that level is hard for individuals to think about, and takes computer simulation to think out.  The 
spreadsheet adjudicator did not compute higher order effects, and as a result, the macro effects of 
micro actions were not computed.  For example, instead of computing out the effect of a terrorist 
action on the value of currency, the spreadsheet adjudicator asked X-game participants to figure 
this out.  Being asked so many questions about the macro effects of micro actions that they did 
not know the answer to was a frustrating waste of gamer’s time.   
 
Further, participants had difficulty walking through information operations (IO) incidents. This 
bothered them, because they felt that IO and the politicized environment, as well as how it 
contributes to intelligence gathering, is essential to irregular warfare. Rather than walk through 
the social dynamics of IO, they would use heuristics to adjudicate how a population would react. 
The heuristics the SMEs used tended not to include details about how a population’s mind could 
be changed, which was really the point of the game, and the source of frustration for players who 
tried to improve their public support levels.  X-game participants thought it was useless to walk 
through individual IO scenarios when they did not know how to aggregate them to the strategic 
level.  Since “walking through” is the whole point of a war game, an agent based program that 
could calculate the strategic effects of micro IO outcomes would encourage participants to walk 
through the events that are the most relevant to the problem of irregular warfare. 
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An agent based simulation that walks through the effects of micro level actions on the macro 
level economy would be a low risk replacement for the linear adjudicator of the first run of the 
X-game.  It would surpass its algorithms with only a small amount of work, and would continue 
to improve and grow as more social phenomena is simulated.   
 
Advantages that SME Adjudication has over Computer Adjudication 
 
Xgame participants felt that the computer adjudication results were so separated from the verbal 
game that they tended to be ignored by players, and not looked at to trigger events.  They were 
simply scorecards, and poor ones at that, that did not adequately reflect the verbal game. This 
separation has more to do with computer adjudication in general rather than the particular linear 
computer adjudicator of the first run of the X-game.  Computer simulations are not good at 
addressing human contexts.  For example, X-game participants asked a contractor to put “a 
kidnapping" in a simulation. But, the result of that kidnapping was not believable, because how a 
population reacts to any event depends on the context, which they could not put in the 
simulation. The world is too complex to put all possible contexts into simulations before the 
particular details about a scenario are known.  If basic processes of the model do not address the  
cruxt of a situation, and if the important factors are not even entered into a model, then the result 
is not valid. 
 
An approach to dealing with the problem of context is quick turnaround agent based modeling.  
That is, to have data and many relevant models and modeling practices ready at the beginning of 
the study, and to write important parts of the model after the scenario is known, with the help of 
an agent based simulation toolkit.  There are some 200 computational social models in academia, 
along with papers that describe them.  Ideas from them that reflect social theories relevant to the 
scenario may be put into an agent based simulation during the preparation phase of a war game.  
Since the X-game had week long turns for extended study of actions, some of this time in the 
game can be spent in putting the context of new actions that modelers did not think of in advance 
into the agent based model. Quick turnaround agent modeling will allow creative moves to be 
put into the computer adjudication, and will be available for more excursions in the post-game 
analysis phase. Models will be available for future use, even if that use is just the borrowing of 
design patterns, so that the turnaround time will be quicker as the toolkit grows.   
 
A Toolkit of Composable Modules for Quick Turnaround Adjudication 
 
The social world is so complex that we can not build a general model of it that will be valid in 
every situation at the present state of social science.  This complexity,  in the context of irregular 
warfare, makes the quick turnaround approach less risky in terms of verification, validation, and 
accreditation (VV&A) than the traditional approach of using a previously VV&A-ed model and 
only changing the data. The model must also be modified to the particular situation.   
 
Composable models also enable the switching in and out of social theories. With composable 
modules, the modeling phase would mostly consist of combining models or sub-classed models 
together according to research done on the scenario.  If the models come in modules that roughly 
correspond to different social theories, then relevant sides of issues related to the scenario may 
be assembled together into plausible alternative social environments to branch on.  Both sides of 
controversial issues would be represented.  This is an important capability, as the US government 
can not test strategies against only one social environment when social scientists have not come 
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to a consensus on what that environment is.  Since the point of the game is to test the robustness 
of strategies, they should be tested against possible social environments as well as against 
possible enemy responses.  
 
Agent based simulation should be used for this toolkit, not only because it can handle the micr-
macro integration problems of irregular warfare better than SMEs can, but also because it is 
suited for recombination into new contexts.  Agent based simulation is the most valid technique 
for quick turnaround causal modeling because it models with first principles, while other forms 
of adjudication tend to just model with correlated relations that do not apply outside of a 
particular context. When first principles or the root causes of phenomena are modeled rather than 
the appearance of phenomena, then a simulation becomes valid in new situations, and validity in 
new situations is an important requirement for a quick turnaround modeling toolkit.  For 
example, X-game participants had difficulty with one of their computer models that simulated a 
“gravity point”: a type of social homeostasis or healing, where the simulation goes back to the 
original state after a perturbation.   However, because the model simulated the appearance of the 
homeostasis rather than the cause of the homeostasis, it occurred in every situation, even in 
situations where the point of the game was to find ways to prevent healing.  If phenomena is 
simulated by assuming it is always true, then it can’t be valid for exploring when it isn’t true.  In 
contrast, a good agent based simulation uses first principles and has fewer assumptions. Most 
phenomena in an agent based simulation is emergent from those few assumptions. Thus, agent 
based simulation is a technique that allows basic assumptions to be walked through in new 
contexts. 
 
Combining Correlational Relations with Causal Models 
 
In the first X-game, spreadsheets were used for computer adjudication because the agent based 
simulation was not ready.  X-game participants put relations such as from the Fund for Peace’s 
failed states index (Fund for Peace et al, 2007)  into adjudication spreadsheets, combined with a 
random number generator to recognize that the relations were not always true.  To put many 
relations from SMEs into a simulation so that they make sense together, modelers should no treat 
them as hard assumptions, as is done when relations are put into spreadsheet adjudicators.  
Modelers must take care to limit the number of assumptions in a simulation, and to understand 
the difference between correlational and causal models of social science, and how to apply both 
kinds of models to a simulation.  Social science has thousands of studies of how one 
phenomenon correlates with another phenomenon. However, correlational relations can not be 
put into the assumptions of a simulation because they do not explain cause, and do not address 
why they are sometimes true and sometimes not.  If they are put in as hard constraints, the model 
will not be able to explore anything outside of those relations, and the fact that the correlation 
coefficient is typically quite low in correlational studies of social phenomena makes it unrealistic 
to assume that many of them would be true at the same time.  Moreover, correlational studies can 
not drive simulations : only causal models can do that.  
 
Rather, correlational studies should be implemented as requirements to models of cause, or soft 
constraints on an answer that is determined by causal models.  Observed correlations can and 
should be requirements for the higher order effects that result from theoretically based causes.  
Figure 1 illustrates composed causal models that are constrained in their outcome at designated 
points of correlation with events in other causal models. 
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FIGURE 1   Correlational studies as soft constraints on models of cause, in a composition of 
models 
 
A toolkit of composable models would cover both larger basic social theories of cause and 
smaller, more correlational studies.  Causal theories would be expressed in simulation modules, 
while correlational studies would provide data upon which a designation of correlation between 
modules, or between modules and data, may be based. Designated correlations will place soft 
constraints on the consensus formed between sets of correlated modules at the places designated 
as correlated.  Simulation modules would be synchronized at these places of correlation, so that 
they create a single picture of the social environment. 
 
Fuzzy Rules to Implement Correlational Relations 
 
Fuzzy rules are better implementations of soft constraining relations on simulation modules than 
spreadsheets are. Fuzzy rules work well with rich ontologies as distance metrics for simulation 
events.  According to Weisel and Moya (2007), in order to be composed together, simulation 
events in different simulations must be related and described by a distance metric.  Fuzzy rules 
can be used to decide whether a simulation event has come close enough to be designated as 
correlated with an event in another model, so that these models may be synchronized. 
 
Fuzzy distance metrics can also represent gradient for use in data mining techniques and 
database retrieval of close cases, as is needed for case based reasoning.  Fuzzy rules learned from 
HITL moves by data mining techniques such as the Center for Army Analysis’ ACTOR program 
(O’Brian, 2003), can be added to hand-designed fuzzy rules from correlational studies, and put 
back into the composed model as soft constraints for post game runs without HITL.  This would 
be useful for scaling, for example, to derive rules from war games of a few factions, and then test 
them on a more realistic simulation of 300 factions. 
 
Adjudication rules in the form of fuzzy rules reflect the qualitative nature of social phenomena. 
As a method of soft computation, they are robust with respect to data, using the kind of verbal 
approximations that SMEs make.  In a fuzzy system it does not matter if much of the data is 
approximate.  Additionally, fuzzy systems can handle rules that contradict themselves, such as 
different SMEs or different correlational studies might make. Conflicting rules can just be added 
together.  
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Fuzzy cognitive maps can implement soft constraints leading modules to a consensus of the 
separate simulation models using constraint satisfaction methods.  They can also implement the 
relations and feedback of systems dynamics models, another type of non-causal macro level 
model that can be used to put requirements on agent based simulations. With fuzzy rules, a quick 
turnaround toolkit can incorporate relations from spreadsheet and systems dynamics models, 
including feedback relations, into compositions of agent models.  
 
Composing Simulation Models 
 
The various simulations of major social theories, along with the designated points of correlation 
from correlational studies, will come to a consensus on a picture of the social environment, even 
though they may contradict each other.  The phenomena in the different simulations will be made 
to correlate with each other at the correlation coefficients of published studies as much as 
possible.  Individual simulations will have to adjust their states to the consensus state, and 
continue simulating from the point of consensus.  This may involve iterative re-computations of 
simulation time until consensus is reached. Different simulations may be weighted differently in 
weighted voting schemes Since this is a constraint satisfaction problem, feedback such as in 
constraint satisfaction neural networks and fuzzy cognitive maps can help decide the consensus 
state.  The National Science Foundation’s Dynamic Data Driven Application System (DDDAS) 
program has developed techniques for feedback between data and simulations can also help. 
 
The toolkit for composable models would have some qualities of a federation of independent 
models, and some qualities of a library of modules that need sub-classing in order to be 
instantiated to particular problems.  As in federation composablity, modules would be viable 
without each other, for example, a model might use a draw from a distribution for phenomena it 
does not simulate, or if there is a designated correlation point it might use a draw that has been 
made to correlate with a draw from another simulation, or it might even replace the draw with an 
event from a trusted deterministic simulation. Since social phenomena are dependent on each 
other in the mathematical sense, theories can not switch in and out through neatly defined 
interfaces, as one might expect from a library. Figure 2 illustrates this point.  Rather, there is 
functional overlap between theories, with different overlap depending on the theory. The same 
events, or correlated phenomena, in different simulations can be made to match up, 
synchronizing the simulations into one picture of the social environment at the designated points 
of correlation.  Even replicated simulations, which are simulations of the same theories 
implemented differently, can benefit from coming to consensus through designated points of 
correlation, because artifacts of their implementation would be weeded out. 
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FIGURE 2   The modules of the toolkit will have functional overlap, on the left, as 
opposed to the traditional model of independent modules, on the right.  Because social 
science theories look at the same phenomena in different ways,  modules will be 
synchronized at their designated areas of overlap rather than through standardized 
interfaces.   

 
Conclusion 
 
Although SMEs have difficulty thinking about the macro effects of tactical moves in war games, 
they are still trusted more than computer simulation because they are better at understanding 
human contexts.  A toolkit for composable models would give us many capabilities, including 
the ability to quickly adapt an agent model to the context of a move in the war game and the 
ability to switch different models of the social environment in an out. As more of the human 
context is put into a simulation, the simulation can replace the HITL game, so that irregular 
warfare strategies may be tested for robustness against many more scenarios than is practical for 
HITL games. 
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ABSTRACT 
 

In this paper we introduce GROWLab (Geographic Research on War Laboratory) – a 
software toolbox to facilitate the modeling, simulation, analysis, and validation of 
complex social processes, with a special focus on geographic aspects. The paper aims to 
give a general, non-technical introduction to agent-based modeling with GROWLab. It 
focuses especially on the toolkit’s support for model structure, i.e. the creation of 
complex agent configurations and hierarchies. An important feature of GROWLab is that 
it makes possible the integration of real-world empirical data collected with a GIS. More 
specifically, GROWLab can automatically create model structures from GIS datasets. 
This way, it is possible to run a model either on real or artificial geographies without 
changing the underlying data structures. We also introduce GROWLab’s GeoModel, a 
geopolitical template model which makes different geographic and non-geographic 
datasets readily available to the modeler. 
  
Keywords: Simulation toolkits, GIS, conflict process models, agent hierarchies 

 
 
 
 

INTRODUCTION 
 

As agent-based simulations are getting increasingly complex and sophisticated, 
simulation toolkits have become indispensable for the social science research community. 
Toolkits help the model designer to quickly setup, run and evaluate a model, without having to 
write the complete code from scratch. There are various toolkits out there (North et al. 2006; 
Parker 2001; Luke et al. 2004; Minar et al. 1996). However, these toolkits aim to be all-purpose 
products and try to target the entire broad field of social simulation. There is of course nothing 
wrong with creating an all-purpose toolkit. However, the fact that an all-purpose toolkit must 
necessarily remain general in order to make it applicable to a wide range of models limits the 
functionality offered to a particular subfield.  
 

This paper reports on our efforts to create a simulation toolkit especially tailored to our 
requirements in the modeling of geopolitical processes. While developing a series of agent-based 
models in this field, we increasingly became aware of the shortcomings of general-purpose 
toolkits. We were often in need for agent structures more complex than grid spaces or simple 
networks. Also, as many of our models are increasingly relying on geographic data, we required 
support for different GIS data formats. Since there were quite a number of requirements common 
to all our models, it was natural to create a library including this functionality and in doing so 
avoid code redundancy.  
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The result of these efforts is the “Geographic Research on War Laboratory” (GROWLab) 

library which supports modeling in the field of geopolitics and conflict research. The features of 
this toolkit might be useful to other disciplines as well, especially since it attempts to address 
challenges not specific to our area as for example the representation of agent hierarchies, and the 
integration of GIS data. In general however, the increased specificity of GROWLab as compared 
to other toolkits is likely to be useful to a narrower range of models. 

 
Put very generally, ABM toolkits assist the researcher in three broad tasks: (1) setting up 

the model structure, (2) specifying the simulation dynamics and (3) collecting output. Model 
structure support is the storage and retrieval of (often different types of) agents and the 
representation of their relationships. Whereas model structure is about the static parts of the 
model and their relationships, toolkits also support simulation dynamics: What are the actions in 
the model, and when are they carried out? Here, the toolkit supports both scheduling within a 
single run of the model, but also more advanced executions such as batch runs across different 
parameter settings. Finally, toolkits usually provide considerable support when it comes to the 
collection of information from the model. Information about the current state of affairs can either 
be provided by graphical displays of the model space and dynamics charts, or can be collected as 
numerical output in files. This paper introduces GROWLab concepts and features along the three 
categories of model structure, simulation dynamics and output collection.  
 
 
 

MODEL STRUCTURE 
 

In many agent-based models agents live in a two-dimensional grid world. These 
Object2DGrids (in RePast) have two major functions: They store the agents themselves, and they 
define relations (such as neighborhood) between agents. Correspondingly, in GROWLab we 
introduce two interfaces capturing the two tasks: A layer is any collection of alike agents, and a 
topology is a set of relationships between them. In addition, in order to represent hierarchies of 
agents, we introduce the configuration interface. The following paragraphs explain layers, 
topologies and configurations in detail. 
 
 
Layer 
 

A layer is a container for a set of alike and atomic agents. Layers offer general 
functionality to manage the agents contained in them, but can also be used to collect aggregate 
data about the entire population. A layer itself does not know about the neighborhood relations of 
its agents – instead, this is achieved by imposing one or more topologies on a layer. 
 
 
Topology 
 

A topology is always defined on a layer of agents and defines a set of neighborhood 
relationships between them. In this sense, a topology is equivalent to a network. Based on the 
connectivity between agents, it can compute the neighborhood set of a given agents as well as 
their distance from each other.  
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Configuration 
 

Whereas topologies can only exist between agents of the same kind, GROWLab offers 
the possibility to connect agents of different types to yield agent hierarchies. This is done using 
configurations, which typically connect agents from two layers – the parent layer and the child 
layer, as we call it in GROWLab. Configurations exist in different forms. The most general one 
is the many-to-many configuration, which allows the connection of a parent to many children, 
but also of a child to many parents. A more restrictive configuration is the one-to-many type, 
relating one parent to many children, but permits at most one parent per child. The one-to-one 
configuration adds the final constraint of only allowing exactly one child per parent.  
 

A GROWLab model structure created with these building blocks is automatically kept in 
sync: For example, an agent removed from a layer is also removed from the topologies defined 
on that layer. Figure 1 illustrates the three core interfaces with a simple example of states and 
their provinces. 
 

(1)
(2)

(3)

(1)

State 1

State 2

Figure 1: Illustration of the GROWLab 
model structure building blocks: (1) 
Layers are containers for agents. The 
top layer holds two states, and the 
bottom layer serves as a container for 
province agents. (2) A topology defined 
on the state layer keeps track of the 
relations between states. (3) A 
configuration stores the membership of 
provinces in states.  

 
 
Spaces and Mappings 
 

In order to represent agents in a spatial environment, we distinguish between a space 
which is an empty set of locations, and a mapping which takes care of the assignments of agents 
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to locations in this space. This flexible design allows us to put agents at more than one position 
(e.g. states can occupy more than one province in a grid), or even to use one space for many 
different mappings. For example, this is useful when representing the extent of states and ethnic 
groups in the same geographic space: Only one space object is required, whose locations are then 
linked in two mappings.  
 

GROWLab provides different types of spaces. On the one hand, it supports abstract 
spaces such as grids and hexagonal spaces. On the other hand, there is support for spaces with 
and explicit geographic reference, for example a GIS rastered space. Here, a location not only 
knows its x- and y-coordinates, but also its precise coordinates in latitude/longitude. Moreover, 
geographic spaces can compute the geodesic distance between locations. 
 
 

MODEL EXECUTION 
 

buildModel() and step() methods 
 
Model execution in GROWLab follows closely the procedure introduced by RePast. Each 

model essentially needs to implement two methods: buildModel() and step(). The former is 
executed when a model run is initialized. Its purpose is typically to create data structures and 
agents required for this run. The latter is called at every time tick and contains the simulation 
steps to be run repeatedly. An important difference to RePast is the implementation of the 
simulation engine. In GROWLab, a simulator object takes care of initializing and running the 
model. The advantage of this approach is that one can select a simulator according to one’s 
needs: GROWLab offers simulators with different graphical and batch run features.  

 
 
Parameters 
 

All parameters required for a model must implemented using the parameter classes 
offered by GROWLab. More precisely, a parameter is encapsulated in a special class that not 
only allows the storage of the parameter’s value but also its name and description. All parameters 
are registered when the model is constructed initially such that they can be used both in graphical 
and non-graphical runs. Parameter classes exist for all kinds of numeric parameters, booleans, 
strings and enumerations.  
 
 
Batch Runs 
 

As stated above, the simulation toolkit must also provide a facility for automatic 
parameter sweeps, i.e. “batch runs” in RePast terminology. By automatically initializing and 
running the model for different values of the input parameters, the researcher can collect 
statistics about the behavior of the model under varying conditions. Batch runs rely on the set of 
parameters as described above. Batch runs can also be performed in parallel to get the results 
faster, both on multiprocessors machines and on distributed grid computers. 
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MODEL OUTPUT 
 
 
Separating Visual and Batch Models 
 

We encourage, and enforce to a certain extent, the developer to provide separate 
implementations of the model for graphical and non-graphical output. Essentially, apart from the 
basic Model interface specifying the buildModel() and step() methods, two extensions define 
how visual models and batch models should look like. A visual model will have to implement 
the buildUI() method where all graphical elements are set up. A batch model should provide 
information about which parameter sweeps are to be executed. Of course, GROWLab simulators 
tailored to either visual or batch runs will only be able to run the corresponding model. This 
structure makes sure that the behavior of the model – regardless of the desired way of output – 
remains the same.  

 
 
Visualizing Model Structure 
 

Model structure is displayed both as a graphical representation of model structures, like 
agents in a space, and a textual output with a detailed list of information about agents. The latter 
resembles the “probes” introduced by Swarm and still present in many other toolkits. For each of 
the three core concepts layer, topology and configuration introduced above, GROWLab has a set 
of predefined dynamic graphical visualizations for the inspection of the model. Layers can be 
portrayed by a list of agents and their attributes. Neighborhood relationships of a topology can be 
displayed graphically as a network structure, and textually as a paired list of connected partners. 
The structure of a configuration can be examined as a tree table. A set of two-dimensional 
graphical displays takes care of visualizing spatial layers and the agents contained in them.  
 
 
Collecting Statistics from the Model 
 

The way to extract statistics from a GROWLab model is done with the help of so-called 
“collector” classes. This mechanism is very flexible and can be used both for visual and batch 
models. Collectors are standardized data collection facilities storing the data in the format 
required for the analysis. For example, in a batch run one will typically use file-based collectors 
which simply output the assembled data to a file. For visual simulations, GROWLab offers 
collectors which prepare the data for display in a chart. Similarly, we provide a collector 
outputting a sequence of image files which can then be assembled to an animation of the 
simulation. Collectors are registered in the simulator executing the simulation. It takes care of 
activating the collector after each tick or at the end of a run.  
 

Collectors get their data from variables within the model. However, as for the parameters 
introduced above, variables are implemented using the wrapper classes offered by GROWLab. 
Beyond the storage of a value these classes add meta-information about the variables such as 
their name and description. Additionally, variables can also be computed on the fly. 
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The GROWLab User Interface 
 

During the development of GROWLab, special emphasis was put on the design of the 
graphical user interface. Our general approach is to have a GUI where multiple views on 
different aspects of the simulation are closely linked together. At the present stage, the 
GROWLab GUI features a set of interconnected views on the simulation, such as spatial views 
which display the simulation space, configuration views which allow for agent hierarchies to be 
displayed, and process views tracing the actions performed and the results produced in the model 
over time. Figure 2 illustrates the GROWLab user interface with the different views. The views 
are interconnected in such a way that selecting an agent in one view causes this agent to be 
displayed in another view.  

Figure 2: The different elements of the GROWLab user 
interface: The spatial view (top right), the configuration view 
(top left), and the process view (bottom). There can be more 
than one view per type.   

 
 
 

USING GEOGRAPHIC DATA IN GROWLAB MODELS 
 
Using GIS Data for Agent-based Modeling 
 

We can distinguish two ways of how GIS data can be used in modeling applications. The 
first category of models takes the geographical input as a realistic landscape where the model 
dynamics is then run on. The crucial feature of this approach is that typically the geographic data 
remain constant throughout the model run. Examples include the creation of a realistic road 
network to run traffic simulations. The second category of simulations is more complex. Here, 
the geographic data is not kept constant but rather endogenous to the model. For example, in all 
Geosim-like models state borders vary over time. In order to be able to represent these changes, 
we need a data format which is able to accommodate time-variance in geographic features. 
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The models GROWLab is designed for typically belong to the second category. Whereas 

in GIS vector data the degrees of freedom for changes are unlimited, in a raster-based 
representation this complexity is significantly reduced. For example, a country represented as a 
polygon can be modified by moving the polygon’s corners, or by adding or removing existing 
corners. Obviously, the possible alterations are infinite which makes a vector format less well 
applicable for simulations with an endogenous geography. On the other hand, we could represent 
a country as a (mostly contiguous) set of raster cells. The tradeoff we incur is the lower 
resolution and precision, but since the atomic spatial unit – the grid cell – is fixed, changes to the 
shape of the country can be represented as a re-assignment of the spatial units to other states. 
 
 
GIS and GROWLab data structures 
 

GROWLab is able to read GIS data and to create its own data structures from it. The 
development of a model with geographic reference typically starts with the definition of a 
geographic space – a raster space with geographic reference. All spatial data added to the model 
uses this space as a reference.   
 

Raster data to be included in the model has to be provided at the same resolution as 
defined in the underlying space. It is then up to the user to tell GROWLab which kind of data 
structure it should create from a raster input file. For example, a raster of countries (where cell 
values indicate the country a cell belongs to) is best represented as a one-to-many mapping of a 
country object to locations in the space, in other words, an assignment of country objects to 
locations where each country occupies more than one location. To give another example: When 
representing ethnic groups and their location, we use a many-to-many mapping of groups to 
locations. Obviously, a group can occupy many locations, but one location can also be shared 
among different groups.  
 

The data structures briefly described here enable the researcher to craft an agent-based 
model with geographic reference according to one’s needs. However, if only some standard GIS 
datasets are required, one can also rely on a readily implemented template model.  

 
 
GeoModel: A Geopolitical Template Model   

 
Based on the template model GeoModel, geo-coded real-world data can be integrated in 

the modeling process. This template can be extended by inheriting the built-in functionality and 
by adding some custom behaviors and mechanisms or complement it with additional layers of 
data.  
 

GeoModel’s default space is a rasterized representation of the entire globe, using the 
WGS84 projection. The raster can be used in two different resolutions: 15 arc-minutes (~30km), 
and 30 arc-minutes (~60km). All the geographic data is based on this space.  
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Figure 3: Geographic data contained in the GeoModel template: borders, ethnic groups, 
population, spatial GDP, elevation and vegetation (left to right panel).  
 

Figure 3 shows some of the information contained in the GeoModel template including 
(1) country border and administrative divisions, (2) ethnic groups across countries, (3) 
population density, (4) spatial GDP figures, (5) elevation data, and (6) vegetation type. For each 
country, we provide their borders as of 1964 and 1994, and also try to reconcile their ISO, FIPS 
and COW codes through customized mapping. To check adjacency of countries, the Minimum 
Distance data from Gleditsch and Ward (2001) is also included to query for neighboring 
countries that are separated by water. At this point, all ethnic groups are directly based on the 
GREG definitions. For each ethnic group in a country, there is also information about the “ethnic 
group in power” (EGIP) coding by Cederman and Girardin (2007).  
 

In addition, we provide disaggregated data for every cell in the system for population 
(downsampled from the Gridded Population of the World v. 3 provided by CIESIN (2005)) and 
elevation (downsampled from GTOPO30 (2007)), as well as local GDP estimates, compiled by 
the G-Econ project (at a 1-degree resolution) from Nordhaus (2006). They relieve the modeler 
from the tedious task of having to collect and merge complicated datasets and thus provide a 
prototyping environment for geographic agent-based models.  
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EXAMPLES IMPLEMENTED IN GROWLAB 
 

GROWLab comes with some twenty models that serve as example that can be used as 
template for developing new models, as test cases to verify the inner working of the simulator, as 
well as stereotype models to evaluate the effectiveness of GROWLab architecture. 
 

To give few examples, we use the iterated prisoner’s dilemma model (Cohen et al. 1998) 
as an example for teaching purpose and to test GROWLab basic spaces (torus, grid, soup) and 
neighborhood functions. Schelling’s segregation model (Schelling 1978) is used to showcase and 
test moving agents. For more elaborated agent structures, we mainly rely on the Geosim model 
(Cederman 1997) , which features hierarchical agents and moving state borders. To showcase the 
GeoModel template model, we provide some statistical and exploratory models at the forefront 
of research. 
 
 

CONCLUSION 
 

In this paper we presented our GROWLab simulation toolkit. With GROWLab, we tried 
to improve the computational infrastructure for geopolitical models, especially with regard to the 
use of geographic data. We feel that our approach of using native GROWLab data structures to 
represent GIS data is promising, as it does not require the use of special GIS classes in the 
model. This way, one can for example switch back and forth between an artificial space and a 
space with geographic reference in the same model.  

 
An issue which we have not yet taken into account is the incorporation of real time in the 

model. Many GIS datasets are available with explicit temporal coordinates, as for example 
ACLED (Raleigh and Hegre 2005). Further development of GROWLab will also focus on a 
better support for different agent activation regimes: In our models, synchronous updating is 
mostly the desired scheme, but in many cases it brings with it a lot of computational problems. A 
toolkit could provide implementations of agent prototypes with built-in data structures for 
synchronous activation.  
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ABSTRACT  

 
Recent discussions in the agent-based modelling community have 

showed disparate opinions about the level of programming skills to be 
expected from modelers. Everybody seems to agree that the more skill 
candidates have, the better. However, most of today’s students lack these 
capabilities and developing them requires substantial efforts from the 
adventurous entrepreneur. Therefore, lowering the requirements would help 
agent-based modeling becoming a more widely accepted methodology. 

Some suggest that with the spread of general computer literacy, the 
problem outlined above will eventually go away, sooner than we would 
imagine. Others argue that the problem is inherently social: mastering 
mathematics or statistics is not in the least easier than learning to program, 
still no aspiring scientist can afford to avoid it. 

It would be hard to deny any of these arguments. Nonetheless, we argue 
that today’s requirements can be lowered. This statement is not very 
surprising either. Various model building tools (such as NetLogo or 
AgentSheet) demonstrate that by limiting the ’space’ of possible models, 
the task of modeling can be efficiently assisted. The real challenge is to 
bridge the gap between the potential open-ended nature of Swarm-alike 
modeling environments (e.g., Swarm, RePast, Ascape) and the ease of use 
provided by the former frameworks. 

Graphical model building interfaces for general ABM platforms, such as 
SimBuilder (for RePast) and the IDEAS are attempts to achieve exactly 
this. Still, they impose certain limitations on the modeler and require a 
certain level of programming. 

This contribution describes the IDEAS, an interactive IDE for Agent 
based simulations.  

 
 Keywords: Agent Based Modelling, IDE, RePast, Swarm Simulation Toolkit, Java 

 
 

INTRODUCTION  
 
Agent-based economic simulations are becoming part of the professionХs toolkit. Two recent 
special issues of the Journal of Economic Dynamics and Control and Computation collect 
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several contributions of agent-based economics. They are the best evidence of the increased 
interest expressed by the profession. 

As stressed by Testfatsion in her introduction to the JEDC special issue, agent-based 
simulations address at least four issues. First, heterogenous agents and interactions among them 
can be explicitly modeled in agent based simulations. Second, agents behaviour can change due 
to the interaction with the environment and other actors. Third, evolutionary processes can be 
implemented at the agent level, rather than dictated by population-level laws of motion. Finally, 
these models can lead to genuine emergence phenomena and provide a way out of the clockwork 
dynamics usually given by more traditional models. 

Unfortunately, however, the spreading of this new tool is slowed down by the absence of a 
common language as underlined in Luna and Stefansson (2000) and Luna and Perrone (2002). 
This limitation prevents a cumulative learning process and finally the emergence of an agent-
based school of thought. 
This contribution describes the IDEAS, an interactive IDE for Agent based simulations 
 

MOTIVATION 
Initially we posed ourselves the questions:  

•  Why develop yet another IDE when good systems already exist (e.g., Eclipse1 , Bluej2 , 
Jbuilder3 , NetBeans4  , Jcreator5 )?   

•  Is there the need on the community of a new IDE?  Will someone use this IDE?   
 
Why another IDE? 
This project started 3 years ago, when the use of IDE was not so "popular" as nowadays. 

What’s an IDE?  Upon a standard definition "IDE, integrated development environment is a 
system for supporting the process of writing software. Such a system may include a syntax-
directed editor, graphical tools for program entry, and integrated support for compiling and 
running the program and relating compilation errors back to the source. 

Such systems are typically both interactive and integrated, hence the ambiguous acronym. 
They are interactive in that the developer can view and alter the execution of the program at the 
level of statements and variables. They are integrated in that, partly to support the above 
interaction, the source code editor and the execution environment are tightly coupled, e.g. 
allowing the developer to see which line of source code is about to be executed and the current 
values of any variables it refers to." We have tried, over the course of the last few years, just 
about every Interactive Development Environment out there to build the simulation. In my 
opinion they all share two things. 

1. They try to do too much, which makes them all large, slow and painfully hard to use. 
2. They force the user to change the way he works. He  wants an easy to use  development 

system that works without any particular programming skill and “visually” easy to use. 
That’s why we have developed this IDE. With this package anyone, with or without specifics 

skills on Agent based Modelling, can create models using  

                                                
1http:/www.eclipse.org 
2http://www.bluej.org 
3http://www.borland.com 
4http://www.netbeans.org 
5http://www.jcreator.com 
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•  objective-c swarm  
•  javaswarm  
• RePast  
Most important reasons we choose to program an IDE for agent based modelling can be 

summerize into following points:  
•  First of all, there’s not an unique IDE which permits to build models in 3 ABM 

environments (Javaswarm, Objective-C Swarm and Repast).  
•  The Size of the program.  

 

 
environment Size in Kb Support 

Objc-swarm 
Support 

Javaswarm 
Support 
RePAst 

Support 
other ABM 

Eclipse 
Classic 

137 Mb NO YES YES YES 

Jbuilder 506.8MB NO YES YES YES 
NetBeans 83.8 MB NO YES YES YES 
IDEAS 588Kb YES YES YES YES 

Table 1:  Comparison among different Java IDE 

According to table 16  the dimension of this package is very small and so it does not 
require computer with high performance.  

• It is very easy to insert other ABM environment in this IDE, since it is all coded in java, 
the code is well documented. All the project of this IDE is Open Source.  

•  This tools permits in an easy way, to create tutorial for each language, without writing a  
lot of lines, but using only commands in menus.  

• Each model is composed by a project, and it has multiwindow visibility of the code of the 
simulation. 
 
Was there the need on the community of a new IDE?  Will someone use this IDE? 

 
In our opinion, there was the need of such tools, due to the fact, that it encapsule all three ABM 
environments in "less than 1 Megabyte" program. Anyone can generate its model (even if it has 
no experience of either computer programming and ABM philosophy) using all three libraries 
and then, seeing the code, can choose, among them, which one he could use. 

With single clicks of mouse he can create the skeletron of a large functional model, and then 
he can spend all the time to modify the working skeleton upon its wishes. 

The package is totally written in Java, and so it virtually runs on every operating systems 
which has java virtual machine installed7 . 

                                                
6All datas of this table has been taken from the official web page of the developer of each IDE 
7The IDE has been written on a Macintosh powerbook using Tiger as Operating system, and on a 
Intel notebook with Linux Fedora 
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IDEAS PACKAGE 

 
The figure 1 shows a snapshot of the IDE. 
 

 

Figure 1:  A screenshot of main IDEAS window 
 
 
IDEAS Overview 
To run the program, simply double click on IDEAS icon and a window like that in figure 1, 
appears. The Workbench window displays one or more perspective. The worbench window is 
divided into four different windows:  

1.  A project Window that contains the collection of items that make up the particular 
simulation. The project window displays a list of these elements to give easy access to 
them. In a standard simulation project, for example, according to swarm paradygm, there’s 
the main, the ModelSwarm, and the ObserverSwarm objects, while, in RePast Model, it 
contains the Model, ModelGUI and standard Agent Classes. It provides window access to 
project resources through the logical view.  

2.  A Navigation Window. it displays the members classes as well as the Inheritance view of 
class methods and variables of the currently open class.  
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3.  A Code Editor Window. The IDE’s built-in source editor enables to view, create and edit 
the source code. It assist the programmer while coding with features like sintiax 
highlighting, code completation8 , and editor hints.  

4.  A console Window. It displays compiler messages while building and running the 
project, and it is an interface to the Operating System.  

 
 

IDEAS’s feautures 
Some of the features of this package are  

• Intuitive Interface This package has been coded and thought with the GUI of standard 
IDEs.  

• Project manager . All simulations are encapsulated into projects  
• A language sensitive editor. All java and C language reserved words are highlighted.  
• Graphical display of the class structure9   
• Compilation facilities. Anyone can write particular flags that they will be used during the 

compilation of the project.  
• Code Generation Design your application visually. IDEAS generates all the Agent based 
toolkit code10 ,so no developer time is wasted coding a user interface. . Multiplatform. 
It’s been intentionally written totally in Java, so it runs anywhere where Java runs Code 
Editor, It generates 100% Pure editable code.  

This paper gives an overview ofК the environments showing how is simple to write simulation 
using different Agent based environments, even if there’s a little knowledge of the "agent based 
paradygm".  
 
Working with IDEAS 
In this section provides a quick tutorial which takes the user along the steps required to create a 
couple of simulation with simple clicks of mouse. In this paper we do not describe all menus of 
the package, since the package comes with a well-written manual which cover all aspects of the 
IDE.  
 
Our first experiment - hello world 
In this paragraph there’ll be explained all steps to follow to obtain a simulation whose output is 
showed into the figure 2  

                                                
8In this version this features runs only on ABM in java, but in near future it will be extented to 
other ABM toolkits. 
9only for the java ABM 
10It generates, depends on the kind of the running project  

•  java code for javaswarm and RePast environment,  
•  objective-c code for objective-c swarm toolkit  
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Figure 2:  Output of the first experiment 

Here are the steps to follow:  
1.  Create a new project by double click Project Menu -> New Project Item. A window like 

that in figure 3 appear  

  

 

Figure 3:  The dialog box displayed when you start a new project, or want to alter a 
projects properties. 

When starting a new project the first thing you will be asked for some information about 
the model you want to program such as  

o Project type. It it the type of ABM the user wants to program. This item accepts, 
in this version, only three kind of ABM projects  
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  JAVASWARM to use javaswarm paradygm toolkit;  
 OBJCSWARM for objective-c swarm toolkit;  
 REPAST to use Repast environment;  

o  Project Name. This project name will then be displayed in the project window.  
o  Main Class.  It is the name of the simulation.  
o  Other properties as particular classpath, buildpath.  
o  BuildScript. It is useful for objective-c to run the program.  

2.  Once filled the items of figure 3, click the Ok button11  and the framework will be 
presented as the picture of figure 4  

  

 

Figure 4:  The IDEAS framework of the first experiment 
3.  Save each file of the project, using "save as" item of Menu FIle, or choosing each file on 

Code Editor, pressing right button of the mouse, and choose the save item.  
4. Save the project using the "save project" item under the Project Menu.  

                                                
11It is important to fill the classpath item, because it tells the compiler the PATH to find the 
RePast library, for this simulation, the swarm.jar file, if the simulation is based on javaswarm 
toolkit 
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5. Compile the project using F9 shortcuts, or using compile item under Execute Menu12   
6.  Run the project using the "run app" item  

The output of this first experiment is showed on the figure 2 
It is important to note that, without writing a single line of code we have written a simple 

running simulation which can be used as skeleton for our real model. 
 
An quite-complete experiment  
In this section we describe a simple experiment, in which we can see some GUI features of the 
package13  It produce, as output, the same as last paragraph, but with two more windows, one 
with a barchart and the other with a graph of the variable X versus time. Here are the steps to 
follow:  

•  Create a new project, fill the item of window like figure 3 and name the project as 
"SecondExperiment"  

•  Insert a linechart using the "Line X" item of Insert Menu  
•  Insert a barchart using the "Bar Chart" item of Insert Menu  
•  Save each file of the project, using "save as" item of Menu FIle, or choosing each file on 

Code Editor, pressing right button of the mouse, and choose the save item.  
• Save the project using the "save project" item under the Project Menu.  
• Compile the project using F9 shortcuts, or using compile item under Execute Menu14   
•  Run the project using the "run app" item  

The output of this experiment is showed in the figure 5  

  

Figure 5:  The output of the second experiment 

                                                
12In the same menu, the Execute, there’s also the "Build All" command which compile all files 
of the project 
13We are still, as example, using the RePast toolkit 
14In the same menu, the Execute, there’s also the "Build All" command which compile all files 
of the project 
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Other experiments 
In this example we have chosen to write a simulation using RePast, but, in the same way, we 
could write the same model using javaswarm, 15  of the objective-c swarm16  

In these examples, we have intentionally chosen to write simple simulations without writing 
any lines of code, so the reader can duplicate the experiment using different ABM toolkit without 
problems. 

The packages is provided with several projects of different toolkit which come from Internet 
world17 . 

It is important to note, that in this paper is described some of all features of the package. 
Using project manager it is possible to edit all ABM files, create new classes, edit classes, insert 
code, etc. etc.  

IDEAS is an Interactive Development Environment customized for Agent based modelling. 
 

CONCLUSIONS AND FUTURE WORK 
In this paper we have described the implementation of IDEAS, an IDE written specifically for 
Agent based modelling using tools as Swarm (either in objective-c and java language) and 
RePast frameworks. 

IDEAS provides the user with a wide range of functionality such as : Project management, 
project templates, code-completion, debugger interface, editor with syntax highlighting, wizards 
and a fully customizable user interface. 

We believe that IDEAS has tremendous potential in solving many of the problems faced by 
researchers regarding lack of computer programming experience. 

Therefore, we view the work described in this paper as only the beginning of a large project. 
We intend to develop a complete implementation of all different aspects of the ABM 
programming along with the implementation of other ABM environments. 

We note that the IDEAS interface defined in this paper may change as our implementations 
and studies reveal the need for providing additional/different functionality.  

As the project progresses we intend to consider the use of sourceforge.net as a software 
repository, since we would like IDEAS to be open source 

As a future work we are going to implement some new fautures of the program such as:  
•  better integration with repast and swarm toolkit;  
•  better colour syntaxing for reserved words in Java, C, objective-c Language;  
•  Color coding that can differentiate between objects and methods  
•  integration of gdb debugger for c/objective-c models  
•  easy to save single projects and single classes  
•  better facility to load /save/run models  
•  integration of "jarfile Manager" for java models and "zip manager" for other ABM 

languages  

                                                
15Just write into field "ProjectType" of the figure 3 the word "JAVASWARM" 
16Just write into field "ProjectType" of the figure 3 the word "OBJECTIVEC" 
17Examples in RePast can be found into RePast official web site http://repast.sourceforge.net, 
while swarm models can be found into Swarm Web site www.swarm.org. 
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•  support for backmapping for objective-c language, which means that if you click on the 
error message in the Output Window, IDEAS will highlight the line of code that generated 
the error  

•  better documentation  
•  more examples in different ABM environments  

The package is a very dynamic work in progress. For an update on the environment 
development, to download the latest release or for updated information about the VSB, including 
sample code, errata and preview of further versions, forums visit my site 
http://www.planetagents.org in IDEAS section.  
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TURTLE HISTORIES AND ALTERNATE UNIVERSES:
EXPLORATORY MODELING WITH NETLOGO AND MATHEMATICA 

   E. BAKSHY*, Northwestern University, Evanston, IL & University of Michigan, Ann Arbor, MI
   U. WILENSKY, Northwestern University, Evanston, IL  

ABSTRACT 

This paper presents the design of a development platform integrating NetLogo, a multi-
agent programmable modeling environment with the Mathematica scientific computing 
environment. We will discuss the affordances of such environments, which can simplify 
and enrich the research process for agent-based modelers. More specifically, we will 
demonstrate the advantages of having real-time exchange of complex data structures 
between agent-based modeling environments and symbolic mathematical software such 
as Mathematica. Together, such tools can provide researchers with a highly interactive, 
self-documenting workflow that neither tool can provide alone. This paper will give an 
overview of how the integrated environment can be used for common tasks in agent-
based modeling, the construction of interfaces for exploring simulation dynamics, and the 
effective design patterns for representing simulation results.

 Keywords: Agent-based modeling, exploratory analysis, NetLogo, Mathematica

INTRODUCTION

 The behavioral dynamics of agent-based models contain vast quantities of information 
for which analysis can often be daunting to researchers.  Nevertheless, for the purposes of model 
verification, validation and replication, it is essential for researchers to carefully and extensively 
study their models and analyze the behavior at several different levels (Wilensky & Rand, 2007).  
This paper presents a framework for representing, measuring, and visualizing the behavior of 
agent-based models.  We will discuss some limitations of software systems used in the 
development and analysis of agent-based models, and demonstrate the ways in which our 
framework attempts to address these issues.  We propose that many of these tasks can be 
resolved through the integration of agent-based modeling environments and scientific computing 
environments, such as NetLogo (Wilensky, 1999) and Mathematica (Wolfram, 2003).  Our 
approach is, in some respects, similar to that of Macal & Howe (2005), which provides an 

*Corresponding author address: Eytan Bakshy, School of Information, University of Michigan, 1075 Beal Ave., Ann 
Arbor, MI 48109; e-mail: ebakshy@umich.edu
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extensive engine-level integration between Repast (2007) and Mathematica.  We will further 
elaborate upon the affordances of such environments in the context of current issues faced by 
agent-based modelers.
 Mathematica is an interactive programming environment which can support many of the 
tasks common to agent-based modelers.  These tasks include pre-processing and analysis of 
external data used to motivate or calibrate models, model prototyping, interactive model 
exploration, data collection, storage, analysis, and documentation among other tasks.  In contrast 
to using several special purpose or compiled programming languages for each of these tasks, the 
integration of such tools with high-level agent-based modeling environments like NetLogo can 
bridge the gap between model development, inquiry, and analysis.
 Mathematica essentially consists of two processes, the kernel and the front-end.  The 
kernel stores and executes all program code and data, which are represented in a uniform fashion 
as expressions.   The front-end allows users to manipulate, retrieve, and graphically represent 
expressions stored in the kernel.  Users interact with a notebook, which can contain text, program 
code, data output, and graphics.  Typically, users enter commands into the notebook, which are 
executed by the kernel, and its output is displayed below, giving a line-by-line documentation of 
a user’s session.  In Mathematica 6 (2007), notebooks can contain dynamic elements, which can 
display the state of expressions in the kernel in realtime, as well as relay information from 
interface objects back to the kernel.

FIGURE 1  The NetLogo-Mathematica Modeling environment
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 The integrated NetLogo-Mathematica environment, depicted in Figure 1, includes many 
aspects that make it particularly well suited for conducting research with agent-based 
models.  Mathematica's data connectivity supports automatic format recognition and type 
conversion of files, as well as support for SQL database connectivity.  In conjunction with pattern 
matching and rule-based programming functionality, such routines can reduce the amount of 
time spent preparing and organizing data for use with NetLogo.  This integration makes 
accessible, for use with NetLogo models, Mathematica's functions for statistics, non-linear 
optimization, linear algebra, graph theory, and a number of other functions suited for the 
execution and analysis of agent-based models.  These methods can be combined with high-level 
graphical interface constructs to rapidly create custom tools for exploratory analysis of 
models.  The environment's document-centered interface lets users combine comments, code, 
visualizations, and annotations in a single working notebook that can be viewed side by side with 
the NetLogo graphical interface.  Finally, because all definitions, data, and graphics are 
serializable, the storage and retrieval of complex data structures representing model data (e.g., 
simulation histories) can be accomplished with minimal effort.  These technical aspects of 
Mathematica, combined with the NetLogo-Mathematica interface, provide a flexible foundation 
upon which agent-based research frameworks can be built.

OVERVIEW OF THE NETLOGO-MATHEMATICA INTERFACE

 The NetLogo-Mathematica toolkit provides a high-level interface to NetLogo from the 
Mathematica kernel via the J/Link Java interface.  Once installed, one can load the package and 
launch NetLogo with no additional configuration.†  At its core, the interface comprises of two 
simple functions: NLCommand[], which executes a NetLogo command, and NLReport[], 
which returns data from NetLogo.  Other high-level primitives for repetitive tasks and acquiring 
structured interaction topologies, such as patches or grids (via NLGetPatches[]), and links or 
networks (via NLGetGraph[]) are included in the toolkit as well.
	
 NLCommand[] is often used to programmatically initialize a model and execute the main 
loop.  The function performs automatic type conversion, expression splicing, and concatenation, 
which allows users to easily access or modify NetLogo data using any combination of numerical, 
string, boolean, color, and list expressions.  Additionally, numbers, strings, and lists are 
automatically converted back to native Mathematica types when requested from NetLogo using 
NLReport[].   For example, NLCommand[“set foo”, {{True, 12, 8.4}, {False, 

† requires NetLogo 4.0 or greater and licensed version of Mathematica 6.0
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13, 8.9}}] will set the NetLogo global variable, foo, to the NetLogo list expression, [[true 
12 8.4] [false 13 8.9]].  Similarly, NLReport[“foo”] will return a Mathematica 
expression containing the original nested list of boolean, integer, and floating-point types.  These 
two basic functions are often sufficient to collect data and create plots on the fly that might 
otherwise require the use of file I/O or complex graphical interface programming.  
 We present the NetLogo-Mathematica environment in the context of several modeling 
tasks.  First, we will discuss the validation in a suite of statistical mechanics models with 
traditional analytical descriptions.  Second, we will show how the interactive visualization 
features of Mathematica 6 can be used to replay model dynamics in an agent-based model of 
cultural dissemination.  Finally, we will present effective design patterns for representing 
simulation results, and show how they may be used to perform an exploratory analysis of the 
parameter space of a forest fire model.

COMPARING AGENT-BASED MODELS WITH ANALYTICAL MODELS

 The NetLogo-Mathematica kit was first used to solve the following problem: are the 
agent interaction rules in GasLab suite of NetLogo models (Wilensky, 1997a) sufficient to 
generate velocity distributions found via traditional analytical treatments of ideal gases?  In this 
example, the model’s initial conditions are set using NLCommand[].   We define the function 
Resample[] to execute the NetLogo model for 50 “ticks,” and return a list of speeds back to 
Mathematica

Resample[]:= Module[{},
 NLCommand[“repeat 50 [go]”];
 NLReport[“[speed] of particles”]
];

To collect a sufficient number of moments of velocities, the distributions are resampled forty 
times using the list constructor, Table[Resample[],{40}], which will generate a list of 40 
elements, each element being the a consecutive resampling of the simulation.  
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FIGURE 2  Comparing simulated results with analytical distributions

 To compare the observed distribution with the analytic description of the speed 
distribution, we must find the mean energy of the system, which can be sampled directly from 
NetLogo: NLReport[“mean [energy] of particles”].  With this data, we compare the 
observed distribution with the Maxwell-Boltzmann distribution.  The two distributions are in 
close agreement with one another, as illustrated in Figure 2.  This first example is a fairly 
straightforward example of data collection and visualization.  We now turn to a more complex 
example involving multi-dimensional, time-varying data.

VISUALIZATION AND INTERFACE CONSTRUCTION

 Programmable agent-based modeling environments like NetLogo allow developers to 
rapidly construct realtime visualizations of their model.  However, an ABM environment 
typically supports a single modality of visual representation viewed forwards in time.  This can 
make the analysis of complex systems, whose components evolve in a parallel fashion at 
multiple levels, quite difficult.  The NetLogo-Mathematica environment provides a convenient 
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way to store the complete simulation “history” in memory, and rapidly prototype interactive, 
multi-modal visualizations for understanding this data.
 The following example shows how NLGetPatches[], the NetLogo-Mathematica 
function for retrieving patch-based data, can be combined with interactive visualization 
procedures in the analysis of patch-based models.  The time-varying patch data will be 
represented in several ways over time using Manipulate[].  In this example, we use a 
modified version of a NetLogo implementation (Centola, 2007) of Axelrod’s model of cultural 
dissemination (Axelrod, 1997).  In NetLogo, each patch agent owns a variable called 
culturalFeatures, which is an array of k features.  At every time step, we execute the model 
and retrieve the matrix of patches, with each entry of the matrix being a list of cultural features, 
using NLGetPatches[“culturalFeatures”].

FIGURE 3  An interactive interface for exploring model dynamics

The interface in Figure 3 is generated by a single call to Manipulate[]:
Manipulate[CulturePlot[patchTimeSeries[[time]], feature], 
 {time, 1, 200,1}, {feature, {1, 2, 3, 4}}]
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 The code specifies an interface which lets the user to view any of the four features at time 
steps 1 through 200, which may be animated both forwards and backwards.  Dynamic 
visualization constructs such as Manipulate[] are just one example of a host of other high-
level tools for constructing interfaces.  These functions can also be used to display the progress 
of a parameter-space exploration in realtime, or compare aggregate “between realization” 
visualizations with individual simulation time-series.  Such interfaces are particularly useful for 
collaborative analysis of models, since they allow a team of scientists, including those with less 
programming experience, to readily find patterns and test hypotheses in a model.

DESIGN PATTERNS FOR EXPLORATORY ANALYSIS OF AGENT-BASED MODELS

 The traditional cycle of rigorous analysis of NetLogo models commonly involves writing 
software to specify a region of parameter space to explore in an automated fashion, either 
through the use of shell scripts, or specialized tools such as BehaviorSpace (Wilensky, 2003).  
Users must specify ahead of time the ranges and increments of parameters they would like to 
vary, and how many times each model run is repeated.  Other structured data, such as lists or 
graphs can be difficult to format and read in by most tools for analysis, so most data written to 
disk is in the form of pre-aggregated scalar data.  In this section we will propose a method for 
effectively executing and storing structured simulation data on a call-by-need basis.  This 
approach is similar to memoization in dynamic programming, where “subproblems” (measures 
on a parameterization of a model) are stored in memory to speed up the execution of larger 
problems, such as finding critical points in a model’s behavior or developing visualizations 
involving potentially thousands of runs.
 A model realization can be thought of as a collection of data representing the execution of 
a deterministic program, or model.  Agent-based models typically exhibit some degree of 
stochasticity.  That is, the execution of the model involves psuedorandom processes, which may 
result in models that have identical initial conditions but produce a variety of possible outcomes.  
Thus, it is often important that there is a way to encode multiple realizations of the same 
parameterization of the model, but with different random seeds.  With this method, any particular 
realization can be reproduced, given that the random seed is properly initialized and stored.  
These model realizations can be parameterized by their configuration settings and a labeling of 
their realization.  A realization can be represented in Mathematica using some form, such as:

Realization[{p1, ..., pn}, repetitionNumber] = <model data>
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In Mathematica, we will take advantage of the fact that the system can “remember” its value 
using the idiom:

f[x_] := f[x] = function to be evaluated at x

 Each time the function f[] is evaluated at some x, its value is calculated and stored as 
part of the definition of the function.  This is a convenient mechanism for storing the results of 
often computationally intensive realizations of models for later use.  Below the typical structure 
of a NetLogo-Mathematica Realization object is specified:

Realization[{var1_, ..., varN_}, repetition_] := 
  Realization[{var1, ..., varN}, repetition] =
   Module[{intermediate data structures},
    (a) setup model using parameters;
    (b) execute model and store intermediate results;
    (c) return result structure
   ];

(a) NetLogo variables are initialized according to the model’s parameters using NLCommand[]. 
Side effects of the initialization, such as NetLogo-generated random seeds, or initial placement 
of agents may be recorded in intermediate data structures
(b) The main NetLogo loop is executed, and agent variables or aggregate measures are recorded 
to intermediate data structures. At this point, we may process NetLogo data using Mathematica 
and insert new values into agents. This is typical for models in which agents utilize Mathematica 
functionality to carry out their rules.
(c) The intermediate structures are combined into a single expression representing the simulation.

In addition, users may define several functions that operate on the Realization data.  These 
operators come in three common varieties:

•Directly accessing an element of the resultant expression, such as a time-series array of 
some measure, or the distribution of agents’ variables
•Aggregating agent data, such as calculating the Gini index of the stored population or the 
clustering coefficient of a network
•Visualization, such as plotting the time dynamics or network structure of a realization

Together, these functions and structures can provide a flexible framework for dealing with 
modeling tasks ranging from exploratory analysis, sensitivity analysis (Miller, 1998), to 
validation and docking (Axtell et. al., 1996, Wilensky & Rand, 2007). 
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EXPLORATORY ANALYSIS WITH REALIZATION OBJECTS

Here we will consider an instance of this Realization object prototype.  This function executes 
the NetLogo forest fire model (Wilensky, 1997b) with a particular density and reports back the 
fraction of trees burned.

PctBurned[density_, rep_] := PctBurned[density, rep] = Module[{},
    NLCommand["set density ", density, "setup"];
    NLCommand["while [any? turtles] [go]"];
    NLReport["(burned-trees / initial-trees)"]
    ];

We may attempt to find the phase transition by plotting the result of this function with the entire 
range of densities, from zero percent to one hundred percent in increments of ten:

ListPlot[Table[PctBurned[density,1],{density,0,100,10}]]

Finding that a phase transition occurs approximately between forty and eighty percent density, 
we can execute the model over this range in increments of five percent, and observe its variance 
over ten additional repetitions using a box and whisker plot:

BoxWhiskeryPlot[Transpose[Table[Table[PctBurned[density,rep],{rep,10}],
 {density,30,60,5}]]]

Finally, we can plot the transition averaged over twenty runs at a higher resolution in increments 
of one:

ListPlot[Table[Mean[Table[PctBurned[density,rep],{rep,20}]],
 {density,30,60,1}]]

CONCLUSION

 The environment and techniques presented in this paper can provide researchers with a 
rich environment in which they can rigorously debug, analyze, and make inferences from agent-
based models.  It provides an integrated workflow which enables users to focus on 
experimentation rather than the implementation.  We hope that the methods proposed here can be 
of use to the agent-based modeling community and promote a more intimate understanding of 
phenomena observed in our models and a more robust treatment of our results.  We have used 
these tools in several of our research projects at the CCL.  In the context of an NSF-funded 
research project on modeling educational policy, we have profitably applied the NetLogo-
Mathematica interface tools to explore a large-scale model of school choice calibrated with 
empirical data.  The integrated environment has enabled the iterative construction of the model, 
including the model calibration, analysis of runs, and even model documentation.  In addition, 
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the environment has aided in the collaboration with members outside of our immediate research 
group by enabling us to rapidly examine new hypotheses and analyze the data in multiple ways.  
In this respect, the NetLogo-Mathematica integrated environment provides a powerful addition 
to the model builder’s toolkit.
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ABSTRACT 

Agent-based modeling has been extensively used by scientists to study complex systems. 
Participatory simulations are similar to agent-based models except that humans play the 
role of the virtual agents. The Bifocal modeling approach uses sensors to gather data 
about the real-world phenomena being modeled and uses that information to affect the 
model. In this work, we are interested in automatically extracting, analyzing and 
modeling group behaviors in problem solving. Combining these three systems into one 
unified platform would be useful for those purposes, since it would facilitate a synthesis 
of their main affordances: understanding the role of locality, mapping human action to 
emergent behaviors, and controlling embedded physical objects in noisy environments 
while receiving sensory feedback. We will demonstrate a technological platform based on 
the NetLogo/HubNet architecture that supports simulated agents, participatory agents and 
physical agents. We place this platform within a more general framework that we call 
Human, Embedded and Virtual agents in Mediation (HEV-M). We have run several 
studies using an instantiation of this platform that consists of a robot-car with four users 
who navigate a maze.  We believe that this tool has potential for three main reasons (1) it 
facilitates logging of participant’s actions, so as to identify patterns, (2) it offers 
researchers in the field of computer-supported collaborative learning an easy-to-use tool 
to design engaging collaborative learning activities and, (3) it foregrounds the role of 
individual actions within the accomplishment of a collective goal, highlighting the 
connections between simple individual actions and the resultant macroscopic behaviors 
of the system.   

 
 Keywords: group behavior, agent-based modeling, collaboration, robots 
 

INTRODUCTION  
 

Agent-based modeling has been used by scientists to study phenomena such as the 
interactions of species in an ecosystem, the collisions of molecules in a chemical reaction, and 
the food-gathering behavior of insects (Bonabeau, 1999; Troisi, Wong & Ratner, 2005; Wilensky 
& Reisman, 2006). Typical of agent-based models is that the aggregate patterns or behaviors at 
the macro level are not premeditated or directly actuated by any of the micro-elements. 
Participatory simulations are similar to multi-agent simulations except that humans play the role 
of the virtual agents (Wilensky & Stroup, 2002). As yet another extension to ABM methods, 
Blikstein & Wilensky (2006) have been exploring the use of physical devices in agent-based 
modeling, using sensors to gather data about the real-world phenomena under scrutiny (bifocal 
modeling). 
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The three aforementioned areas (agent-based modeling, participatory simulations, and 
bifocal modeling) are concerned with the creation, manipulation, and development of agents in 
one form or another. In this work, we are particularly interested in automatically extracting, 
analyzing and modeling group behaviors and collective strategies for problem solving. 
Combining these three systems into one unified platform would be useful for those purposes, 
since it would facilitate a synthesis of their main affordances: understanding of the role of 
locality, mapping human action to emergent collective behaviors, and controlling embedded 
physical objects in noisy environments while receiving sensory feedback. We will demonstrate a 
technological platform based on the NetLogo/HubNet architecture (Wilensky, 1999; Wilensky 
and Stroup, 1999) that supports simulated agents, participatory agents and physical agents (Rand, 
Blikstein, & Wilensky, 2006). Within this platform, designers can create participatory 
simulations in which each participant controls one micro-element within a physical system (a 
car, a mini-factory, etc.), while at the same time interacting with virtual agents.  We place this 
technological platform within a more general framework that we call Human, Embedded and 
Virtual agents in Mediation (HEV-M).  This framework facilitates general discussion about the 
components of the overall system and their interaction across particular technologies and 
instantiations. 

 
We have run four studies using an instantiation that consists of a robot-car with four 

motors, each connected to a robotics interface, the GoGo Board (Sipitakiat, Blikstein & Cavallo, 
2004), which communicates with the server. Each user is assigned a motor to control, and 
turning the car is achieved by activating, deactivating, or reversing the correct wheels. 
Participants were given the task of moving the robot from a start area to a goal area while 
avoiding obstacles along the way. 

 
Initial results were intriguing. In our first studies, with university professors and 

researchers (Blikstein, Rand & Wilensky., 2006; Rand, Blikstein & Wilensky, 2006), before the 
start of the activity, participants were confident that they could easily accomplish the task. 
However, as soon as the first turn was necessary, participants started to report increasing 
frustration1 with their ability to solve the problem, and we observed the emergence of strategies 
for optimizing the process, such as delegating leadership to one participant, or formation of two 
groups acting fairly independently. Also, at the beginning, many participants seemed unaware 
that an error from any of the participants could ruin the group’s goal, no matter how well other 
participants were doing. However, in the present study, with computer science students as 
subjects, resulted in a diverse set of strategies for managing the task, as we will explain in this 
paper. 

 
We present the current study as one example of how collaboration with embedded objects 

can be observed, but the potential of this framework and technology goes beyond this instance.  
As an example, almost any agent-based model could be recreated using physical agents and 
human agents interacting with those agents.  For instance, traffic simulations in which 
participants controlled remote control cars, could offer insight into human behavior in traffic 
systems.  The virtual agents in the current study are fairly passive, serving as conduits from the 
participants to the robot.  However, these agents could be given a greater level of interaction, 
allowing them to interpret and respond to data from both the participants and the robot, and make 

                                                 
1 It should be noted that the participants found this frustration humorous, since they were amazed that they could not 
solve such a simple problem. 
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their own autonomous decisions.  This would add another level of complexity to the overall 
system. 

 
We believe that the framework instantiation presented in this paper has significant 

potential for three main reasons (1) it facilitates logging of participant’s actions, so as to identify 
patterns and match them to observations, (2) it offers researchers in the field of computer-
supported collaborative learning an easy-to-use tool to design engaging collaborative learning 
activities and, (3) it foregrounds the role of individual actions within the accomplishment of a 
collective goal, highlighting the connections between simple individual actions and the resultant 
macroscopic behaviors of the system.   
 

THE HEV-M FRAMEWORK 
 
On a certain abstraction level, human, robotic (also called embedded) and virtual agents 

can be viewed as equivalent: all of these agents have properties (i.e., descriptions of themselves, 
and knowledge about the world) and methods (i.e., actions that they can take to achieve goals). 
In all three cases, the agents, regardless of being human, embedded or virtual, will examine the 
world around them and their own internal state and decide what action to take on the basis of this 
input.  

 
Each of these systems, virtual, robotic, and human, present their own challenges.  In the 

case of human agents, the logic that connects the input to the output may not be well known by 
outside observers, and thus the actions taken may be quite unpredictable. But confusion about the 
relationship between inputs and outputs is not limited to the human case.  Robots can have noisy 
sensors that affect their perception of the world, and their actuators, also subject to a noisy 
environment, may not always work perfectly. In addition, there are many challenges to designing 
virtual agents correctly. Often low-level rules do not result in anticipated emergent patterns.  
Nonetheless, there are many reasons to motivate the combination of these systems into one 
integrated platform. 

 
Robotic agents and virtual agents working within a shared model can be complementary. 

Robotic agents could use virtual agents to plan out routes and to simulate their movements ahead 
of time, which would assist in the development of some robotic agents, like planetary rovers. 
However, this is not a simple task.  Robotic agents operate within the physical world (which 
often interferes with the task) and they have noisy sensors and fallible actuators. As mentioned, 
the integration of virtual systems with robotic systems can present researchers with many 
difficulties. How does one model the noisiness and inefficiency of the physical world within a 
virtual system, so that virtual and robotic agents can remain in step with each other? How should 
virtual agents interpret data from a robotic agent? 

 
In much the same way that robotic agents are different from virtual agents, so are human 

agents different from virtual agents. The integration of human agents into a unified system also 
presents many of the same issues that challenge the integration of robotic agents, since they also 
have noisy sensors and inefficient actuators. Moreover, they present additional problems from a 
virtual agents’ standpoint – human agents can adapt to their surroundings in new and surprising 
ways, which means that they are less predictable, and can be deliberately obstinate or malicious, 
attempting to confuse and take advantage of virtual agents. Notwithstanding these challenges, the 
integration of human and virtual agents within a shared system has a lot of potential. For 
instance, a model developer can have humans play the role of agents, subsequently capturing and 
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embedding the decisions made by humans into virtual agents, enabling a richer and more 
elaborate examination of the behaviors employed by the humans (for more information on work 
on virtual and humans agents using the HubNet platform, see Abrahamson & Wilensky, 2004; 
Berland & Wilensky, 2006; Wilensky & Stroup, 2002). Alternatively, human agents could work 
together with virtual agents to accomplish some mutual goal. For instance, in a war simulation, 
humans could place emphasis on different targets while allowing the virtual agents to take care 
of the low-level planning. However, all of this requires the development of new protocols – for 
example, how does one automatically capture human decisions and embed them in agent-based 
rules? How can human agents express new beliefs, desires and intentions to a virtual agent?  

 
We have been discussing these relationships between human and virtual agents, and 

robotic and virtual agents as separate entities, but these relationships can also be combined 
within a unified framework. In this paper, we will explore the combination of all these agents 
within one integrated platform (Blikstein, Rand & Wilensky., 2006; Rand, Blikstein & 
Wilensky., 2006). Our unified conceptual framework is the HEV-M framework, which stands for 
the integration of Human agents, Embedded sensory-enabled robotic agents, and autonomous 
Virtual agents, which communicate via a central Mediator (see Figure 3).  The three different 
agent groups may have different goals and even different tasks.  The mediator takes messages 
from any of the three groups of agents, transforms the messages, and relays the information to 
the other groups within a well-established protocol.   

 
We have previously speculated (Rand, Blikstein & Wilensky, 2006) how this framework 

might be useful through the use of three hypothetical examples:  Widget Factory, Planetary 
Rover, and Demon Soccer.  In Widget Factory humans and virtual agents control simple 
machines that create parts of widgets.  This environment can show, for example, that minor 
errors in the creation of the parts can dramatically alter the resultant outcome. In Planetary Rover 
humans cooperate with virtual agents to control a robotic agent.  The virtual agents utilize 
sensory data about their environment to make independent decisions.  This environment can 
enable the exploration of collaborative human-robot protocols. In Demon Soccer, human agents 
interact with virtual agents to control a soccer ball. The human agents play on opposing teams 
and attempt to steer the soccer ball in to their opponent’s goal.  Four different agents control the 
four wheels. Two of the agents are humans, and two of the agents  are demon agents that either 
malignantly or randomly alter the speed and direction of the wheels.  This environment enables 
the exploration of mediation between hostile agents, and could offer insight into how humans 
adapt to new and challenging situations.  
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Figure 1: HEV-M Framework. 

 
TECHNOLOGICAL PLATFORM 

 
In this paper, we describe one technological platform that implements the components of the 
HEV-M framework. This platform is based on the NetLogo/HubNet modeling environment, and 
on the GoGo Board, an open-source piece of hardware for interfacing the computer with sensors 
and actuators. The system has three components: 

 
1. Robot-car: the car has four motors, each connected to a wheel and controlled 

independently. The wheels cannot be steered, thus turning the car is achieved by 
selectively engaging different wheels in different directions.  For example, a slow turn to 
the left can be accomplished by turning on both of the right wheels, and a faster turn can 
be accomplished by also turning the left wheels on, but in reverse. The motors have three 
power levels (high, medium and low), and are connected by long wires to the robotics 
interface. The interface, in turn, is connected to the server.  
 

2. Client computers: each of the four client laptops have a simple interface for wheel 
control, enabling the user to turn his/her own wheel on and off, set the power level, and 
toggle the direction of rotation of the wheel. 
 

3. Server: the server receives information from the four client computers and controls the 
robot-car accordingly. It also keeps a log of all the actions performed by the users.  
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Figure 2 Diagram of the system, with its three components: 

the client computers, the robot-car, and the server. 

EXPERIMENTS 
 

This framework for agent integration is not just hypothetical– we have implemented it in 
several projects. (Blikstein, Rand  & Wilensky, 2006; Rand, Blikstein & Wilensky, 2006). These 
preliminary prototypes had human and virtual agents working together to guide a robotic agent 
through a maze. 
 

To extend those preliminary studies, we defined a methodological framework to conduct 
experiments. First, we standardized the size of the track and generated three fixed mazes. We 
also implemented a logging feature to capture keystrokes and mouse clicks from the participants. 
Finally, we defined a sequence of four activities to propose to participants: 
 

Act. 1. Maze with one obstacle, with communication – we tell participants that they 
can talk to each other. 

 
Act. 2. Maze with two obstacles, without communication – we tell participants that 

they should conduct the activity in silence, although they can observe at each 
other. 

 
Act. 3. Maze with three obstacles, with leader. We randomly pick one of the 

participants and ask them to lead the other ones. 
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Act. 4. Maze with three obstacles, randomized. All wheels are randomized at the 

beginning, so users don’t know beforehand which wheel they control. They have 
to figure it out during the activity. 

 
Two main sources of data were used: video data and log files of students’ interactions. 

For the video data collection, two cameras were utilized, one fixed, facing the participants, and 
one mobile, mainly facing the whiteboard and the robot-car. The log files recorded all of 
participants’ interactions with the system. 

 
 
 
 
 
 

Figure 3 Clockwise from the left: The experimental setup for Act. 1, the four participants, and 
the experimental setup for Act. 2. 

DATA ANALYSIS AND DISCUSSION 
 

In previous work (Rand, Blikstein & Wilensky, 2006), we reported on a group of four 
university professors and researchers that had great difficulties in successfully completing the 
maze. We observed that inter-subject communications were confusing and out-of-sync with the 
required speed of action, and users could not establish clear leadership. The group of professors 
apparently underestimated the difficulty of the task and over-engineered their own strategies, 
resulting in poor performance. For that study, however, the logging mechanism was not yet in 
place, so our understanding of participants’ reaction was partial, based on their own utterances 
and our observations of the robot-car. For the following study, with the logging mechanism in 
place, a group of four computer science students was selected. We began the study with the 
hypothesis that, being young students, they would be more spontaneous and communicate 
extensively; being experts in computer science, they would try to engineer elaborate strategies to 
control the car. Both of these hypotheses were proved wrong, and other results became apparent 
from our data analysis, which we will explain below 
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Fading inter-personal communication patterns 
 
Participants started out communicating extensively during the first activity. The second 

activity was supposed to be in silence, but even after communication was permitted again, on the 
third activity, participants did not resume verbal communication: they were paying attention 
exclusively to the car. Below is the transcript of the dialogue during the first activity, showing 
that participants were able to devise a successful strategy and orally coordinate their activities: 
 

John: I have a plan: Jim and I don’t do anything, you do it all. You guys are the front. 
[after a few second, the car stalls] 
Marcia: Uh Oh. More power. 
John: Do you think you need us? 
John: We need some back… 
Marcia: Nice 
John: You guys got it, you don’t need us. 
Marcia: Great success, guys. 

 
However, from the third activity on, there was barely any verbal communication. This 

was in contradistinction to our initial hypotheses. Somehow the participants developed a 
personal heuristic as to how to control their wheel which did not require communication.  One 
explanation is that they “read” other participants’ states and intentions through the state of the 
car, with no need of explicitly asking questions. As we will show below, this explanation is 
supported by both the post-interviews that we conducted with the participants and an 
examination of the log files. 
 
Diversity of personal strategies 

 
Participants’ post interviews further corroborate the hypotheses of decreased oral 

communication, since their self-reported strategies and heuristics did not include talking or 
asking question of the other participants:  
 

Edward: I was not paying attention to anyone; I was paying attention to the car. I was 
just paying attention to my wheel. If I did something and it went bad, because another 
person did something else, I would just go back to my previous state. 
 
Jim: I did very little. I figured that if everyone was hitting buttons and moving forward, 
the car wouldn’t go anywhere, so I waited for opportunities in which I was pretty sure I 
would make a difference. 
 
John: I was back-left, when I was on, the car would go to the right. When my thing is 
going forward, the car would go right. If my thing is going backwards, the car is going 
left. 
Interviewer: But if the other guy is doing the opposite… 
John: Then the car wouldn’t go anywhere. [long pause] That’s ok. 
 
For John, looking at the car (which was exhibiting behavior that resulted from 

aggregating each group member’s directives) and reacting to it on-the-fly was more efficient 
than explicitly discussing strategies (which we observed in our previous study with the university 
professors and researchers). Despite the car’s behavior being a collective construction, John was 
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reacting to the resulting emergent behavior of the group, and not discussing every single 
individual action. Jim had a very different strategy: he realized that, by simply doing nothing, the 
car would probably achieve the same goal, since there was redundancy in the system – by 
staying out, he thought he could help the group achieve the goal faster. Edward, conversely, was 
very active, and devised a strategy of trial-and-error – if his move resulted in undesired behavior, 
he would just undo the movement, without negotiating every move.  In all three of these cases 
the individual decision criteria is focused on the aggregate behavior of the car, and completely 
excludes any involvement of the other participants. 
 
Use of the different motor control commands 

 
Additionally, the log files show that, notwithstanding the symmetry of the car, each user 

had a different approach to their use of the six different commands. One commonality between 
participants was observed: power-high, medium and low were used very infrequently. Two users 
(back-right and front-right) realized that just leaving the motor on and using ‘reverse-direction’ 
during the activity was the most effective strategy. As the log files show, as time went on, these 
participants employed this strategy with increasing frequency. John, who was controlling the 
‘back-right’ wheel, used ‘reverse-direction’, or ‘rd’, almost exclusively toward the end of the 
study (Activity 3). Comparing the log files and the verbal data, we observed that this learning 
process took place tacitly, without any oral communication between users. However, John was 
conscious that he had learned an important technique, since when he was asked to lead the group, 
on activity 3, he asked everyone to “turn on and just use reverse-direction”. Another surprising 
observation was that, even after John asked all users to exclusively use ‘rd’, only those users who 
had had a significant increase in ‘rd’ from activity 1 to activity 2 followed his advice.  This can 
be seen in the ‘rd’ lines on the plots in Figure 4.  Compare the ‘rd’ lines of ‘back-right’ [John 
himself] and ‘front-right’, as opposed to ‘back-left’ and ‘front-left.’ One explanation is that two 
of the participants employed their own personal theory on how to control the car and were 
resistant to follow the directions of the leader. This hypothesis is further supported by the 
aforementioned transcriptions of users’ self-reported techniques for car control. 
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Figure 4 The use of each command over the four activities for each user (first four plots), the 

overall percent of use per command for all users (bottom left, note the clear increase in the use 
of reverse-direction), and the percent of actions per user (bottom right), showing an almost 

uniform distribution, with the exception of user ‘back-left’. 

 
CONCLUSION 

 
The HEV-M framework and the implementation described in this paper proved to be a 

useful tool in exploring the interactions and interoperability among human, virtual and physical 
agents. We developed data collection tools and techniques that reveal tacit individual and 
collective strategies for problem solving and communication. The approach of pairing verbal 
data and log files described in this paper could enable other researchers to unveil unexpected 
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communication and behavior patterns that would otherwise go unnoticed. For example, one 
behavioral pattern that we observed was that users’ final strategy resulted in a focus on the car’s 
actions and movements, instead of observing or communicating with the participants – despite 
being in the same room. Surprisingly, a simple robot-car ended up mediating interpersonal 
communication more effectively than oral discourse. Seeing as how the humans involved did not 
actually communicate and seemed to settle on final strategies quickly, it might have been 
possible to replace them with virtual agents able to observe the robot-car and make decisions 
similar to the humans.  As we have observed there would need to be different types of virtual 
agents to represent the different human behavioral styles, but that is a simple task. These results 
suggest that the nature of the agent controlling the device – human or virtual – could be of less 
importance than is commonly thought. If this result is confirmed by further research, this could 
be an important contribution to the study of human-computer interaction within the field of 
agent-based modeling. 
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ABSTRACT 
 

Repast is a widely used, free, and open-source agent-based modeling and simulation 
toolkit. Three Repast platforms are currently available, each of which has the same core 
features but a different environment for these features. Repast Simphony (Repast S) 
extends the Repast portfolio by offering a new approach to simulation development and 
execution. This paper presents a model of physical infrastructure network 
interdependency as an introductory tutorial and illustration of the visual modeling 
capabilities of Repast S. 
 
Keywords: Agent-based modeling and simulation, Repast, toolkits, and development 
environments 

 
 

INTRODUCTION 
 

Repast (ROAD 2005; North et al. 2006) is a widely used, free, and open source agent-
based modeling and simulation toolkit with three released platforms, namely Repast for Java, 
Repast for the Microsoft .NET framework, and Repast for Python Scripting. Repast Simphony 
(Repast S) extends the Repast portfolio by offering a new approach to simulation development 
and execution, including a set of advanced computing technologies for applications such as 
social simulation. North et al. (2005a and 2005b), Howe et al. (2006), and Parker et al. (2006) 
provide an overview of the Repast S runtime and development environments. 
 

We use a model of networked physical infrastructure to demonstrate the visual design 
capabilities of the Repast S toolkit and as an introductory tutorial. While the example is not 
intended to model real phenomena, the model’s complexity is high enough to illustrate how the 
user may develop multi-agent models.  
 

It is important to note that Repast S and its related tools are still under development. This 
paper presents the most current information at the time it was written. However, changes may 
occur before the planned final release. 
 
 

                                                 
* Corresponding author address: Michael J. North, Argonne National Laboratory, 9700 South Cass Avenue, 

Argonne, IL 60439; email: north@anl.gov. 
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THE REPAST S MODEL IMPLEMENTATION BUSINESS PROCESS 
 

As discussed in North et al. (2005a and 2005b), the Repast S model implementation 
business process is as follows: 
 

• The modeler creates model pieces, as needed, in the form of plain old Java 
objects (POJOs), often using automated tools or scripting languages such as 
Groovy. 

 
• The modeler uses declarative configuration settings to pass the model pieces 

and legacy software connections to the Repast S runtime system.  
 

• The modeler uses the Repast S runtime system to declaratively tell Repast S 
how to instantiate and connect model components.  

 
• Repast S automatically manages the model pieces based on (1) interactive 

user input and (2) declarative or imperative requests from the components 
themselves.  

 
The POJO model components can represent anything but are most commonly used to 

represent the agents in the model. While the POJOs can be created by using any method, this 
paper discusses one powerful way to create POJOs for Repast S: the Repast S development 
environment. However, modelers can use any method—from hand coding to wrapping binary 
legacy models to connecting into enterprise information systems—to create the Repast S POJO 
model components. 
 

Regardless of the source of the POJOs, the Repast S runtime system is used to configure 
and execute Repast S models. North et al. (2005b) detail the Repast S runtime system, the design 
of which includes: 
 

• Point-and-click model configuration and operation; 
 

• Integrated two-dimensional, three-dimensional, and other views; 
 

• Automated connections to enterprise data sources; and 
 

• Automated connections to powerful external programs for conducting 
statistical analysis and visualizing model results.  

 
 

SIMPLE PHYSICAL INFRASTRUCTURE NETWORK MODEL 
 

A model of interconnected physical infrastructure networks is presented as an 
introductory tutorial and illustration of the visual modeling capabilities of Repast S. The model 
consists of a natural gas transmission and DC electric power network (Tatara et al. 2007b). The 
natural gas transmission model consists of a network of interconnected links and nodes, where 
the nodes function as delivery, receipt, and/or pipeline termination points, and the links function 
as gas pipelines that transport natural gas between nodes. The DC electric network model 
considers a balance of demand and generation given the transmission topology. The nodes in the 
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electric network represent generators and load points, while the links function as electrical 
transmission lines. The two networks are connected via links between the natural gas network 
and gas-fired electric power plants (generators) in the electrical network. The simple networks 
presented here will model propagation of pressure and power along the gas and electrical 
networks. 
 

 
VISUAL PROJECT CREATION AND AGENT DESIGN 

 
While previous versions of Repast required the user to set up and configure an 

appropriate integrated development environment (IDE), Repast S provides a preconfigured 
Eclipse-based IDE such that no a priori programming experience is required to build a model. 
Although the Repast IDE is aimed at novice developers, the full Repast S Java application 
programming interface (API) and advanced IDE configuration options are available at any time. 
Previously, Tatara et al. (2006) discussed using Repast S to create a model of wolf-sheep 
predation through the Java API.   

 
After the Repast S IDE is started, the user may choose to continue working with an 

existing project or create a new project. The project creation wizard prompts the user for the type 
of project to create (Figure 1). The user is prompted for basic project information such as the 
project name (Figure 2). Additional project options are available to the advanced user, although 
these options may simply be left as the default. 

 
When the Repast project is created in the workspace, a set of project components is 

visible in the package explorer, shown on the left side of Figure 3. These components include 
things such as directories for storing user data and the project source code. Also visible in 
Figure 3 is the Score editor, which specifies the hierarchical structure of the model contexts, 
agents, and projections. Model elements are represented graphically in a tree, and components 
may be added on a point-and-click basis. Once model elements have been placed in the Score 
editor, their properties may be edited in the Properties window shown at the bottom of Figure 3. 

 
After the model Score has been completed, the user may start creating the agent objects. 

At this point, the advanced user may choose to create the agent classes using the Java API, while 
those users not familiar with Java may chose to use the Repast agent editor. The agent creation 
wizard is accessed via the package explorer and allows the user to create a number of Repast 
objects (Figure 4). When a new agent is created (Figure 5), the IDE view switches to the agent 
editor view as shown in Figure 6. 

 
As discussed in detail in Ozik et al. (2007), the visual agent behavior editor, the new 

project wizard and the new agent wizard are modified forms of Alexander Greif’s free and open 
source Flow4J-Eclipse components (Greif 2006) that have been adapted specifically for agent-
based modeling. Greif (2006) has made the Flow4J-Eclipse system available under a BSD-style 
free and open source license. The Repast project team has built on Greif’s contribution to create 
the above-mentioned Repast S components. From the Flow4J home page, Greif (2006) states: 

 
Flow4J is an Eclipse Plug-in for modeling process flows in a drag and drop manner. A 
process flow can contain process steps (I call them flowlets), which can be linked 
together [in]to a complex flow. 
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Ozik et al. (2007) provides the details on what Repast has both inherited and 
modified/adapted from Greif’s (2006) Flow4J-Eclipse system. 
 

Like the Flow4J-Eclipse visual editor, the Repast agent editor itself consists of an 
editable icon panel and a palette of behavior icons, which may be dragged into the edit panel and 
modified. As discussed in Ozik et al. (2007), the icons are analogous to blocks in a flowchart that 
may be connected in flexible ways to create the agent behavior logic. Figure 6 shows the creation 
of an agent property “pressure” for the GasNode agent class. The property parameters may be 
edited in the bottommost panel in Figure 6. The user is asked to specify a number of required 
elements such as the property name, data type, and initial values, while several optional data, 
such as a long description of the property, may also be defined. 
 

Behaviors are defined by creating a behavior element in the workspace as shown in 
Figure 7. The behavior element may be either a scheduled behavior or one that is event-driven. 
The desired behavior for the nodes in the natural gas network is to react to changes in pressure 
upstream. Therefore, the behavior at the gas nodes will be event-driven and caused by changes in 
pressure from connected gas nodes. 

 
The behavior block defines how and when the behavior occurs and not what actually 

happens next. A Task block is used to define the active part of the behavior to which it is 
associated (Figure 8). The Task block specifies what the agent does when the behavior is 
triggered. Continuing with the gas network node behavior, the task should adjust the node’s 
pressure based on the pressure of the upstream node. Finally, the behavior logic is terminated 
with an End block as shown in Figure 8. 

 
When the user saves the diagram, the Repast IDE automatically compiles the diagram 

into usable code that may be immediately loaded into the Repast runtime without the user ever 
needing to write Java code. The agent behavior editing step is repeated in this example (not 
shown) for the electric network nodes, using power rather than pressure as the propagated 
variable. 
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FIGURE 1  New project display wizard with Repast Simphony Project selected 
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FIGURE 2  Repast Simphony Project new project basic options 
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FIGURE 3  Repast Simphony project workspace showing Score editor view 
 
 
 
 
 
 
 
 
 
 
 
 

179



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4  New agent creation wizard 
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FIGURE 5  New agent creation wizard name option 
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FIGURE 6  Repast agent editor showing creation of an agent property 
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FIGURE 7  Repast agent editor showing creation of an agent behavior 
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FIGURE 8  Repast agent editor showing creation of an agent task and its linkage with 
behavior 
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RUNTIME AGENT CREATION AND DISPLAY DESIGN 
 

After the agents have been created in the Repast agent editor, the runtime may be started 
from the Repast IDE. Creation of user-specified data collection, output, and display may be 
performed through wizards in the Repast S runtime. The runtime window contains a scenario 
tree with contexts that branch from the main model context. The user may access each of the 
underlying wizards by selecting any component in the tree. Generally, one would create the 
components in the order of dependency: displays first, followed by data collection and data 
output components. The runtime graphical user interface (GUI) elements have been discussed in 
detail by Tatara et al. (2007a), and only the visualization elements will be discussed here.  

 
Displays for two and three-dimensional spatial projections are created by selecting the 

Displays branch in the scenario tree. The user must specify at least one spatial projection and 
optionally one or more network projections or value layers. This demo uses a single two-
dimensional (2D) grid projection on which the physical network elements are placed. The 
appearance of the agents is fully customizable and may be specified by the Agent Style wizard in 
a display item as shown in Figure 9. 
 

The network style editor (Figure 10) allows the user to specify how the network links are 
visualized, including the line style, color, and width. Additionally, the line width and color may 
be optionally specified by the agent properties. For example, a high-pressure node may be dark 
blue in color and a low-pressure node may be light blue. 

 
Additionally, the agent style may be defined by the agent style editor shown in Figure 11. 

The agent style editor provides options in addition to color and size, such as 2D shape, label data, 
and label font properties. The agent icon size may also be scaled according to a user-selected 
agent property. Options for 3D styles include the ability to set the 3D shape, wrap texture maps 
around the 3D shape, and load third-party 3D model files. 
 

At this point, although the agent display styles have been created, no agent instances exist 
yet in the runtime, and thus there is nothing to visualize. The user has several options in creating 
agent instances, including loading from delimited or database files or by using the runtime 
Repast agent editor shown in Figure 12. The Repast agent editor provides the flexibility and 
power to create agents and arrange agents in the projections defined by the model. Agents may 
be created, cloned, and deleted, and agents in the projection may be freely arranged in space. The 
agent editor uses the styles defined for the display so that each agent type may be easily 
distinguished from one another.   

 
If the model contains network projection, as with this demo, the agent editor may be used 

to connect the agents in the network by dragging connections between agents (Figure 13). 
Multiple network types are supported, and the network being edited is selected from a drop-
down box. The network connections are styled on the basis of the specified styles for the display. 
In the case where a 3D display is to be edited, the agent editor tool will re-project the 3D display 
onto multiple 2D displays for editing. Figure 14 shows the connected infrastructure networks in 
2D and 3D projections in the Repast runtime display. 
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FIGURE 9  Runtime display creation wizard 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 10  Network display style editor tool 
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FIGURE 11  Agent display style editor tool 
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FIGURE 12  Runtime agent instance editor 
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FIGURE 13  Runtime agent instance editor with network links 
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FIGURE 14  Runtime displays showing 2D and 3D visualization of networks 
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CONCLUSIONS 

 
The Repast S runtime is a pure Java extension of the existing Repast portfolio. Repast S 

extends the Repast portfolio by offering a new approach to simulation development and 
execution. The Repast S development environment is expected to include advanced features for 
agent behavioral specification and dynamic model self-assembly. Any plain old Java object can 
be a Repast S model component. This paper presents an introductory tutorial and illustration of 
the visual modeling capabilities of Repast S by using a simple model of interconnected physical 
infrastructure networks.  
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ABSTRACT 
 

This paper discusses the integration of the dynamic object-oriented programming 
language Groovy into the Repast Simphony platform. It shows how the integration of 
Groovy benefits agent-based modeling in a number of ways, including its ability to 
simplify agent behavior specifications, create expressive and human-readable code, 
generate complex and adaptive agent behavior, and move between agent-modeling 
environments. 

 
Keywords: Repast Simphony, Groovy, agent-based modeling, dynamic languages 

 
 

INTRODUCTION 
 

Dynamic languages have gained popularity in recent years. Groovy (König et al. 2007) is 
such a dynamic language with the added benefit of tight integration with Java and, hence, the 
ability to integrate into the Repast (ROAD 2005) agent-modeling platform. Repast Simphony 
(Repast S) is the latest extension to the Repast portfolio, a widely used, free, and open-source 
agent-based modeling and simulation (ABMS) toolkit (North et al. 2005a,b). Repast S offers a 
variety of approaches for developing and executing simulations, and it includes many advanced 
features for agent storage, display, and behavioral activation and new facilities for data analysis 
and presentation. This paper explores a few aspects of Groovy integration in Repast S.  

 
A dynamic language such as Groovy is vital for implementing the next generation of 

ABMS models, such as interpretive agent (IA) models. Although in most agent models, meaning 
is stipulated by the model designer, interpretive agents are designed to discern and attribute 
meaning from within the model and shape their communications and actions accordingly. 

 
Groovy capabilities can help achieve such a design goal in multiple ways. Tasks can be 

defined as closures and passed among agents as needed. Examples of such uses are commands or 
directives, skills acquired through training, and the imitation of rituals. Each of these can convey 
a closure to achieve its effect, and furthermore, the closure can be customized by context, 
arguments, agent state, composition with other closures, or additional embedded closures. In 
whatever way the customization is achieved, the effect is to calibrate the way in which the 
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directive, specialty, or ritual is carried out in a particular situation. Similarly, the creative use of 
iterators allows diverse agents to receive closures customized to their history and/or 
circumstances. 

 
The existence of metaobjects allows routine activities to proceed as expected while 

possible changes in circumstances that would require the construction of a more innovative 
response are monitored. The metaobjects allow agents to have unique or path-specific 
capabilities or action orientations. 

 
As such implementations of these dynamic capabilities are incorporated into Repast S, 

the toolkit will be able, through Groovy, to provide systematic support for IA models. An IA 
reference application (Interpretive Heatbugs) has been ported to Groovy, to both explore such 
capabilities and illustrate their use. All such innovations contribute to the forward potential of 
social agent simulation and the tools necessary to its realization. 

 
As an added example of Groovy/Repast S integration, we introduce ReLogo, a pathway 

from the NetLogo (Wilensky 1999) “multi-agent programmable modeling environment” to 
Repast S via Groovy. NetLogo promises easy entry into agent-based modeling for anyone: from 
elementary school children, for whom it was originally designed, to advanced researchers. 

 
ReLogo involves the creation of a NetLogo lexer and parser in ANTLR (Parr 1989) and 

the emission of Groovy translations of NetLogo code. The interpreted nature of the NetLogo 
language makes it especially useful to use a dynamic language such as Groovy as the target 
language. The expressiveness of Groovy results in easily readable code that retains a lot of the 
structure of the original agent code. As a consequence, the code can be easily extended and 
modified within the Repast S environment. 

 
This paper is structured as follows. Section 2 gives a brief introduction to the Groovy 

dynamic programming language, focusing on the dynamic features that are most relevant to 
agent modeling. Section 3 presents Groovy integration with Repast S, specifically focusing on 
some aspects of the Repast S Agent wizard and the visual agent behavior editor, as well as the 
use of Groovy categories to carry out a variety of mathematical operations, including automatic 
unit conversions and matrix and calculus operations. The Groovy/Repast S port of Interpretive 
Heatbugs is discussed in Section 4, which highlights some of the dynamic Groovy capabilities. 
Finally, ReLogo is briefly presented in Section 5, and conclusions are given in Section 6. 

 
It is important to note that Repast S and its related tools are still under development. This 

paper presents the most current information at the time it was written. However, changes may 
occur before the planned final release. 
 
 

GROOVY 
 

Dynamic languages (e.g., Ruby, Python, JavaScript, or Groovy) have gained popularity 
in recent years. Features such as dynamic typing enable individuals and small teams of 
programmers to rapidly develop applications and engage in prototype exploration, while test-
driven development mitigates the loss of type checking when moving away from a statically 
typed environment (e.g., Java, C, or C++). Although it is not a characteristic of every dynamic 
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language, there is usually a great reduction of boilerplate code, making the code much more 
expressive and readable by humans. 

 
An important point to note, though, is that a lot of the ongoing debate that pits dynamic 

languages against static languages ignores the reality that some tasks are better done in a 
dynamic environment and others in a static one. Moreover, when two languages share object 
orientation, integration issues are more easily localized. Groovy steps into this “sweet spot,” 
bringing advanced dynamic language features, such as closures, dynamic typing, and the 
metaobject protocol, to one of the most widely used, robust, and well-supported (statically typed) 
language, Java, via seamless integration. In fact, since JSR-241 (Java Specification Request), 
Groovy is the second standard language for the Java platform (the first one being Java). 

 
According to the Groovy Web site (http://groovy.codehaus.org/), Groovy: 
 
• “is an agile and dynamic language for the Java Virtual Machine” 

• “builds upon the strengths of Java but has additional power features inspired by 
languages like Python, Ruby and Smalltalk” 

• “makes modern programming features available to Java developers with almost-zero 
learning curve” 

• “supports Domain Specific Languages and other compact syntax so your code 
becomes easy to read and maintain” 

• “makes writing shell and build scripts easy with its powerful processing primitives, 
object-oriented structure and an Ant DSL” 

• “increases developer productivity by reducing scaffolding code when developing 
web, GUI, database or console applications” 

• “simplifies testing by supporting unit testing “ 

• “seamlessly integrates with all existing Java objects and libraries” 

• “compiles straight to Java bytecode so you can use it anywhere you can use Java” 
 
There are a number of capabilities that Groovy brings to the realm of agent-based 

modeling. First of all, closures allow agent behaviors to be specified as first-class Closure 
objects. As taken from the Groovy Web site: 

 
A closure in Groovy is an anonymous chunk of code that may take arguments, 
return a value, and reference and use variables declared in its surrounding scope. 
In many ways it resembles anonymous inner classes in Java, and closures are 
often used in Groovy in the same way that Java developers use anonymous inner 
classes. 
 
The closures can be customized by context, arguments, agent state, composition with 

other closures, or additional embedded closures. In whatever way the customization is achieved, 
the effect is to calibrate the way in which the agent behavior is carried out in a particular 
situation. In addition, closures can be passed around between agents, enabling agents to acquire 
capabilities or learn from each other. 
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The metaobject protocol in Groovy allows for the specification of agent metaclasses. 
Metaclasses can be used to interrupt routine agent activities when changes of agent 
circumstances require the agents to construct more innovative responses. Furthermore, with 
Expando Metaclasses, agent classes can be modified as necessary at run time. These capabilities 
allow agents to have unique or path-specific capabilities or action orientations. 

 
Finally, Groovy’s tight integration with Java provides the ability to (a) seamlessly 

incorporate Groovy into the sophisticated agent-based modeling platform Repast S and (b) take 
advantage of the vast amounts of existing Java libraries that support agent-based modeling. 

 
 

GROOVY INTEGRATION IN REPAST S 
 
Visual Agent Behavior Editor 

 
Repast S includes a point-and-click agent editor. The visual agent behavior editor, the 

new project wizard, the new agent wizard, and related components are modified forms of 
Alexander Greif’s free and open-source Flow4J-Eclipse components (Greif 2006) that have been 
adapted specifically for agent-based modeling. Greif (2006) has made the Flow4J-Eclipse system 
available under a BSD-style free and open-source license. The Repast project team has built on 
Greif’s contribution to create the above-mentioned Repast S components. According to the 
Flow4J home page (Greif 2006): 

 
Flow4J-Eclipse is an Eclipse Plug-in for modeling process flows in a drag and 
drop manner. A process flow can contain process steps (I call them flowlets), 
which can be linked together [in]to a complex flow. 

 
Flow4J-Eclipse used two types of “flowlets” (Greif 2006) — namely “Control Flowlets 

like Start-, Decision- and Jump- Flowlets which are configurable in Eclipse” — that “tell ‘how’ 
the process should flow” and “Task Flowlets [that] accomplish a specific task that is wrapped in 
a Java class,” which can come from many sources, including Java itself or “scripting languages 
like Jython, Groovy, JavaScript, etc.” Grief (2006) notes the following: 

 
After designing the flows in the Eclipse Plug-in, the flow’s Java source code is 
automatically created, and is immediately ready for compilation and deployment 
in a Java web/application. The flow’s generated Java source code is highly 
optimized and lightning fast…. Web/applications can execute flows in two ways: 
(1) from inside any Java code [and] (2) triggered by a HTTP request if the flow is 
deployed in a web application. 

 
The Flow4J-Eclipse editor works by presenting users with a flowchart-drawing interface 

that is used to create a process diagram (Grief 2006). The process diagram is saved in a platform-
independent XML file. Following the Eclipse development model, the Flow4J-Eclipse system 
registers a builder with Eclipse that is notified whenever a Flow4J-Eclipse XML file changes 
(Grief 2006). This builder creates a Java source file from the freshly saved XML file. Eclipse 
itself then automatically generates a Java binary class file from the new Java source code file. 
The Flow4J-Eclipse system also includes an Eclipse wizard for creating new Flow4J-Eclipse 
projects, an Eclipse wizard for creating new flowchart XML files, and supporting tools such as a 
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project menu option to add the Flow4J-Eclipse nature to a standard project (i.e., activate the 
Flow4J-Eclipse builder for the project). 

 
Repast agent editor adapts Greif’s Flow4J-Eclipse to agent-based modeling in multiple 

ways: 
 
1. The Repast agent editor’s builder generates Groovy source code rather than 

Java source code to take advantage of a number of Groovy features. 
2. The Repast agent editor has enhanced the Flow4J-Eclipse property views with 

step-by-step form-style inputs. 
3. The Repast agent editor redefines the Flow4J-Eclipse flowlets to correspond 

to agent behavior primitives and properties rather than “process flows” 
(Greif 2006): 

a. Flow4J-Eclipse “Flows” have been redesigned to support Repast agent class 
definitions,including user input for super classes and implemented 
interfaces. 

b. Flow4J-Eclipse “Template Flowlets” have been redesigned as “Property 
Components” to support agent attributes. 

c. Flow4J-Eclipse “Start Flowlets” have been redesigned as “Behavior 
Components” to support Repast scheduling and watchers (Howe et al. 2006; 
Parker et al. 2006). 

d. Flow4J-Eclipse “Task Flowlets” have been redesigned as “Task 
Components” to support Repast agent activities. 

e. Flow4J-Eclipse “Decision Flowlets” have been redesigned to use Groovy 
logical conditions instead of Flow4J-Eclipse predicate lookup tables. 

f. Flow4J-Eclipse “Call Flowlets” have been redesigned as “Loop 
Components” to loops instead of method calls. 

g. Flow4J-Eclipse “Jump Flowlets” have been removed. 
4. The Repast agent editor includes the ability to embed user-specified 

comments into the generated Groovy source code. 
5. The Repast agent editor’s XML storage schema has been modified versus 

Flow4J-Eclipse to reflect the above-cited differences in the agent behavior 
primitives and properties (Greif 2006). Furthermore, to differentiate the 
contents, the Repast agent editor uses a different file extension for its XML 
files than the Flow4J-Eclipse system. 

6. The Repast agent editor automatically generates a set of supporting 
components within each agent. For example, each generated Repast agent 
class includes an attribute and method for automatically assigning the agent a 
human-readable run time identifier. 

7. The Repast system has expanded the functionality of the Flow4J-Eclipse 
wizard for creating new projects by adding a variety of features, such as the 
following: 

a. Repast Score file input specification and generation has been added. 
b. A large number of Repast-specific supporting files and directories are now 

generated for tasks such as defining batch runs, defining legacy model 
descriptors, and building model installations. 
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c. Eclipse launch scripts are added for executing interactive model runs, 
executing batch model runs, and starting Repast in default mode. 

d. Repast library dependencies are included in the generated project. 
8. The wizard for creating new flowchart XML files now creates Repast-specific 

files. 
9. The Flow4J-Eclipse nature has been modified to include Repast library 

dependencies. 
 
Figure 1 shows an example flowchart in the agent editor, while Figure 2 shows the 

corresponding Groovy code. Please see North et al. (2007) for more details on how to use the 
agent editing system. 

 

 

Figure 1  Example flow chart and Properties pane in the Repast S visual agent behavior editor 
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   ... 
/** 

    * 
    * This is an agent property. 
    * @field happiness 
    * 
    */ 
   @Parameter (displayName = "Happiness", usageName = "happiness") 
   public def getHappiness() { 
        return this.happiness; 
   } 
   public void setHappiness(def newValue) { 
        this.happiness = newValue; 
   } 
   public def happiness = 0; 

 
/** 

    * 
    * This is the step behavior. 
    * @method step 
    * 
    */ 

@ScheduledMethod( 
start = 1d, 
interval = 1d 

) 
   public void step() { 
        // Define the return value variable. 
        def returnValue 
        // Note the simulation time. 
        def time = GetTickCountInTimeUnits(); 
        // Use the Repast Simphony Groovy math tools. 
        use (MathOperations.mathCategories()) { 
            // Make a decision. 
            if (happiness > 0.5) { 
                // This is a list task. 
                println "I’m happy!"; 
            } else  {  
                 
            } 
     // Exit this scope. 
            return; 
        } 
   } 
... 

Figure 2  Condensed parts of the automatically generated Groovy code corresponding to the 
Repast S visual agent behavior editor flowchart in Figure 1 
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JScience and Groovy Categories 
 
JScience is a Java library developed to “provide the most comprehensive Java library for 

the scientific community” (JScience 2005). Users developing a Repast S model could reference 
the JScience library like they would any other Java library, but, as will be demonstrated below, 
our intention was to make this process more user-friendly and create more human-readable code. 
To do this, we employed Groovy Categories and simplified the use of a subset of the JScience 
capabilities: the scientific unit and unit conversion modules and linear algebra modules. 

 
Categories are useful for situations in which one would like to define additional methods 

on classes that are not under one’s control. Specifically, a Groovy category is a class that 
contains a set of static methods (called category methods). Each of these methods is made 
available on the class of the method’s first argument. The following example helps to clarify 
these concepts. 

 
Figure 3 shows an example of the Java code needed to define Amount class objects x and 

y with the values 2 kilometers and 5,000 feet, respectively, along with the calculation of their 
sum, z, which properly accounts for the unit conversions by setting z to 3.524 kilometers. 

 
 
Amount x = Amount.valueOf(2.0, SI.KILO(SI.METER)); 
Amount y = Amount.valueOf(5000.0, SI.FEET); 
Amount z = UnitsOperations.addition(x,y); 
 

Figure 3  Java code utilizing the Amount JScience class 
 

Figure 4 shows the Groovy version of Figure 3 using categories. 
 
 
def x = 2.kilometers 
def y = 5000.feet 
def z = x + y 
 

Figure 4  Groovy code corresponding to Java code in Figure 3 (at end z = 3.524 km) 
 

This simplification is possible for two main reasons. The first is that Groovy (unlike 
Java) allows one to override operators. Hence, in the example above, we were able to override 
the “+” and the “.” operators, resulting in intuitive and human-readable code. The second reason 
we can simplify is because we can enclose any lines of code within a closure and, by using the 
use keyword and referencing the appropriate Groovy category, [for example, 
use(UnitsCategory) {lines of code}], we can force the operators (or methods) within those 
lines of code to be overridden by the category’s [in this case, UnitsCategory’s] static methods. 
The lines of code in Figure 4 are located within such a closure. 

 
In an analogous way, by using the MatrixCategory, which references the JScience linear 

algebra classes, matrix operations (e.g., matrix addition, subtraction, multiplication, and 
exponentiation) can be written in the simple syntax shown in Figure 5. 
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def c = a + b  
def d = a – b 
def e = a * b 
def f = a ** 2 
 

Figure 5  Matrix operations using Groovy categories (a and b are matrices) 
 

In addition, we have also included a CalculusCategory, which allows for calculating 
derivatives and integrals of closures. 

 
Such capabilities are built into Repast S, enabling the model developer to tap into these 

powerful functionalities and, at the same time, create human-readable and thereby more 
maintainable code. 

 
 

INTERPRETIVE HEATBUGS 
 

The purpose of the IA research program is to incorporate endogenous meaning attribution 
as a means of orienting agent communication and action selection into agent-based modeling 
(Sallach 2003). Interpretive Heatbugs (IHB) is an IA reference application in which interpretive 
mechanisms (prototype reasoning, situation definition, and orientation accounting) are 
developed, illustrated, and made available to other researchers (see Sallach and Mellarkod 2005; 
Mellarkod and Sallach 2005; Sallach and Ozik 2007). Similar to its widely known generic 
heatbug predecessor (Swarm Development Group 1997), it is designed to provide a simple 
introduction to the IA paradigm. 

 
IHB uses the familiar heatbugs environment, in which heat-emitting bugs require 

temperate zones and flee from settings that are uncomfortably hot or cold. Because each bug 
emits a small amount of heat, congregations of bugs initially create the needed warmth, while 
overcrowding creates excessive heat. These competing influences give rise to the often-observed 
complex, churning patterns. To this dynamic of temperature fluctuations driving the bug 
movements, IHB adds the capability of bugs to ignore, engage in voluntary exchange with, or 
undercut each other, and it also adds ethnic and religious identities that mediate the decisions to 
help or hinder. 

 
The IHB application explores the role of interpretation: in the use of force as a means of 

improving bug circumstances; in the bugs’ decisions to request gifts of energy (a placeholder for 
health and/or wealth); and in the decisions to convey all, part, or none of the energy requested. 
These decisions draw on the projection of a bug’s comfort levels on others, as well as the 
prototype categorization of all the bugs accessible for interaction. Of particular interest is the 
emergence of endogenous evaluative classification in bug orientation and action. 

 
Consistent with the concept of a reference application, the interpretive mechanisms that 

support the acts of aggression, requests, and voluntary contributions are designed to support 
comparable decisions in a variety of complex social applications (e.g., models of cultural 
conflicts, such as genocide and ethnic cleansing, as well as diversifying markets and a range of 
extended cultural processes). The IHB application, which was initially implemented in the 
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J programming language (Iverson and Hui 1990), has been ported to the Repast S platform (see 
Figure 6) by using Groovy’s dynamic capabilities and making these mechanisms available for 
the development of increasingly socially “thick” and interactive agent models. What follows is 
an illustrative set of examples of Groovy-isms used within IHB. 

 

 

Figure 6  Screenshot of the 3D grid projection from the Groovy/Repast S port of IHB 
 
The bugs make assessments of the bugs that they come into contact with. This involves 

creating prototype clusters that group a bug’s known bugs into categories on the basis of each 
bug’s idiosyncratic history and observations. The current implementation of IHB employs a 
hierarchical agglomerative clustering algorithm for these groupings and uses the standard 
Euclidean metric. However, it also includes the flexibility to introduce any user-defined metric 
via closures, as is shown in the Groovy code snippet in Figure 7. 

 
 

protected def cluster(int maxClusters, def ptsToCluster, Closure metric) { 
… 

} 
 

Figure 7  Groovy code illustrating the cluster method taking a Closure object as a parameter 
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Depending on the type of bug and its situated context, a bug will adopt a particular set of 
behaviors for shoving, asking, and giving. As the bugs’ shove, ask, and give rules are all 
implemented as closures, the bugs’ behaviors can be assigned and modified easily by using rule 
dispatchers, which pass bug behaviors, specified as closures, to each bug as necessary. This 
allows for not only a flexible way in which to determine bug behavior but also an intuitive and 
straightforward way to encapsulate bug behavior, in a first-class Closure object, instead of 
requiring a lot of scaffolding code (for example, in a method within a first-class object).  
 

One of the most powerful uses of closures in IHB has to do with a bug’s more and all 
methods. In many situations, a bug’s action is contingent on whether most or all of the bugs 
under consideration fit some set of criteria, where these criteria are implemented as closures. 
Instead of having to create different implementations of more and all corresponding to each 
combination of the many criteria that a bug can employ, the set of criteria are passed to the more 
and all methods as closures. Then Groovy’s handy iterating mechanisms interate the bugs 
under consideration. This is a good example of using combinations of basic closures to 
implement complex agent behaviors. The closures can be composed, combined, and reordered to 
provide flexibility in creating new and adaptive agent behaviors. 

 
 

RELOGO 
 

ReLogo is a pathway from the NetLogo (Wilensky 1999) “multi-agent programmable 
modeling environment” to Repast S that uses Groovy. As previously mentioned, NetLogo 
promises an easy entryway into agent-based modeling (Wilensky 1999). Repast S is a very 
sophisticated agent-based modeling platform, offering many advanced features for agent storage, 
display, and behavioral activation and new facilities for data analysis and presentation, while 
also allowing for the integration of external (legacy) models. Thus, ReLogo offers the ability to 
go from an exceedingly user-friendly and intuitive environment for model development and 
exploration in NetLogo all the way to the enterprise-level models developed in Repast S. 

 
ReLogo involves the creation of a NetLogo lexical analyzer or “lexer” and parser in 

ANTLR and the emission of Groovy translations of NetLogo code. The interpreted nature of the 
NetLogo language makes it especially useful to employ a dynamic language like Groovy as the 
translation target language. The expressiveness of Groovy results in easily readable code that 
retains a lot of the structure of the original agent code. As a consequence, the code can be easily 
extended and modified within the Repast S environment.  

 
Although ReLogo is still under development, it is nonetheless possible to present a 

simple example to illustrate some of the benefits of using Groovy. One of the most common 
patterns observed in NetLogo models is that of sending a block of code to a set of agents. In the 
following NetLogo code (Figure 8), rabbit agents are created, and a block of code specifying the 
created rabbit’s color, position, and energy is sent to each created rabbit. (Note that the block of 
code is interpreted by each rabbit individually; thus, each rabbit sets its own random position and 
energy.) Implementing this type of behavior in the static Java language would result in 
convoluted code that would be difficult to maintain or even read. Even if the resulting code was 
brought over to the Repast S environment, editing, modifying, or debugging it would become an 
unenviable task. 
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create-rabbits number [ 
     set color white 
     setxy random-xcor random-ycor 
     set energy random 10 
] 
 

Figure 8  Sample NetLogo code with code block (Rabbits Grass Weeds model) 
(Wilensky 1999) 

 
On the other hand, Figure 9 shows how this agent behavior can be implemented with 

Groovy. The createRabbits method can take as parameters the number variable as well as the 
code block (as a closure). As one can see, the resulting code closely mirrors the original code in 
structure and in the function of the resulting code units, allowing the modeler to carry over many 
of the mental constructs that may have developed during model development in the NetLogo 
environment.  

 
 
createRabbits(number){ 
 setColor(Color.white) 
 setXY(randomXcor(),randomYcor()) 
 setEnergy(nextIntFromTo(1,10)) 
} 
 

Figure 9  Groovy implementation of code example in Figure 8 
 
 

CONCLUSIONS 
 

This paper demonstrates the many benefits Groovy brings to the agent-based modeling 
realm. Groovy integration in Repast S simplified the use of the visual agent behavior editor as 
well as the incorporation of physical unit conversions, matrices and calculus operations into 
agent-based models. The Groovy and Repast S implemented Interpretive Heatbugs reference 
application demonstrated some of the flexibility and clarity achieved by the use of closures. 
Finally, this papers shows how having Groovy as the target language greatly improves the ability 
to move from the NetLogo to the Repast S environment via ReLogo. The authors believe that all 
such innovations will contribute to the forward potential of social agent simulation and the tools 
necessary for its realization. 
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INTRODUCTION 
 

MEME stands for the Model Exploration Module of the Multi-Agent Simulation Suite 
developed at AITIA International, Inc. MEME is an agent-based simulation tool enabling 
modelers to design experiments, run models on clusters and grids of computers, and to 
manage, analyze and visualize the data produced. Development of the tool begun in mid 
2006 after the realization that there was hardly any software available being able to run a 
large number of simulations, collect, organize and visualize their data for modelers with 
limited programming skills. This paper gives an insight into the motivations of the 
development and introduces the reader to the tasks and functions MEME is capable of.  

 
Keywords: Agent-Based Modeling, Modeling Tools, Simulation, Experiment Design  

 

MOTIVATIONS 
 
 Agent-based modeling and simulation based computational science demonstrates great 
promise, but as Bankes and Lampert (2004) argues, so far it has lacked the rigor that is needed in 
the scientific field and the robustness required in policy making. Models of complex social 
systems typically depend on a number of assumptions, quantified in the form of specific values 
to certain model parameters. Ideally, any such model should be tested with any meaningful 
combination of these parameters, in order to determine the validity of the model or ensembles of 
models. This process is often called the parameter space search or parameter sweep. 
Additionally the task of establishing the results’ statistical validity also involves running the 
simulation with various random number generator seeds and analyzing the collected results. 

                                                 
*  Corresponding author address: Marton D. Ivanyi, ELTE-IKKK Simulation Center, Pazmany Peter Setany 1/C, 
Budapest, Hungary, H-1117; e-mail: mivanyi@aitia.ai 
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FIGURE 1 MEME is just an element of the Multi-Agent Simulation Suite (structure 
diagram above). 

Running simulations at this scale and complexity is from a computational point of view a 
particularly intensive task. It is understood that it is essentially impossible to achieve complete 
parameter space exploration. This creates a special emphasis on the design and sequencing of the 
experiments, so that they allow for branching depending on earlier results and also for revisiting 
previously explored areas with greater ‘resolution’. Even in case of carefully designed 
experiment plans, these tasks may exceed the abilities of today’s PCs or workstations. Therefore 
it would be desirable to distribute simulations among several computers on the network, on a 
local cluster or a grid. 

AVAILABLE APPLICATIONS 
Standard ABM modeling packages like Swarm, Repast or NetLogo, all offer some 

support for collecting results in ‘batch mode’, as opposed to the primary, ‘GUI mode’ running of 
simulations. Swarm and Repast require (and support) modelers to create a distinct, ‘batch mode’ 
version of their models, offer a ‘parameter language’ to describe the regions of the parameter 
space the user wishes to explore, and collect the results in a specially formatted text file. The 
expressiveness of the offered parameter languages, however, limits the search strategies mostly 
to regular hyper-parallelepipeds. In particular, no dynamic branching of the exploration is 
possible, except by hand (i.e. processing the results of one batch and writing the next parameter 
file appropriately). Furthermore Swarm doesn’t have a graphical user interface for designing 
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parameter files, while the latest version of Repast has a simple GUI for parameter space 
explorations. 

NetLogo, on the other hand, provides a GUI for model exploration, but no parameter file. 
None the less, the functionality of the tool is about the same as with Swarm and Repast. A 
significant difference is that NetLogo does not require the user the create a dedicated batch 
version of the model – at the price that by default NetLogo animates all displays and graphs 
during parameter space exploration, thus slowing down its execution. Lately turning off displays 
and graphs during batch runs has been introduced in NetLogo. 

General-purpose, modeling package independent parameter space exploration toolkits 
also exist, like Drone and SweepOver. However, they also share most of the problems discussed 
above: they are typically highly technical, providing no easy-to-use user interface, but requiring 
a kind of programming. Moreover, they are suitable for exploring the regular regions of the 
parameter space (i.e. hyper-cubes and parallelepipeds), but not for adaptive branching, etc. 

MODEL EXPLORATION MODULE 
With the Model Exploration Module we want to provide a tool that makes the parameter 

space exploration experience as smooth and trouble-free, in other words user-friendly, as 
possible. In particular, modelers should be users and not programmers of this tool, who focus on 
the modeling problem and not on the technicalities. The goal with the MEME development is to 
provide easy means for the common parameter sweep tasks, while supporting model specific, 
complex task in addition. MEME offers easy-to-use graphical user interfaces for all its basic 
functions. The modeler can set up and run experiments from regular ABM models, execute batch 
runs on clusters of computers, collect, organize, import, visualize and do basic statistics from 
data through the GUI without having to write a line of code.  

On the other hand the software offers advanced users optional scripting when setting up 
the parameter sweeps or importing and organizing results for example. Scripting requires more 
technical expertise from the user of course, as mentioned before it is optional, and was 
introduced for modelers whose needs exceed MEME’s rich functionality.  

The design and development of the tool is done in a modular way, with the components 
communicating through well defined APIs, allowing for the seamless integration of new or 
improved functionality. We have just recently started the Beta testing of a processing plug-in that 
will allow the user to run simulations on local clusters of computers and a number of existing 
grid solutions. We hope that this development will further reduce execution times, hence speed 
modeling work up without requiring the modeler to develop any special grid knowledge or skills.  

Experiment Design 
Agent based simulation is usually related to studying the behavior of certain real 

phenomena. In order to do scientific experiments various factors of long and large number of 
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unattended simulations have to be observed. The simulation runs are executed on parameter 
spaces that are pre-defined or better yet, as discussed latter on, intelligently identified during the 
runs. 

MEME currently offers solutions for designing experiments from models written in the 
popular 1Repast environment and FABLES – a simple modeling language and its integrated 
modeling environment also by AITIA, see Gulyas and Bartha (2005) – without any additional 
programming. MEME offers a graphical user interface that fully assists the modeler in the 
process of setting up the experiments in a user-friendly way.  

 

FIGURE 2 The parameter sweep wizard: selecting the model and required 
packages, setting up the parameter space and the data recording attributes. 

Regular (i.e. not explicitly batch version) Repast and FABLES models can be imported 
into the application through a wizard that automatically identifies whether and which additional 
classes and jars that are needed to run the simulations. The same wizard explores the model for 
input and output parameters, lets the user create additional parameters if desired and provides the 
interface for declaring a parameter space for the experiment. The interface also offers capabilities 
to pick/add the variables whose values will be recorded and allows the user to define other data 
recording attributes. Measurements can be done at the end of simulations or at any desired tick 
count and in all cases measurements can record the actual value of the given variable, or the 
result of simple statistic operations. For advanced users MEME also offers scripting for declaring 

                                                 

1 The tool is also developed to be able to deal with other Java-based modeling languages in the future. 
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entirely new variables that are results of various operations done on one or more of the original 
measurements. 

Upon completing these tasks a new model and the corresponding parameter file are 
automatically generated from the original model with all the additional code necessary for 
running the simulation with the desired settings either on a local machine or to be distributed set 
as a set of simulation runs on a pool of available hosting computers. 

Experiment Execution 
The models and parameter files resulting from execution are forwarded to the respective 

engines for running Repast and Fables models in batch mode. In this phase of development, only 
‘brute-force’ exploration of regular subspaces of the parameter space is supported. The engines 
are capable to run in a detachable, ‘head-less’ fashion. That is, after the GUI wizards have set up 
the exploration schemes, the engines require no user interactions and are capable to run in the 
background as separate applications, while providing means for the user to observe the incoming 
results and oversee the general state of the experiment while executing a high number of 
simulations. 

Depending on the projected processing time of the batch runs the user has the option of 
launching the simulations on a single computer, a local or a remote cluster of computers. The 
module that distributes the simulation runs on the available computers was developed with 
extreme care in regard to collecting and storing the results of distributed runs. The module is 
prepared to re-instantiate runs to different computer once a host becomes unavailable or 
corrupted results are returned. As various systems with similar (albeit not simulation tailored) 
capabilities are already available, we did not intend to develop our own grid solution. To the 
contrary, we have and are developing a grid module that is capable of running simulations on an 
extendable list of distributed environments. 

MEME currently is able to set up and run simulations with Inria’s open source ProActive 
solution (Caromel et al. 2006) and the market leading Platform LSF family. These solutions 
enable the modeler to execute sets of simulation runs on clusters of computers running on 
2Windows or Linux/Unix operating systems, using both shared and separated storage. 

Storing, Organizing and Visualizing Simulation Data 
The MEME stores simulation results in a database, that includes all fix (constant) and 

changing parameters, and various additional information about the model (i.e. name, version, 
description, etc.). The software has a built-in Java-based database engine that can manage 
databases up to 8 GB in size, but the system is built in a way that it is independent of the 

                                                 

2 Note, that ProActive is an SSH-based grid and as Windows platforms do not have a general SSH solution, 
preparing a Windows cluster for MEME carries some additional challenges. 
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particular SQL engine used, it supports professional database engines through the JDBC 
protocol. The program organizes raw data in a 3-level hierarchy (model, version and batch), the 
database-structure is created to be able to handle repeated exploratory runs, iterative, gradual 
import of results (i.e. new parameters being introduced and old ones deleted between versions of 
the same model). 

MEME can obtain simulation results in two general forms. Results from batches of 
simulations designed and ran through MEME are automatically acquired. The other option is 
running simulations separately and then importing Repast result files or CSV files into the 
database. The program supports multiple file import, organizing data into different versions or 
batches under the same model. MEME distinguishes between input (i.e. values that do not 
change in during a run) and output parameters in result files. Various import settings can be 
saved if needed for later use, when importing data from a high number of simulations. 

An important feature of model exploration is the processing of the available results. From 
the results obtained and stored in the database, subsets can be created. These computed tables, 
that we call ‘views’, can be described as tables, where variables (including parameters and 
measured variables) are in the columns and particular value-combinations are in the individual 
rows. Creating basic views for visualization and/or to be imported into other applications for 
more sophisticated analysis includes selection of the variables to be included from the results, 
plus specifying what model version(s) the variables be originated from. 

 

FIGURE 3 Creating a subset (views) of the original result data is done through a 
wizard. The modeler is presented with various filtering and computational 
options. 
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MEME provides the modeler with advanced functionality in creating subsets of the 
results database though. Conditional filtering, splitting (a generalized form of cross tabulation), 
aggregating and reorganizing data are supported, as well as the creation of derived statistics and 
custom computations typical of agent-based simulation, without any or with minimal coding. 
View creation settings can be saved as xml files for later use.  

Once the data is organized into the desired form it can be exported for analysis in 
advanced statistical software of the user’s choice, or it can be visualized through MEME’s built-
in Charting Wizard. The Charting Wizard is built on the Visualizations Package that is an ABM 
specific visualization tool developed by AITIA. It enables modelers to create visualizations for 
their simulations quickly and conveniently without any coding. The program offers 
visualizations3 such as diagrams, grids and charts with both a vivid and rich design for 
presentation and a basic, black and white mode that suites scientific publication better.  

Future Developments 
MEME is not intended to be a sophisticated statistical tool. Although MEME already 

enables the user to export simulation results at any stage thus provide input as CSV files, further 
plans of development include implementing interoperation with such software. 

Currently MEME is only capable to run parameter space explorations on a standard 
hyper-cube, thus allowing for interactive and incremental experiment design and execution. That 
is, a first set of runs is processed and their results are evaluated, which allows the user to 
determine the next set of runs. Ongoing developments include the introduction of intelligent 
parameter space exploration, where the explored sample of parameter space is irregular and is 
changing dynamically and adaptively. 

The intellisweep capability is based on the meta-language we are currently working on, 
that describes what parameter combinations to explore next. The key to the workings of the 
intelligent parameter space exploration is the evaluation of results. Since this is always 
application dependent, general solutions are very limited. Therefore the advanced user is going 
to be provided with an integrated editor for developing call-back functions performing such 
evaluations in MEME.  

Also general exploration routines are planned to be developed. The idea here is that the 
user defines a ‘statement’ about her results (i.e. the measured value converges/is always close to 
X, or depends linearly on Y, etc.). This is then converted into an evaluator that scores the 
measured value according its correspondence to the statement. The general exploration routines 
of MEME will then minimize this correspondence (maximize the error in the statement) using 
various and an extendable list of techniques (i.e. genetic algorithms, artificial neural networks, 
ant colony optimization, etc.)  . 

                                                 

3 List of currently available visualizations: Various 2D grids, bar charts, histograms, network and sub-graph 
visualizations, area-based chards, scatter plots, sequence visualizations and time series. 
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The Model Exploration Module is a modular system; all major components are 
decomposable and interchangeable. Hence in the future we would first like to extend MEME’s 
import capabilities to reading result files from the MASON and JAS systems, then should 
demand arise we will also introduce parameter sweeps for the above mentioned, or any other 
Java-based modeling systems. 
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ABSTRACT 
 

When the same set of people interact frequently with one another, they tend to think more 
and more along the same lines, a phenomenon we call “collective cognitive convergence” 
(C3). In this paper, we discuss instances of this phenomenon and why it is advantageous 
or disadvantageous; review previous work in computational social science and 
evolutionary biology that sheds light on C3; define a computational model for the 
convergence process and a quantitative metric that can be used to study it; report on 
experiments with this model and metric; and suggest how the insights from this model 
can inspire techniques for managing C3.  

 
 Keywords: Groupthink, cognitive convergence, social simulation 
 
 

INTRODUCTION 
 

When the same set of people interact frequently with one another, they tend to think more 
and more along the same lines. We call this phenomenon “collective cognitive convergence” 
(C3), since the dynamics of the collective lead to a convergence in cognitive orientation.  

 
C3 is seen in many different contexts, including research subdisciplines, political and 

religious associations, and even persistent adversarial configurations such as the cold war. Tools 
that support collaboration, such as blogging, wikis, and communal tagging, make it easier for 
people to find and interact with others who share their views, and thus may accelerate C3. This 
efficiency is sometimes desirable, since it enables a group to reach consensus more quickly. For 
instance, in the academy, it enables coordinated research efforts that accelerate the growth of 
knowledge.  

 
But convergence can go too far, and lead to collapse. It reduces the diversity of concepts 

to which the group is exposed and thus leaves the group vulnerable to unexpected changes in the 
environment. Here are two examples. 

 
In academia, specialized tracks at conferences sometimes become unintelligible to those 

who are not specialists in the subject of a particular track, and papers that do not fit neatly into 
one or another subdiscipline face difficulty being accepted. The subdiscipline is increasingly 
sustained more by its own interests than by the contributions it can make to the broader 
community or to society at large.  

 

                                                 
* Corresponding author address: H. Van Dyke Parunak, NewVectors, 3520 Green Court, Suite 250, Ann Arbor, MI 

48105; e-mail: van.parunak@newvectors.net. 
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In military operations, the force-on-force orientation developed during the Cold War left 
both the former Soviet Union and the United States ill-prepared to deal with insurgencies and 
asymmetric warfare.  

 
Groups that have undergone cognitive collapse will only produce output conforming to 

their converged set of ideas, and will be unable to conceive or explore new ideas. In the worst 
case, collapse may lead a group to focus its attention on a cognitive construct with little or no 
relation to the real world. For example, highly specialized academic disciplines become 
increasingly irrelevant to people outside of their own circle. 
 

We became interested in this phenomenon by observing the increasing balkanization of 
the research field of multi-agent systems.1 Since we work in the area of multi-agent simulation, it 
occurred to us that some light might be shed on the phenomenon, and on how it can be managed, 
with a multi-agent model. This paper presents some preliminary results. 
 

Section 2 discusses previous work related to our effort. Section 3 describes our model, 
and a metric that we use to quantify C3. Section 4 outlines a series of experiments that exhibit the 
phenomenon and explore possible techniques for managing it. Section 5 suggests directions for 
further research, and Section 6 concludes. 
 
 

PREVIOUS WORK 
 

Our research on C3 builds on and extends two previous bodies of work, in computational 
social science and evolutionary biology. 
 

In computational social science, our work merits comparison with Axelrod’s adaptive 
culture model (Axelrod 1997) and its antecedents. What he calls “culture” corresponds to our 
notion of an agent’s cognitive interests. Axelrod studied the transmission of cultural traits, 
represented as the elements of a numerical vector, between neighboring agents distributed on a 
2-D lattice. Agents had a chance, proportional to their cultural similarity, of copying a trait from 
a neighbor. He found that a small number of large and stable homogeneous regions, or 
“cultures”, would form. His work exhibits the emergence of disjoint regions of cultural 
(cognitive) homogeneity as agents interact with those who are adjacent to them spatially. Our 
model differs from his in several ways. 
 

• His agents always interact with the same neighbors. Our agents can change their 
interaction partners as a result of the system’s dynamics. 

• His agents interact on the basis of spatial contiguity. Our model offers a much wider 
range of drivers for interaction. 

• The nature of the interaction in his model is the same at every round. Our model 
modulates the strength of the interaction by the size and convergence of the emerging 
group. 

                                                 
1 We are grateful to Simon Thompson for initial discussions that led to this project. 

222



C3 can be considered a cultural analog of biological speciation, and so we look for 
insight to research in this field as well (see (Futuyma 1998) for a review). The most commonly 
proposed speciation mechanisms are allopatric speciation, sympatric speciation, and parapatric 
speciation. In allopatric speciation, genetic barriers gradually evolve between two or more 
geographically isolated species. This might happen for instance between organisms living on 
separate islands. These barriers could evolve either through natural selection or through other 
means such as the founder effect (i.e., differences in genes between populations due to the small 
sample sizes of the founding populations). This is analogous to different specialized 
communities developing in isolation from each other in C3. One specific type of natural 
selection that can cause speciation is sexual selection (Fisher 1930; Andersson 1994), a social 
process by which female mate choice influences the evolution of male traits. In extreme cases, 
this can become a runaway process that leads to extravagant features that are detrimental to 
survival (thus leading to a shorter lifetime and fewer opportunities to mate). Similarly, in C3 a 
social process can lead to the development of academic specializations with little practical 
relevance.  

In parapatric speciation, there is no discrete barrier between populations; individuals are 
distributed along a geographic continuum and are separated by distance. Finally, sympatric 
speciation refers to instances where a single population with no gene flow barriers divides into 
separate species. While the relative importance and frequency of these speciation mechanisms in 
nature are still heavily debated, the mathematical prerequisites for each mechanism have been 
extensively studied; this work could be adapted to predict when and how C3 will develop, and 
how it can be prevented. 

There has also been much theoretical work done to study the amount of gene flow or 
migration that is necessary to prevent isolated populations of organisms from diverging or losing 
diversity due to genetic drift, or sampling error (Hartl and Clark 1989). Sewall Wright argued in 
his Shifting Balance Theory that a subdivided population with intermittent migration could 
exhibit more rapid evolutionary change than a single cohesive breeding population (Provine 
1986). The mathematical frameworks for studying migration could be applied to modeling the 
exchange of ideas or individuals between groups in C3, and the amount of exchange that is 
necessary to prevent intellectual isolation.   
 
 

A MODEL AND METRIC 
 

We have constructed a simple multi-agent model of C3 to study this phenomenon. Our 
model represents each participant’s interests as a binary vector. Each position in the vector 
corresponds to an atomic interest. A ‘1’ at a position means that the participant is interested in 
that topic, while a ‘0’ indicates a lack of interest. At each step, each participant 
 

• identifies a neighborhood of other participants based on some criteria (which may include 
proximity between their interest vectors, geographical proximity, or proximity in a social 
network), 

• learns from this neighborhood (by changing an interest j currently at 0 to 1 with 
probability pinterest = proportion of neighbors having interest j set to 1), and  

• forgets (by turning off an interest j currently at 1 to 0 with probability 1 – pinterest). 
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One boundary condition 
requires attention. If an agent has 
no neighbors, what should pinterest 
be? We take the view that interests 
are fundamentally social constructs, 
persisting only when maintained. 
Thus an isolated agent will 
eventually lose interest in 
everything, and in our model, a null 
community leads to pinterest = 0 for 
all interests. Alternative 
assumptions are certainly possible, 
and would lead to a different model. 

 
We need a quantitative 

measure of agent convergence to 
study C3 systematically. To derive 
our measure, we cluster the 
population hierarchically based on 
cognitive distance between agents 
(in our case, the Jaccard distance 
between their interest vectors). 
Each node of the resulting 
cladogram forms at a specific 
distance (the “diameter” of the 
cluster represented by that node). 
The root has the highest diameter. 
In a random population of agents, 
the distances at which lower-level 
nodes join the tree is not much less 
than the diameter of the root 
(Figure 1), while in highly 
converged populations, the 
diameters of lower-level nodes are 
much less than the diameter at the 
root (Figure 2, where agents 
grouped at diameter 0 have 
identical interest vectors). Thus we 
compute the ratio of node diameter 
to root diameter (the “min-max 
ratio”) for each node, and use the 
median of this ratio as a measure of 
overall system convergence. A 
ratio of 0 (as in Figure 1) means 
that more than half of the agents 
belong to groups within which all 
interest vectors are identical. 
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Figure 1 Cladogram of random interest vectors. The 
median ratio of the dissimilarity at which a node joins the 
tree to the dissimilarity of the root is 0.583.  
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Figure 2 A highly converged population, whose median 
min-max ratio is 0 
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Figure 3 Evolution of 20 agents with length-10 interest 
vectors, neighborhoods defined by similarity > 0.5 
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Figure 3 shows the behavior of this measure over a sample run of the system with 20 
agents and interest vectors of length 10, where the probability of learning and forgetting is equal, 
and where agents are considered to be in the same group if the similarity between their interest 
vectors (the similarity threshold) is greater than 0.5. It takes only about 80 generations for the 
median min-max ratio to reach 0. (A generation consists of selecting one agent, choosing its 
neighbors, choosing with equal probability whether it shall attempt to learn or forget, selecting a 
bit in its interest string at random, then if it is learning and the bit is 0, flipping the bit with 
probability plearn * pinterest, or if it is forgetting and the bit is on, flipping the bit with probability 
pforget * (1 pinterest.)) Figure 2 shows the state of this system at generation 300. By generation 370 
it has collapsed into two groups of completely homogeneous agents of sizes 3 and 17 
respectively. 
 
 

SOME EXPERIMENTS 
 

Armed with this model 
and metric, we can explore the 
dynamics of C3 under a variety 
of circumstances. As we might 
expect, forming neighborhoods 
based on similarity of interest 
leads to rapid cognitive 
convergence. But surprisingly, 
other sorts of neighborhoods also 
lead to convergence. 
 
 
Things that Don’t Work 

 
We might think that 

highly tolerant agents, those that 
consider all agents their 
neighbors, might be more robust 
to convergence. Figure 4 shows 
the evolution of the same 
population of agents when two 
agents consider one another 
neighbors if their similarity is 
greater than 0 (that is, they have at 
least one bit position in common). 
This configuration might be a 
model for a conference that has 
only plenary sessions. The 
population still collapses. 

 
Perhaps the problem is that 

as agents converge, their 
neighborhoods increase in size. 
Figure 5 shows the effect of 
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Figure 4 Evolution with similarity threshold = 0 
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Figure 5 Fixed-size agent neighborhoods (four closest 
agents) 
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defining an agent’s neighborhood 
at each turn as the group of four 
other agents that are closest to it. 
This configuration models a 
conference with separate tracks. 
Though agents base their 
adaptation at each turn on only 
20% of the other agents, the 
population still collapses. 

 
Figure 6 shows an even 

more radical approach. Here an 
agent’s neighbors at each step are 
four randomly chosen agents. 
Imagine a conference at which 
papers are assigned to tracks, not 
by topic, but randomly. In spite of 
the mixing that this random selection provides, the population again collapses. 

 
These figures differ in how long it takes the system to converge to a min-max ratio of 0. 

The time to convergence is highly variable, even within a single configuration. Repeated runs 
show that we should not assume that because (say) Figure 5 converges faster than Figure 4, small 
groups will always lead to faster convergence than highly tolerant agents. The one constant 
across all runs is that the system does converge, in fewer than 500 generations (often far fewer).  
 
 
Introducing Variation 
 

The collapse of agent interests is due to the lack of any mechanism for introducing 
variation. Once the population loses the variation among agents, it cannot regain it. We have 
explored three mechanisms for adding variation to the population: random mutation, 
curmudgeons, and interacting subpopulations. 

 
The simplest approach is 

mutation. At each generation, with 
some small probability pmutate, 
after learning or forgetting, the 
active agent selects a bit at 
random and flips it. This 
mechanism models spontaneous 
curiosity on the part of agents. 
Figure 7 shows an extended run 
with parameters the same as in 
Figure 3 (neighborhoods defined 
by a similarity threshold of 0.5), 
but with pmutate = 0.03. Mutation is 
certainly able to reintroduce 
variation, but the level is critical. 
If mutation is too low (say, 1%), it 
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Figure 6 Neighborhoods of four randomly-chosen agents 
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Figure 7 Adding 3% mutation 
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is unable to keep up with the 
pressure to convergence, while if 
it is too high (10%), the 
community does not exhibit any 
convergence at all (and in effect 
ceases to be a community). The 
nature of its contribution follows a 
clear pattern. When it is in the 
critical range, the system 
occasionally collapses to a min-
max ratio of 0, but then discovers 
new ideas that reinvigorate it. 

 
A curmudgeon is a non-

conformist, someone who 
regularly questions the group’s 
norms and assumptions. Recall 
that ordinarily agents learn by flipping a 0 bit to 1 with probability pinterest, the proportion of 
neighbors that have the bit on, and forget by flipping a 1 bit with probability equal to 1 – pinterest. 
To model curmudgeons, when an agent decides to learn or forget, with probability pcur,, it 
reverses these probabilities. That is, its probability of forgetting when it is curmudgeonsly is 
pinterest (instead of 1 - pinterest in the non-curmudgeonly state), and its probability of learning is 1 – 
pinterest.  
 

Figure 8 shows the effect of 10% curmudgeons, again with the baseline configuration of 
Figure 3. The system clearly converges, but seldom reaches a min-max ratio of 0. Furthermore, 
pcur can achieve this balancing effect over a much wider range than pmutate. As much as 
researchers may resent reviewers and discussants who “just don’t get it,” curmudgeons are an 
effective and robust way of keeping a community from collapsing. 

 
The third source of 

variation is even more robust. So 
far, our agents have chosen a new 
set of neighbors at every step, 
based on their current set of 
interests. What would happen if 
we assign each agent to a fixed 
group at the outset, using a fixed 
similarity threshold that allows 
groups of various sizes to form?  

 
If the threshold is very 

high, each agent will initially be a 
group unto itself. With no 
neighbors to reinforce its interests, 
it will begin to forget them, and 
the agents will independently 
approach the fixed point of an all-
zero interest string. 
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Figure 8 10% curmudgeons 
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Figure 9 Neighborhood relations for threshold of 0.5 
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If the threshold is very 

low, all agents will form one large 
group, and converge as in Figure 
4.  
 

For intermediate 
thresholds, the agents form a 
number of neighborhoods. 
Importantly, some agents 
(“bridging agents”) belong to 
more than one neighborhood. 
Figure 9 is a graph of the agents, 
with an edge between two agents 
if those agents are neighbors of 
one another. Because 
neighborhoods are fixed over the 
run, each neighborhood can converge relatively independently of the others, but the bridging 
agents (in this case, notably agent 20) repeatedly displace each neighborhood’s equilibrium with 
the emerging equilibrium of another group, a phenomenon noted by Page (Page 2007). As a 
result, the system shows convergence without collapse (Figure 10). This mechanism, like 
curmudgeons and unlike mutation, provides robustness against intermittent collapse. This system 
reflects a community with subdisciplines, but subdisciplines that recognize the value of members 
who bridge with other subdisciplines and exchange ideas between them. Such members are 
likely to be tolerated better by subgroups than would curmudgeons, because the source of the 
variation introduced by the bridging individuals is perceived as resulting from their 
multidisciplinary orientation rather than their orneriness 
 
 

NEXT STEPS 
 

Our simple model has shown a surprisingly rich space of behaviors. A number of 
directions for further work suggest themselves. For example: 
 

• How can convergence be monitored in practice? Our metric, while effective for 
simulation, is impractical for monitoring actual groups of people. One might monitor the 
amount of jargon that a group uses, or lack of innovation, as indicators of convergence. 

• We have suggested that convergence is a two-edged sword. What is the ideal degree of 
convergence, to allow the production of specialist knowledge without compromising the 
ability to escape collapse? 

• How does convergence vary with group size? Recent work (Palla, Barabási et al. 2006) 
suggests that convergence in small groups requires specialized knowledge, while 
convergence in large groups requires a general knowledge base. 

• We have assumed homogeneous tendencies to learn, forget, mutate, or behave 
curmudgeonly over all agents. How does the system respond if agents vary on these 
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Figure 10 Fixed neighborhoods induced by threshold 0.5 
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parameters? In particular, what is the impact of these parameters for bridging individuals 
in comparison with non-bridging individuals? 

 
 

CONCLUSION 
 

It is natural for groups of people to converge cognitively. This convergence facilitates 
mutual understanding and coordination, but if left unchecked can lead the group to collapse 
cognitively, becoming blind to viewpoints other than their own. Experiments with a simple 
agent-based model of this phenomenon show that seemingly obvious mechanisms do not check 
this tendency. In the domain of academic conferences, these well-intended mechanisms include 
plenary sessions, special tracks, or even random mixing. A source of variation must be 
introduced to counteract the natural tendency to converge. Mutation is effective if just the right 
amount is applied, but tends to let the system intermittently collapse. Curmudgeons are more 
robust, but socially distasteful. Perhaps the most desirable mechanism consists of bridge 
individuals who provide interaction between individually converging subpopulations. 
 

Further understanding of C3 could give important guidance in monitoring and managing 
collaboration. For example, consider a team of analysts searching for information. 

 
• If a group’s searches are sparsely distributed in search space, guide more analysts to join 

this group to cover more areas in this search space. 

• If a group’s searches are not specific enough, artificially promote the splitting of groups 
to create smaller, specialist groups (for example, by introducing specialists). 

• If a certain convergence threshold is reached (perhaps because the search space has been 
exhausted), artificially introduce a curmudgeon to guide the group into a new area of the 
search space. 

• If in a group only a few individuals drive convergence, artificially encourage less active 
individuals to participate more. 

• If in a group the majority of people prevent the exploration of novel areas in search 
space, artificially encourage these people to be more adventurous. 
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ABSTRACT 
 

Situated social agents weigh dozens of priorities, each with its own complexities. 
Domains of interest are intertwined, and progress in one area either complements 
or conflicts with other priorities. Interpretive agents address these complexities 
through: (1) integrating cognitive complexities through the use of radial concepts, 
(2) recognizing the role of emotion in prioritizing alternatives and urgencies, 
(3) using Miller-range constraints to avoid oversimplified notions omniscience, 
and (4) constraining actions to ‘moves’ in multiple prototype games.   
 
Situated agent orientations are dynamically grounded in pragmatic considerations 
as well as intertwined with internal and external priorities. HokiPoki is a situated 
abstraction designed to shape and focus strategic agent orientations. The design 
integrates four pragmatic pairs:  (1) problem and solution, (2) dependence and 
power, (3) constraint and affordance, and (4) (agent) intent and effect. In this way, 
agents are empowered to address multiple facets of a situation in an exploratory, 
or even arbitrary, order. HokiPoki is open to the internal orientation of the agent 
as it evolves, but also to the communications and actions of other agents.   

 
Keywords: Situated agents, pragmatic hermeneutics, ontology 

 
 

INTRODUCTION 
 

When domains lend themselves to formal representation, the clarity and 
inferential power that becomes available is rewarding, even seductive. Unfortunately, the 
social domain manifests complexities that conventional formalism has been unable to 
capture successfully. Both natural language and situated action are heavily dependent 
upon context and based upon interactive interpretation by multiple participants. This may 
pose the greatest challenge confronting the development of effective (as opposed to 
suggestive or reconstructive) social models. 
 
 In part, the problem could be viewed as an issue of semantics, except that it 
concerns not only communication but action as well. Thus, the domain is one of semiosis 
(Hoffmeyer 1993), broadly conceived. That said, the issues that confront social action are 
very similar to those recognized as semantic. Some of the key issues are summarized in 
Table 1. 
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TABLE 1  Semiotic complexities 
 

Issue Description 
Ambiguity 
(Empson 1966 
[1930]) 

Words and actions have a range of meanings and implications, and their sense 
may differ from person to person, setting to setting, and time to time. 

Vocality Multiple actors bring multiple interpretations, intentions, and actions to a 
setting.   

Fluidity Comprehending and responding coherently to a multivocal state means that both 
situation and actor orientation are in dynamic flux. 

Emergence In discourse, whether interpersonal or collective, meanings and purposes evolve 
over time. Terms of the discourse are not fixed and, therefore, not definitive. 

Thin 
coherence 
(Sewell 2005) 

Complex and dynamic processes require that, while coherence is necessary for 
effective communication and action, it is a situated, provisional achievement 
that must be maintained. 

 
                                                                                           

 The major premise of the present paper is that, in interpretive settings, 
formalization and abstraction may not succeed if they are overly general. On the contrary, 
in order for them to play the same clarifying roles that they do in natural domains, it may 
be necessary to identify abstractions that are strongly and inherently situated; their 
application may vary from case to case. They need to take forms that can be applied 
‘from the inside out.’ That is, the situatedness of such abstractions can be utilized to 
refine and apply the insights that they carry. The paper discusses situated abstractions and 
then introduces a new structure that may be useful in social modeling. 
 
 

ABSTRACTION 
 
 The efficacy of abstractions depends on their ability to be mapped to domains of 
interest in a regular way.1 However, if a social domain is erratically dynamic, volatile, 
and/or self-organizing, it is difficult to identify a formalism that can exogenously 
represent its emergent patterns. Indeed, such a domain may require the use of endogenous 
abstractions, abstractions that evolve via the interaction of multiple self-organizing 
processes. 
 
 This insight is not new in sociology. Weber (1978) articulated formal organization 
(bureaucracy) as an ideal type that can be conceptualized but does not exist empirically. 
Subsequent generations of researchers found that the formalities of organization are 
immersed in a milieu of informal interactions that shape the results of organizational 
processes. Stinchcombe (2001) documents the role of interleaved informality in a wide 
range of domains, including: (1) construction blueprints, (2) civil law and procedures, 
(3) the commodification and liquidification of residential mortgage pools, (4) the 

                                                 
1 This is not, of course, to deny that abstractions hold inherent interest, or that domains that are steeped in 
abstraction, such as mathematics, do not discover abstractions, the utility of which are not obvious and may 
not be known for some time. 
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classification of aliens at border crossings, and (5) the stratification of scientific 
knowledge.   
 

In each domain, the informal and unscripted interaction determines how and in 
what ways the relevant formalism is to be applied. Rules can be defined formally, but 
decisions must still be made about when and under what circumstances it is appropriate 
to apply them. 
 
 

FRAMING INDEXICALITY 
 
 The Interpretive Agent initiative addresses such complexities in multiple ways 
(Sallach 2003), including through:  (1) integrating cognitive complexities through the use 
of radial concepts, (2) recognizing the role of emotion in prioritizing alternatives and 
registering urgencies, (3) incorporating Miller-range constraints in order to avoid 
oversimplified notions of agent omniscience, and (4) constraining actions to ‘moves’ in 
one of several prototype games.   
 

Each of these mechanisms can be regarded as a facet of bounded rationality. 
However, it is also necessary to define how situated agent orientations are framed and 
refined such that they are dynamically grounded in pragmatic considerations and, at the 
same time, linked to internal and external priorities.   
 
 

PRAGMATIC DECISIONS 
 
Humans can be conceived of as boundedly rational agents acting within a 

complex world. While many models of cognition, intelligence, and/or action selection 
focus on a single task, situated social agents weigh dozens of priorities, each of which has 
its own complexities, urgencies, and timetable, with the latter sometimes being recurrent 
or recursive. Further, actors frequently find that the domains of interest are (or can be) 
intertwined, and that progress in one area either complements objectives from another 
area or, alternatively, conflicts with other priorities. 

 
 From within the web of complexities, decisions must necessarily be made on a 
pragmatic basis. This insight is not a new one. Graham (1989; see also Sallach 2007) 
indicates that ancient Chinese ethical thought follows an ethical form that approximates 
to [a] syllogism, applicable directly to concrete situations.  
 
In awareness from all viewpoints, spatial, temporal, [social], and personal, of everything 
relevant to the issue, I find myself moved toward X; overlooking something relevant, I 
find myself moved toward Y. 

 
In which direction shall I let myself be moved? 
Be aware of everything relevant to the issue. 
Therefore, let yourself be moved toward X.  
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The quasi-syllogism is suggestive, but how might the web of complexities be 
modeled? Historically, pragmatist philosophy has derived its orientation amidst situated 
complexities (Joas 1993; Mead 1934; Peirce 1992 [1898]). One of major considerations 
is the context that frames the relevant communication and/or action. In his overview of 
semiotic relations, Peirce (1955 [1897]) describes context as follows: 
 

A sign, or representamen, is something which stands to somebody for something 
in some respect or capacity. It addresses somebody, that is, creates in the mind of 
that person an equivalent sign, or perhaps a more developed sign. That sign 
which it creates I call the interpretant of the first sign. The sign stands for 
something, its object. It stands for that object, not in all respects, but in reference 
to a sort of idea, which I have sometimes called the ground of the 
representamen, …  
 
In this formulation, the ground defines the context of a semiotic process. Peirce 

continues (1955), stating that the task of the ground is “to ascertain what must be true of 
representamen… in order that they may embody any meaning.” Drawing upon 
Wittgenstein (1958), Sheriff (1989) describes the ground as the ‘language game’ that the 
actor is playing.   

 
Peirce and Wittgenstein have each made important contributions to the ‘linguistic 

turn’ of the twentieth century, and these have been brought into sharper focus by lines of 
research they have inspired. In a formulation that draws upon both of their contributions, 
and also follows the lead of Silverstein (2003), Blommaert (2005) introduces the concept 
of “orders of indexicality.” This concept combines the idea that linguistic concepts and 
signs are ordered and that they occur in stratified complexes. The model construction of 
situated abstractions assumes a context defined by orders of indexicality. 

 
Peirce’s other semiotic elements (representamen, object, and interpretant) have 

also been deepened by subsequent work. In particular, the hermeneutic tradition 
(Gadamer 1989; Palmer 1969), which emphasizes the reciprocal dependency between the 
whole and the part has provided a new approach to the interpretive process. Shalin (2007) 
has developed an embodied semiotics that incorporates symbolic discursive, somatic-
affective, and behavioral-component components, each with a particular relationship 
between signs and their objects. The resulting rich hermeneutic process has the potential 
to provide an effective focus for computational models of interpretation. 

 
Now consider a social actor immersed in a wide range of relationships, 

opportunities, persistent and situated purposes, etc. Suppose that these salient social 
objects are represented using a Miller range of situated games (Sallach 2006b). Each 
game provides a means of expressing problems and possible solutions, sources of power 
and dependence, constraints and affordances, and possible actions and likely 
consequences. Since these pairs (which may not be exhaustive) (1) are intrinsically 
complex, (2) must be mapped by the actor to the relevant domain and the situated 
particulars of that domain, and (3) have the potential to dynamically change each other’s 
state, there is clearly a need for an endogenous coherence-seeking process so that such 
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games can be played with greater or lesser effectiveness. Designing a formalism to 
support such dynamics is a challenge, and it is to this task that we now turn. 
 
 

HOKIPOKI 
 
HokiPoki is a self-organizing model of situated abstraction designed to shape and 

focus agent orientations. The design integrates four pragmatic pairs: (1) problem and 
solution, (2) dependence and power, (3) constraint and affordance, and (4) intent and 
effect (agent action, as coalesced, lies between intent and effect) (see Figure 1). For each 
couplet, the first pair member tends to indicate current effect, while the second can often 
be seen in terms of prospective effects. As in the homophonous children’s song, each of 
the four pairs can independently flip in and out of agent focus. In this way, the agent is 
empowered to address multiple facets of a situation in an exploratory, or even arbitrary, 
order.   

 
 

 
 

FIGURE 1  HokiPoki as a model of situated abstraction 
 

Parenthetically, the designated pairs should not be viewed as definitive or 
exhaustive. On the contrary, the basic HokiPoki mechanism is designed to support 
exploration of diverse situated constructs, components that may be substituted 
exogenously by the designer or endogenously by agents within the model. 

 
 Notwithstanding the flexibility and expressiveness of the HokiPoki mechanism, a 
question remains as to how the multiple foci and priorities are to be integrated. The 
HokiPoki framework is guided by a dual internal/external coherence-calculation service 
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that operates on lower-level ‘parts’ (cf., Sallach 2002; 2006a). The accomplishment of 
both internal and external coherence allows a Miller range of priorities to be addressed by 
toggling multiple current/prospective pragmatic pairs. 
 
 In application, each pragmatic pair will be defined relative to a particular problem 
domain. Each paired term is treated as a prototype concept (Sallach 2003) and grounded 
in a particular pragmatic domain. In interaction, agents are able to suggest (propose, etc.) 
alternate priorities, emotional valences, and/or conceptual structuring. The implication is 
that HokiPoki is open to the internal orientation of the agent as it evolves but also to the 
communications and actions of other agents. The agents engaged in such interaction are 
themselves represented within the orientation of each focal agent and, thus, their inputs 
will be integrated accordingly. 
 

Implementations of the HokiPoki mechanism seem likely to benefit from the 
emergence of dynamic object-oriented programming languages such as Ruby and/or 
Groovy. Implementation considerations will be considered in greater depth during the 
presentation of this paper.   

 
 

ARCHITECTURE AND MODELING ASSUMPTIONS 
 

The HokiPoki architecture has two defining principles: (1) heterarchical, 
pragmatically focused self-organization and (2) openness to both internal and external 
interactions. The purpose of its framework is to allow these principles to be implemented 
in a flexible, responsive, and dynamic way.   

 
The application of the HokiPoki model to a particular domain requires the 

structured coupling of components. Each of the pairs in the HokiPoki model is integral, 
where each component (problem and solution, power and dependencies, constraint and 
affordance, and intent/action and effect, respectively) is defined relative to its reciprocal. 
For most domains, pairs are likely to require stochastic components.   

 
In addition, there are domain-specific relations between pairs. An affordance, if 

and when it appears, for example, may be part of a problem or a solution and will be 
situated and need to be specified. Depending on the domain, more detailed structural 
and/or data characterization may be necessary as well. 

 
 The integration of variegated dimensionality within a model has been described 
previously (Sallach 2007) and so will not be described here. Pair-wise operations and 
sequencing, however, will be described. On each turn, a pair examines both modes and 
determines which of the two will contribute to the greatest increase of coherence, a step 
which is then executed. Coherence-calculation is a service invoked by the activated pair. 
Exogenous changes may have modified overall coherence since the previous pair focus. 
 

The progression from one pair to another may employ different rules, ranging 
from sequential to random order, to make-it/take-it, depending on the domain. Since 
HokiPoki has a problem-driven architecture, when the necessary solution(s) have been 
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achieved (or the specified number of iterations have been completed), the process 
terminates. 
 
 

DISCUSSION 
 
 The development of the HokiPoki model is an attempt to align social and 
computational realities in a different way. Social actors are immersed in complexities that 
bear directly or indirectly upon our condition. We must coherently organize 
communications and actions that improve, maintain, or (if nothing else) manage the 
deterioration of our circumstances. Our vantage point is from the midst of this field of 
propensities, and this field is flux. As a result, our orientation field must be immersed in 
complexity, and in flux, as well. 
 
 All of this is quite unwieldy from the perspective of most formal models. 
HokiPoki is an embryonic mechanism that supports the dynamic self-organization of 
agent orientation within complex and continually changing environments. It can be 
applied to many domains, which points to the work that lies ahead. The experience 
derived therefrom will provide the basis for further evolution of the mechanism.  
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ABSTRACT  
 

Nexus is an intelligent agent model focused on the support of social groups and 
organizations for each other and blame for departure from a social contract as 
evidenced by actions.  It is a model of the attribution of blame for events based on 
trustworthiness.  Agents representing leaders of groups look for breech of contract 
and keep track of a network of supporters.  They choose whom to support 
depending on interpretations of past events. They perceive events depending on 
trust, reinterpreting past events in light of the present and visa versa.  Nexus uses 
a model of the Boltzmann machine neural network, for the mind of each agent.  It 
is based on interpretive social science, and the narrative paradigm in particular.   
Results are presented on a study of an insurgency using data collected from 
subject matter experts.  This data includes support levels of ten relevant segments 
of population for each other, ideological similarity between groups, relevant  
historical events, and how groups might react towards the government if the US 
comes in to help during a natural disaster.  The point of the simulation is to 
predict how disruptive the US aid would be if military personnel took an active 
role.  The output data is the level of support for every group for every other group.  
It was found that, given historical events, a direct action by the US government 
only cause one group to like the insurgency a little more than they would have 
had the US government chosen an indirect approach to disaster relief.. 
  

 
 Keywords: Interpretive Social Science, Narrative Paradigm, Boltzmann Machine, 

Constraint Satisfaction, Social Simulation, Neural Network, Irregular Warfare, 
Insurgency  
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INTRODUCTION  
 
Nexus is an agent based model designed to simulate scenarios of irregular warfare.  It is based on 
the narrative paradigm (Fisher), as agents look to relevant historical actions, current support 
networks, and ideological closeness to create a coherent view which calculates support levels for 
other agents.  Agents try to make a story that is coherent with their historical context, and in 
doing so, may minimize apparent facts that don’t make sense with the rest of the story, in 
accordance with cognitive dissonance theory (Festinger).  Nexus is used for irregular warfare 
because the emphasis on contract keeping can be used for divisive strategies of nonviolent 
conflict.   It takes into account higher orders of support, so that present enemies that are potential 
supporters, or present supporters that are potential enemies, may be identified.   
 
 

THE MIND OF AGENTS 
 
The Boltzmann Machine 
 
The Boltzmann machine, a variety of the Constraint Satisfaction genre of neural networks, is 
used to represent the agent’s minds, one for each agent.  The Boltzmann machine is good at 
representing interpretations and reinterpretations of evidence. For example, the Boltzmann 
machine can model the interpretation of a Necker cube with a face as either in the front of the 
cube, or in the back of the cube, but as not both at the same time. It does this by making the 
belief that one vertice is in front evidence for believing or disbelieving that another vertice is in 
front (Simon).   In Nexus, the Boltzmann machine is used to represent an evolving interpretation 
of evidence and blame, and its effect on levels of support.  The paradigm shift, whether it be the 
shift that occurs when seeing a Necker cube in a different way, or the shift that occurs when facts 
are reinterpreted so that different parties are seen as responsible, is the same consonance seeking 
process.  Constraint satisfaction networks have been used successfully to model how people see 
social situations (Duong and Reilly; Sallach; Thagard).  
 
The basic agent of the Nexus model is the social group, which is a group of persons (whether 
they are organizations or not).  Each social group has one Boltzmann machine that it uses to take 
all factors into account in its decision of whether it supports another social group. 
 
The neurons in the minds of agents are of three types, as illustrated in  figure 1.   
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FIGURE 1  The Nexus GUI, of the neural mind of a single agent. 
The nodes along the top layer have been put into an arch so that 
their connections maybe seen.  Connections are red for inhibitory, 
and blue for excitatory.  The columns represent the social groups.  
The top layer contains the support nodes.  The second layer 
(which does not have connections between nodes) contains the 
trust worthiness nodes. Each layer below that is for a single 
historical event, and contains blame nodes corresponding to the 
amount of blame a group is given for an event. To the left is an 
input node, that holds objective evidence for the blame of each 
group for events before the “spin” the mind will place on it.  

 
The Nodes of the Network  
 
1.  Support : An node for the level of support for each other social group.  
2.  Trustworthiness:  A node for how much each social group is perceived as a keeper of social 
contracts. 
3.  Blame:  A node for the belief that this social group performed a particular event, for every 
(social group X event).  
 
The Architecture of the Network  
 
1.  Support nodes.  These nodes output whether the social group owning the net supports another 
social group or not.  These nodes have mutual excitation with the nodes of groups that publicly 
support each other and mutual inhibition with the nodes of groups that publicly lack support for 
each other.    The weights change in the network depending on changing public declarations of 
level of support between groups.  The support nodes ensure that the groups that a group is 
supporting are taken into account in its decision of who to support (for example, the friend of my 
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friend is my friend, the enemy of my enemy is my friend), and enables agents to perceive 
accountability as something that is shared with their network of support. 
 
2.  Trustworthiness nodes.  The trustworthiness node for a social group has a mutual inhibition 
with all of the blame nodes for that particular social group.  That means, if a group performs an 
adverse action, it is not generally perceived as trustworthy, and if it is trustworthy, it does not 
tend to be perceived as performing adverse actions.  Trustworthiness nodes have a mutual 
excitation with support node of the social group, meaning that if a social group is trusted it tends 
to be supported, and if it is supported it tends to be trusted.  There is also an input node to the 
trustworthiness nodes that corresponds to ideological similarity, so that having a set of beliefs 
and agreed upon practices is taken into account into the estimation of whether a group is a 
contract keeper.   
 
3.  Blame nodes.  There are (social group X event) blame nodes, with sets of blame nodes for 
individual events appearing in rows and for individual social groups appearing in columns.  
There is a constant excitation applied to each of the blame nodes through an input node.  The 
blame nodes are lit in proportion to the degree of hard evidence for the fault of each social group, 
before the spin that the mind puts on it.  The total energy the blame nodes for an event are lit is 
in proportion to the severity of the event.  The constraint that an action tends to be performed 
primarily by one entity is expressed by negative inhibition between the blame nodes within a row 
that represents a single event.  Because of this constraint, if an event is blamed on one party, it 
tends to let another party off the hook.  The Boltzmann machine can measure cognitive 
dissonance, or the spin that the mind places on an event, pulling it away from where contrary 
evidence, through the calculation of “goodness” or consonance of the net.  That is, even though 
hard evidence supports blaming one group for an event, relations of support and trust may cause 
another group to be blamed. 
 
Blame for one event is connected to blame for another event only indirectly, through the 
trustworthiness node.  If a new event is determined to be a group’s fault, and the group’s 
trustworthiness falls, then evidence in the past for events can be reinterpreted and blamed on that 
group even if they were blamed on another group before.   
 
Running the Simulation 
 
When an action happens, it has some blame attached to it that represents objective evidence that 
an event was caused by a group, in a magnitude that reflects how much the event hurt or helped 
the group doing the thinking.  The leader thinks, taking into account the whole picture of all the 
groups behaviors, their affinities towards other groups, and then makes a new public declaration 
of support.  This declaration increments the support level mappings in each leader’s mind, 
preparing the leader for the next action when it will think and declare new support levels. 
 

EMERGENT SOCIAL PHENOMENA 
 
Nexus is a simulation based on first principles, and from which many types of tactics of irregular 
warfare may be modeled, including those discussed in Ackerman and Duvall’s book, A Force 
More Powerful.  For example, Nexus can model the fact that a group has to worry about the 
upholding of an ideology with its peers.  Gandhi’s revolution from India worked because Britain 
had to pay attention to its trustworthiness in keeping its ideology with international players.  
They had to worry about appearing hypocritical. Countries with ideologies that rationalize 
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violence, whose allies support the same ideas, such as Nazi Germany, may not be so afraid of 
their reputation, and crackdown on a protest.   A group could think that its peers would not 
support it if it did not uphold the binding ideology as a social contract between itself and other 
players.  In the case of India, knowledge of the ideological break with an innocent, non enemy 
power, would affect the reputation of the British in the model, forcing it to keep an ideologically 
correct social contract with India as well.  In Nexus, every agent has a model of its perceptions of 
the support networks of other agents, and making knowledge of ideological breaks public 
through a non violent warfare campaign, affects support levels as agents worry about the keeping 
the trust of their allies. 
 
As in irregular warfare tactics, the network may be manipulated to separate a regime from its 
supporters.  For example, if the analyst inputs into Nexus an IO campaign of adverse events to be 
blamed on the police (such as “Rodney King” style videos) , then the regime may break their 
support of the police, to keep the support of the citizens, but at the same time causing services to 
not be delivered.  To input this into the model, the blame nodes would be lit against a police 
group for the event.  This may cause the regime to cut ties with the police, creating another 
adverse event that the police would blame the government for.   
 
The support for groups of similar ideology and ethnicity would tend to affect trustworthiness of a 
group when they break contract with particular groups and ethnicities.  It may affect those with 
similar ideology more than those less similar, as in social theories which stress the importance of 
empathy in the success of irregular warfare.  If groups tend to judge other groups by the same 
standards, and have the same opinions, it causes them to have similar friends and enemies and 
tend towards mutual support.  “Cognitive Liberation” may be simulated by a change in the 
ideology by which one judges how adverse an event is.  For example, to simulate nationalism in 
a majority ethnic group for securities sake in the face of a possible civil war with a minority 
ethnic group,   the collateral damage caused by a violent insurrection would be seen as an 
adverse event, but the minority ethnic groups might not blame the insurgent group that caused 
the action directly, as much as the government, on the basis of similar support networks as well 
as an accumulation of blame for the government on adverse events in the past.  However, if the 
government was kinder to the majority ethnic group in the past, they may put a spin on the 
interpretation of events against the insurgents.   
 
 

EXAMPLE RUN 
 
Nexus has been run on classified scenarios to study questions of irregular warfare at the Office of 
the Secretary of Defense.  It has also been run on unclassified but sensitive scenarios at the 
Marine Corps Combat Development Command.  The object of the Marine Corps scenario is to 
predict the effect that the greater presence of the United States would have on the support for the 
government and the insurgents in a country, in case it had to help that country during a natural 
disaster.  The US could take a direct approach to assistance, or an indirect approach.  The groups 
include displaced persons, the urban poor, the urban middle class, old money, illicit 
organizations, the police, the army, the church, the government, and the insurgency.  Data was 
obtained through two subject matter experts (SMEs) that knew the details of the culture and the 
particular group’s history in a single province.  SMEs estimated support levels, what those levels 
might be in both direct and indirect cases, and ideological similarities of the groups.  The SMEs 
also described 22 historical events that were important to the groups in determining their present 
feelings for each other.  These historical events are from different time periods, as cultures can 
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consider something that happened thousands of years ago important. Historical events made up 
the cultural narrative and identity of the social groups.  When Nexus was run, it was found that 
even though all groups except displaced persons were for the government and against the 
insurgents, the structure of their support for each other combined with historical events made the 
government somewhat vulnerable.  All groups except the old money and the displaced persons 
changed their attitudes slightly more towards the insurgency when the US helped.  It did not 
matter very much which kind of help.  None of the groups, except for the urban middle class, had 
any different support levels for the government or the insurgents when direct and indirect action 
was compared.  Only the urban middle class liked the insurgents a little bit more when the US 
action was direct than when it was indirect.    
 

CONCLUSION 
 
Nexus has been applied to real world scenarios of information operations and irregular warfare.  
It is one of the only tools that takes into account the historical consciousness of a people when 
explaining their actions.  It is also unique in that it shows how new actions can influence a group 
to change their interpretations of the causes of their fortunes and misfortunes, and how these 
interpretations affect their alliances.  Furthermore, it can reveal hidden vulnerabilities to changes 
in alliances due to higher orders of support levels and the entire historical picture of all parties.  
It has been suggested that Nexus will, in the future, be combined with Pythagoras for studies in 
stability operations. 
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HIGH-FIDELITY MATHEMATICAL MODELS OF SOCIAL SYSTEMS 
 

Joe Jeffrey1, Northern Illinois University, DeKalb, IL 
 

ABSTRACT 
 

We present a mathematical formalism, Entity Specifications, with sufficient rigor and 
expressive power to formalize a wide range of models of social systems. Entity 
Specifications are a combination of a rigorous formulation of the intuition of a frame and 
formal representation of relationships among constituents, as in mathematical logic.  
Entity Specifications are then used to formalize a particular conceptual framework that 
has been used as the basis for a number of computer systems, Communities and 
Intentional Action. This model articulates a broad range of social system phenomena, 
from individual actions to actions of groups at all levels, encompassing all types of 
phenomena actually encountered in human systems: biological, psychological, economic, 
sociological, political, and cultural. The formalism is then used to develop new 
mathematical formulations of concepts with broad applicability in the social sciences: 
complexity, similarity, and rate of change and rate of complexity change in social 
systems.  The similarity measure is illustrated with an example in which the similarity 
between two pairs of intuitively similar families is calculated. 

 
This paper presents a mathematical formalism for building high-fidelity models of the 

structure and dynamics of social systems.  By “high-fidelity” we mean accurate representation of 
the entire range of the situations, processes, and events in the system, at every level of detail. The 
central intuition of the formalism is that a “thing” – an object, process, or state of affairs – is 
specified by giving a formal name, the logically necessary immediate constituents, and the 
relations between the constituents, all constituents and relationships also specified by formal 
name, as in mathematical logic.  Constituents themselves may be further elaborated in the same 
way.  The formalism is designed to handle incomplete knowledge and does not require reduction 
to atomic elements. 
 

ENTITY SPECIFICATIONS 
 

We need to be able to formally describe three kinds of “thing”: objects (structures), 
processes (mechanisms), and states of affairs.  Entities have parts – immediate constituents – that 
may be objects, processes, or states of affairs.  An entity is described by giving its name and a 
description; the description consists of the names of the constituents and their type (object, 
process, or state of affairs), and their relationships. 
 
Definition An entity specification (ES) consists of an ordered pair (N, D), where:  

• N is the (formal) name of the entity including, optionally, a list of alternate names and/or a 
numerical ID. 

• D is the set of paradigms, the major varieties or descriptions of the entity.  In social 
systems, these are often structures or processes with little in common other than being 

                                                
1 H. Joel Jeffrey, Dept. of Computer Science, Northern Illinois University, DeKalb, IL 60115.  Email: 
jeffrey@cs.niu.edu. 
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recognizable as varieties of the same thing.  For example, in Western society celebrating a 
wedding anniversary has several paradigms: dining out, taking a cruise, buying a gift, etc. 

 
Each paradigm of D is an ordered triple (C, R, E), where: 

• C = {(Ci, Ti)}, in which Ci is the constituent and Ti is the constituent’s classification, an 
element of the set {P, O, S}, representing “process,”“object,” or “state of affairs.” 

• R is the set of n-ary relationships that must hold between the named constituents.  Any 
relationship may be named, not only those definable in terms of physical, mathematical, or 
computable quantities. (Equations are formal names.) 

• The constituents and their relationships specify the structure of the entity. Additional 
information specifies particular instances of the entity. Identifying an actual instance 
requires the specification of which actual “things” (processes, objects, and states of affairs) 
that fill the roles named by the constituents. This information we term the eligibilities E for 
the entity:  a set of ordered triples (c, i, r), in which 

• c is the name of the constituent; 
• i is the  name of the individual; 
• r is the rule, or condition, under which i takes the role of c in this object. 

 
ESs are a formalization and unification of the representation formats developed by P. G Ossorio2, 
as a means of specifying objects, states of affairs, and processes at any level of detail. 
 
A state of affairs’ constituents may be any set of objects, processes, and other, smaller, states of 
affairs, in various relationships, i.e., any set C = {(Ci, Ti)} and any set R, as defined above. 
 

Processes 
 

Processes are multi-step changes in objects and their relationships. Processes may occur 
in many ways, i.e., combinations of the steps.  Therefore the {(Ci, Ti)} for a process include: 

1. Two constituents, the before-state and after-state. 
2. A subset identifying stages, i.e., in which Ti = P. Some stages may be accomplished via 

two or more alternatives; these alternatives are included in this subset. 
3. A subset identifying the objects, i.e., Tj = O. 
4. A subset identifying the versions of the process. Each of these constituents Ck is a state of 

affairs, i.e., Tk = S, and the constituents of Ck are stages. 
 
Relationships between stages specify the time relationships between them: sequential, parallel, 
overlapping, interspersed, etc. 
 

Objects  
 

Objects have only object constituents, and in that sense are simpler than entities in 
general or processes; each constituent of an object of Type O. 

                                                
2 P. G. Ossorio, “What ActuallyHappens”, University of South Carolina Press, Columbia, SC, 1978.  Republished 
by Descriptive Psychology Press (www.descriptivepsychologypress.com), Ann Arbor, MI, 48104, in 2005. 
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Relationship to Frames 

 
ESs are similar to frames, but differ in two important ways.  First, ESs are considerably 

more rigorously defined.  The constituents of an ES must be logically necessary for the thing 
being described to be what it is. By contrast, a frame simply represents “things commonly found 
together3.”  No distinction is made between things that are necessary to the definition of thing 
and those that are merely commonly present. 

 
Second, frames do not include specification of the R1...Rm between constituents, although 

some frame-based systems allow specification of relationships.  (Interestingly, while clearly a 
refinement of frames, Ossorio’s work predates the introduction of frames by several years4.) 

 
“Incomplete” Descriptions 

 
Most real social systems are too complex to be specified completely, i.e., at the level of 

actions by individual persons. ESs are designed for handling incomplete specifications: a 
description and its elaborations are used in analysis or simulation by modeling the named entities 
and their interactions at that level.  An ES set is not like a computer program, which is 
incomplete and not executable until all functions have been written in executable primitive 
statements. 

 
For example, the state of affairs identified by the English sentence, “The rise of inflation 

in 1920’s Germany led to the rise of National Socialism,” identifies an entity (a state of affairs) 
with two constituents: “the rise of inflation in 1920’s Germany,” “National Socialism,” and the 
relationship “led to the rise of.” Each of these constituents has further Descriptions in terms of 
constituents and relationships, and a set of descriptions down to the level of the famous image of 
a woman with a wheelbarrow of Deutsche marks to buy a loaf of bread would be enormous. It is 
not, however, necessary for simulation or analytical treatment.   

  
 

DESCRIBING SOCIAL SYSTEMS 
 
Social systems, distinguished by having human “components,” require a 

conceptualization encompassing the specifically human aspects of action in a social context.  The 
most comprehensive and systematic conceptualizations of this subject matter of which we are 
aware are the Community formulation, due to Putman5 and Intentional Action, due to Ossorio6. 
They have been successfully used to build formal models of a number of social systems, and 

                                                
3 Minsky M (1975), “A Framework for Representing Knowledge”,  in Winston P, ed., The Psychology of Computer 
Vision. New York: McGraw-Hill, NY. 
4 P. G. Ossorio, State of Affairs Systems: Theory and Technique for Automatic Fact Analysis, RADC-TR-71-102, 
Rome Air Development Center, 1971. 
5 A. O. Putman, “Communities,” in Advances in Descriptive Psychology, V. I, K. E. Davis ed., JAI Press, 
Greenwich, CT, 1981. 
6 P. G. Ossorio, The Behavior of Persons, Descriptive Psychology Press, Ann Arbor, MI, 48104, 2006. 
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software based on the models7,8. We illustrate using ESs to formalize social systems by 
formalizing Communities and Intentional Action. However, entity specifications are not 
particular to this conceptualization; formalizations of any model, no matter how abstract, 
physicalistic, or even fanciful, may be given. 
 
A Community description is a 4-tuple <M, P, Cp, S>, where 

• M (members) denotes all actual individuals in the community. 
• P (Practices) denotes the set of social practices of the community.  Practices encompass 

everything that a member of that community can do, as a member of that community. 
• Cp (Choice principles) denotes the set of values or priorities specific to the community.  

The principles govern which practice is carried out and how, playing a large role in 
determining what actually occurs and how it occurs in the social system.  

• S (Statuses) denotes the recognizable positions in the Community, whether formal and 
explicit or informal and implicit.  “President,” “Senator,” “husband,” “child,” suicide 
bomber,” “respected leader,” “doctor,” “farmer,” etc., are examples.  Each position has 
associated with it one or more intrinsic practices, practices a member engages in simply 
because they are in that position. 

 
A practice is specified by giving a social practice description, a quintuple <W, K, Kh, P, PC>, 
where 

• W (want) denotes the goal. 
• K (know) denotes the facts and concepts necessary for this action. 
• Kh (know-how) denotes the skills needed to carry out the practice effectively. 
• P (process) denotes the procedural aspect of the practice. 
• PC (personal characteristics) denotes any relevant attitudes, traits, or abilities. 

 
Finally, to specify the details of what happens in the system, the process parameter itself must be 
expanded with process entity description: the stages, constraints, eligibilities, and versions of the 
process. 
 

What actually occurs is an instantiated version of the practice: a particular set of stages, 
with specific individuals filling the logical roles E, much as an actual production of Hamlet 
consists of the sequence of Act of the play, with actual persons and objects filling the roles of the 
characters and props. 

 
To engage in an action is to engage in the practice of a community. The operation of the 

social system consists of members engaging in practices, in accordance with the choice 
principles of the community. 

 

                                                
7 “MENTOR: Replicating the Functioning of an Organization", in Advances in Descriptive Psychology, Vol. III, pp. 
243-270, K. E. Davis, ed., JAI Press, Greenwich, Connecticut, 1983.   
8 Jeffrey, H. J., Schmid, T, Zeiger, H.P, and Putman, A. O., 1989, "LDS/UCC: Intelligent Control of the Loan 
Documentation Process"  Proceedings of the Second International Conference on Industrial & Engineering 
Applications of Artificial Intelligence and Expert Systems, University of Tennessee Space Institute, Tullahoma, 
Tennessee, June, 1989, ACM Press, pp. 573-591.   
 

250



 

ENTITY  DESCRIPTIONS OF COMMUNITIES AND PRACTICES 
 
Combining entity specifications with community descriptions gives a formal model of a 

social system.  A community is an entity, with object, process, or event constituents:  Members, 
a set of object names; Practices, a set of entity specications; Choice principles, a set of state of 
affairs entities; Statuses, a set of states of affairs entities. 

 
Communities and intentional action, stated in Entity Specification form, provide a 

mathematical representation of human behavior in the human context, at any level of detail. A 
social system is a formal entity consisting of (formal) immediate constituents, with n-ary 
relationships between them, and elaboration of constituent entities, at any level, via entity 
specifications. 

 
As noted above, the ES formalism may be used to formalize any model of human 

behavior; the community and practice model formulations are but one, albeit the most 
comprehensive and systematic we know of. 

 
 

MEASURING SIMILARITY AND COMPLEXITY 
 
Having a formalization of social systems allows us to give new mathematical 

formulations of the concepts of complexity of a social system and similarity of two social 
systems. 

 
We first define the structural complexity of a social system A, with with N constituents 

A1, ..., AN and K relationships, as: 
 
                                                            NA 
  SC(A) =         N2 +   K 2     +  ε ●    ∑   SC(Ai)

2  
                                     i=1     

          
ε is an experimentally-determined multiplier modulating the impact of complexity of 
constituents, sub-constituents, etc. (Preliminary work indicates a value of approximately 
0.7 for ε.) 

                         
We can now mathematically define the degree of similarity between any two entities 

based on their constituents and relationships.  The definition is designed to correspond to the 
following intuitions: 

1. The measure should take into account differences in attributes of the entities 
themselves. 

2. The measure should take into account similarity of structure.  Structure is formalized 
by relationships among constituents, in two ways: a) differences in the attributes of 
the constituents of A and B; b) if A and B have the same relationships among their 
respective constituents, but to different degrees, similarity should reflect the 
difference in degree; c) if A and B have different relationships, they should be less 
similar. 
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3. When the constituents of A and B themselves have ESs, the measure should 
recursively include the structural similarity of the constituents. 

 
Accordingly, the distance between two entities is defined as follows: 
 

1. Let A and B be any two entities, the properties of A and B be p1, ..., pM, and entity 
specifications comprised of constituents A1, ..., ANA and relationships r1, ..., rK, and B1, ..., 
BNB with the L relationships rK+1, ..., rK+L.  
 
The constituents A1, ..., Am with relationship rj are ordered m-tuples. Denote the number 
of A-tuples by NAT, and the number of B-tuples by NBT. 
 

2. Let the value of property i of a constituent be represented by pi(), and ri(t) denote the 
value of the ordered tuple t of A- or B-constituents satisfying relationship rk. For 
example, a strong love relationship between family members A1 and A2 is represented by 
loves(A1, A2) = 0.9 (on a 0 to 1 scale).  
 
Let P denote the matrix with M columns and NA+NB rows, whose values are the values 
of each property pi.   

 
 p1 ... pM 
A1    
...    
ANA    
B1    
...    
BNB    

 
The property distance between Ai and Bj is given by 
 

  M 

  PD(A, B) =       ∑  (pk(Ai) – pk(Bj))
2   

      i=1   
 

Let R be the matrix with K+L columns and NAT+NBT rows whose entries are the values 
rk(t). If a constituent does not have property pi, or a tuple does not have relationship rk, 
leave the corresponding entry of the matrix blank.  
 

P: 
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 r1 ... rK rK+1 ... rK+L 
A-tuple1       
...       
A-tupleNAT       

B-tuple1       
...       
B-tupleNBT       

 
3. If any column of P or R contains a value < 0, re-scale the values of the column by adding 

the absolute value of the minimum value of the column to each value in it. 
 

4. Normalize the values of P to the range 1 to 10, by setting 
 
pi(Aj) = 10 * (pi(Aj) + 1) / pmaxi ), where pmaxi is the maximum value of column i. 
 

5. Set each empty entry of P to 0. 
 
The values of the property matrix P are now between 0 and 10, 0 indicating the 
component does not have the property of that column. 
 

6. Similarly, normalize the values of R, the matrix with K+L columns representing 
relationship values for constituents of A and B, to the range 0 to 10. 
 

7. When A and B have constituents, the similarity between A and B must include similarity 
of their constituents.  That calculation is affected by the order of the constituents. For 
example, suppose A and B are organizations, and A has a large and complex marketing 
department and a small, simple shipping department, while B has a large and complex 
shipping department and small, simple marketing department.  The calculated similarity 
between A and B will be quite different, depending on whether the two marketing 
departments and two shipping departments are compared, or whether A’s marketing 
department is compared to B’s shipping department. The constituents of each must be re-
ordered so that the distance comparison has a consistent basis. 

 
Therefore, re-order the constituents of A and of B, from maximum SC (as defined above) 
to minimum. 

 
8. The distance between two entities A and B is comprised of two components, the 

property distance and the structural distance: 
  

      d(A, B) =  √ PD(A, B)2 + SD(A, B)2    
           
The structural distance SD(A, B) is defined recursively as follows: 
 
Let MC = max(NA, NB) and MT = max(NAT, NBT). 

R: 
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Then if both A and B have Descriptions, i.e., specified constituents and relationships, we 
define the structural distance SD as            

                                                                                       
                                     MC                          MT   L                  MC 

SD(A, B) =     (NA–NB)2 + ∑  PD(Ai, Bκ(i))
2  +  ∑    ∑ ( ri(taj) – ri(tbκ(j)))

 2   + δ ● ∑  SD(Ai, Bi)
2  

                               i=1               j=1   i=1                                i=1 

   
where Bκ(i) denotes the B-constituent closest to Ai, using Euclidean distance, and 
        
tbκ(j) denotes the B-tuple closest to taj, using Euclidean distance between tuples. 
 
If A NAT > NBT, ri(tbj) = 0 for NBT < j <= NAT, and similarly if NBT > NAT. 
 
If NA > NB, then d(Ai, Bi) = SC(Ai,), for NB < i <= NA, and similarly if NB > NA. 
 
If either A or B have no Description, SD(A, B) = 0. 
 
δ is an experimentally-determined discount factor reflecting the relative importance of the 
distance between constituents of A and B. (As with ε, preliminary work indicates a value 
of approximately 0.7 for δ.) 
 
PD(Ai, Bi) measures similarity of properties of each pair of constituents;   
 
∑ ( ri(taj) – ri(tbj))

 2  measures how much the constituents of A and B differ on relationship 
    MT   L 
ri; and the sum ∑   ∑ ( ri(taj) – ri(tbκ(j)))

 2 measures the total difference in structure between 
                      j=1  i=1 

A and B, as articulated  by the relationships ri, 1 ≤ i ≤ L. 
 

The distance measure d(A, B) has the following properties: 
• d(A, B) = 0 if A and B are the same except for differing only in names of 

constituents and relationships (mathematically, are isomorphic). 
• The distance increases as the properties of A and B, the number of their 

constituents, the properties of the constituents, the structure of A and B, and the 
substructures of A and B diverge.  

 
As with any mathematical definition intended to capture an intuition, this formulation 

must validated experimentally.  This work is in progress. 
 

Example: Structural Similarity of Two Families 
 

Family A consists of a mother, father, and two children.  The mother and father are 
married, and love each other.  Both parents love both children; the children love each other.  
However, the children also compete with each other for success in school. 

 
Family B consists of a mother, father, and three children. The mother and father are 

married. Both parents love all the children.  The two younger children love each other, but both 
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resent the eldest and compete with her for each parent’s affection.  The eldest child also has a 
significant responsibility in caring for the younger children 

 
We suppose that the member attributes of interest in this case are age and health of the 

family members. 
 

 
 Age Health 

MA 40 0.8 
FA 42 0.7 

AC1 12 1.0 
AC2 10 1.0 
MB 35 0.9 
FB 36 0.8 

BC1 8 1.0 
BC2 6 1.0 
BC3 14 1.0 

 
   Table 1: P matrix for Families A and B 

 
 

 
 

Rom..   
Love 

Par. 
love 

Sib. 
love 

Aca. 
comp. 

Resent Affec. 
comp. 

Care- 
taker 

(MA, FA) 1.0       
(FA, MA) 1.0       
(MA, AC1)  1.0      
(MA, AC2)  1.0      
(FA, AC1)  1.0      
(FA, AC2)  1.0      
(AC1 AC2)   1.0 1.0    
(AC2, AC1)   1.0 1.0    
(MB, FB) 1.0       
(FB, MB) 1.0       
(MB, BC1)  1.0      
(MB, BC2)  1.0      
(MB, BC3)  1.0      
(FB, BC1)  1.0      
(FB, BC2)  1.0      
(FB, BC3)  1.0      
(BC1, BC2)   1.0     
(BC2, BC1)   1.0     
(BC1, BC3)     1.0   
(BC2, BC3)     1.0   
(BC1, BC3)      1.0  
(BC2, BC3)      1.0  
(BC3, BC1)       1.0 
(BC3, BC2)       1.0 

 
Table 2: R matrix for Families A and B 
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The normalized values of the properties of the families A and B are (8.2, 10, 10) and 

(10, 10, 10), so PD(A, B) = √1.82 + (10-10)2 + (10-10)2  = 1.8. 
 

(NA–NB)2 = (5-3)2 = 4. 
 

The normalized property matrix P, with rows re-ordered so that the pairs Ai, Bκ(i) are 
adjacent, is 
 

  Age Health 
MA 9.5 8 
FB 8.6 8 
FA 10.0 7 
MB 8.3 9 
AC1 2.9 10 
BC3 3.3 10 
AC2 2.4 10 
BC1 1.9 10 
BC2 1.4 10 

 
Table 3: Normalized P for Families A and B 

 
 

         5               

and the constituent property distance ∑  PD(Ai, Bκ(i))
2   = 0.81+2.89+0.16+0.25+1.96 

         i=1 

                  = 6.07  
 

The normalized relationship matrix R, with rows re-ordered so that the pairs taj and 
the nearest tuple tbκ(j) are adjacent, is 
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 Rom..  

Love 
Par. 
love 

Sib. 
love 

Aca. 
comp. 

Resent 
Affec. 
comp. 

Care- 
taker 

(MA, FA) 10 0 0 0 0 0 0 
(MB, FB) 10 0 0 0 0 0 0 
(FA, MA) 10 0 0 0 0 0 0 
(FB, MB) 10 0 0 0 0 0 0 

(MA, AC1) 0 10 0 0 0 0 0 
(MB, BC1) 0 10 0 0 0 0 0 
(MA, AC2) 0 10 0 0 0 0 0 
(MB, BC2) 0 10 0 0 0 0 0 
(FA, AC1) 0 10 0 0 0 0 0 
(MB, BC3) 0 10 0 0 0 0 0 
(FA, AC2) 0 10 0 0 0 0 0 
(FB, BC1) 0 10 0 0 0 0 0 
(AC1 AC2) 0 0 10 10 0 0 0 
(BC1, BC2) 0 0 10 0 0 0 0 
(AC2, AC1) 0 0 10 10 0 0 0 
(BC2, BC1) 0 0 10 0 0 0 0 
(FB, BC2) 0 10 0 0 0 0 0 

(BC1, BC3) 0 0 0 0 10 0 0 
(FB, BC3) 0 10 0 0 0 0 0 

(BC2, BC3) 0 0 0 0 10 0 0 
(BC1, BC3) 0 0 0 0 0 10 0 
(BC2, BC3) 0 0 0 0 0 10 0 
(BC3, BC1) 0 0 0 0 0 0 10 
(BC3, BC2) 0 0 0 0 0 0 10 

 
Table 4: Normalized R for Families A and B 

 
        MT  L 

The structural-difference sum ∑   ∑ ( ri(taj) – ri(tbκ(j)))
 2   =  √6●02 + 2●102+8●102  = 31.6 

       j=1  i=1 
 

In this example, the immediate constituents are individual persons. Customarily one 
considers persons to be indivisible, so in this case SD(Ai, Bi) = 0.  (In a case in which it is 
considered appropriate to model parts of a person, such as aspects of personality, SD(Ai, Bi) may 
be non-zero.) 
 

Thus SD(A, B) = √ 4 + 6.07 + 31.6  and d(A, B) = √ 1.82 + 4 + 6.07 + 31.6 
  = 6.7 

 
Consider now the distance between A and B', a family identical to B except that B'C1 and 

B'C2 did not resent and compete for affection with B'C3.  The rows of R representing those 
relationships are now missing, so the structural-difference sum is 24.5, and d(A, B') = 6.1. 
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Rate of Social Change 
 

Thus, we can now define rates of change in a social system: 
 

The rate of social change, as a system goes from S1 to S2, in time ∆t, is   
 
and the rate of social complexity change of S is . 
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ABSTRACT 
 

Two-sided and multi-sided markets and the dynamics of their network-effects have 

become an active research area in recent years. In this paper a general formulation of an 
agent-based duopoly-model of a two-sided market is presented that seems very promising 

to study and to analyze under which starting conditions two-sided markets tend (just 
because of the dynamics of the involved network-effects) to a winner-takes-all-situation 
and under which starting conditions both platforms can survive within the market. The 

results of the simulations of this model can be used for analysing real existing two-sided 
(and multi-sided) markets. 
 

Keywords: Two-sided markets, multi-sided markets, network-effects, agent-based model 
 
 

 INTRODUCTION 
 

Many modern markets try to tie together two or more distinct groups of individuals 
(users) in a network whereas the individuals of each group are interested in interacting with the 
individuals of the other group. These markets are called ‘two-sided’ or ‘multi-sided markets’ 
(depending on the number of different groups) and can roughly be defined as “markets in which 
one or several platforms enable interaction between end-users, and try to get the two (or 
multiple) sides ‘on board’ by appropriately charging each side” (Rochet/Tirole 2005). 
 

If someone thinks about that definition, a lot of markets rapidly come into one’s mind: 
Newspapers for example have to attract readers and advertisers, videogame platforms have to 
attract consumers and software developers, TV networks have to attract viewers and advertisers, 
credit cards have to attract cardholders and merchants and so on (Rochet/Tirole 2005; Evans 
2003). The actual importance of markets like these is quite enormous, since these markets have 
redefined and changed the global business landscape rapidly and fundamentally in the last few 
decades (Eisenmann/Parker/Van Alstyne 2006).  

 
One interesting thing of two-sided and multi-sided markets is that frequently they cannot 

be analyzed by means of the traditional and well-known economic rules. Many of them are not 
working correctly in these markets any more and so the use of these traditional rules can 
sometimes lead to severe mistakes (and losses) (Wright 2004).  
 

The key issues to understand the way how two-sided and multi-sided markets work seem 
to be the so-called ‘same-side’ and ‘cross-side’ network effects. Simply spoken, network effects 
                                                 
∗ Corresponding author address: Wolfgang Granigg, Institute of Economics, Department for Microeconomics and 

Public Economics, Martin-Luther-University Halle-Wittenberg, Universitätsring 3, 06108 Halle an der Saale, 
Germany; e-mail: wolfgang.granigg@wiwi.uni-halle.de. 
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in general describe the possibility that the derived utility for a user by the consumption of a 
certain good increases with the number of other users consuming the good as well (Katz/Shapiro 
1985; Katz/Shapiro 1986; Tirole 2002). Since in two-sided and multi-sided markets (where in a 
simple model the ‘good’ is just to join or stay at a platform) two or more distinct groups of users 
are involved, two kinds of network effects can be distinguished: While same-side network-
effects describe the network effects within each group of users, cross-side network effects 
describe the network effects between the two or more groups of users (respectively between the 
individuals of the two or more market sides).  
 
 

RELATED WORK 
 

Since two-sided and multi-sided markets frequently cannot be analyzed by means of the 
well-known economic rules, the implication for academic research seems to be quite clear: It is 
necessary to find adapted models to understand the nature of two-sided and multi-sided markets 
and to understand how the mechanisms of these markets work. In order to do so, especially in the 
last few years a lot of research has been done in this field in various directions. In the next 
paragraphs two major research directions are briefly introduced. 
 

In a first important research field the new mechanisms of adding value are explored: 
While in traditional markets value moves from the left to the right side (where to the left side is 
cost and to the right side is revenue), in two-sided and multi-sided markets, cost and revenue are 
both to the left and the right, because the platform has to incur costs while serving both groups, 
but can also collect revenue from each side (Eisenmann/Parker/Van Alstyne 2006). As a result, 
the traditional model of the linear value-added chain is not very suitable for two-sided and multi-
sided markets and has to give way for models with value-added helices, which are more qualified 
for describing the feedback effects and dependencies between the market sides 
(Dietl/Frank/Royer 2006). 
 

A second research direction deals with the analysis of the optimal price setting in two-
sided and multi-sided markets: In traditional (one-sided) markets firms have to choose the price 
level by which the sold quantity normally can be influenced (assuming a typically sloped 
demand function). Opposed to that, in two-sided or multi-sided markets firms (respectively 
platforms) must choose a price structure, which means that they have to find a price level for 
each market side and not just a general price level (Rochet/Tirole 2003). That fact and the mutual 
dependence of the different prices on each market side yield to the problem that setting prices in 
two-sided and multi-sided markets is a highly complex issue. The same holds for the analysis of 
the (dynamic) price competition between platforms and their pricing behaviour in different 
model environments (e.g. in models with product differentiation). General models of two-sided 
and multi-sided markets dealing with price competition and pricing behaviour can be found in 
Armstrong (2005) and in Rochet/Tirole (2005). Further (and sometimes more specific) models 
can be found (for example) in Armstrong/Wright (2007), Caillaud/Jullien (2001), 
Caillaud/Jullien (2003), Parker/Van Alstyne (2005), Rochet/Tirole (2002), Rochet/Tirole (2003) 
and Yoo/Choudhary/Mukhopadhyay (2002). Some empirical results concerning pricing 
behaviour (among other areas) in two-sided and multi-sided markets can be seen in Evans 
(2003). 
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RESEARCH QUESTION 
 

Although a lot of efforts have been made to understand the way how two-sided and 
multi-sided markets work and although this research topic is being processed intensively at the 
moment, there is still a lot to do in order to understand the dynamics of the involved network 
effects. While analytical approaches in the field of two-sided and multi-sided markets very often 
have to face the general problem of an exploding complexity of the models, an agent-based 
approach seems to be an ideal method in this research area. It has to be mentioned that some 
authors have already used the agent-based approach in the field of two-sided and multi-sided 
markets, but with a different focus (e.g. Chen/Mäikö 2006 and Kabadjova/Tsang/Krause 2006). 
However, it seems that the use of the agent-based method can make it especially possible to 
understand this described key issue, namely the dynamics of the network effects, more 
accurately and more generally.  
 

To be more precise, the agent-based approach allows to answer the research question, 
under which starting conditions (for example the number of individuals/agents at each platform 
on each side, the size of the weighting-factors for the size of the same-side and cross-side-
effects, the dullness of the decisions etc.) two-sided and multi-sided markets tend (just because 
of the dynamics of the network-effects) to a winner-takes-all-situation (where just one platform 
survives) and under which starting conditions two or more platforms can survive within the 
market. After simulating this model the results can probably be used to analyse real existing two-
sided (and multi-sided) markets.  
 

To simplify things, only two-sided markets are considered in the model that is introduced 
in this progress report. The more complex multi-sided markets are likely to be considered in 
future research projects. However, the presented model can easily be expanded to incorporate 
more than two market-sides and therefore to consider these multi-sided markets as well. 
 
 

AGENT-BASED MODEL 
 

In the following subsections a simple but general agent-based model of a two-sided 
market is introduced, where all agents (respectively individuals) on each market side are 
confronted with a duopoly (meaning two platforms). Though these agents cannot change their 
market side (respectively their group), these agents have to decide in each period, which of the 
two platforms they should choose on their market side (whereas just one platform can be chosen 
at any time). In this model, the mentioned agents’ decisions are made according to the agents’ 
derived net-utility of each platform (a concept which is for example also used by Rochet/Tirole 
(2005)) which depends on the demanded prices set by the platforms, on the path-depending size 
of the number of other agents at the same market side (at a specific platform) and the number of 
other agents at the other market side (also at that specific platform), each weighted with factors 
that determine the size of the same-side and cross-side network effects. 
 
 
Individuals, Groups and Platforms 
 

Let’s assume there exists a two-sided market with two groups of individuals (two market 
sides) denoted by Γ∈ML,  (whereas ML ≠ ). The individuals Ll ∈  of any of these two groups 

Γ∈L  are interested in interacting with the individuals Mm∈  of the other group Γ∈M , ML ≠ . 
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Let’s assume further on that there exist two platforms Pji ∈, . Each platform can help to bring 
together individuals of the two groups at certain points of time if individuals of both groups 
decide to join this platform or remain at this platform at exactly those points of time.  
 

It is assumed that an individual stays exactly at one of the two platforms at a certain point 
of time, but that he or she is in general able to change the chosen platform at any of those points 
of time without switching costs (Varian 2003). Therefore let i

t

i

t Ll ∈  denote an individual Ll ∈ , 
Γ∈L  that stays at platform Pi ∈  at time Tt ∈ . Because each individual stays exactly at one of the 

two platforms at any point of time Tt ∈ , because no individual is able to change his or her group 
and because neither existing individuals can disappear nor new individuals can appear in the 
model, it follows that (whereas Pji ∈, , ji ≠ , Γ∈L  and Tt ∈ ):1 
 

(1) LLLLL t

j

t

i

t ===+ 0 .  

 
Let further denote )( i

tLN  as the number of individuals of a group Γ∈L  that stay at 
platform i  at time t , which means that )( i

tLN  is defined as (whereas Pi ∈ , Γ∈L , Tt ∈ ): 
 

 (2) i

t

i

t LLN =)( . 

 
 
Net-utility functions 
 

First of all it is necessary to mention that all individuals in the model have static 
expectations, which means that they expect all observable variables at Tt ∈  to stay the same in 
the next period Tt ∈+1 . 
 

Let Ml ,
α  denote a utility-weighting-factor for a certain individual Ll ∈ , Γ∈L  that 

determines how much utility a certain group of individuals Γ∈M  creates for this individual l . 
Let further Li

tp
,  denote the price (set by platform Pi ∈ ) that individuals of the group Γ∈L  have 

to pay at time Tt ∈  if they want to join the platform Pi ∈  or remain at this platform at time Tt ∈ .  
 

The net-utility of platform Pj ∈  for an individual Ll ∈ , Γ∈L  that stays at platform Pi ∈  
at time Tt ∈  is denoted by )( ju

i
tl  and depends on the price set by the platform Pj ∈  that 

individuals of the group Γ∈L  have to pay at Tt ∈ . Further on, this net-utility depends on the 
gross-utility that individuals of group Γ∈M  (whereas ML ≠ ) generate for this individual at time 

Tt ∈  (‘cross-side effect’) and the gross-utility that individuals of group Γ∈L  generate for this 
individual at time Tt ∈  (‘same-side effect’).  

 
More specifically spoken, each individual Ll ∈ , Γ∈L  that stays at platform Pi ∈  at time 

Tt ∈  calculates two net-utilities: one for platform Pi ∈  (where the individual stays at time Tt ∈ ) 
and one for the other platform Pj ∈  (whereas ji ≠ ). Concretely that means that for individual 

Ll ∈ , Γ∈L  that stays at platform Pi ∈  at time Tt ∈  the net-utility of this platform Pi ∈  is then 
given by (whereas Γ∈ML,  and ML ≠ ): 
 

                                                 
1  Mathematical remark: If A  is a set, A  denotes the number of elements that are contained in A . 
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In a similar way for the same individual at time Tt ∈  the net-utility of the other platform 

Pj ∈  is then given by (whereas ji ≠ , Γ∈ML,  and ML ≠ ): 
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According to the static expectations of all individuals these two derived utilities are used 

to determine the behaviour of the individuals at the beginning of the next period Tt ∈+1 . The 
concrete behaviour of the individuals is explained in a later subsection. 
 
 
Behaviour of the platforms 
 

To simplify the model, it is assumed that both platforms Pji ∈,  (whereas ji ≠ ) set 
identical price structures over time. That means that at all periods of time Tt ∈  both platforms 
charge the same price p  on the same market side Γ∈L . Mathematically this means that 
 

(5) Lj

t

Li

t ppTt
,,: ≡∈∀  

 
or equivalently 

 

(5a) 0: ,,
=−∈∀

Lj

t

Li

t ppTt . 

 
Although this assumption can be identified as being drastic in some respects, there are at 

least two reasons why this assumption makes sense in that model: Firstly, this assumption allows 
to concentrate on the pure dynamic effects that are caused by the same-side and cross-side 
effects (see next subsection) and secondly, in many two-sided markets price competition and 
elastic prices don’t allow platforms to charge any price from the individuals – which means that 
they have to finance their business by means of different ways (e.g. by advertising for other 
companies).2 Mathematically this means that 
 

(5b) 0: ,,
==∈∀

Lj

t

Li

t ppTt . 

 
This is completely compatible to the assumption made in equation (5). Nevertheless it has 

to be mentioned that this assumption is very radical, since there is no possibility for platforms to 
act and react in the model. They are in some sense completely passive, which can be criticised as 
being unrealistic. However in later research projects it is planned to weaken this assumption to 
face these claims. 

                                                 
2  Of course, if a two-sided market finances this platform by means of advertising for other companies, this 

platform can in fact also be seen as a three-sided (respectively multi-sided) market. 
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Behaviour of the individuals 
 

Let’s assume )( yxh −  to be a classical Heaviside step function (whereas x  and y  are real 
numbers): 
 

(6) 
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Let’s assume further that z  is a monotonically increasing function whose image set is 

assumed to be bounded such that 10 ≤≤ z . The probability that an individual Ll ∈ , Γ∈L  (that 
stays at platform Pi ∈  at time Tt ∈ ) changes to the other platform Pj ∈  (whereas ji ≠ ) at the 
beginning of time Tt ∈+1  is then assumed to be  
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In this equation the term )(1 differenceutilityh

i
tl

t +
 secures the rationality of the individuals 

(‘rationality term’): If the utility difference3 is negative (which means that there is no incentive 
for an individual to change the platform) this term )(1 differenceutilityh

i
tl

t +
 becomes 0 . As a result the 

whole probability that an individual changes to the other platform )(1 differenceutilityw
i
tl

t +
 becomes 

0  as well. If however the utility difference is positive (which means that there is an incentive for 
an individual to change to the other platform) then the term )(1 differenceutilityh

i
tl

t +
 becomes 1  and 

the probability that an individual changes to the other platform is just depending on the term 
)(1 differenceutilityz

i
tl

t +
. )(1 differenceutilityz

i
tl

t +
 is kind of a ‘dullness term’ (respectively ‘dullness 

function’) which ensures that if the utility difference is (although positive) only relatively small, 
the probability that an individual switches to the other platform )(1 differenceutilityw

i
tl

t +
 is also 

relatively small. If however the utility difference is relatively high, the term )(1 differenceutilityz
i
tl

t +
 

ensures that the probability that an individual changes to the other platform )(1 differenceutilityw
i
tl

t +
 is 

relatively high as well.  
 

In this general model z  is not specified exactly. In concrete agent-based simulations 
several specifications of the term (or function) z  are possible, as long as z  is monotonically 
increasing and the image set of this term (or function) is bounded such that 10 ≤≤ z  (as 
mentioned earlier). 
 

Let’s assume 
i
tl

t 1+
Ψ  to be a random number drawn from a continuous uniform distribution 

out of the interval between 0  and 1 for individual Ll ∈ , Γ∈L  (that is at platform Pi ∈  at time 
Tt ∈ ) at time Tt ∈+1 . The switching function W  for this individual is then defined as (whereas 

h  is again a classical Heaviside step function): 
 

(8) )( 1111
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This switching function allows transferring the probability that an individual switches to 

the other platform into a clear choice of switching: If 
i
tl

t

i
tl

tw 11 ++
Ψ−  is greater then 0  (which is more 

                                                 
3  Because of the assumption made in equation (3), the utility difference is independent of the prices set by the 

firms in this model.  
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likely if 
i
tl

tw 1+
 is relatively big) then 

i
tl

tW 1+
 becomes 1, which means that the individual is switching 

at the beginning of time Tt ∈+1 . If however 
i
tl

t

i
tl

tw 11 ++
Ψ−  is smaller then 0  (which is more likely if 

i
tl

tw 1+
 is relatively small) then 

i
tl

tW 1+
 becomes 0 , which means that the individual remains at his or 

her platform at the beginning of time Tt ∈+1 . 
 
 
Number of individuals 
 

As defined in equation (2), 
i
t

L
N 1+  denotes the number of individuals Ll ∈  of a group Γ∈L  

that stay at platform Pi ∈  at time Tt ∈+1 . However, because of the introduction of the switching 
function W , 

i
t

L
N 1+  can also be defined as a recursive function (whereas i

t

i

t Ll ∈ , j

t

j

t Ll ∈ , Γ∈L , 
Pji ∈, , ji ≠ , Ttt ∈+1, ): 
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With this equation the model is closed: Each individual Ll ∈ , Γ∈L  that is at platform 

Pi ∈  at time Tt ∈  calculates two net-utilities for the two platforms at time Tt ∈  according to 
equations (3) and (4). Further on, at the beginning of time Tt ∈+1  each individual calculates a 
probability of switching to the other platform according to equation (7). Equation (8) helps to 
transfer this probability into a clear choice of switching. Finally equation (9) gives the new 
values of 

i
t

L
N 1+  at the beginning of time Tt ∈+1  (in a recursive way) so that individuals can 

calculate their two net-utilities again at time Tt ∈+1  and so on. The platforms are passive in this 
model according to equation (5). 
 
 

PARAMETERS AND PLANNED SIMULATIONS 
 

The general agent-based model presented above seems to be a promising model to 
answer the question under which starting conditions two-sided markets tend to a winner-takes-
all-situation and under which starting conditions both platforms can stay within the market in the 
long run. It is planned to transfer this general agent-based model into the NetLogo environment 
(Wilensky 1999), where the outcomes of the model should be received through computerised 
simulations, given different starting conditions (respectively parameters). 
 

Starting conditions (or parameters) that have to be defined (and that can be varied) can be 
divided into four groups: Firstly, the initial number of individuals on each side ( L , M  whereas 

Γ∈ML,  and ML ≠ ) have to be defined (and can be varied) as well as the absolute fractions of 
individuals on both sides that stay at each of the two platforms initially ( i

L0 , j
L0 , i

M 0 , j
M0  

whereas LLL
ji

=+ 00 , MMM
ji

=+ 00 , Γ∈ML, , ML ≠ , Pji ∈,  and ji ≠ ).  
 

Secondly, the ‘dullness term’ (respectively the ‘dullness function’) )( differenceutilityz  has 
to be defined. As mentioned earlier, a lot of curve progressions of that function are possible, as 
long as )( differenceutilityz  is defined as a monotonically increasing function with an image set that 
is bounded such that 10 ≤≤ z . One meaningful possibility (among many others) would be 
defining )()( uzdifferenceutilityz Δ=  as a convex function capped by 1 (whereas e  is Euler’s 
number and y  has to be defined reasonably): 
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Thirdly, the utility-weighting-factors for all individuals Ml ,

α  (whereas Ll ∈ , Γ∈ML, ) 
have to be defined and should be varied. The systematic variation of these utility-weighting-
factors for the individuals is the key to answer the research question, when – just because of the 
dynamics of the network-effects – two-sided markets tend to a winner-takes-all-situation and 
when both platforms can survive within the market. Basically, it seems reasonable (among other 
possibilities) to assign real numbers out of the range between 1−  and 1  to all same-side utility-
weighting-factors for all individuals Ll ,

α  (whereas Ll ∈ , Γ∈L ) and to assign real numbers out of 
the range between 0  and 1  to all cross-side utility-weighting-factors for all individuals Ml ,

α  
(whereas Ll ∈ , Γ∈ML, , ML ≠ ). The reason why only positive values are assigned to cross-side 
utility-weighting-factors is that negative values would in some sense contradict the definition of 
a two-sided (and multi-sided) market, which says that two-sided or multi-sided markets tie 
together two or more distinct groups of users in a network, whereas the individuals of each group 
are interested in interacting with the individuals of the other group.4 Therefore if negative 
numbers were assigned to the cross-side utility-weighting-factors, the individuals of each group 
wouldn’t be interested in interacting with the individuals of the other group. 
 

To be more specific, it seems meaningful (among many other reasonable possibilities) to 
draw the same-side utility-weighting-factors for all individuals Ll ,

α  for a distinct group Γ∈L  
(whereas Ll ∈ ) from a defined continuous uniform distribution out of several, for example out of 
five defined sub-ranges (out of five possibilities), e.g. out of the ranges ]6.0,0.1[ −− , ]2.0,6.0[ −− , 

]2.0,2.0[− , ]6.0,2.0[  and ]0.1,6.0[ .  
 

In the same way, it seems reasonable to draw the cross-side utility-weighting-factors for 
all individuals Ml ,

α  for a distinct group Γ∈L  (whereas Ll ∈ , Γ∈ML, , ML ≠ ) from a defined 
continuous uniform distribution out of several, for example out of two defined sub-ranges 
(respectively possibilities), e.g. out of the ranges ]6.0,2.0[  and ]0.1,6.0[ . 
 

Given the two groups (respectively market sides) Γ∈ML,  (whereas ML ≠ ) and given 
that the same-side and cross-side utility-weighting-factors are assigned to the individuals of each 
group according to the defined possibilities above, to answer the described research question this 
setting would yield 1005522 =×××  possible utility-weighting-factors-combinations for each 
combination of the other starting conditions (respectively parameters) that have to be varied in 
the simulations. 
 

Finally, the number of time periods T , the numerous simulations with the different 
configurations of the parameters will run until they stop, has to be defined. Since the research 
question refers to the outcomes of the model in the long run, it seems meaningful to define T  
such that 1000≥T .  

                                                 
4  It has to be mentioned that this is not generally true for every two-sided or multi-sided market one could think of. 

For example, imagine a media platform (e.g. a television program) where the platform brings together viewers 
and advertisers. In such a case cross-side network effects and therefore cross-side utility-weighting factors may 
be positive in just one direction and zero or negative in the other direction and yet it is a two-sided market 
(Peitz/Valletti 2005; Reisinger 2004). 
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CONCLUSION AND OUTLOOK 
 

Although no computerised simulations have been done so far in a simulation-
environment like NetLogo, the presented general formulation of an agent-based model of a two-
sided market seems very promising to study and analyze under which starting conditions (given a 
duopoly) two-sided and multi-sided markets tend (just because of the dynamics of the network-
effects) to a winner-takes-all-situation and under which starting conditions both platforms can 
survive within the market. The use of an agent-based approach seems to be an appropriate and 
useful method in this field, since traditional approaches often have to face the problem of an 
exploding complexity of the created models. 
 

Nevertheless, the model presented in this paper is relatively simple: Firstly, only two-
sided markets are considered. Secondly, platforms have to be more or less passive in the model 
and thirdly, just one platform can be chosen from each agent at any time – which means that 
‘multi-homing’ is not possible. In future versions of the model it is planned to weaken these 
limitations, especially the passivity of the platforms. 
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ABSTRACT 
 

In this paper we adapt Axelrod’s metanorms model to run on arbitrary 
interaction structures.  We propose a hybrid analytical methodology combining 
computer simulations with a novel mathematical approach that abstracts some 
details of evolutionary dynamics while retaining explicit and exact 
representation of underlying network topology.  We construct simple network 
statistics based on the clustering coefficient and first order degree distribution 
of the interaction network as strong predictors of the emergence of cooperative 
norms. 

 

Keywords: Metanorms, evolutionary processes, multi-person games on networks, 
agent-based social simulation  

 

 

INTRODUCTION 
 

Axelrod’s metanorms model, (Axelrod 1986), is an n-person game that captures 
the essence of several social dilemmas, stemming from the fact that any one individual 
is better off defecting irrespective of the other players’ decisions, but universal 
cooperation is preferred to universal defection.  Axelrod’s model illustrates mechanisms 
that explain the emergence or collapse of cooperative social norms when punishing 
norm deviants is costly.  The model assumes that agents face potential punishment not 
only when they deviate from the norm, but also when they fail to punish norm deviants. 
A simple evolutionary principle drives the model: the more successful a strategy has 
been so far, the more likely agents are to adopt it in the future.  While it provides 
insights into the process of emergence, the model adopts the generally false assumption 
that each player interacts with all other players.  This assumption leads to an extreme 
payoff structure and an exponential growth in the number of interactions that quickly 
exceed any reasonable cognitive constraints as number of players grows.  
 

To highlight this weakness of Axelrod’s model, consider the following n-person 
prisoner’s dilemma: imagine some students taking a test in a large lecture hall with a 
proctor who fails to exercise strict vigilance.  Each student has some incentive to cheat; 
however, a student’s cheating imposes two costs on the rest of the students taking the 

                                                            
1 Corresponding author: Maciej M. Latek, Center for Social Complexity, Krasnow Institute for Advanced 
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exam.  First, given how much they have studied for the test, the rest of the students will 
not obtain as good a grade as the cheater; second, if cheating diffuses among the 
students in the class and possibly among various classes, the prestige of the institution 
will fall; students will have paid for studies without much real value.  Suppose a student 
(S), who may or may not cheat himself, notices that another student (Cheater) is cheating.  S 
can punish Cheater by informing the proctor, but punishing Cheater is costly for S: usually 
no one wants to be seen as a “snitch”.  If S refuses to punish Cheater because of the 
punishment cost involved, another student (S*) who has observed the situation between 
Cheater and S can either punish Cheater by informing the proctor that he has cheated or 
punish S by informing the proctor that S has refused to punish Cheater.  Punishing S is also 
costly for S*.  When this simple example is played repeatedly, it captures the essence of 
Axelrod’s metanorms game.  
 

In some social contexts the idea of complete interaction among individuals on a 
fully connected graph is realistic; in many other cases, it is not.  For instance in the above 
example of cheating during the test, the probabilities of detecting a cheater depend on the 
size and topology of the lecture hall that can be reasonably approximated by a lattice-based 
topology.  In other social contexts a lattice model is not empirically relevant. Recent 
work on social network analysis (Newman 2003) has shown that social interaction 
structures may differ markedly from the stylized regular grids or fully connected graphs 
used in the extant versions of Axelrod’s model.  In this paper we extend the metanorms 
model to arbitrary interaction topologies. By doing so we hope to contribute to a better 
understanding of the metanorm mechanism as a norm inducer and further the literature 
on evolutionary game theory and social dilemmas in networks (Santos et al.2006; Szabo 
and Fath 2006).   

 
The structure of the paper is as follows: in the next section we give some 

background to Axelrod's metanorms model and describe how it is adapted to be played 
in networks; we then proceed to the analytical abstraction used to understand the 
dynamics of the metanorms model.  Next, we provide simulation results and discuss 
them.  Finally, we present the conclusions. 
 

METANORMS MODEL IN NETWORKS 
 

Axelrod’s metanorms model in networks begins with a setup phase.  Initially 50 
agents are embedded in a network structure developed by a predetermined network 
generation algorithm.2  We have analyzed the effect of two different algorithms: the 
Barabasi-Albert algorithm that generates networks with power law degree distributions 
(Barabasi and Albert 1999) and the Watts algorithm (Watts 1999) with different values 
of rewiring probability (β) that smoothly interpolates between two extreme cases of a 
regular lattice and a random network, traversing the small world networks category 
(Watts and Strogatz 1998).  A link between two agents represents an opportunity for 
direct interaction between them. A set of all links for an agent is called neighborhood of 
the agent. 
 

Once agents and the underlying network structures are created, agents play a 
repeated game that consists of three decisions or stages: 
 

                                                            
2 We used 50 instead of 20 agents used in Axelrod’s default setting to make high-order statistics more 

interpretable. 
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1. Agents decide whether to cooperate or defect. A defecting agent obtains 
Temptation payoff (T = 3) and inflicts on each of the remaining agents in the 
population Hurt payoff (H = -1).  If agents cooperate, no one's payoff is altered. 
Here we assume that the spillover cost of defection is global. 

2. Agents observe other agents in their neighborhood who defected in stage 1 
with a certain probability.  For each observed defection, agents decide whether 
to punish the defector or not.  Punishment is costly: one must pay Enforcement 
cost (E = -2) to impose Punishment cost (P = -9) on the defector.  Notice that 
the opportunity to observe defection; hence the possibility to punish it, is 
conditional on the existence of a link connecting both agents. 

3. The third step includes the concept of metanorm.  The metanorm here is that 
agents who fail to punish observed defection should be punished.  Similar to 
the previous step, an agent who fails to punish an observed defection may not 
be caught.  The probability of being seen not punishing a defection given that 
the defection has been seen is the same as the probability of observing such 
defection.  Network topology plays a critical role in this step: it determines 
who can see unpunished defection (See Figure 1).  Observing a defection 
requires links among the defector, un-punishing agent and metapunisher.  As 
for payoffs, a metapunisher pays Meta-enforcement cost (ME = -2) every time 
it Meta-punishes (MP = -9).  

Defector
Not Punisher. She observes 
the defection but does not 

punish it

Metapunisher. He has to be 
linked to both to metapunish 

the not punisher

 

FIGURE 1 Links needed in the network to have a chance of meta-punishment.  Links 
are undirected; the arrows simply clarify the logic of the dynamic. 
 

The strategy of an agent depends on two of its characteristics: boldness and 
vengefulness. Boldness is the probability that an agent defects in the first stage; 
vengefulness is its propensity to punish agents that have been observed defecting in the 
second and third stages.  Following Axelrod’s implementation, we implement each of 
these probabilities as a 3-bit string denoting eight evenly-distributed values from 0 to 1 
(0/7, 1/7, ..., 7/7).  Initial values for each agent's strategy are determined randomly at the 
beginning of each simulation run and updated through an evolutionary mechanism. 
 

Once agent payoffs are determined at the end of a generation, agents can change 
their strategies according to two evolutionary forces of selection and mutation.  We have 
implemented four selection mechanisms where the most successful agents at a particular 
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time have the highest probability of having their strategy copied, but with different 
variance (De Jong 2006), adapting them for local use within a network structure: 
 

1. Best neighbor.  Select the strategy used by the most successful agent in the 
neighborhood.  Break ties randomly. 

2. Average selection.  Select agents in the neighborhood whose payoff are higher 
than the average plus a standard deviation of neighborhood payoffs.  Select one 
strategy in this set randomly as new strategy.  If the set is empty, continue with 
current strategy. 

3. Random tournament. Compare a randomly selected strategy from the 
neighborhood with the current strategy.  Select the strategy with higher payoff. 

4. Roulette wheel.  Assign an adoption probability to each neighborhood strategy 
proportional to the payoff other agent obtained using it minus the minimum 
payoff obtained in the neighborhood.  

 

Whenever a bitstring-coded strategy is replicated, that is, when agents invoke a 
selection mechanism, every bit has a certain probability of being flipped called mutation 
rate.  We have studied the effect of different selection mechanisms as well as different 
mutation rates. 
 

RESULTS 
 

We combined mathematical modeling and agent-based simulation to analyze the 
model.  These two approaches have been shown to complement one another in obtaining 
a better understanding of complex systems (Galan and Izquierdo 2005; Izquierdo and 
Izquierdo 2006; Izquierdo et al. 2007). 
 

Mathematical modeling results 
 

Mathematical analysis of the original metanorms game is a challenging task; 
including realistic interaction structures makes it even more cumbersome.  Therefore, we 
use simplifying strategies to arrive at closed form solutions amenable to mathematical 
analysis and graphical representation.  We present a summary of the abstraction process 
of the model following the logic presented in Galan and Izquierdo (2005), with a number 
of substantial changes introduced.  Given an undirected network Г = (N, L) defined by a 
set of agents N and set of links, the payoff of an agent i playing the metanorms game is 
defined by:  
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Where following notation is used:  
 

1. T, H, E, P, ME, MP are the payoffs of the metanorms game and are set 
exogenously; 

2. n is the number of agents;  
3. { }:iN j N ij L≡ ∈ ∈ is the set of nodes connected to any given i N∈ .  This 

set defines the neighborhood of agent i. i iz N≡  denotes the degree of the 
agent i. 

 

In addition, indicator functions Def and Pun have been defined as follows: 
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We define the clustering coefficient of agent i with at least two neighbors as: 
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Lastly, we define clustering coefficient for a degree in a given network as 
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Assuming continuity and homogeneity of population and abstracting the details 
of the network by selected network statistics, the expected payoff of an agent i in one 
round can be calculated as: 
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In order to evaluate the dynamics and discover the evolutionary stable states of 
the system (Galan and Izquierdo 2005), we compute the differences between the payoff 
obtained by a mutant m and the payoffs obtained by a representative agent i of the 
incumbent population when the mutant changes its strategy.  This difference may 
contribute to shifting the system by means of selection pressure.  The results depend on 
the topological properties of the network, in particular on the clustering coefficient and 
first order degree distribution of the network.  For random networks where the degree 
distribution can be modeled by a Poisson distribution, it is easy to prove that the 
clustering coefficient is independent of the node degree.  So we can study the system 
mathematically in a clean and stylized fashion.  In more complex networks we estimate 
the required statistics of the network (degree, degree-clustering) numerically so they can 
be plugged back into equations. Lastly, we will define Interconnectivity factor as 
follows: 
 

p 1  

 

Specifically if we examine the last equation, we observe that from a network 
point of view the different addends only depend on the number of agents, the average 
degree and interconnectivity factor influenced by the clustering degree distribution.  The 
resulting gradient vector field of the system under different parameters topologies of 
networks consisting of 50 agents is presented in Figure 2.  Arrows represent the 
expected movement of the system (tangent to the trajectories) and colors correspond to 
the module of the gradient (the speed of the trajectories), the more red the faster. The x-
axis represents average boldness of population, y-axis average vengefulness.   

 
In the first row we fix the average degree of the network to 4.  Columns 

correspond to values of 2, 10 and 20 of the interconnectivity factor.  The red dashed line 
is the boundary that separates the region of left-pointing arrows and the region of right-
pointing arrows.  The white line separates the area of top-pointing arrow and down-
pointing arrows. In the first figure we observe a single evolutionary stable state, marked 
with a red dot, in the zone of norm collapse at the bottom-right area corresponding to 
high average boldness and low average vengefulness.  Increasing the interconnectivity 
factor, that is, increasing clustering coefficient for a constant average degree shifts the 
white dashed line toward the left in the second and third figures.  When the 
interconnectivity factor is large enough, dashed lines cross: a second evolutionary stable 
state emerges, this time in the zone of norm establishment at the top-left area 
corresponding to high average vengefulness and low average boldness.  The purple line 
separates basins of attraction for both states. 
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In the second row we fix the interconnectivity factor while increasing the 
average degree of the network from 4 to 8 and 16.  We observe that the second 
evolutionary stable state disappears.  This result is mainly due to the fact that for fixed 
population sizes, average degree and the interconnectivity factors are not independent 
values.  Regardless of that, as both lines were pushed to the right, the escape corridor 
from the zone of norm establishment toward the evolutionary stable state in the zone of 
norm collapse is very narrow indicating that with a high level of noise the system may 
spend a lot of time in the zone of norm establishment. 
 

 

AvDegree=4.0 

IntFact=2 

 
AvDegree=4.0 

IntFact=10 

 
AvDegree=4.0 

IntFact=20 

 
AvDegree=4.0 

IntFact=20 

 
AvDegree=8.0 

IntFact=20 

 
AvDegree=16.0 

IntFact=20 

FIGURE 2.  Expected dynamics of the metanorms model on networks.  We use 
Axelrod's original parameter values and assume continuity of boldness and 
vengefulness.  We also assume relative homogeneity of agents' strategies. The x-axis 
represents average boldness; y-axis represents average vengefulness. The meaning of 
the colors and lines are explained in the text. 

Simulation results 
 

We implemented the model in Java 2 using RePast 3 (North et al. 2006) and 
JUNG libraries3.  We conducted several experiments, focusing on the role of the 
interconnectivity factor in the dynamics of the metanorms model.  Bear in mind that the 
results presented in the previous section about the influence of the interconnectivity 
factor on the game and indirectly on the influence of the clustering coefficient and 
average degree of the network were derived from an abstraction of the game.  To 
confirm these analytical results, we simulated the game for 10000 runs.  Each run was 
initialized with different interaction topologies and produced time series of the 

                                                            
3 http://jung.sourceforge.net/  
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proportion of time that the system, in the long run, is in the zones of norm collapse and 
norm establishment. We used networks generated by the Barabasi-Albert and Watts 
algorithms, randomizing the parameters of network generation and varying evolutionary 
details of the network.  Figure 3 shows the percentage of time the system spends in the 
zone of norm establishment as a function of the interconnectivity factor and clustering 
coefficient of the network for networks with average degrees between 4 and 7. 
 

FIGURE 3. Percentage of time the system spends in the zone of norm establishment 
(EMRG) depending on the interconnectivity factor (INTERCONN), on the left panel, 
and clustering coefficient (CCB), the right panel, of the network. 
 

In the left diagram of Figure 3 we observe that the average amount of time spent 
in the zone of norm establishment increases monotonically with the interconnectivity 
factor.  It also illustrates that there is an important variance and some outliers in the 
graph.  This may be due to the influence of the evolutionary details of the game for each 
specific simulation, but more work is needed to confirm this hypothesis.  The right 
diagram represents the same percentage of time but as a function of the clustering 
coefficient of the network: the higher the clustering coefficient of the network the more 
time spent in the zone of norm establishment.  Also note that the variance of the average 
time for norm establishment clearly increases with its size. However, as the 
mathematical model suggests, the interconnectivity factor seems a better predictor.  
 

CONCLUSIONS  
 

We combined mathematical simulation approaches to analyze evolutionary 
games played on networks.  We investigated the influence of the average degree and the 
interconnectivity factor of an interaction network on the process of norms emergence in 
the metanorms model by analytical and simulation techniques. Simulation results 
obtained confirmed the positive influence of interconnectivity factor on reinforcing the 
meta-punishment mechanisms. 
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Abstract

The complexity of human social structures often masks the simplicity involved in
their development. Social networks are a product of dynamic processes and feedback.
In other words, the ties that people make affect the topology of a network and the form
of a network affects the ties that people make. Therefore, social network structure
evolves in a path-dependent manner. In this paper, we begin to sift through the
complexity of social network ties in an effort to unearth the fundamental rules of social
interaction and their impact on network formation and evolution.

Keywords: social networks, evolution, conflict propagation, avalanche, power law

1 Introduction

The complexity of human social structures often masks the simplicity involved in their devel-
opment. Social networks are a product of dynamic processes and feedback. In other words,
the ties that people make affect the topology of a network and the form of a network affects
the ties that people make. Therefore, social network structure evolves in a path-dependent
manner. In this paper, we begin to sift through the complexity of social network ties in an
effort to unearth the fundamental rules of social interaction and their impact on network
formation and evolution.

We have all witnessed social turmoil in our midst – or even have been involved in its
very middle. A long-married couple decides on a divorce – and suddenly their friends are
faced with difficult decisions. They may feel pressured to side with one partner or the other,

∗Corresponding author: M. Tsvetovat mtsvetov@gmu.edu
†Authors appear in alphabetical order
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potentially splitting long-standing friendships and dividing a formerly cohesive network into
”his side” and ”her side”. As the wounds of the split-up heal, the space is opened up for
creation of new friendships and romantic relationships, and the cycle starts again.

The example above illustrates several concepts. The first is the ability of change in
network structure – particularly change of a destructive nature –

to propagate through a network, potentially affecting a large number of people. Second,
the network reacts to addition and deletion of edges in qualitatively different fashions, de-
pending on its density, undergoing a phase transition [8]. Finally, it has been observed [6]
that networks in the real world settle to a certain density, suggesting the presence of a dy-
namic equilibrium [7]. We hypothesize that conflicts play a regulatory role in social networks
and help establish and maintain this dynamic equilibrium.

Considerable research [10, 4, 9] has centered on the generative processes of network
creation. Such processes range from purely random models [3] to generation of small-world
networks [11]and scale-free networks [1]. While methods of network generation and results
vary widely, these methods have one common property: they consider only processes that
add or change edges of the network. Although the generative processes that create giant
component networks are theoretically valid, in real-world networks the forces responsible for
this formation are mitigated by an unknown resistance. As the generative and resistance
forces attempt to balance, the system enters and oscillates around a dynamic equilibrium.
We consider this counter-force to be node or edge deletion, which we describe as conflict. In
this paper, we would like to consider the role of destructive processes, such as tie extinction
and outright conflict, as an equally important influence upon network topology.

We implement a simple agent-based model to explore the complexities of network struc-
tures and the consequences of conflict upon these structures. We are interested in the
micro-level mechanisms that produce the macro-level patterns observed in real-world net-
works. To achieve this, we employ a simple set of agent rules. These rules were selected
for two reasons: 1) they address the micro-level or social aspect of network formation using
structural balance theory; 2) they produce the macro patterns that are commonly observed
in social networks. To show how these two simple rules function dynamically, the rest of the
paper will develop these ideas in three stages. First, we describe the qualitative logic behind
network formation. We then attempt to support these qualitative claims through a process of
agent-based experimentation. Finally, we conclude with a synthesis of the above-mentioned
qualitative and experimental undertakings.

We use structural balance theory [2], derived from Heider’s balance theory [CITE], to
model agent behavior. This notion is represented as a triadic structure where the triad repre-
sents an individual’s attitude toward both physical and social objects. The links between the
objects represents the affect the primary object has towards the other two. Balance theory
suggests that people, from the perspective of the individual, have a preference for balance.
Unbalanced structures occur when the primary individual perceives a difference between
their affect and that of other objects. This difference results in a sense of discomfort for
the primary individual, which they may address through a change in affect, thus, changing
the structure. We use structural balance theory to examine social structure and measure
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the level of ”discomfort” present in a network. In our model, ”discomfort” is represented as
conflict (or an enemy link) and is caused by opposing relationships among agents.

A simple triadic rule set can form the basis of a complex social network whose structure
is dependent on the stability of the linkages: newly added actors or linkages act as generative
processes (i.e. a couple’s friends becoming friends) that percolate throughout the network.
Similarly, conflict, which acts as a resistance process, may cause a relationship to reverse
and can trigger a chain reaction, restructuring a network. The complexity of the network
structure plays a considerable role in the consequences of these changes. The rate that
change percolates throughout a social network is highly dependent upon the density of the
network. Returning to the example of our couple, the number of peripheral actors drawn
into a given linkage change is dependent upon how well the remaining actors are connected
throughout the system. Thus, as the generative and resistance forces attempt to balance,
the system enters and oscillates around a dynamic equilibrium.

2 Simulation Model

To study the effect of conflict on the topology and density of networks, we propose a simple
computational model: an agent-based version of a highly simplified social network. The
model serves as an experimental environment using four ’social rules’ previously described.
In its initial state, no social connections exist amongst agents. Subsequent stochastic agent
interaction evolves the social network and serves as a starting point to examine network
conflict. As conflict is introduced into the network, agents utilize the social rules to achieve
or maintain balanced relationships.

The Poisson scheduler is responsible for agent activation. It ensures that, throughout
the simulation, all agents are active on average but not necessarily active the same num-
ber of times in each round. This enabled the model to replicate the heterogeneous social
environment faced by social agents within the real world.

The base model consists of a static set of 100 agents. The social environment changes
for later simulations which adds new agents to the system at a fixed rate per round. When
activated, an agent randomly chooses from the remaining strangers in the simulation and
attempts to establish a new friend connection. If the active agent already possesses ties from a
previous round, this agent will attempt to meet the friends of its current friends. Probabilities
of making new friends among strangers or friends-of-friends have been parameterized for
further study.

Agents react to changes to their friendships and conflicts with a set of simple rules of
triadic interaction:

Rule 1 A friend of my friend is my friend (Simmelian tie[5])

Rule 2A An enemy of my friend is my enemy (social balance[2])

Rule 2B A friend of my enemy is my enemy
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Figure 1: Propagation of Conflicts in a Dense Network

Rule 2C A enemy of my enemy is my friend1

Rules 2A, 2B, and 2C represent the same balanced triad containing two conflict links
and one friendship link the only difference is the viewpoint taken by each rule. To maintain
simplicity, Rules 2A, 2B, and 2C, referred to as Rule 2, is stated as follows:

Each node shall seek to be embedded in balanced triads that are either fully
connected Symmelian triads or conflict-balanced triads.

Conflict is introduced in the network at a constant probability, by changing a single
friendship tie into an enemy tie. What happens then is illustrated on figure 1. In this simple
example, a network consisting of 4 closed triads is struck by a conflict on a single edge. Triad
A−B−C becomes unbalanced due to a conflict between B and C; thus A is forced to take
sides in the conflict by choosing to remain friends with either B or C, at random. Adding
conflict to the A − C edge forces another triad, A − C − D to become unbalanced, thus
drawing agent D into the conflict. If agent D then chooses to isolate C from the rest of the
network, the propagation of the conflict can be stopped. However, if instead it separates
from A, this will cause the conflict to propagate further and destroy more links.

Despite the simplicity of the micro-processes involved in our simulation, our agent-based
model is able to replicate well-known macro patterns. This is largely due to the heterogeneity
of social tie interpretation involved in the model. In other words, due to the stochastic nature
of agent interaction, no two agents possess the same picture of the developing social network.
Not all agents share a tie with all other agents in the network and this inequality in social
ties provides the necessary condition for percolation.

Having more ties increases an agents probability of forming even more ties, but also
increases the probability that a conflict between two agents spread throughout the network.
Thus, percolation of both friendship and conflict is dependent upon the density and timing
of agent connections.

1Attributed to: the Bible (Exodus 23:22 and Matthew 22), ancient Chinese and Arab proverbs. Most
likely, as old as the world.
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3 Simulation Experiments

The four simple agent decision-making rules of our model are able to mimic common char-
acteristics of structural network growth and evolution. We first illustrate phase transition,
specifically focusing on the growth of network friendship ties. Next we introduce conflict,
highlighting the importance of conflict percolation and the inherent self-sustainability of the
network. Finally, we end with a discussion of the sensitivity of the models parameters in
relation to the realism of the models results.

3.1 Phase transition from linear to exponential growth

The model was run without conflict to assess its ability to create friendship ties. Initially,
the network grows linearly with addition of ties. After a given threshold is passed, friend-
of-friend triads begin to connect into balanced triads and the growth of network density
accelerates dramatically. In absence of conflict, our model produces a sigmoid curve of
network density growth (see Figure 1). This result is largely dependent upon the probability
of an agent making friends with its friends friends. The more connections made in prior
rounds increase the chances of producing exponentially more friendship ties in future rounds
until most potential friendship ties have been exhausted. Beyond this exhaustion point, a
decreasing probability of making new ties will then occur.

Although feedback is present in the first simulation result in terms of timing and friend-
ship connections, we do understand that a network consisting of only growth produces results
that are neither very realistic nor interesting in terms of network evolution, namely fully con-
nected graphs. Nevertheless, ensuring that network growth occurs realistically within our
simulation, we are then able to take the next step and begin to introduce conflict into our
growing network.

Our model allows us to experiment with a number of conflict- and friendship-based prob-
ability parameters: 1) the probability of making a new friend, 2) the probability of meeting
your friends friends, 3) the probability of conflict occurring between yourself and one of
your friends, and 4) the probability of assessing your current friendships to check for conflict
amongst your friends.

However, as one may assume, we find through our experimentation with these probabil-
ities that not all of the possible values for each of the parameters produce realistic network
structures this is something we highlight in more detail in the final subsection of this section.
Therefore, in an effort to focus our attention upon the critical parameter values, our goal
was to investigate which parameter settings produce realistic network structures and then
determine the degree of sensitivity these parameters have in terms of their range and ability
to maintain structural realism. The first step in this process was to search for fundamental
characteristics of network structure, such as the Power Law distribution of network ties,
which are often found within empirically observed networks. We use this characteristic node
degree distribution as a guiding point for our attention and then looked to see if something in
particular about this structural form helped to produce realistic network structures through
the rules provided to our agents.
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Experiment
Parameter A B C
Probability of making new friends 0.90 0.33 0.50
Probability of meeting friends friends 0.90 0.33 0.50
Probability of assessing a friendship 0.90 0.10 0.10
Probability of conflict 0.01 0.01 0.01
Probability of conflict decay 1.00 0.75 0.50
Probability of friendship decay 0.00 0.75 0.50

Table 1: Network Density Parameter Settings

The Power Law distribution of degrees marks a phase transition process within social
networks because, with this critical characteristic intact, we are able to observe key percola-
tion consequences in terms of structural realism. We find that a transition from a Power Law
node degree distribution to a Normal or even a Log Normal distribution of friendship ties
alters the percolation consequences of conflict within a network that also serve as realistic
network evolution features.

The above result is found by observing the node degree distribution at the point just
before the onset of conflict. We see in figure 2 that, with conflict probability set quite low to
allow the network to develop ties before conflict onset, a Normal or Log Normal node degree
distribution before the onset of conflict results in a much greater drop in friendship ties and
thus a larger percolation of conflict amongst the network. However, with the network in
a Power Law distribution of network ties, the conflict is able to diffuse in most cases with
infrequent but very large crashes occurring. Furthermore, if a network begins to develop
friendship ties in a Power Law fashion, we also see that, through the help of minor conflicts,
a network is able to develop a Normal or Log Normal distribution of friends, which is then
followed by a crash and a return to a Power Law distribution of friendship ties. In other
words, we begin to see a form of network self-sustainability in terms of node degree distribu-
tion and a fluctuation of network density around a critical point that is highlighted by the
structural phase transitions.

3.2 Conflict Propagation

Now that idea of conflict percolation and phase transition has been introduced, we can now
turn to experimenting with the conditions needed to produce realistic conflict percolation
and realistic network structures as a result of this conflict percolation. In the results from
figures 2 and 3 above, we see two important and realistic features of network evolution
present within this run. Network First, we see the appropriate node degree distribution of
friendship links, this being a Power Law distribution, on average throughout the simulation
except for periods just before the spread of larger-scale conflicts. Second, we see a prominent
critical density point. Upon reaching this point, the network settles in a dynamic equilibrium
balancing introduction of new friendships and ongoing conflicts.
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(a) Node degree distribution before minor
conflict percolation

(b) Node degree distribution before medium
to high conflict percolation

(c) Resulting network density. The largest
friendship peaks represent point at which
node distribution is either Log Normal or
Normal

(d) Node degree distribution following large
percolation of conflict

Figure 2: Propagation of Conflict in Networks - Effect on density and distribution of degrees

However, although our simulation value results, from figure 2 above, with a critical point
hovering around a network density of roughly 0.10 is quite realistic, it is important to note
here that these results come from a model with a very extreme and possibly somewhat
unrealistic, in terms of most social networks, parameter probabilities (see Table 1, A).

It may not be so interesting that we were able to find realistic conflict percolation given
a highly idealized friendship network. However, further runs of the model show us that
this result is maintained under certain model conditions; some of which could arguably be
considered empirically relevant. In figure 3.2a, we see that a critical point around 0.10 can be
observed given quite different parameter settings (see Table 1, B). Figure 3.2b shows a similar
result with even more moderate friendship fluctuation and higher friendship probabilities and
lower decay probabilities (see Table 1, C). Therefore, these two results show that realistic
conflict percolation can certainly develop within our model under conditions that would also
be empirically plausible. However, through our experimentation we were able to find that
not all parameter settings produce results that are quite as reasonable.

7

287



Figure 3: Typical Network Shape in low-conflict phase

3.3 Parameter Sweep

The models parameter sweep gives us a good understanding of the conditions needed to
produce realistic network evolution behaviors and characteristics. For the most part, we
found that a large number of network settings tended to produce network densities which
either crashed all together or hovered around a critical point ≈ 0.02. The network crashes
were typically found when either conflict probability was too high, conflict decay was too
low, friendship decay was too high, or nodes were added to the system at a rate that was
too frequent. A typical result of network crash is displayed in figure 5a. On the other hand,
we found the network to survive crashes but to remain self-sustainable only at relatively low
levels of network density. This result typically occurred when friendship creation probabilities
were too low or when friendship assessment occurred too frequently. An example of low
network criticality is displayed in figure 5b below.

In conclusion, we found that the key to producing realistic network evolution behaviours
was not so much the value of the parameters themselves but the appropriate mixture of
parameter value proportions in a given simulation. That is, realism could be found with
either high conflict decay coupled with low conflict onset or with high tie decay in general
along with low friendship assessment. Subsequently, we also found that conflict onset typi-
cally could not rise above 0.10 without disrupting the realism of the results. Furthermore,
as described in the first subsection of this section, we found that the probability of making
new friends from ones friends friends largely affected the overall volatility of the network
density. Finally, for the range of successful or realistic simulation runs, realism was typically
produced within a window of about only 10% change (5% above and below the values given
above) in the aforementioned successful probability parameters.
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(a) (b)

Figure 4: Sustainable network density at realistic parameter levels

4 Conclusion

In this paper, we demonstrate a simple agent-based simulation methodology that integrates
destructive processes – conflicts – into the fabric of network evolution.

We also demonstrate two phase transitions in development of networks. The first phase
transition occurs as network moves from linear growth and normally distributed degree (a-la
Erdos) to exponential growth and power-law distributed degree of scale-free networks. This
phase transition is percipitated by a single rule, and occurs at a critical density indepenent
of network size or rate at which nodes are added.

At the same time as nodes are added, a conflict may strike a random pair of nodes with
a constant probability. These conflicts propage through the network by agents seeking to be
embedded in balanced triads. Thus in dense network structures a single conflict can possibly
produce a large-scale avalanche of propagating conflict ties. Alternate periods of rapid growth
and destruction signal a new phase transition - from a growing network to one that oscillates
around a dynamic equilibrium while maintaining a relatively stable density. The densities
achieved through our simulation strongly mimic these found in empirical networks.

We demonstrate that the resulting network has strong core-periphery features and a
power-law distribution of degrees, yet is derived from a socially justifiable process. We also
demonstrate that conflict is strongly localized and the scope of its propagation is Power Law
distributed.
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ABSTRACT 

The importance of modularity in product innovation is analyzed in this paper. Through 
simulations with an agent-based modular economic model, we examine the significance 
of the use of a modular structure in new product designs in terms of its impacts upon 
customer satisfaction and firms' competitiveness. To achieve the above purpose, the 
automatically defined terminal is proposed and is used to modify the simple genetic 
programming.

Keywords: agent-based computational economics, genetic programming, automatic 
defined terminals, modularity, hierarchy 

MOTIVATION AND INTRODUCTION 

This work is a continuation of [2, 3], which provide an agent-based model to simulate the 
evolution of product innovation by growing it from bottom up. The earlier work is not just to 
provide an agent-based approach, but to introduce a new representation of commodities, 
production, and preference, via the use of genetic programming (GP). However, [2, 3] only 
consider the simple genetic programming [5]. The end result is that in many of their early 
simulations, only primitive desires are satisfied, and the economy can rarely advance to a mature 
state where consumers’ desires can be met to a sophisticated degree. One cause of this problem 
is that simple GP is not an appropriate tool to work with the idea of functional modularity (to be 
detailed in Section 3). This limitation has been long realized by GP researchers, e.g., [6]. In this 
paper, we remedy this problem by replacing the simple GP with automatically defined terminals 
(ADTs), which are very similar in spirit to automatically defined functions (ADFs), invented by 
John Koza [6]. As Koza pointed out, devices of this kind can provide some hierarchical 
mechanism to exploit modularities inherent in problem environments.  

With this modified version of GP, two experiments are carried out. The first experiment 
examines the contribution of functional modularity to consumers’ satisfaction. The second series 
of experiment then examines the importance of modularity in competition among firms. We 
simulate an agent-based economy to allow the firm who design new products using modular 
structure competing with the firm who do not. In a sense, this is equivalent to replicate the well-
known story regarding the competition between Hora and Tempus, two imaginary watchmakers 
offered by Herbert Simon in his celebrated work on the architecture of complexity [8]. 

� Corresponding author address: Shu-Heng Chen, AI-Econ Research Center, Department of Economics, National 
Chengchi University, 64 Zhi-Nan Road, Sec. 2., Taipei, Taiwan; e-mail: chchen@nccu.edu.tw. 
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FIGURE 1  The Agent-Based Modular Economy Market  

The rest of the paper is organized as follows. Section 2 provides a brief review of the agent-
based modular economy introduced in [2, 3]. Section 3 proposes the automatically defined 
terminal and motivates this idea with its connection to hierarchical modularity. The two 
experiments are conducted in Sections 4 and 5. Section 6 gives the concluding remarks. 

THE AGENT-BASED MODULAR ECONOMY 

The economic model on which our simulation of product innovation is based is largely 
the same as [2, 3], which we shall briefly review here. Chen and Chie [2, 3] considered an 
economy composing of a number of firms and consumers with the usual objectives. To 
maximize profits, firms have the incentive to search for the products which can satisfy 
consumers to a highest degree. In the meantime, consumers allocate their limited budget to 
commodities which provide them largest degree of enjoyment (measured in terms of consumer 
surplus). The interaction between consumers and producers drives the evolution of a series of 
new products (innovation process), as shown in Figure 1. 

The commodity of this economy is represented by a parse tree as shown in the first row 
of Figure 2. Each parse tree corresponds to a LISP program. The very bottom of tree, i.e., leaves, 
correspond to the raw inputs (materials) X1, X2,..., whereas the root and all intermediate nodes 
represent the processors, F1, F2,..., applied to these raw materials in a bottom-up order, as the 
usual behavior of a LISP program. The whole parse tree can, therefore, be interpreted as a 
production process associated with the commodity. The unit cost of the commodity is a positive 
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function of the number of the processors and the number of raw inputs, i.e., a positive function of 
the (node) complexity of the commodity. In a simple way, we assume that the unit cost is a linear 
function of the node complexity. 

FIGURE 2  An Illustration of a Process of Product Innovation  

In each market period, the firm has to decide how to allocate her limited working capital 
(budget) to R&D (designs of new products), production of existing commodities with different 
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quantities, and reserves. R&D is the sole source of new products and is implemented by genetic 
programming with or without automatically defined terminals (to be detailed in Section 3), as 
shown in Figure 3. 

FIGURE 3  Genetic Programming as an Engine for R&D  

The preference of the consumers in the economy is also represented by a parse tree. To 
make the preference tree be economically meaningful, three assumptions have been made [3], 
namely, the monotone, synergy, and consistency condition. The utility from consuming a 
commodity is based on the module-matching algorithm proposed in [3]. The idea is to match 
each possible module (subtree) of the commodity to each possible module of the preference with 
a descending order in the depth of the tree. So, the big modules matches first; if it success, we 
stop, and if it fails, we move to the next biggest one. To satisfy the synergy condition and hence 
the idea of added-value, [3] assumes a power utility function for the preference tree as shown in 
Figure 4. As a result, the utility is increasing at a faster rate when higher and higher levels of 
modular preferences are satisfied. 

MODULARITY AND AUTOMATICALLY DEFINED TERMINALS 

Simple genetic programming is designed to find the solution to a problem, which is 
represented by a parse tree. In our case, a solution is analogous to a product, and whose 
corresponding problem is the ideal product which can bring the highest enjoyment to a target 
consumer (Figure 2). The parse tree, from the bottom to the top, can be read as how the solution 
(product) can be constructed parallelly, incrementally and progressively. What is accomplished 
at each incremental and parallel step is a minimum or marginal effort to combine what have been 
established in the previous steps. 
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As an illustration, Figure 2 traces an artificial history of product innovation. Consider a 
target consumer whose preference is depicted in the first row of Figure 2, which can be regarded 
as the solution to the problem. Firms do not know this design, and have to figure out the best 
design by themselves. The five products listed below are the designs discovered in generations 2, 
10, 14, 20, and 25. These products match the consumer’s needs to a high and higher level. For 
example, the product PID 2889, i.e., the 2889th new product designed by the firm, has 
completely answered the target’s need to the entire first half at level four. Nonetheless, this 
product does not come out all of a sudden; all it has done is to combine two commodities which 
were already known before, namely, commodities ADT 18 and ADT 19, both of which were 
already known to the firm before generation 25. The “marginal” effort here is to assemble them 
in a right way, i.e., using processor F2.1

FIGURE 4 The Power Utility Function of a Preference Tree

The results obtained in each step then becomes the bases or the building blocks for the 
subsequent steps. For example, as shown in Figure 2, ADT 18 and ADT 19 serves as building 
blocks for all designs after generation 20. The entire process can then be viewed as a growing but 
convergent process from leaves to small trees, then to bigger and bigger trees, and finally to the 
target tree (the solution). 

1 Of course, from an ex ante view, knowing what to combine and in which way is not trivial. In fact, in this example, 
it took the firm five generations to learn this. In this sense, the contribution is not entirely marginal. However, 
from an ex post view, it is just a combination of what we already knew. 
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The description above enables us to see how genetic programming can be related to 
Simonian notion of complexity [8], i.e., hierarchy. Herbert Simon viewed hierarchy as a general 
principle of complex structures. Hierarchy, he argued, emerges almost inevitably through a wide 
variety of evolutionary processes, for the simple reason that hierarchical structures are stable. To 
demonstrate the importance of hierarchical structure or modular structure in production, Simon 
offered his well-known story about a competition between Hora and Tempus, two imaginary 
watchmakers. In this story, Hora prospered because he used the modular structure in his design 
of watches, whereas Tempus failed to prosper because his one is not modular. Therefore, the 
story is mainly about a lesson: the advantage of using modular structure in production. 

While using parse tree as the representation, simple genetic programming is not good at 
using modular structure. The standard crossover and mutation can easily destroy the already 
established structure, which may cause the whole discovery or learning process non-incremental 
and non-progressive, and hence very inefficient. This problem is well-known in the GP literature, 
and has been extensively studied with various treatments [1, 6, 7, 4]. Motivated by these earlier 
studies, we propose automatically defined terminals (ADT) as a way to enhance GP to find 
structured solutions. 

FIGURE 5 Automatically Defined Terminals

ADT, as shown in Figure 5, is very similar to the automatically defined function (ADF) 
[6]. Itself has a fixed structure, in this case, a tree with a depth of two. The root of ADT can be 
any function from the primitives (function set), while its leaf can be either a terminal from 
primitives (terminal set) or can be any existing ADTs. In this way, it shares the same spirit of 
ADF, namely, simplification, reuse, and encapsulation. The last part is particular important 
because it means whatever inside an ADT will not be further interrupted by crossover and 
mutation. In this way, ADTs can be considered as the part of learning in which we have great 
confidence, and leaves no room for doubt. Through ADTs we distinguish what is considered as 
knowledge from what is still in a trial-and-error process. Only the former can then be taken as 
the building blocks (modules), but not the latter. Without ADTs or equivalents, simple genetic 
programming essentially is not designed to develop building blocks; therefore, it is not very good 
at finding modular structure inherent in the problem. 
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MODULARITY AND CONSUMER SATISFACTION  
 

Simple genetic programming can also detect modular structure, but it does it only by 
chance, and hence may be very difficult to detect complex modules.2 To see this, in this section, 
we simulate how well consumers are served when the firm designs new products with modular 
GP (standard GP plus ADTs), and compare the result with that of standard GP. 

In this simulation, there are 100 consumers in the market. Each consumer has a 
preference tree with a depth of six. Viewed from the most top level (the root level), the 
preference tree is composed of two modules. The one on the left, having a depth of five as shown 
in the first row of Figure 2, is identical among all consumers, whereas the one on the right, 
having a depth of five or less is heterogeneous, and is randomly generated by the ramped half-
and-half method, an initialization method frequently used in GP. In this way, consumers’ 
preferences have a common part as well as an idiosyncratic part. For the idiosyncratic part, the 
complexity is also different. 

FIGURE 6 Market Days and Learning Cycles 

A profit-maximizing monopoly firm will try to serve the needs of this group of 
consumers by producing different products with different quantities and also with different 
degrees of specialization or diversification (customization). 3  The firm has to learn the 
consumers’ preferences and hence, through R&D (driven by GP), design better products. The 
entire market process is summarized in Figure 6. The learning cycle (GP cycle) is run with a 
number of generations (in our case, 5000). Each generation is composed of a number of trading 
days (in our case, five). After each learning cycle, the firm has to decide what to produce, 
including some new products developed via production innovation, how many to produce, and 

2 To define and measure complexity, Simon [8] advocated the use of a hierarchical measure – the number of 
successive levels of hierarchical structuring in a system or, in our case, the depth of the parse tree. 

3 See [3] for details. 
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how much to charge. The decision of production and R&D is based on the sales and profits 
statistics collected in the previous market days. The firm then supply what have been produced, 
including those new items, in the next few market days. 

For further analysis, in each generation, statistics regarding consumer satisfaction are 
reported. Consumer satisfaction is measure by the actual utility the consumer received from 
consumption divided by the maximum potential utility the consumer can possible gain given his 
preference. The ratio is then multiplied by 1,000, and the measure lies in [0, 1000]. By averaging 
the consumer satisfaction over all 100 consumers, we then derive the aggregate consumer 
satisfaction, which also lies in the same interval. The result is shown in Figure 7.What Figure 7 
shows is not the result based on a single run, but fifty runs. Accordingly, what is shown in the 
left panel of Figure 7 is the average of the 50 runs, whereas what is shown in the right panel is 
the maximum of the 50 runs. It can be seen quite easily, the firm whose product design uses 
modular structure can satisfy the consumers to a higher degree than the firm whose product 
design uses non-modular structure. 

FIGURE 7 Modularity and Consumer Satisfaction

MODULAR STRUCTURE AND COMPETITIVENESS 

In the previous section, under the assumption of a monopoly firm, we have seen the 
positive impact of using modular structure on consumer satisfaction. In this section, we shall 
pursue further by inquiring the implication of modular structure to the competitiveness of firms. 
In a sense, we attempt to re-examine the story given by Herbert Simon on the competition 
between two watchmakers: one using modular structure and one not. For that purpose, we 
consider a duopolistic competition in which one firm uses modular structure in her R&D (new 
product designs) and the other firm does not. 

The two duopolistic firms compete with other in a market composing of 100 consumers 
whose preferences are partial identical and partial idiosyncratic (see Section 4). We then watch 
their market share, i.e., the total sales of each firm divided by the total sales of the market, and 
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the result is displayed in Figure 8.4 The result presented here is not based on a single run, but 
one hundred runs. The one shown in left panel of Figure 8 is the mean of the 100 runs, whereas 
the one shown in the right panel is the median of the 100 runs. Below the separation line is the 
market share owned by the non-modular firm, and above the line is the market share owned by 
the modular firm. Clearly, their sum equals 100%. 

FIGURE 8 Modularity and Competitiveness

Due to the existence of outliers, the time series behavior of the mean and that of the 
median is not quite the same, but the eventual dominance of the modular firm is evident. In the 
first few hundreds of generations, non-modular firm, however, did have some competitive 
advantage over the modular firm. This is because establishing modules is costly. The idea of 
encapsulation associated with ADTs implies a fixed cost and hence a less degree of mobility, 
depending on the degree of encapsulation or the complexity of ADTs.5 Hence, the modular 
products will generally be more expensive. Unless these products can fit the consumers’ needs to 
a higher degree, these high-price products will exert adverse influence on marketing. Therefore, 
there is no guarantee (a probability of one) that the modular firm will always beat the non-
modular firm. In fact, in 39 out of our 100 runs, the non-modular firm took up a higher market 
share than the modular firm in the last generation (the 5000th generation). 

Finally, as one may expect, competition does bring a better quality to consumers. 
This is reflected in Figure 9. 

CONCLUDING REMARKS 

Consumers are not random and their behavior can be studied and patterns can be 
extracted. On the other hand, innovation normally is not a random jump, but follows a gradually 
changing process. These two together suggests that the economy can be constructed in a modular 
way, or the entire economy has a modular structure. In other words, Herbert Simon’s notion of 
the architecture of complexity has the potential to be applied to the whole economy. In this paper, 
we study the significance of modularity in product innovation. We find that both consumers and 

4 Notice that firms generally produce more than one product and can be very different between each other. 
Therefore, it is meaningless to measure the market share based on a single product. 

5 See footnote (2) for the measure of complexity. 
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producers can benefit from the use of modular structure in product design. However, modularity 
may imply a higher cost and less mobility; therefore, its dominance is not certain. Using Simon’s 
story, there is a chance that Tempus prospers and Hora fails. 

FIGURE 9 Consumer Satisfaction under Competition  
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THE EVOLUTION AND PERSISTENCE OF DOMINANT ROLES IN 
INTERORGANIZATIONAL RELATIONSHIPS 

 
V.A. BARGER,  University of Wisconsin–Madison 

ABSTRACT 

Recent application of role theory to economic behavior (Montgomery 1998) has provided 
new insights into interorganizational relationships (Heide and Wathne 2006).  In 
particular, role theory offers a framework for investigating the source of seemingly 
contradictory accounts of economic exchange, including Uzzi’s (1997; 1996) finding that 
embeddedness enhances firm survival in the apparel industry and Wathne, et al.’s (2001) 
discovery that embeddedness does not insulate a firm from price competition in the 
commercial banking industry.  The key to understanding these discrepancies lies in the 
divergent evolution of dominant relationship roles.  This paper investigates the evolution 
and persistence of roles in interorganizational relationships from a role-theoretic 
perspective using agent-based modeling. 
 
Keywords: interorganizational relationships, role theory, economic behavior, agent-
based modeling 

INTRODUCTION 

According to the classical and neoclassical schools of thought, economic transactions are 
coordinated through the mechanism of price; that is, the totality of information necessary for 
exchange is communicated by the price associated with the transaction.  Moreover, economic 
actors are rational, utility maximizing, and self-interested.  Granovetter (1985) criticizes this 
view of economics as “undersocialized,” in that it “disallow[s] by hypothesis any impact of 
social structure and social relations on production, distribution, or consumption.”  He contends 
that economic behavior is “embedded” in social relations and that these relations have a 
significant impact on how actors behave.  This, then, is the “problem of embeddedness”: that 
“behavior and institutions to be analyzed are so constrained by ongoing social relations that to 
construe them as independent is a grievous misunderstanding” (Granovetter 1985). 

Granovetter’s hypothesis is supported by empirical research in the apparel industry.  Uzzi 
(1997; 1996) found that firms that rely on arm’s length market transactions are more likely to fail 
than are firms that leverage social relations.  He attributes this outcome to three features of 
embedded transactions: trust, information sharing, and joint problem solving.  More recently, 
however, Wathne, Biong, and Heide (2001) uncovered evidence to the opposite effect: in the 
commercial banking industry, social relations are ineffective at protecting firms from price and 
product competition.  Although social relations can create a barrier to switching, they are 
outweighed by firm-level switching costs and competitor superiority in price or product breadth. 
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Montgomery (1998) offers a role-theoretic conception of embeddedness that may help 
resolve this apparent contradiction.  He attributes discrepancies in economic behavior to the roles 
elicited by relationships: (1) the role of “businessperson,” who maximizes profit, and (2) the role 
of “friend,” who cooperates out of principle.  Which role is invoked in a particular transaction 
depends on the history of the relationship.  Heide and Wathne (2006) extend this role-theoretic 
perspective to the governance of interorganizational relationships, proposing a conceptual 
framework that links governance strategies to roles and role activation.  They identify two 
specific areas for future research: (1) the connection between roles and profitability, and (2) the 
sources of “stickiness” of roles. 

The purpose of this research is to explore the consequences of embeddedness from a role-
theoretic perspective.  In particular, we seek to explain why certain industries exhibit a high level 
of embeddedness, whereas others favor arm’s length market transactions.  To this end, we 
investigate how roles can become dominant in an industry and, once established, influence the 
profitability of industry players.  Greater understanding of how roles evolve within industries and 
the implications of an established, dominant role will help inform the governance decisions for 
firms entering or competing in such industries. 

In the following section, we expand on our discussion of the role-theoretic perspective of 
economic behavior and introduce hypotheses on the evolution and persistence of roles in 
interorganizational relationships.  We then propose an agent-based model for testing the 
hypotheses.  Finally, we present our findings and discuss their implications and limitations. 

CONCEPTUAL FRAMEWORK 

Uzzi (1997) classifies business relationships as either “arm’s length” or “embedded.”  
Arm’s length relationships are characterized by non-repeated transactions where the emphasis is 
on price.  Performance is assured through contracts and monitoring, and problems are solved by 
switching suppliers.  In contrast, embedded relationships are characterized by repeated 
transactions where price is but one consideration.  Personal relations play a key role in business 
decisions, and relationships are governed by trust and reciprocity.   As a result, embedded 
relationships benefit from higher levels of information sharing and joint problem solving.  In 
other words, embedded relationships encourage cooperation, whereas arm’s length relationships 
discourage it. 

In role-theoretic terms, arm’s length and embedded relationships are the result of firms 
assuming the roles of “businessperson” and “friend,” respectively (Montgomery 1998).  The 
businessperson follows the “logic of consequences” and seeks to maximize utility, while the 
friend follows the “logic of appropriateness” and behaves according to rules and norms (March 
1994).  Thus a friend favors cooperation even if it results in short-term loss, while the 
businessperson defects if doing so results in the highest gain.  Different roles may be invoked at 
different times in different relationships. 

Which role an actor assumes in a relationship depends on the disposition of the actor and 
the history of interactions between the actor and the other party (Heide and Wathne 2006).  
Montgomery (1998) conceptualizes this as a threshold model: for each party an actor interacts 
with, the actor maintains a mental record of “degree of friendship” (see Figure 1).  When the 
actor interacts with another party, his degree of friendship with the other party increases or 
decreases depending on the characteristics of the interaction.  For example, if the other party 
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goes above and beyond the letter of a contract to help the actor, the degree of friendship will 
increase.  If, on the other hand, the other party insists on compliance with the terms of a contract 
despite unforeseen difficulties, the degree of friendship will decrease.  When the degree of 
friendship exceeds a certain level, the “friendship threshold,” the actor assumes the role of 
friend.  If the degree of friendship is beneath the friendship threshold, the actor assumes the role 
of businessperson. 

The predisposition of an actor to assume the role of businessperson or friend is reflected 
in the actor’s friendship threshold.  An actor who is quick to befriend others will have a low 
friendship threshold, whereas an actor who prefers to stay at arm’s length will have a high 
friendship threshold.  The initial degree of friendship is determined by the mechanism through 
which the actors are first introduced.  Consistent with Uzzi’s (1996) findings, if the actors are 
introduced by a mutual friend, the initial degree of friendship will be relatively high.  If instead 
the actors meet through search in an anonymous market, the initial degree of friendship will be 
low. 

This conceptualization of economic behavior as a series of roles can be extended to an 
industry of firms.  An embedded market can be viewed as one in which the dominant 
relationship role—i.e., the role assumed by the greatest number of firms in the industry—is that 
of friend.  An anonymous market, in contrast, is one in which the dominant relationship role is 
that of businessperson.  Moreover, we can speculate as to the type of industry that will arise 
given an initial level of embeddedness.  Based on Uzzi’s (1996) finding that “embedded ties can 
originate from anonymous market ties, but this source of embeddedness is uncommon in [the 
apparel] industry,”  we hypothesize that: 

H1A: The dominant relationship role that will evolve in an industry that is initially 
devoid of embeddedness (i.e., an anonymous market) will be that of 
businessperson. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1  Threshold model of role determination 
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A market may be embedded from the outset when business relationships have been 
primed for embeddedness by third-party referrals or personal relationships (Uzzi 1996).  As the 
initial level of embeddedness in an industry increases, we expect to see a greater number of firms 
adopting the role of friend.  Moreover, we hypothesize that there is a critical initial level of 
embeddedness which, if exceeded, will lead to the evolution of an embedded industry.  In other 
words: 

H1B: The dominant relationship role that will evolve in an industry initially 
characterized by a level of embeddedness above a critical point will be that of 
friend. 

Uzzi (1996) demonstrated that in the apparel industry, firms that preferred embedded 
relationships over arm’s length relationships were more likely to survive.  Since the apparel 
industry most closely resembles an embedded market, we can infer that, in embedded markets, 
firms that are predisposed to assume the role of friend will outperform firms that operate as 
businesspersons.  On the other hand, in an anonymous market it is predicted that firms that are 
predisposed to the role of businessperson will outperform firms that prefer to act as friends, since 
in such markets friends will not realize gains due to cooperation and, moreover, are likely to be 
taken advantage of by businesspersons.  Therefore, we predict that: 

H2A: In an embedded market, firms that prefer the role of friend will outperform 
firms that prefer the role of businessperson. 

H2B: In an anonymous market, firms that prefer the role of businessperson will 
outperform firms that prefer the role of friend. 

METHODOLOGY 

Similar to Montgomery (1992), we model firm behavior as a repeated prisoner’s 
dilemma.  Rather than analyze the game mathematically, however, we employ agent-based 
modeling.  This enables us to investigate emergent properties of the system (Axelrod and 
Tesfatsion 2006), which is essential in a model such as ours, where the behavior of actors is 
dependent on past experience and the actors continually adapt based on their interactions.  
Moreover, agent-based modeling permits experimentation with a heterogeneous population of 
actors (Axtell 2000), in this case a population of firms with different roles, predispositions, 
relationships, and histories. 

Our model specification is presented below.  This is followed by a description of how 
core aspects of the model are operationalized.  Finally, the findings from simulations of our 
agent-based model are reported. 

Model Specification 

Two types of firms are represented in the model: manufacturers and suppliers.  
Manufacturers purchase materials from suppliers to use in the manufacturing process, and 
suppliers sell these materials to manufacturers to earn a profit.  Interactions between 
manufacturers and suppliers take the form of a repeated prisoner’s dilemma (see Figure 2).  Each 
period, the manufacturers choose the suppliers from whom to purchase materials.  A supplier can 
either “cooperate” by delivering the product as expected or “defect” by shirking on product 
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quality or quantity.  Similarly, a manufacturer can either “cooperate” by paying the full amount 
for the product or “defect” by demanding allowances from the supplier.  Note that only the 
interactions of principal exchange partners are modeled.  That is, the supplier selected by a 
manufacturer is assumed to be the one that supplies the most product to that manufacturer in that 
period.  This does not preclude the possibility of a manufacturer obtaining materials from 
multiple suppliers; however, including secondary sources in the model could underestimate the 
effect of embeddedness (Uzzi 1996). 

The interaction history between a manufacturer and a supplier is encapsulated in their 
“degree of friendship” (Montgomery 1992).  When a manufacturer’s degree of friendship with a 
supplier exceeds the manufacturer’s “friendship threshold” (see Figure 1), it will assume the role 
of “friend” when interacting with the supplier.  If, on the other hand, the manufacturer’s degree 
of friendship is less than or equal to its friendship threshold, it will assume the role of 
“businessperson.”  Likewise, each supplier has a degree of friendship with each manufacturer.  
When the supplier’s degree of friendship with a manufacturer exceeds the supplier’s friendship 
threshold, it will assume the role of “friend” when interacting with the manufacturer.  When the 
supplier’s degree of friendship is less than or equal to the supplier’s friendship threshold, it will 
assume the role of “businessperson.”  After each exchange, the firms update their respective 
degrees of friendship to reflect the outcome of the transaction.  If the other party cooperated, the 
firm increases its degree of friendship with the other party.  If instead the other party defected, 
the firm decreases its degree of friendship with the other party.  Thus firms are capable of role 
switching (Heide and Wathne 2006; Montgomery 1992) based on their interaction histories. 

 
  Supplier 
  C2 

(“delivers as 
promised”) 

D2 
(“shirks on quality 

or quantity”) 

C1 
(“pays in full”) 

 
5, 5 

 

 
3, 6 

Manufacturer 
D1 

(“demands 
allowances”) 

 
6, 3 

 

 
4, 4 

 

FIGURE 2  Payoff matrix for manufacturer and supplier in two-sided prisoner’s dilemma 
 
 

How the parties to a transaction behave (i.e., whether they cooperate or defect) 
determines the payoffs each receives from the transaction (see Figure 2).  The firms’ behavior, in 
turn, is a function of the role assumed: a “friend” cooperates out of principle, while a 
“businessperson” opts for short-term gain and defects (Montgomery 1992).  If both manufacturer 
and supplier cooperate, the manufacturer receives the full value of its purchase (U1(C1,C2) = 5) 
and the supplier receives full payment (U2(C1,C2) = 5).  If the manufacturer cooperates and the 
supplier defects, the manufacturer receives less than the full value of the purchase (U1(C1,D2) = 
3) due to the supplier’s shirking on quality or quantity, and the supplier receives more than fair 
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compensation (U2(C1,D2) = 6) due to savings on materials and labor.  If, instead, the 
manufacturer defects and the supplier cooperates, the manufacturer receives more than the full 
value of the purchase (U1(D1,C2) = 6) by demanding allowances for defective merchandise when 
the product is in fact satisfactory, while the supplier receives less than fair compensation 
(U2(D1,C2) = 3).  Finally, if both manufacturer and supplier defect, the manufacturer receives less 
than the full value of the purchase (U1(D1,D2) = 4) due to the opportunity cost of not having 
necessary supplies on hand, and the supplier loses potential revenue (U2(D1,D2) = 4) due to 
allowances granted the manufacturer.  Note that the payoff matrix satisfies the requirements for a 
two-sided prisoner’s dilemma (Axelrod 1984), since U1(D1,C2) > U1(C1,C2) > U1(D1,D2) > 
U1(C1,D2), U2(C1,D2) > U2(C1,C2) > U2(D1,D2) > U2(D1,C2), and U1(C1,C2) > (U1(D1,C2) + 
U1(C1,D2))/2. 

To decide which supplier to purchase materials from, a manufacturer starts by ranking its 
suppliers by degree of friendship.  If the manufacturer is friends with one or more suppliers (i.e., 
the manufacturer’s degree of friendship with the supplier exceeds the manufacturer’s friendship 
threshold), the manufacturer will choose the supplier with which it has the highest degree of 
friendship.  If several suppliers have equally high degrees of friendship, the manufacturer will 
randomly select one.  If the manufacturer is not friends with any suppliers (i.e., the 
manufacturer’s degree of friendship is below its friendship threshold for all suppliers), the 
manufacturer will randomly select a supplier.  This corresponds to a businessperson choosing the 
supplier with the lowest price. 

Operationalization 

Three aspects of the model require further elaboration with respect to how they are 
operationalized: (1) role activation, (2) role preference, and (3) market embeddedness. 

Role activation.  The degree of friendship between two firms (see Figure 1) is expressed 
as an integer from zero to ten, with zero corresponding to the absence of friendship and ten 
representing the highest possible level of friendship.  Likewise, the friendship threshold is also 
expressed as an integer from zero to ten.  When degree of friendship exceeds a firm’s friendship 
threshold, the firm assumes the role of “friend.”  When degree of friendship is less than or equal 
to a firm’s friendship threshold, the firm assumes the role of “businessperson.”  Note that 
friendship can be asymmetric, in that a manufacturer’s degree of friendship with a supplier may 
differ from the supplier’s degree of friendship with the manufacturer; moreover, the two firms 
may have different friendship thresholds.  Thus a manufacturer may assume the role of friend 
with a supplier who assumes the role of businessperson or vice versa. 

Role preference.  The preference of a firm for the role of friend or businessperson is 
indicated by the firm’s friendship threshold.  A high friendship threshold indicates a firm that 
prefers the role of businessperson, since the firm requires a higher degree of friendship with 
another firm before it will assume the role of friend.  In contrast, a firm with a low friendship 
threshold is characterized as preferring the role of friend, since a lower degree of friendship with 
another firm is needed for it to assume the role of friend.  Friendship thresholds are presumed to 
be normally distributed in the population, and thus are randomly assigned to firms from a normal 
distribution with μ = 5 and  = 1. 

Market embeddedness.  The embeddedness of a market refers to the extent to which 
economic behavior is influenced by social relations (Uzzi 1996).  In an anonymous, arm’s length 
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market, economic behavior is completely unaffected by social relations.  In contrast, in a wholly 
embedded market, economic behavior is completely determined by social relations.  Although 
neither of these may be plausible per se, they are valuable from a theoretic standpoint as the 
endpoints of a continuum of markets, from the anonymous to the wholly embedded; as the level 
of embeddedness increases, so does the influence of social relations on economic behavior 
within the market. 

In this study, the level of embeddedness of a market is specified on a scale of zero to ten, 
where zero represents an anonymous market and ten corresponds to a wholly embedded market.  
To simulate an anonymous market, the initial degrees of friendship of all firms are set to zero.  
Similarly, to create a wholly embedded market, the initial degrees of friendship are set to ten.  
Between the two extremes, the initial degrees of friendship are randomly assigned from a 
Weibull distribution, where the parameterization of the distribution depends on the level of 
embeddedness (see Figure 3).  Thus as the level of embeddedness increases, so does the 
probability of a firm being assigned a high initial degree of friendship with another firm.  (For 
embeddedness greater than five, the mirror image of the distributions shown in Figure 3 are 
utilized.  For instance, a market with a level of embeddedness equal to seven is generated from 
the mirror image of the Weibull distribution for embeddedness level three.)  Note that each of the 
Weibull distributions has a mean equal to the level of embeddedness.  For example, the expected 
value of a random variable distributed as Weibull(2.2, 4.52) is four, the same as the level of 
embeddedness represented by that distribution. 
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Results 

The model was programmed in Java and simulated with REPAST, an open source agent-
based modeling environment (North et al. 2006).  Model parameters were determined by the 
hypothesis being tested, as discussed below.  For each set of parameters, the model was run 
twenty times, and results from batches of runs were aggregated for analysis.  In each run, a 
market comprised of twenty manufacturers and twenty suppliers was simulated for 250 periods. 

To test Hypotheses 1A and 1B, markets with initial levels of embeddedness from zero to 
ten were simulated.  Each period, the number of firms that assumed the role of “friend” in a 
transaction was recorded; these data are graphed as percentages in Figure 4 (the numbers in 
italics indicate the level of embeddedness of the market at outset).  In support of Hypothesis 1A, 
firms that start in an anonymous market assume the role of businessperson throughout the 
simulation.  Similarly, firms that assume the role of businessperson in markets with initial levels 
of embeddedness equal to 1, 2, and 3 are consistently in the majority.  Averaged over the last 
fifty periods, they account for 100%, 94.5%, and 68.5% of the firms participating in transactions, 
respectively.  In contrast, firms assuming the role of friend in markets with an initial level of 
embeddedness greater than or equal to 4 quickly become the majority.   Averaged over the last 
fifty periods, they account for 72.8%, 93.4%, and 100% of the firms participating in transactions, 
respectively.  Thus Hypothesis 1B is supported. 
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FIGURE 5  Manufacturer payoffs 
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FIGURE 6  Supplier payoffs 
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To test Hypotheses 2A and 2B, two types of markets were simulated: an anonymous 
market and an embedded market (level of embeddedness = 8).  Each period, the cumulative 
payoffs for firms with friendship thresholds greater than five (i.e., firms that prefer the role of 
“businessperson”) and for firms with friendship thresholds less than five (i.e., firms that prefer 
the role of “friend”) were recorded.  The data for manufacturers are graphed in Figure 5 and the 
data for suppliers are graphed in Figure 6.  Surprisingly, firms that assume the role of “friend” 
outperform firms that assume the role of “businessperson” in both anonymous and embedded 
markets, supporting Hypothesis 2A and disconfirming Hypothesis 2B.  In the embedded market, 
manufacturer “friends” realize an average final payoff of $6,374, compared to $2,062 for 
“businesspersons.”  Similarly, in the anonymous market, manufacturer “friends” earn a total of 
$5,500, while manufacturer “businesspersons” earn only $1,650.  For suppliers, “friends” in the 
embedded market receive $6,026, compared to $2,278 for “businesspersons”.  In the anonymous 
market, “friends” receive $4,921, compared to $1,724 for “businesspersons.” 

It is informative to consider the relative increases in profitability that are achieved by 
adopting the role of “friend” versus “businessperson” or by functioning in an embedded versus 
anonymous market.  Manufacturers are over three times as profitable (3.1 in the embedded 
market and 3.3 in the anonymous market) when they assume the role of friend instead of the role 
of businessperson, while suppliers are between 2.6 and 2.9 times as profitable.  With respect to 
market type, manufacturer “friends” realize a 16% gain by operating in an embedded market 
instead of an anonymous market, and manufacturer “businesspersons” achieve a 25% gain.  
Suppliers do even better in embedded markets; they realize a 22% gain when in the role of 
“friend” and a 32% gain when in the role of “businessperson.” 

DISCUSSION 

Our model shows that the conditions surrounding the development of a market have a 
powerful influence on the ultimate characteristics of the market.  Namely, a market primed for 
embedded relations will tend to evolve into a market dominated by “friends,” whereas a market 
without such priming will be dominated by “businesspersons.”  These dominant relationship 
roles in turn determine the form of the market.  When the majority of the firms assume the role 
of “friend,” the market is highly embedded.  When the majority assume the role of 
“businessperson,” however, the market is more accurately portrayed as “anonymous” or “arm’s 
length.” 

Beyond providing insight into why markets differ in embeddedness, our model suggests 
that certain relationship roles are superior from a profitability standpoint regardless of the level 
of embeddedness.  Assuming the role of “friend” not only results in greater profit in embedded 
markets, it benefits firms in anonymous markets, too.  In fact, firms in anonymous markets 
realize a larger increase in profitability by assuming the role of “friend” than do firms in 
embedded markets.  This runs counter to the popular notion that a business in a cutthroat 
industry must itself behave in a cutthroat manner.  On the contrary, the business may achieve 
superior returns by adopting the role of “friend.” 

Our agent-based model offers insights into the evolution and persistence of 
interorganizational relationship roles.  Empirical verification of the predictions of the model are 
important for providing support for the model’s external validity.  This may prove difficult, 
however, since data on the initial conditions of markets, particularly with respect to 
embeddedness, is not easily obtained. 
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Two additional aspects of the model deserve further attention.  First, the model focuses 
on the impact of initial market characteristics.  It is conceivable, though, that shocks to the 
system that occur at a later time may also have a significant impact on the dominance of 
relationship roles.  Second, the model is built on the assumption that embeddedness discourages 
opportunism.  However, it has been suggested that firms may expose themselves to increased 
opportunism if they become overembedded (Granovetter 1985; Uzzi 1997; Uzzi 1996).  The 
model could be extended to explore the impact of overembeddedness on firm performance. 
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THE DYNAMIC ENDOGENOUS EVOLUTION OF VOTER PREFERENCES 
 

Alberto Alexander Perez*, Trinity College Dublin. Dublin, Ireland. 
 

ABSTRACT  
 

Why voters vote the way they do and how their preferences are formed are themes that 
have inspired much interdisciplinary research. A point in particular that has stirred debate 
is the question of the evolution of voter preferences through time. Are voters’ preferences 
fixed or do they evolve?  And if they evolve through time, do they evolve significantly to 
affect elections? Is this evolution and these changes in voters’ preferences generated by 
exogenously determined shocks or can we explain this evolution endogenously? 
A model that introduces endogenous dynamic evolution of voters’ preferences is 
presented as well as a computer simulation written in Netlogo. Together they serve as 
tools to explore the plausibility of a dynamic endogenous evolution of voter preferences 
within the context of a spatial model of party competition. 
 

 Keywords: Computational Social Science Voter Preferences Netlogo Electoral Behavior  
 
 

INTRODUCTION  
 

 As with any other type of model and simulation in the social sciences, election 
prediction is difficult. The deterministic nature of laws and environment rules in the natural 
sciences does not quite exist, at least in the same easily reproducible manner that facilitates 
experimentation in the social sciences and so although we can build extremely sophisticated 
models and simulations we can only approximate our models to a degree to reality. In the end it 
is only the election result that provides us with a way to calibrate our models and since in many 
ways each election is unique, the predictive capabilities of any model and simulation are 
confirmed only post facto. 

Should we throw up our hands at an exercise that seems so doomed to always lack in its 
certainty of results? If our interest is the accuracy of election prediction only, it seems indeed 
that our destiny is similar to that of Tantalus, with the objective ever so close to us but 
condemned to ever fall short of our goal, however if we wish to study theoretical possibilities an 
study trtends, the story is different. 
 

ELECTORAL BEHAVIOR APPROACHES AND ASSUMPTIONS 
 

Many models, reflecting each a particular set of assumptions and a particular 
understanding of the world, have been created not necessarily just to predict but also to 
understand voter and party behavior. Models that belong to the rational choice camp have been 
very prolific models producing data, predictions and establishing relationships among variables 
that affect election outcomes (Page, Benjamin I., and Robert Y. Shapiro. 1992). However when it 
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comes down to prediction, the results have been unclear, yet their explanatory power is a pillar of 
the elections and voter behavior field (Niemi, Richard G., and Herbert F. Weisberg. 1992). There 
are other models with different assumptions that deal with the more evident shortcomings 
presented by the rational choice camp. Some of the more widely disseminated and influential 
models are those of the Michigan school or voter identification theories of party competition 
(University of Michigan Survey Research Center and Angus Campbell.1960). Voter 
identification models are helpful in understanding relationships between voter choice and party 
behavior, election results as well as with the inner social relationship in the electoral 
environment.  

 
 Anthony Downs stated in his seminal work; An economic theory of democracy 

(Downs, Anthony. 1957), one of the assumptions that has raised discussion as whether being 
appropriate is the assumption of endogenous preferences. This is the assumption that states that 
voter preferences are fixed through time, only to be affected by external shocks that affect the 
system in such a way that the voter preference distribution changes and so parties need to adjust 
their stated policies in reaction to these shocks if they wish to capture enough votes to be elected. 
Although preference change is recognized by Downs, stating that in the long run voter 
preferences do change, he believes that in the short run voter preferences are more likely to be 
fixed, and assuming so simplifies his model. 
 
Endogenous voter preferences 
 

The central idea in the discussion of endogenous voters preferences is that voter 
preferences are not fixed over time, they do change influenced by the environment and by voters 
around them. The reasoning is fairly straightforward; it is impossible for voters to have a ready-
made opinion about all issues at the same time (Zaller, John. 1992). They do not have the time or 
perhaps even the interest to inform themselves about all points possible within a policy space. 
And so, even if they had an opinion, often they do not know how such a policy would affect 
them directly (Saris, Willem E., and Paul M. Sniderman. 2004).  

Faced with many of this policies, voters look around them to people they trust for 
indications and pointers on many policies, either establishing, re-affirming or changing 
preferences and opinions particular issues convinced that the position of those believed to know 
better, or at least have a better understanding of the information available, would provide them 
with a higher level of utility than the position they had or would have taken by themselves alone 
(Summers, David A. 1968).   

 
Preferences, even if we believe that they are fixed, can change if we are presented good 

reasons to do so, as the environment and the conditions under which they were formed in the first 
place change. This is different from assuming that there is an external shock by stating that these 
environmental changes are normal and indigenous of the system (Sniderman, Paul M., Richard 
A. Brody, and Philip E. Tetlock. 1991). If preferences were assumed to be fixed, campaigning 
would make little sense, as we would assume that voters could not be convinced that the policies 
espoused by each candidate are the best. Opinion polls would be unnecessary as people would 
maintain their policy positions and would not change their minds. Grass roots organizations 
would have no effect in the dissemination of policy, and the concept of convincing the voter 
about the usefulness of certain policies would be completely irrelevant. 
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The dynamic endogenous evolution of voter preferences model 
 

The model presented here and the simulation built around it addresses the endogenous 
evolution of voter preferences and it incorporates a dynamic analysis of the system. Both parties 
and voters make the system evolve continuously by adapting their positions and making the 
system dynamic, evolving across the policy space through time. 

 
The model presented here has the following assumptions: 
 

• The model consist of voters and parties only 
• The parties and voters move in a two-dimension policy space.  
• Parties try to gather the maximum number of votes by positioning themselves as 

close as possible to a maximum number of voters 
• One voter one vote. 
• Parties are free to move along the policy space as they see fit. There is no 

restriction on positional movement. 
• Parties choose strategies on how to attract voters and they act accordingly to 

stated rules of each strategy. 
• Voters vote for the party closest to them, regardless of the direction in which this 

party lies around them. 
• Voters can modify a particular voter’s preferences, i.e. voters may move among 

the policy space, attracting other voters. 
• Voters do not move randomly across the policy space. The rules for their 

movement are based on explicit conditions assumed at the time of building the 
voting environment, and they are well specified. 

 
Parties do not directly modify voter’s movement. They only affect affiliation. However, 

if a rule of attraction has been assumed, and a voter can attract another after switching to a new 
party, by that voter’s decision, a third voter may be instilled to move by this switch.  

With this model a simulation of the policy space has been created for the analysis of the 
concepts that we have discussed. The first part of the model, the party movement side, 
incorporates a dynamic agent-based version of the general spatial model of party competition 
Created by Michael Laver (Laver, 2005). This model provides the foundation of the dynamics in 
the model and introduces the idea and concept of party strategies, allowing for an adaptive 
dynamic behavior of parties in the system. The second part if the system incorporates the 
concepts of voter’s endogenous evolutionary preference change. It allows a set of conditions 
under which voter’s preferences will be affected and evolves through time adapting to the 
conditions of the system. 
 

The dynamic endogenous evolution model of voter preferences (or DEE from here on) is 
then constituted of these two parts incorporated into one simulation put together and written in 
Netlogo 3.1.4. For the specifics of Michael Lavers’ model and simulation, please refer to Laver, 
Michael. 2005. For the purposes of this paper a description of the environment and the 
simulation incorporated is here included 
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THE SIMULATION 

 
The simulation is composed of two parts, the party movement and strategy part and the 

voter behavior part. The party behavior side assumes that parties can choose strategies according 
to their gain or loss of support or how ideologically tied they are with a particular policy. 
Supporters, who are agents in the model, use a very simple decision rule: they affiliate to the 
closest party. Party leaders use one of a number of decision rules that can be chosen by the 
operator in the interface for each party included in the system. In the STICK rule the party leader 
never changes the policy position of the party, regardless of the affiliations of supporters. This 
models a very ideological party that cares only about its policy position.  

In the AGGREGATE rule the party leader sets party policy at the mean position on each 
dimension of the policies of the affiliated supporters. 
In the i-HUNT rule (Insatiable Hunter) the party leader hunts for support using a simple "win-
stay, lose-shift" Pavlovian hunting algorithm. In the s-HUNT rule (Satiable Hunter) if the 
previous move neither increased nor decreased support, stand still. The PREDATOR rule 
specifies that the party observes the current size of all parties and move towards the position of 
the largest party.  

 
Besides being able to choose these rules the model includes options to choose number of 

parties, number of voters and the party switching sensibility in the part of voters. A graph and 
monitors show us the evolution in the size of parties, and we have a button that allow us to 
“jitter” supporters, i.e. to introduce a random walk in voters to analyze dynamics after a steady 
state or to introduce a shock if we think this is appropriate. All these elements come from Laver, 
2005. 
 

The voter side is composed of a chooser switch that allows us to set up the voter 
environment. The setting named DOWNS makes voters behave as in a rational choice model. 
They are fixed. This mode is included for comparison purposes. The setting NEIGHBOR 
instructs voters to look at their immediate surroundings and identify the closest ideological 
neighbor and take a step towards them. This is to simulate an environment where voters are 
acutely aware of the ideological positions of everybody and have the capacity to identify who is 
the closest person in their immediate ideological neighborhood. The setting RANDOM ANY 
allows the voters to pick a supporter at random, this is to simulate an environment where there is 
very little information about who surround us in the preference space and we are attracted to 
those who have other properties that affect our decision such as physical closeness, family 
friendship etc. The setting RANDOM DIFFERENT is the same as the previous one, but it 
exclusively allows for voters to be attracted to voters affiliated to other parties. This is done to 
try to catch the effects of non-policy related party dissatisfaction. 

 
The setting CLOSEST ANY simulates an environment in which the voter has a perfect 

knowledge of the preference space and is attracted to the closest, ideologically, voter to him. 
This is different to neighbor since in this case, if dispersion of voter preferences is very big, the 
voter still would be able to identify and be attracted by another voter, and not only by those that 
are immediately in their ideological “neighborhood”. The setting CLOSEST DIFFERENT is 
similar to the previous one, but the voter is only attracted to voters that do not share his same 
party affiliation. Again this is to try to include effects that are non-policy related in his 
attachment for a party, such a personal dislike of the leadership of a party (Figure 1). 
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FIGURE 1 Model’s interface and settings. In this case, showing dynamics of party and 
voters with their interactions displayed as voters lost or gained and party size. 
 
The interaction of the two parts makes the DEE model complete. Voters react to other voter’s 
behavior and parties to voter movement. Indirectly parties affect the movement of voters as well, 
in particular in the RANDOM DIFFERENT and CLOSEST DIFFERENT settings. The main 
interactions can be tracked in the interface where there are two plots and several reporters. The 
first graph keeps track of the party evolution, i.e. how parties grow or become smaller through 
the system. The second Graph shows the net change in voters, represented by a negative number 
if the party lost voters or a positive number if the party gained voters.  

We will see what is the behavior of the model in the following section. 
 
Model Evolution 
 

The model can describe real life situations. In particular it has provided scenarios that 
seem to suggest that bandwagon-effects, underdog effects, sandbagging effects and the growth of 
extreme parties is an emergent property of a dynamic evolutionary system. We can say that 
experiments performed with the model indicate endogenous movement that results in these 
phenomena. the analysis of the dynamics seem to be scale and time dependent (Figure 2). 
 
 
The key to implement the model is to accurately observe the desired party and voter environment 
that we want to reproduce, if that is our objective, although theoretical manipulation of the 
potential possibilities seems as rich if not more fertile ground for research 
 

From preliminary results, evidently a combination of party dynamics with all using i-
HUNT strategies or and CLOSEST-ANY produce the more interesting dynamics. The system is 
in constant movement and the results are surprising. On the other hand, the combination STICK 
and DOWNS give no movement to the system whatsoever. 
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Figure 2. The stability of the systems, it seems, depends of the magnitude of the time 
interval used to analyze the system, which poses interesting questions on current 
theory. 

 
 
From the combinations in between we can say that the if we set all parties at STICK we 

can then observe voter only behavior in the system, and vice-versa, if we set the voter 
environment to Downs, it reverts to the original Laver 2005 model. If we want to emulate a 
purely Downsian rational choice model, the settings would be PREDATOR for all parties and 
DOWNS for voters. 

 
Other results that are interesting are those obtained with any party setting and a voter 

setting of RANDOM-ANY or RANDOM-DIFFERENT.  In the first instance the system seems 
to collapse to the center, but since these are ideal points, even in the center there is movement 
and evolution. Hence the result of a party gaining all voters and collapsing into a single spot is 
not a trivial one as it is modified by the evolution of the system. 

 
The settings that provided with interesting results to study the behavior of voters at the 

borderlines of different parties are those of NEIGHBORS and CLOSEST DIFFERENT. Most of 
the evolution and adaptation in these cases is strictly at the edges of all political parties 
regardless of their strategies, and has prompted us to consider a study of undecided voters based 
in an agent based model in the future. 
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CONCLUSIONS 
 

The development of a model that incorporated endogenous evolutionary voter’s 
preferences proved not only to be plausible but also theoretically and experimentally rich. The 
evolution of the systems described not only describe familiar systems but also propose the 
existence of different plausible scenarios in real life and may help to achieve a theoretical 
understanding of such cases. The model has proven reliable in the sense that by using the 
appropriate settings we can simulate standard models of electoral competition, yet it is flexible 
enough to allow us to modify and adapt it to systemic conditions that we may want to emulate. 
Just as with any other model, the transposition and usefulness to test or understand real world 
data, if we wished to use it for this purpose, completely relies in the understanding of the system 
being emulated and the appropriate conditions that need to be used to choose the settings. An 
immediate objective is to use this model to simulate the French, Belgian and Dutch elections to 
try to understand their dynamics in regards to the evolution of radical right parties in these 
countries, and objective that gave rise to this approach. An interesting approach would be to test 
this model and simulation in a two-step process, as in the primaries in the United States with 
many candidates, and presidential elections, as second round elections, with only two, A 
challenging prospect but a very rich one. 
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SPONTANEOUS COORDINATION
D. DIERMEIER,∗ Northwestern University, Evanston, IL

C. ANDONIE, Northwestern University, Evanston, IL

ABSTRACT

In this paper we study large potential games with global random matching. The
model defines a discrete stationary Markov process, in discrete time. We derive the
limiting distribution for the paradigmatic case of coordination 2x2 games.We show
that spontaneous coordination is possible for substantial noise levels. Whether coor-
dination occurs depends on the product of the incentives (benefit of coordinating, J)
and an incentives responsiveness parameter that captures noise in the system (β). If
the product is below a critical level, players fail to coordinate; if it is above, the dis-
tribution will be bi-modal with the highest peak close to the risk-dominant strategy.

Keywords: Markov process, Limiting distribution, Adaptive model, Coordi-
nation, Noisy best response

INTRODUCTION

Theoretical economics has recently begun to explore the implications of models of
bounded rationality and learning.2 The basic idea is as old as Nash equilibrium. In his
unpublished Ph.D. dissertation, John Nash wrote the following:3

It is unnecessary to assume that the participants have full knowledge of the total
structure of the game, or the ability and inclination to go through any complex
reasoning processes. But the participants are supposed to accumulate empirical
information on the relative advantages of the various pure strategies at their
disposal.
To be more detailed, we assume that there is a population (in the sense of statis-
tics) of participants for each position of the game. Let us also assume that the
’average playing’ of the game involves n participants selected at random from the
n populations, and that there is a stable average frequency with which each pure
strategy is employed by the ’average member’ of the appropriate population (...)
Thus the assumption we made in this ’mass-action’ interpretation leads to the
conclusion that the mixed strategies representing the average behavior in each of
the populations form an equilibrium point.

∗Corresponding author address: Daniel Diermeier, MEDS Department, Kellogg School of Management,
and Northwestern Institute on Complex Systems (NICO), Northwestern University, 2001 Sheridan Road,
Evanston, IL 60208; e-mail: d-diermeier@kellogg.northwestern.edu

2For overviews see e.g. Fudenberg and Levine (1998), Young (1998), Blume (1997).
3Nash, pp. 21-23, quoted in Weibull (1997).
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Most of the work, however, has focused on providing behavioral foundations for ex-
isting solution concepts, most importantly Nash-Equilibrium and its refinements (Foster
and Young (1990), Blume (1993), Blume (1995), Kandori, Mailath, and Rob (1993), Young
(1993)). The general strategy of this approach can be described as follows. For a given
normal form game, the researcher defines some version of perturbed best response that in-
duces a regular Markov process. Since regular Markov processes yield unique stationary
distributions, it is then shown that for vanishing noise in the limit, the unique station-
ary distribution puts positive probability only on a subset of possible action configurations,
the so-called “stochastically stable states” (Foster and Young (1990)). This approach thus
suggests answers to two important questions in classical game theory: the problem of coor-
dination and the problem of selection. Ordered states emerge without a central coordinating
device and are frequently unique even in the case of many strict Nash equilibria.

In this approach the use of behavioral models is largely foundational. Consequently,
issues of robustness, e.g. with respect to distributional assumptions and so forth, are of
central concern (Foster and Young (1990), Bergin and Lipman (1996)). In this paper we
take a different approach. Rather than using the behavioral models in a foundational sense
we use them in an explanatory way. In other words, we will directly explore the properties of
limiting distributions rather than just exploring the limits as the noise term vanishes. The
goal is to explore the properties of a certain behavioral approach directly and assess whether
it can provide additional insights.

The basic model can be described as follows. In each period one agent is randomly
selected to change his behavior.4 That agent then will receive (possibly partial) information
about the current state of play, i.e. the vector of actions currently chosen by each agent.
Based on this information the agent responds by choosing an action, according to some
(noisy) best-response rule. That is, with some probability the agent chooses a best response
against the current configuration of play, but with some probability he chooses some other
action. The realization of that action then determines the next period’s configuration of play;
again an agent is chosen (with replacement) and so forth. The key idea of our model is to
”decompose” the simultaneous choice of classical game-theory (where agents form conjectures
about each others beliefs) into a dynamic adjustment process.

As in classical game-theory, some features of the approach model are mainly technical,
while others are of substantive importance. One of the technical assumptions pertains to
selecting exactly one agent in each period. This does not imply that agents cannot change
their behavior ”quickly”. After all, periods between revisions can be arbitrarily small. The
informational implication of this assumption, however, is substantial. That is, when revising
their actions, agents base their actions on their information about the current state of the
dynamic system. This information may be complete (i.e. agents observe the complete current
state of play), partial (i.e. they may only receive information about some agents, i.e. their
”neighbors” on some network structure), or noisy (i.e. information may come in the form
of polls). How this informational structure is modeled may have important consequences on
the behavior of the system.

Among the substantive assumptions, perhaps the most important pertains to bounded

4We focus here on a discrete time process. Equivalently, we could consider continuous time formulations
where the time between revisions is exponentially distributed.

2

330



rationality. First, agents are assumed to be myopic. They optimize conditional on the current
behavior in the population without anticipating the future strategic consequences of their
actions. Agents are not assumed to believe that other actors reason in the same way as they
do, or even that they have the same payoff function. Indeed, they do not expect that their
action may influence the future decisions of other participants. Agents simply base their
choice on what action maximizes their current payoff.

Second, agents are assumed to respond to incentives, but not perfectly. That is,
agents behavior is characterized by noisy decision making. While the main motivation for
this assumption is technical5, it has a plausible foundation in the random utility model due
to McFadden (1973).6 This approach seems especially appropriate in models of decision
situations where the perceived costs and benefits may vary over time. Finally, we are mainly
interested in applications to mass behavior such as collective action problems or conventions.
We will therfore focus on large-N approximations of the induced Markov process.

In this paper we derive the closed form solution for the paradigmatic case of coor-
dination 2 × 2 games7. We also show that important phenomena are missed if attention is
exclusively focused on the case of vanishing noise. First, spontaneous coordination is possible
for substantial noise levels. Second, whether coordination occurs depends on the product
of the incentives generated by the payoff matrix and an incentive responsiveness parame-
ter that captures the noise in the system. If the product is below a critical level, players
will not coordinate. Rather, the limiting distribution will be unimodal. If this product is
above a critical level, the stationary distribution will be bimodal with both peaks close to
the two Nash-equilibria and the higher peak associated with the risk-dominant equilibrium.
Thus, everything else equal, higher payoff differences would result in higher expected levels
of coordination.

GENERAL MODEL

We consider a large population of players = (with |=| = KN) that is partitioned
into K types. Players interact according to a K-type strategic form game. Players interact
repeatedly with each other according to a model of adaptive play with persistent randomness.
At each point in time each player’s decision gives rise to the population’s configuration of
play. The set of these configurations C then corresponds to a state space of a stochastic
process induced by individual adaptive behavior.

Let Sk be the (finite) number of pure strategies sk
l (l = 1, ..., Sk) for a player of type

k. Further let n(sk
l ) be the number of players of type k playing strategy sk

l . Then

n := (n(s1
1), ..., n(s1

S1
), ..., n(sk

l ), ..., n(sK
1 ), ..., n(sK

SK
))

5Together with random selection it ensures that the stochastic process is ergodic.
6Alternatively, agents may be assumed to make a ”mistake” with a fixed probability. See Kandori, Mailath

and Rob (1993) or Young (1993) for details.
7The game is widely used in political science applications, for example in the study of collective action

(e.g. Chong (1991)).
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is a generic configuration of the set C. We allow only for elementary adjustments. That
is, at most one individual of type k can change her behavior at a given time from sk

l to sk
l′ .

Thus from a given state n only states of the form

n′ := (n(s1
1), ..., n(s1

S1
), ..., n(sk

l )− 1, ..., n(sk
l′) + 1, ...n(sK

1 ), ..., n(sK
SK

))

are accessible.
Transition probabilities P (nn′) are defined by selection and action probabilities. Se-

lection probabilities are defined as follows: in each period t one specific agent out of KN is
randomly chosen with probability 1/(KN).8 The agent then looks at the current configura-
tion n of actions in the population and adjusts his action according to a given behavioral rule.
During the next period, again a player (perhaps the same) is chosen at random, and so on.
Given the current configuration, an actor will then probabilistically adjust his participation
behavior to improve his payoff.

Let pβ(sk
l |n) denote the conditional probability that in the next period an agent will

play strategy sk
l given that the current configuration of play is n. Specifically, we assume

log-logistic response rules for all agents:

pβ(sk
l |n) =

exp[βu(sk
l ;n)]∑

sk
l′

exp[βu(sk
l′ ;n)]

.

This captures the assumption that the pair-wise probability ratios of choosing actions are
proportional to the respective pay-off differences. The log-linear choice model is closely con-
nected to the best-response correspondence. The parameter β formally captures the degree to
which the deterministic component of utility (given by the payoff matrix) determines choice.
A low β corresponds to the case where a decision is not much influenced by the incentives
specified in the model. For β = 0 choice is completely random. That is, for all possible
configurations, the agent will play each action with equal probability. For β →∞, log-linear
choice converges to a distribution that puts positive probability only on best-responses to n.

Action and selection probabilities define a (regular) Markov chain with a unique
limiting distribution π that satisfies the global balance conditions π = πP. In general, global
balance equations cannot be solved in closed form. However, for the case where a k-player
game has a potential F (n) (Monderer and Shapley (1996)), Blume (1997) has shown that
the limiting distribitution satisfies a stronger property, the detailed balance condition.

P (nn′)π(n) = P (n′n)π(n′)

We then immediately have the following result:

Theorem 1 Let {n[1], ....,n[j}, ...n[m]} be a sequence of configurations of length m. For
log-logistic adjustment rule in games with a potential stationary distributions are of the form

π(n[m]) =
m−1∏
j=1

P (n[j],n[j + 1])

P (n[j + 1],n[j])
π(n[1]).

8For simplicity, we assume that revisions are made each period. All results, however, continue to hold in
continuous time when the time between revisions is exponentially distributed.
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2x2 COORDINATION GAMES WITH RANDOM GLOBAL MATCHING

We now apply this approach to the paradigmatic case of coordination problems: 2×2
coordination game with random global matching. So, consider a symmetric 2×2 games with
payoff matrix

M =

(
u11 u12

u21 u22

)
.

We denote the top/left action by s1, the bottom/right action by s2. Then, for random global
matching, a player i’s total payoff from a configuration n is given as

ui(n) :=
∑

i′∈=\{i}

1

2N − 1
uii′

It can be easily seen that the following matrix F constitutes a potential function for the
game M .

F =

(
3u11+u12−3u21−u22

4
−u11+u12+u21−u22

4
−u11+u12+u21−u22

4
−u11−3u12+u21+3u22

4

)
By defining

J =
u11 − u12 − u21 + u22

2
and h =

u11 + u12 − u21 − u22

4

we can rewrite F as9

F =

(
J
2

+ 2h −J
2

−J
2

J
2
− 2h

)
Further, if F (·) exists and is symmetric for a 2 × 2 game we can easily define a potential
function F (·) for any finite network game (Blume (1997)). Thus, we can apply Theorem 1
to derive the limiting distribution.

Since, n = (n(s1), n(s2)), each configuration is uniquely determined by n(s1)−n(s2)
2

which we abbreviate by n. By a slight abuse of notation, we also refer to each state by n,
and write n + 1 for n′ = (n(s1) + 1, n(s2) − 1) and n − 1 if n′ = (n(s1) − 1, n(s2) + 1). Let
ps(n) denote the (selection) probability of chosing a player using action s = s1, s2 in state n.
Then

ps1(n) =
n(s1)

2N
=

N + n

2N
and ps2(n) =

n(s2)

2N
=

2N − n(s1)

2N
=

N − n

2N

9In coordination games, i.e. u11 > u21, u22 > u12, u11 ≥ u22, these parameters have a natural interpreta-
tion. The parameter +J measures the benefit from coordinating. The parameter h indicates which of the
two equilibria is risk-dominant. Since in coordination games we have J > 0, the argmax set of F (·) depends
on h. If h > 0, then (s1, s1) is risk-dominant. If h < 0, (s2, s2) is risk-dominant
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We will now apply Theorem 1 to explicitly calculate π(n).10. First, using F (.) we have

πn

πn−1

=
P (n− 1, n)

P (n, n− 1)
=

=
ps2(n− 1)

ps1(n)

exp[β(n(s1)−1
2N−1

u11 + 2N−1−(n(s1)−1)
2N−1

u12)]

exp[β(n(s1)−1
2N−1

u21 + 2N−1−(n(s1)−1)
2N−1

u22)]

=
ps2(n− 1)

ps1(n)

exp[β(n(s1)−1
2N−1

(J
2

+ 2h) + n(s2)
2N−1

(−J
2
))]

exp[β(n(s1)−1
2N−1

(−J
2
) + n(s2)

2N−1
(J

2
− 2h))]

=
n(s2) + 1

n(s1)

exp[β(n(s1)−1
2N−1

2h + n(s1)−n(s2)−1
2N−1

J
2
)]

exp[β(n(s1)−n(s2)−1
2N−1

(−J
2
)− n(s2)

2N−1
(2h))]

=
N − n + 1

N + n
exp[β(

n(s1)− n(s2)− 1

2N − 1
J + 2h)]

=
N − n + 1

N + n
exp[β(

2n− 1

2N − 1
J + 2h)]

=
N − n + 1

N + n
exp[β(

n

2N − 1
2J − 1

2N − 1
J + 2h)]

=
N − n + 1

N + n
exp[β(2nJ̃ − J̃ + 2h)]

where J̃ = 1
2N−1

J . Now, using Theorem 1, we can derive πn for each n with 1 ≤ n ≤ N .11

πn = π0

n∏
i=1

N − i + 1

N + i
exp[β(2iJ̃ − J̃ + 2h)] =

= π0
N · (N − 1) · · · (N − (n− 1))

(N + 1) · (N + 2) · · · (N + n)
exp[β(

n∑
i=1

2iJ̃ − nJ̃ + 2hn)]

= π0
N !/(N − n)!

(N + n)!/N !
exp[β((

1

2
n2 +

1

2
n)2J̃ − nJ̃ + 2hn)]

= π0 exp[β(n2J̃ + 2hn) + ln(
(N !)2

(N + n)!(N − n)!
)]

We now have the following result.

Proposition 1 For N sufficiently large, the most likely state is at n∗, with:
- n∗ > 0 if h > 0
- n∗ < 0 if h < 0

Proof.
Consider the function f : [−N + 1, N ] → R given by

f (x) =
N − x + 1

N + x
exp

[
β

(
2x− 1

2N − 1
J + 2h

)]
10The case of uniform, global matching corresponds to a two-state model with a homogenous population

which is well-known in the statistical mechanics literature (e.g. Weidlich (1991)).
11The case of −N ≤ n ≤ −1 is completely analogous and thus omittted.
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Note that

df(x)

dx
= exp

[
β

(
2x− 1

2N − 1
J + 2h

)]
1

(N + x)2 (2N − 1)

1

2βJ

(
−x2 + x +

(
1− 2

βJ

)
N2 + N +

1

2βJ

)
To determine the sign of df(x)

dx
, it is sufficient to determine the sign of

−x2 + x +

(
1− 2

βJ

)
N2 + N +

1

2βJ

which we denote by h(x). Also, denote by b :=
1

2
βJ .

We consider 3 cases.
Case 1) b < 1. Observe that h has a maximum at x∗ = 1

2
, which corresponds to

h(
1

2
) =

1

4
+

(
1− 2

βJ

)
N2 + N +

1

2βJ

Since 1− 2
βJ

< 0, it follows that, for large N :

h(x) ≤ h

(
1

2

)
< 0

for all x ∈ [−N + 1, N ]. This implies that f decreases from

f(−N + 1) = 2N exp [β (−J + 2h)] > 1

to

f(N) =
1

2N
exp [β (J + 2h)] < 1

We conclude that πn has a unique maximum at n∗, with f(n∗) = 1. Moreover, we have:
a) if h > 0, then n∗ > 0, since f (0) = N+1

N
exp

[
β

(
− 1

2N−1
J + 2h

)]
> 1 for large N .

b) if h < 0, then n∗ < 0, since f (0) = N+1
N

exp
[
β

(
− 1

2N−1
J + 2h

)]
< 1 for large N .

Case 2) b = 1. In this case

h(x) = −x2 + x + N +
1

4

The equation h(x) = 0 has two real and distinct solutions, which we denote by x1 and x2,
given by:

x1 =
1−

√
∆

2
and x2 =

1 +
√

∆

2

where ∆ = 1 + 4
(
N + 1

4

)
. Note that −N + 1 < x1 < 0 < x2 < N . We summarize the

behavior of f in Table 1.
As N →∞, f(x1) → exp (β2h) and f(x2) → exp (β2h).
a) If h > 0, then, for large N , both f(x1) > 1 and f(x2) > 1, which together with

f(−N + 1) > 1 and f(N) < 1 imply that πn has a unique max at n∗, where n∗ > 0.
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Table 1: Behavior of f in Case 2
x −N + 1............x1............x2........N
f(x) f(−N + 1) ↘ f(x1) ↗ f(x2) ↘ f(N)

Table 2: Behavior of f in Case 3
x −N + 1............x1............x2........N
f(x) f(−N + 1) ↘ f(x1) ↗ f(x2) ↘ f(N)

b) If h < 0, then, for large N , both f(x1) < 1 and f(x2) < 1, which together with
f(−N + 1) > 1 and f(N) < 1 imply that πn has a unique max at n∗, where n∗ < 0.
Case 3) b > 1. The equation h(x) = 0 has two real and distinct solutions, which we denote
by x1 and x2 given by:

x1 =
1−

√
∆

2
and x2 =

1 +
√

∆

2
where

∆ = 1 + 4

[(
1− 2

βJ

)
N2 + N +

1

2βJ

]
We summarize the behavior of f in Table 2.

As N →∞,

f (x1) →
1 +

√
1− 2

βJ

1−
√

1− 2
βJ

exp

[
β

(
−

√
1− 2

βJ
J + 2h

)]
and

f (x2) →
1−

√
1− 2

βJ

1 +
√

1− 2
βJ

exp

[
β

(√
1− 2

βJ
J + 2h

)]
Let’s denote by

a0 :=
1

2

βJ

√
1− 2

βJ
− log

1 +
√

1− 2
βJ

1−
√

1− 2
βJ


and by

a := βh

Observe that f (x1) < 1 is equivalent to a < a0, and f (x2) < 1 is equivalent to a < −a0.
Depending on the values of a, we split our analysis into 3 subcases:
Subcase 3A). If |a| < a0 then, for large N , f (x1) < 1 and f (x2) > 1, which together
with f(−N + 1) > 1 and f(N) < 1 imply that πn has two maxima at n∗

1 and n∗
2, with

n∗
1 < x1 < 0 < x2 < n∗

2, and one minimum at n∗
3, with x1 < n∗

3 < x2. To determine the
global maximum, we consider 2 subcases:

1) h > 0. Note that

f (0) =
N + 1

N
exp

[
β

(
−1

2N − 1
J + 2h

)]
→ exp (2βh) > 1
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Table 3: Extrema of πn for different parameter values
b < 1 b = 1 b > 1

|a| < ao 1 maximum 1 maximum 2 maxima, 1 minimum
|a| = ao 1 maximum 1 maximum 2 maxima, 1 minimum
|a| > ao 1 maximum 1 maximum 1 maximum

so the minimum is at n∗
3 < 0. Using this fact, we can write:

πn∗
2
≥ π−n∗

1
= π0

(N !)2

(N + n∗
1)! (N − n∗

1)!
exp

[
β

(
(n∗

1)
2

˜

J − 2hn∗
1

)]
= πn∗

1
exp (−β4hn∗

1) > πn∗
1

so the global max is at n∗
2 > 0.

2) h < 0. Note that

f (0) =
N + 1

N
exp

[
β

(
−1

2N − 1
J + 2h

)]
→ exp (2βh) < 1

so the min is at n∗
3 > 0. Using this fact, we can write:

πn∗
1
≥ π−n∗

2
= π0

(N !)2

(N + n∗
2)! (N − n∗

2)!
exp

[
β

(
(n∗

2)
2

˜

J − 2hn∗
2

)]
= πn∗

2
exp (−β4hn∗

2) > πn∗
2

so the global max is at n∗
1 < 0.

Subcase 3B) If |a| > a0 then, for large N , f(x1) > 1, f(x2) > 1 or f(x1) < 1, f(x2) < 1. In
both cases, πn has a unique max at n∗, with f(n∗) = 1. Note that:

- if a > a0, that is h > 0, the global maximum is at n∗ > 0
- if a < −a0, that is h < 0, the global maximum is at n∗ < 0.

Subcase 3C) Finally |a| = a0. First consider a = a0. Then f(x1) → 1 and f(2) > 1 (for
large N). We can show that f(x1) is increasing in N , and since f(x1) → 1, we necessarily
have f(x1) < 1, for sufficiently large N . These observations, together with f(−N + 1) > 1
and f(N) < 1, imply that πn has two maxima and one minimum.
The second case a = −a0 is similar i.e. πn has two maxima and one minimum.
Moreover, we can prove the following (by analogy with subcase 3A):

- if a = a0, that is h > 0, the global maximum is at n∗ > 0
- if a = −a0, that is h < 0, the global maximum is at n∗ < 0. QED

We summarize the results in Table 3.
Of course, we can also derive the stochastically stable states for coordination games.

Assume first that h > 0. As β → ∞, we have b → ∞ and a < a0 (actually we can show
that (a − a0) → −∞) so we are in case 3A from above. But in this case we know that the
global maximum is at n∗

2, with x2 < n∗
2 < N . Since, as β →∞, f (x2) →∞ and f (N) → 1

from below, it must be that n∗
2 → N . The case h < 0 is similar, i.e. the global maximum

n∗
1 → −N . That is, in the limit, all players are expected to coordinate on the risk-dominant

equilibrium.
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Figure 1: As a increases, the mode shifts towards N = 80

However, by using Table 3 we can also identify the qualitative features of the limiting
distribution for substantial noise. In the case of b = 1

2
βJ < 1, the limiting distribution is

unimodal and coordination on one of the pure Nash-equilibria does not occur. For a = 0 the
mode is at state n = 0, but shifts towards n = N for increasing a i.e. eveybody coordinating
on s1. This is illustrated in Figure 1. We note that for a = 0, the distribution has a peak at
n = 0, but as we increase a (by increasing h) the peak shifts towards n = 80. Also we note
that for high values of a, most of the distribution mass is concentrated around the mode.
That is, most of the players are expected to play the risk-dominant strategy.

At b = 1
2
βJ > 1, on the other hand, the limiting distribution is bimodal with both

modes close to the extremes. The most likely states are those where almost all players play
the same action. We refer to this phenomenon as spontaneous coordination. Note that the
global maximum depends on a (more specifically depends on h) and is close to the risk-
dominant equilibrium. This is illustrated in Figure 2. The plotted distribution is bi-modal,
with the highest peak close to N = 80. We note that for high values of J (benefit from
coordinating), most of the distribution mass is concentrated around the highest peak, so the
players will coordinate on the risk-dominant strategy, which in this example is s1.

Coordination is thus not a limit phenomenon, but may emerge even if individual
choice is characterized by substantial noise. For high noise levels (β close to 0) spontaneous
coordination will emerge for sufficiently high payoff differences between the coordinated and
miscoordinated case captured by parameter J . This can be clearly seen in Figure 3: even
though β is close to 0 (in our example we set β = 1.7), increasing J determines a shift of
the highest peak towards the risk-dominant strategy. The issue of risk dominance captured
by the parameter h is of secondary importance. It only determines which state is more
likely on average. This insight is hidden in the double-limit analyses, since an increase in
β simultaneously changes both parameters. One could imagine to test this model using
experimental data. Then our model would predict that for low levels of J coordination will
not be present, but will suddenly emerge as we increase the benefits from coordinating.
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Figure 2: Highest peak is close to N = 80

Figure 3: Increasing J shifts the mode towards the risk-dominant strategy
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CONCLUSION

In this paper we study large potential games with global random matching. This
approach allows us to analyze coordination even if individual choice behavior exhibits sub-
stantial levels of noise. The usual selection results (e.g. Blume (1993)) are derived as a
corollary. For the case of many actors we derive a simple closed form representation of the
unique stationary distribution. We show that coordination is not a limited phenomenon,
but may occur even for substantial noise levels, depending on the relative benefits from
coordinating as specified by the payoff matrix.
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ABSTRACT 
 

In 1983 Cover introduced the terms jurisgenerative and jurispathic to the legal 
community.  These terms describe particular styles of judicial decision-making.  
Jurisgenerative judicial decisions closely resemble mediation.  When a judge attempts to 
create a jurisgenerative result they craft a decision that takes into account both sides and 
thus create a novel outcome or legal theory.  When a judge follows a jurispathic approach 
they will find the plaintiff or defendant to be the entire winner and, in effect, kill a legal 
line of reasoning.  The author is not aware of any attempt to systematically understand 
the utility of one judicial decision-making method over another.  Presented in this paper 
is an agent-based model that explores the effects of judicial decision-making on a 
population of agents trying to extract resources from the environment.  When agents have 
a dispute about which strategy to use they “sue” each other.  The decision method 
(jurispathic or jurisgenerative) and the amount of information the judge has about both 
the strategies used by the agents as well as the global optimal strategy is varied.  Finally, 
agents may circumvent the trial altogether and settle the dispute with a wealth transfer.  
The likelihood of settlement is a function of local precedent from other suits and the 
settling agent’s wealth.  In this way very successful agents can maintain their strategy by 
paying a “fee” rather than risk a trial.  The paper will conclude with a description of next 
steps and a brief discussion of the use of agent-based modeling for jurisprudential 
research. 

 
 

INTRODUCTION 
 

Laws pervade all aspects of our lives.  They are an integral part of our social system—
they shape our actions as individuals and as groups.  Yet the legal system is not above us.  The 
laws are made and interpreted by us and, therefore, are subject to many of the same dynamics.  
The pressures of a static versus a dynamic legal system are perhaps some of the most interesting.  
A legal system that does not change cannot continue to be relevant and function well.  However, 
a legal system that changes too frequently will be impossible to understand and will increase 
uncertainty within society to untenable levels.    This paper begins to explore the effect of 
judicial behavior on these dynamics. 

 
In 1983 Cover introduced the terms jurisgenerative and jurispathic judicial decision-

making and opened an extremely interesting dialogue in the legal community (Cover 1983).  
Jurispathic judicial decision-making is the notion that courts “kill” a line of legal reasoning when 
a winner and looser are chosen in a case.  This can effectively end the line of legal reasoning 
presented by the losing side.  This is especially true in instances that involve alternative 
meanings to a single law (Henderson 1991).  At times, this is seen as necessary because “noise” 
will tend to build up within a legal system.  As laws move through time they have a tendency to 
evolve new and different meanings, especially through spatial diffusion into various 
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communities.  These time-generated meanings will create noise, uncertainty, and confusion 
within the legal system, it is here the courts feel a need to perform jurispathic pruning (Juarrero-
Roque 1991).  This is also important from an economic perspective as increasing the uncertainty 
of a system may also increase the transaction costs associated with doing business within it. 

 
Conversely, Jurisgenerative operations generate legal meanings.  This can occur with or 

without control or direction, potentially creating anarchy (Kahn 1989).  A jurisgenerative 
outcome synthesizes the legal solutions from the alternative legal perspectives raised before the 
court by the interested parties.  This solution takes into account the needs, positions, 
perspectives, and so on of all parties before the court.  Though one party may leave with more of 
the “legal pie” than the rest, no legal perspective is completely “killed” in the procedure.  In this 
way, jurisgenerative decision-making has a very mediation-like feel to it.  The problem, of 
course, is that the parties cannot necessarily count on an outcome driven by precedence (aspects 
of this topic were explored in earlier work by Isaac Dilanni (Dilanni 2006), which explored the 
evolution of common (judge made) law).  This may tend to increase transaction costs within the 
system.  However, there are times where both parties do have interests that should be taken into 
account during judicial review—custody disputes are perhaps a good example. 

 
To my knowledge these ideas of judicial decision-making have not be examined 

systematically to determine their potential effects on the “fitness” of society.  The intuition is as 
follows:  A population of evolving agents should converge on an optimal resources extraction 
strategy (in the model this is essentially pattern matching, optimal means an agent has the list of 
numbers as the environment) for their local environment at some particular rate.  If they are 
“told” to use some other resource extraction strategy it may change the evolutionary rate of 
convergence.  If the new resource extraction strategy is imposed with no knowledge of or regard 
to the agent’s initial extraction strategy or the resource availability pattern, then it should have an 
effect similar to massive semi-random mutation and increase the time required to converge on 
the optimal resource extraction strategy.  If the new resource extraction pattern is imposed with 
some knowledge of or regard to the fitness of the agent’s initial extraction strategy then it should 
have the effect of large scale, pointed selection and reproduction creating more optimal resource 
extraction strategies, thus lowering the time required to converge on the optimal resource 
extraction strategy.   

 
THE MODEL 

 
The landscape 
 

The model that was used in this examination was created using NetLogo 3.1 (Wilensky 
1999).  This model utilizes agents living on a torus landscape and extracting resources.  Agents 
will change their extraction strategy only by judicial edict.  In the homogeneous environment, 
resources are available to agents in the following pattern: 1, 2, 3, 4, 5.  Finally, patches are 
instantiated with two variables penalties-here and mean-penalties.  These two variables are used 
to keep track of local penalties imposed on defendants that lose at trial.  As will be discussed 
infra this value is used to determine settlement offers before the trial commences.   

 
Initialization of the agents 

 
Agents are created as a heterogeneous population with 1000 members.  Initially they are 

randomly placed on the torus.  Each agent is given a random metabolic rate which is a random 
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number drawn from a normal-distribution that is unique to each agent.  The metabolism level is 
drawn every time step, in this way agents have a heterogeneous metabolic rate.  Agents are also 
given a “de minimis” level for damages that they suffer during the model run.  Damages that are 
less than their de minimis level are not pursued via trial.  Each agent also starts with a random 
amount of resources drawn from a random uniform distribution from 0 to 99.   All agents also 
start with an initial feeling that they have a 50% chance of winning at trial as either the plaintiff 
or defendant.   Finally, each agent is given a resource extraction strategy.  This is simply a list of 
5 numbers, each number being between 1 and 5 (uniformly distributed).  

 
Model Runtime Procedures 

 
Model runtime procedures are really quite simple.  Patches are asked to calculate their 

mean penalties if any penalties have been doled out on them.  Then the agents that are not 
actively engaged in a suit are asked to update their “wealth” based upon their metabolism and 
resource extraction strategy, move, and then interact with other agents that are co-located with 
them.  Finally, data is collected, the clock is iterated, and output is written to a file. 

 
Updating agent wealth 

 
Agent wealth is a function of their resource extraction strategy and their metabolism 

(settlement and trials will also affect agent resources, see infra).  Equation 1 is the general 
income function: 

 

! 

wealth
t
= wealth

t"1 + income "metabolism .  Eq. 1 
 

Income is a function of the agent’s extraction strategy and is determined in the following 
way: Each position in the agent’s extraction strategy is compared to the same position in the 
“environmental availability strategy.”  If the agent’s strategy number matches that of the 
environment they are given that amount of wealth.  If the agent’s strategy number is less than the 
environment the agent is penalized by 2 * the difference; if, however, the agent’s strategy 
number is more than that of the environment the agent is given .5 * the difference.  Equation 2 
describes this system: 
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where san is the strategy of the agent at position n, sen is the strategy of the environment at 
position n.  In this way agents have an income that will range from positive 15 to -20.  As 
mentioned supra, agent metabolism is simply a random variable drawn from a normal 
distribution with a mean and standard deviation that is unique to the agent.    

 
After an agent has updated its wealth it moves to a new location.  The movement 

algorithm that the agents use is very simple.  Specifically, agents set their heading equal to their 
current heading plus a random jitter drawn form a normal distribution with a mean of 0 and a 
standard deviation of 10.   Finally, the agents move forward one unit.  Upon completion of their 
movement the agents interact with another agent if there is another agent in their immediate 
vicinity.  Interaction begins by updating an agent’s feelings of their probability of winning if they 
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go to trial.  This is a function of their current feelings on the matter and how those feelings relate 
to the probability associated with the area in which they find themselves.  First, the agent sets 
their internal win probability equal to the number of times they have won divided by the number 
of times they went to trial.  Then if that value is less than the probability of win in their area they 
increase their probability by half the difference between the two numbers.   

 
Once this update is complete the agent looks for a neighbor agent in the immediate 

vicinity that is not involved in a suit and establishes them as a partner.  Once the agent chooses a 
partner there is a 1/3 chance that the partnership will lead to some level of damages.  Damages 
are a function of the difference in strategy between the two agents—simply the sum of the 
absolute value of the difference between the two strategies at each position.    If damages occur 
the damaged agent compares the size of the damages to their de minimis level.  If the damages 
are greater than their de minimis level then the agent “files a law suit” against the offending 
agent.  Once the agent creates a suit the two agents try to settle the suit before it goes to court.  
To calculate the settlement and determine if it will end the suit the potential plaintiff and 
defendant go through the process outlined in Table 1.  

 
Table 1.  The pre-trial process within the model. 

Pre-Trial Settlement Steps 
1) Calculate the expected value of the damages they will receive if they go to court, this is 

determined by multiplying the damages value by the plaintiff’s feeling about their 
chances of winning.   

2) The defendant agent prepares a settlement value by taking the mean damages value 
from the region they are in and multiplying it by 1 - their notions of their chances of 
winning at trial.  That value then becomes the settlement value.   

3) If the settlement value is greater than 25% of the expected value of the damages at trial 
and less than the full value of the expected value of the damages at trial that the plaintiff 
expects then,  

4) The plaintiff checks to determine if their expected damages value minus the settlement 
is less than their de minimis value.  If it is then the agents settle the lawsuit; if it is not, 

5) Then the defendant has the option to double the settlement amount if it has a positive 
wealth.  The same calculus applies to the plaintiff when trying to determine if they will 
accept the second settlement offer.   

6) If it does not fall within the 25%-100% range the defendant picks a new value for the 
settlement.  The new value is drawn from a random uniform ranging from 0 to actual 
damages – 1.  The same steps as described above hold for the plaintiff’s calculus when 
determining whether or not to accept the new offer.   

7) Again, if the damages minus the settlement offer is not less than the plaintiff’s de 
minimis level then the defendant has the ability to double the offer if they have positive 
wealth.  

8) If a settlement occurs then the defendant’s wealth is decremented by the settlement 
amount and the plaintiff’s wealth is incremented by the settlement amount.  No changes 
are made to the strategies used by either agent.   

 
 
 
 

If the agents do not settle then they move to trial.  What happens at trial depends upon the 
judicial decision-making methodology in use and the amount of information that the judge has 
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available to them.  As mentioned above, there are two potential methods for judicial decision-
making: jurispathic (where one side wins everything and one side looses everything), and 
jurisgenerative (where both sides are seen as having legitimate claims to the outcome of the suit).  
There are three levels of information available to the judge: none—meaning the judge makes a 
random decision, some—meaning the judge has aggregated information about the strategies 
being used by the agents, and total—meaning the judge knows exactly how well the strategies 
work at resource extraction in every position.  The type of judicial decision-making and the level 
of information available are both user defined and not modifiable by the agents. 

 
At trial first a comparison is made of both strategies relative to the ideal strategy (one that 

perfectly matches the environmental strategy).  This comparison is simply the sum of the 
absolute value of the deviation at each position of the strategies from the environmental ideal.  
Then a winner is chosen.  If the amount of information is none, the winner is chosen at random.  
If the decision methodology is jurispathic then the strategy of the winner is given to the loser.  If 
the methodology is jurisgenerative then the two strategies are blended randomly and given to the 
two agents.  If some information is known to a jurispathic decision-maker then a winner is 
chosen by picking the strategy with the smallest deviation of the environmental optimal.  Once 
again, the winning strategy is given to the loser.  If some information is known to a 
jurisgenerative decision-maker then, as before, a winner is chosen based upon the smallest 
deviation from environmental optimal; however, this time the strategies are blended.   The 
winning strategy is used for the 1, 3, 5 positions and the losing strategy is used for the 2 and 4 
position.  Finally, if a jurispathic or jurisgenerative decision-maker has total information then a 
winner is chosen based upon the number of times the strategy has a smaller deviation than the 
other with respect to the environmental ideal.  If the decision-making process is jurispathic the 
winning strategy is then given to the loosing agent.  If however, the decision was made 
jurisgeneratively, then the strategies are blended based upon each strategy’s deviation from the 
environmental ideal by position. 

  
RESULTS 

 
For this initial examination a full factorial design of experiments was used.  Testing both 

judicial decision-making regimes, all levels of information, and whether or not agents were 
allowed to double their initial settlement offer.  Each run consisted of 1000 time-steps.  
Unfortunately, the same random-seeds were not used for all runs making direct comparisons of 
the results among the runs problematic.  As discussed supra the environment is relatively harsh 
from the perspective of agent wealth accumulation.  Figure 1 shows the mean wealth 
accumulated by agents over the course of the runs.  As can be seen, most agents are unable to 
accumulate positive wealth and remain “in debt” over the entire run.   
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FIGURE 1: Mean Agent Accumulated Wealth. 
 

As one would expect, runs that used no judicial decision-making, or judicial decision-
making with no information, produced results with lowest agent wealth accumulation.  On the 
other hand, runs that used judicial decision-making that included some or complete information 
produced runs in which agents were better able to accumulate wealth.  Of note in Figure 1, is that 
it takes approximately 75 time steps to begin to see the differences.  This leads one to 
hypothesize that it takes a certain amount of time for the judicial decisions to have an effect, 
meaning there needs to be a certain number of decisions so that a certain proportion of agents are 
affected before macroscopic effects are seen. 

 
A better view of the relative effect of the judicial decision-making regimes is contained in 

Figure 2.  This figure depicts the change in the mean agent’s ability to extract resources in a 
single time step.  Put another way, it is a depiction of how close to the environmental ideal the 
average agent is.  As can be seen, there appears to be three basic groups:  a) Jurisgenerative 
decision-making with total or some information, and jurispathic decision-making with some 
information; b) Jurispathic decision-making with total information; and c) all other types of 
judicial decision-making. 
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FIGURE 2: Mean Accumulation of Wealth per Time Step 
 
 

As shown in Figure 2, the only regimes that make a difference are those that use some or 
total information.  When there is a difference it is quite pronounced moving the mean from 
approximately zero to more than seven resource units extracted per time step.  It is interesting to 
note that the best judicial decision-making regime appears to be jurisgenerative with complete 
information.  However, this is not the case with jurispathic decision-making.  Oddly, jurispathic 
decision-making with partial information seems to be better than that of jurispathic decision-
making with complete information.  Other metrics of interest from the model include total 
number of trials and total number of settlements.  Figures 3 and 4 show these metrics 
respectively.  
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FIGURE 3(a):  Mean Trial in Jurisgenerative Regimes 

 

FIGURE 3(b):  Mean Trials in Jurispathic Regimes 
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FIGURE 4(a): Jurisgenerative Regime Settlement Rates 

 

FIGURE 4(b): Jurispathic Regime Settlement Rates 
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Figure 3 shows the mean trials for agents under various regimes.  As seen in other results 
there are three basic groupings.  In Figure 3(a) these groups are most obvious, with total 
information producing fewer trials than some information.  Finally, judicial decision-making that 
is random (no information) produces the most trials.  Once again it is worthy of note that in the 
case of jurispathic decision-making the relative order of total information and some information 
is switched, with some information being generally better than total information (see Figure 
3(b)). 

 
Figure 4 shows the percentage of settled cases over the course of the runs.  Once again 

we see three groups divided along the lines of information with the order of partial vs. complete 
switched from jurispathic to jurisgenerative decision-making.  What is particularly remarkable is 
that the settlement rate of the highest performance judicial decision-making (jurisgenerative with 
complete information and jurispathic with partial information) begins to converge on realistic 
settlement rates.  It is estimated that only between 2% and 7% of cases that are filed actually go 
to trial (Posner 1998).  Both jurisgenerative decision-making with complete information and 
jurispathic with partial information begin to reach those values. 

 
CONCLUSION 

 
The current model shows promise as a method to test the utility and effect of judicial 

decision-making regimes.  Using the system introduced by Axtell and Epstein (Axtell 1994 and 
Axtell 2005) to evaluate the empirical substance of the models described in this study, one could 
say that it is Level 0, i.e. the code functions properly, and may be beginning to approach Level 1 
as it shows some similarity to actual macro-level dynamics, namely settlement dynamics.  In 
principle it should be possible to move the model firmly to Level 1.  Furthermore, there are large 
amounts of data available on our legal system, this should make it possible to move, at least parts 
of it, to Level 2.  It would be a very serious challenge to move into Level 3, however, it may be 
possible. 

 
This model represents a first step towards a careful examination of the effects of judicial 

decision-making in our legal system.  To fully appreciate the effects of jurisgenerative and 
jurispathic decisions, and the effects that differing amounts of information will have on these 
decisions, the next generation of models must perform much more sophisticated analyses on the 
resource extraction strategies of the agents.  Transaction costs must be included, as well as the 
effects and costs of information and precedence.  Only after inclusion of these important features 
could an informed study be performed regarding reforms that may be useful to the judicial 
decision-making process.  Obviously it is impossible to create a decision-making regime with 
complete information; therefore, it is particularly intriguing to see results indicating that partial 
information in a jurispathic regime is better than complete information in that regime.  
Hopefully, this study is a first step in that direction and will help to inform discussions of 
jurispathic and jurisgenerative decision-making and to begin to articulate the utility agent-based 
modeling could have in jurisprudential study.  Given the inroads made by Economics (of 
particular interest is Behavioral Law and Economics) and Game Theory, incorporation of agent-
based modeling seems only natural. 
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AGENT-BASED MODELING OF USABILITY FROM A DISTRIBUTED COGNITIVE
PERSPECTIVE

J. EDEN*, The iSchool, Drexel University

ABSTRACT

Many designers are moving beyond traditional Human Computer Interaction (HCI) views
of design, now viewing design as more than the design of individual products to interact
with in a snapshot of time, and instead designing interactions among people, artifacts, and
information (Saffer, 2006) over dimensions such as time, space, and social structures.
Interaction designs must use some instance of the context of use as the substrate of
evaluation; in many cases, these instances of the context of use are necessarily artificial
(e.g. lab-based usability testing), or without real users (e.g. discount usability evaluation
methods such as Heuristic Evaluation, or the Cognitive Walkthrough). Although much
research and practice has been carried out under the name user-centered design, research
paths that would help close this gulf of consequence for designers may be best called use-
centered design, moving context of use to the front as a more appropriate focus of
analysis (i.e. users are but one subset of actors in the context of use). We propose a path
towards closing this gulf of design consequence by focusing on ways to better foster
reflection-in-action during interaction and user experience design through the use of
computational simulation of both users and contexts of use. This proposed path leverages
and integrates existing research and practice in agent-based modeling and theories of
distributed cognition. An important goal of this paper is to start a dialogue with the
modeling community, and to get feedback on the idea of modeling distributed cognitive
perspectives of contexts of use, as part of the usability engineering process.

Keywords: Distributed Cognition, Usability evaluation, agent-based modeling

INTRODUCTION - GULF OF CONSEQUENCE IN DESIGN

Many designers are moving beyond traditional Human Computer Interaction (HCI) views
of design, now viewing design as more than the design of individual products to interact with in
a snapshot of time, and instead designing interactions among people, artifacts, and information
(Saffer, 2006) over dimensions such as time, space, and social structures. This view of design
goes by many differing names such as Interaction Design, Service Design, and User Experience
Design, but all share the idea that design thinking needs to transcend static (in time, space, and
social dimensions) views of how people, artifacts, and information interact.

A science of design of interactive systems can be seen as differing from many other
(natural) sciences such as physics, chemistry, and mathematics with respect to the substrate of
evaluation; many fields have well understand rules and relations between these rules that can be
used to come to conclusions prior to implementation, whereas interaction designs must use some
instance of the context of use as the substrate of evaluation; in many cases, these instances of the
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context of use are necessarily artificial (e.g. lab-based usability testing), or without real users
(e.g. discount usability evaluation methods such as Heuristic Evaluation, or the Cognitive
Walkthrough).

Making design choices without the ability to evaluate the consequences widens the gulf
between the designer’s model of and the reality of the consequences of these design moves in the
context of use. Although much research and practice has been carried out under the name user-
centered design, research paths that would help close this gulf of consequence for designers may
be best called use-centered design, moving context of use to the front as a more appropriate
focus of analysis (i.e. users are but one subset of actors in the context of use).

We propose a path towards closing this gulf of design consequence by focusing on ways
to better foster reflection-in-action during interaction and user experience design through the use
of computational simulation of both users and contexts of use. This proposed path leverages and
integrates existing research and practice in agent-based modeling and theories of distributed
cognition.

EXTENDING COGNITION BEYOND THE BRAIN

Most design and evaluation methods in the interaction design and usability fields are
grounded in specific theories of cognition. For example, methods may be based on cognitivist
theories, such as the popular Information Processing and Symbol Systems models of cognition,
which place the concept of cognition physically in the human brain. Alternatively, methods may
be grounded in a fundamentally different theoretical perspective, such as post-cognitivist theories
of cognition (e.g. Distributed Cognition, Activity Theory, Situated Cognition), which extend the
view of cognition and the mind beyond the physical boundaries of the human skull.

Although intelligence, cognition, and knowledge are words that are usually associated
with an individual person, and moreover usually that individual’s brain, recent views in the field
of cognitive science (Clark, 1997) are questioning the physical boundary of the human brain as
the boundary for the concept of intelligence, cognition, and knowledge. Knowledge can be
viewed as residing “in the world,” as well as the more commonly held view of knowledge “in the
head.” (Norman, 1993).

Distributed Cognition
Distributed Cognition (Hutchins 1995a; Hollan el al., 2002, Rogers, 1997) is a theory of

cognition that views cognitive functionality as “computation as propagation of representational
state across representation media.” Three main principles of Distributed Cognition as a theory of
cognition which distance it from other cognitive theories are listed below:

• Cognitive processes may be distributed across the members of a social group.

• Cognitive processes may involve coordination between internal and external
(material or environmental) structure.

• Processes may be distributed through time in such a way that the products of
earlier events can transform the nature of later events.

360



(Clark & Chalmers, 1998) makes clear (at least relative to the cognitivist view) why it is
proper to refer to cognition outside of the brain as ‘cognition,’ “If as we confront some task, a
part of the world functions as a process which, were it done in the head, we would have no
hesitation in recognizing as part of the cognitive process, then that part of the world is (so we
claim) part of the cognitive process. Cognitive processes ain’t (all) in the head!” (emphasis
present in original text)

Distributed Cognitive Tasks
Research in Distributed Cognitive Tasks focuses on how differing isomorphic

distributions of information and operations required by an abstract task structure over internal
and external representations effects the resultant usability of a system (Zhang & Norman, 1994;
Zhang, 1997a; Zhang, 1997b). Agent-based modeling can be used to try out many different
‘what if’ scenarios represented by different isomorphs that represent different design alternatives
related to whether or not a human user or a non-human artifact is responsible for accomplishing a
portion of a task.

Distributed Intelligence
Pea discusses ‘Distributed Intelligence’ as the idea that through the use of external

artifacts that have been imbued with intelligence, intelligence is accomplished rather than
possessed (Pea, 1993). Pea ‘problemitizes’ the concept of scaffolding as it has been recently used
to represent too much of a percentage of external learning and activity aids. Pea argues that
‘distributed intelligence’ is a more appropriate term for non-fading scaffolding (humans will
always make use of the external aid) versus fading-scaffolding (learning and activity aids that
will cease to be used once the desired skill or knowledge is learned) (Pea, 2004).

Pea (1993) states, “objects…have become so deeply a part of our consciousness that we
do not notice them. Turned from history into nature, they are invisible, un-‘remarkable’ aspects
of our experiential world.” “These tools literally carry intelligence in them, in that they represent
some individual’s or some community’s decision that the means thus offered should be reified,
made stable, as a quasi-permanent from, for use by others.”

 
This means that we need to keep questioning our assumptions about what role artifacts

and the environment play in the process of cognition. Pea stresses that educational activities
should focus more on making learners aware of the usefulness of imbuing intelligence into
artifacts; i.e. educating learners in how to notice, construct, and evaluate such intelligent tools,
rather than only focusing on the use of already existing tools. This in a sense is saying that
methods such as the Distributed Cognitive Walkthrough (that aid us in noticing the intelligence,
or lack of it, in the external world) should be used in the educational process of even young
learners.

Distributed Cognition as an Emergentist view of Cognition
Andy Clarks refers to distributed and embodied cognition (Clark, 1997) as an emergentist

view of cognition, in that cognition can be viewed as an emergent phenomena that arises from
the interaction of multiple cognitive resources (i.e. relevant here is the embodied interaction
between external and internal cognitive resources). This emergentist view can be thought of as
contrasting the more Cartesian, or reductionist flavor of cognition typically seen in
characterizations of the cognitivist views of cognitive science; moreover, these reductionist
views are closely related to the foundational views of cognition that underlie existing usability
evaluation techniques such as the Cognitive Walkthrough method. Clark proposes (Clark, 1997)
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the use of tools and methods from complexity science (i.e. fields related to the study of
emergence) for the study of cognition (when using a distributed and embodied view of
cognition).

PREVIOUS RESEARCH APPLYING RELATED THEORIES TO USABILITY
EVALUATION AND DESIGN

The application of theories of distributed cognition (and related theories) for design and
evaluation of usable systems has primarily been carried out by researchers and practitioners with
much time and education invested in these theories (Hutchins, 1995; Zhang & Norman, 1994;
Zhang, 1997a; Zhang, 1997b). The majority of uses of distributed cognitive principles in system
design and evaluation more closely resemble ethnographic studies (Hutchins, 1995b) than the
type of evaluation typically carried out by interaction design and usability practitioners (e.g.
Cognitive Walkthrough or Heuristic Evaluation) (Rogers, 1997). Moreover, these applications of
distributed cognitive theories therefore require time and education requirements that are cost,
time, and resource prohibitive with typical practitioner resources (Rogers, 1997). The
Information Resources Model (Wright, et al., 1996), a model of HCI related interaction based on
Distributed Cognition “identifies a number of interaction strategies” and discusses how different
“information structures can be used as resources for action.” Although the literature (Wright, et
al., 1996) for this model provides examples of application of Distributed Cognition to design and
evaluation related to HCI, there is no representation of this model as a ‘method’ to be used by
theory-novice or evaluation-novice practitioners; it should be taken as a proof of concept that
Distributed Cognition concepts can be used for the design and evaluation related to HCI (by
researchers educated in Distributed Cognition).

The Distributed Cognitive Walkthrough (DCW) method
The Distributed Cognitive Walkthrough (DCW) method (Eden, 2007) uses concepts from

distributed cognitive theory to view interaction between people and information as transcending
interactions with graphical user interfaces, allowing the DCW method to be useful for evaluation
of design ideas in many areas of interaction design; for example, evaluation of ubiquitous
computing, service design (e.g. Starbucks customer/worker experience), and mathematical
notations (e.g. Newton versus Leibniz Calculus notation).

The DCW is a walkthrough-style usability evaluation method based on theories of
distributed cognition, Distributed Cognition (Hutchins, 1995a; Hollan et al., 2002; Rogers,
1997), Distributed Cognitive Tasks (Zhang & Norman, 1994), Distributed Intelligence (Pea,
1993; Pea 2004), and Embodied Cognition (Clark, 1997). The DCW method is useful for the
identification of potential usability issues related to interaction between people, artifacts, and
information, across dimensions such as time, space, and social structures. The DCW method will
serve two objectives; 1) embodiment of principles of distributed cognitive theory, while also 2)
being practically useful by novices in generating actionable information regarding potential
usability issues.

While methods such as the DCW method guide designers in considering implications of
their design choices from a distributed cognitive perspective, in many cases what it still needed
are tools that allow for “what if” exploration to see non-intuitive implications; this is where
agent-based modeling can be leveraged.
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ABM FOR THE STUDY OF A DISTRIBUTED COGNITIVE VIEW OF USABILITY

Agent-based modeling to support the study of usability in multi-person and multi-artifact
situations fulfils the need for new types of evaluation that provides timely “talk back” (Schon,
1990) to interaction designers who now realize they are designing for usability in “the wild”
(Hutchins, 1995). There is a large opportunity to leverage tools such as agent based modeling to
try ‘what if’ scenarios to see the results of design changes, without the prohibitive cost of
involving real users (i.e. usability testing).

 What we are modeling - How a Coffee Shop Remembers its Orders
 (Spin off of Hutchins’ How a Cockpit Remembers its Speeds)
 

Scenarios to be modeled are taken from everyday situations where multiple people
interact with multiple artifacts; for example, the domain of coffee shops, where many different
complicated drink orders must be taken by workers from customers, and these drink orders must
be tracked until the drinks can be made and given to the customer. Figure 1 below shows a
Starbucks coffee cup that has six boxes on the cup where Starbucks workers can write directly on
the cup to represent a specific drink that a customer ordered. The Starbucks workers do in fact
memorize (long term internal memory) the defaults of all of the drinks that can be ordered, but
the interesting point is that the variations on these defaults are marked up in the six boxes on the
cup. Therefore, much of the specific drink information is represented externally, relieving the
Starbucks worker from having to use more error-prone internal cognitive resources; moreover,
the size of the physical cup itself represents the size of the drink ordered, serving as a good
example of how information can be represented in inherent physical constraints of physical
artifacts (i.e. the Starbucks cup does not need a box for drink size, because this information is
inherently represented in the physical size of the cup). Many other popular (i.e. busy) coffee
shops (e.g. Dunkin Donuts and Seattle’s Best Coffee) do not use such externalization of drink
order information, resulting in a higher rate of drink errors, and in many cases requiring
customers to take part in the tracking of whether or not the correct drink is being made as
ordered.
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Figure 1 Starbucks cup showing boxes that workers mark up to represent different drinks. This
allows the workers to handle more concurrent drink orders than would be possible to keep track
of using only internal cognitive resources.

Figure 2 below shows a ‘cheat sheet’ used by Waffle House restaurant chain grill cooks
that is used in a manner similar to the example of the Starbucks coffee cup. The cheat sheet
shows how grill cooks use different configurations of food condiments to represent large
numbers of complicated, yet similar food orders. These configurations allow the grill cook to be
working on more concurrent orders than would be possible to track using only internal cognitive
resources. The plate itself represents information such as the size or type (e.g. eggs, steak) of the
order, making use of real world inherent physical constraints to represent information, in the
same way that the Starbucks cup itself represents the size of the drink ordered.
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Figure 2 Waffle House grill cook cheat sheet. Different configurations of condiments placed on
plates represent specific food orders. These configurations allow the grill cook to be working on
more concurrent orders than would be possible to keep track of using only internal cognitive
resources.
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ABSTRACT 

 
This paper introduces an agent-based model that utilizes a utility based framework for 
agent behavior that represents action propensity based upon the agent’s volatility and the 
perception of the current environmental context compared to the agent’s ideal context.  
Propensity for an agent to conduct an action is modeled as a logit function.  As the 
environment changes and events occur around the agent, where they fall on the logit 
function will change.  If the logit function exceeds a given value the agent will take an 
action.  Moreover, the threshold that must be exceeded before the agent will take the 
aforementioned action is malleable.  As events occur the agent may lower the threshold 
in an attempt to satisfice (making the best of a bad situation) based upon their perceived 
likelihood for success.  For example, although a suicide bomber would like to attack a 
large crowd, they will attack a small crowd rather than fail completely by being stopped 
while looking for a large crowd.  We experimented with these dynamics as part of an 
agent-based model of a large crowd moving through an entry point.  Security personnel 
are modeled as are civilians and bombers.  As sensors are a critical aspect of the scenario 
high resolution sensor simulations were created to determine the appropriate parameter 
values to use to create “realistic” sensor performance.   

 
INTRODUCTION 

 
This paper introduces a framework for agent-based behavior that models the propensity 

for action based upon the agent’s volatility and the perception of the current environmental 
context as compared to the ideal context. The framework is instantiated as an agent-based model 
that examines the optimal sensor placement and security-force behaviors to thwart a terrorist 
operation.  An extensive exploration through a large variety of simulation runs was conducted.  
This exploration resulted in avenues for additional simulation as well as the need to explore more 
carefully the role of tactics in conjunction with sensor technology in defeating terrorists.  As part 
of the data analysis, the paper compares the model results to those from a formal equation based 
model as described by Kaplan and Kress (Kaplan 2005).  Conclusions are drawn as to the 
additional value of representing the behavior in the agent-based model.  

 
The construction of the paper is as follows.  The concept of activation energy is presented 

as a basis for modeling the internal propensity of red agents to attack.  Activation energy is then 
used as a lens to focus the discussion on satisficing behavior as well as how blue agents might 
defeat the red agents.  The discussion is actualized in the following section that describes the 
simulation framework and presents the results.  Implications for additional work and references 
close the paper out. 
                                                
* Corresponding author address: Philip Barry, The MITRE Corporation, 7515 Colshire Drive, Mclean, VA  22102; 
e-mail: pbarry@mitre.org 
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Activation Energy 

 
Extending the work done in modeling stability and support operations (Koehler 2004), 

we refer to the propensity for an individual to carry out an action as a function of a term called 
activation energy.  Activation energy is modeled as a logit function, whose general form is 
described by Equation 1.  If an individual’s activation energy for a given situation exceeds an 
endogenous threshold then an action is taken.   
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 (Eq. 1), 

 
where Lb and Ub are the lower and upper bounds of the function respectively.  Slope is a 
parameter that adjusts the general steepness of the activation energy curve.  In this framework, 
we suggest that one can view the slope parameter as a proxy for volatility; an agent with a large 
slope is considerably more unpredictable than an agent with a smaller slope.  The mean of the 
function m is used as a proxy to model how close the context must be to the ideal value to 
increase activation energy.  The values on the x-axis represent k, the average distance of the 
actual context parameters from the ideal values as measured in percent.  (Negative values of k 
indicate that the average of the parameters is “better” than the mean of the activation energy 
curve).  In this framework distance refers to the geometric distance within this vector space 
rather than physical distance in the simulation.  It should be noted that we are defining one action 
per agent rather than creating a detailed goal hierarchy as other approaches (e.g., Johns 2001). 
We assume that a bad actor only has one goal, that of executing some terrorist action. 
 

 

 

Figure 1  Illustration of Activation Energy 
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To illustrate this concept, consider Figure 1.  In Figure 1, for all curves, m is set to zero 
and the behavior of various values of k are compared at specific slope settings.  As the slope 
approaches zero, the tendency is for the behavior to linearize (e.g., slope = 0.001 and 0.01).  As 
the slope increases to 0.05, the volatility of behavior increases and the distinctive “S” shape 
shows a consistent increase in activation energy exponentially increasing around 0 and leveling 
off as k approaches -100.  At slope = 0.5 there is virtually no increase in activation energy until 
k = 0 at which time the activation energy approaches 1. 
 

We can also use activation energy as an external indicator of the agent’s tendency for 
action.  Agents that have sub-threshold but measurable activation energy can be considered to be 
“telegraphing” their intention to act.  Consider the case of an agent that shows no external 
indicators of untoward behavior until the conditions are ripe for action.  This agent would be 
modeled with a large slope value (e.g., 0.5 in Figure 1).  On the other hand, agents with smaller 
slope values (e.g., 0.01 in Figure 1) show their intentions and build up to activation much more 
slowly. 

 
Representing Satisficing Behavior 

 
Satisficing is a behavior which attempts to achieve at least some minimum level of a 

particular variable, but which does not necessarily maximize its value (see generally, Simon 
1957).  Often satisficing is used within a learning context as an alternative to strict optimization 
(Izquierdo 2004).  It is reasonable and expected that the agents being modeled would exhibit 
satisficing behavior.  Consider the example above, where the agent is taking the decision to carry 
out the negative action.  Only when the agent is directly at the center of a crowded area will the 
activation energy be sufficient to trigger an action. 

 
Satisficing is observed where the agent has determined that the optimal combination of 

parameters is too restrictive, in other words the allowable distance from the actual context to the 
ideal context is too large for activation.  This possibility can be shown using figure 1, where the 
activation energy is shown to be below the mean until the agent is 100 meters from its target.  
When the agent reaches 100 meters from its target the activation energy reaches the mean value 
of 0.5.  In the case where the activation energy threshold is 1.0, the agent will essentially need to 
collocate itself with the target prior to action.  However, if the agent satisfices and reduces the 
activation energy threshold to 0.8, any distance less than 60 meters would suffice for the agent 
(given that the slope of the curve is 0.05). 

 
Satisficing behavior is observed in the model when the agent perceives no other options.  

For example, if an agent perceives impending arrest the agent may trigger an explosive device 
even if the context is significantly far from optimal.  This aspect of behavior is a significant 
factor that contributes to the adversarial reasoning.  To thwart the undesirable actions of a given 
agent, the opposition will attempt to increase the requisite activation energy threshold or increase 
the perceived distance between the actual and ideal context variables.  
 

EXPERIMENTAL FRAMEWORK 
 

A simulation was developed to test these concepts using NetLogo 4.0 (Wilensky 1999).  
The simulation was designed to model an entrance to a public venue.  The entrance is a non-torus 
plane 100 pixels high by 500 pixels wide. In the model there are five major regions to the 
entrance.   Agents are instantiated at the extreme left edge.  From here they move to the right into 
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the second region, which is a wide hallway.  At the end of the wide hallway the environment 
narrows to a region with two “turnstiles.”  All agents move through one of the turnstiles and 
proceed to the forth area, a narrow hallway.  This narrow hallway ends in the final region, the 
extreme right side of the environment where all surviving agents are removed from the system.   
Figure 2 provides a screen shot that illustrates the model. 

 

 

Figure 2  General Simulation Setup 
 
 
The Agents 

 
There are three types of agents in the model: Security, Civilians, and Sensors.  Security 

agents are generally homogeneous, except that they have different “stations.”  Some security 
agents are stationed forward, in the middle of the wide hallway; the other security agents are 
stationed around the turnstiles.  The security agent behaviors are relatively homogenous.  If 
civilians are within range of the security agent and they have a suspicion level that is greater than 
the security threshold then, if there are more than one other security agents around, they will 
detain the civilian.  All security agents can pursue civilians that fall into that category, save a 
small number permanently manning the turnstiles.   

 
Civilian agents are instantiated during runtime.  The number created each time-step is 

drawn from a random-exponential distribution.  Upon instantiation civilians have a 0.005% 
chance of becoming either an individual with a gun or a bomb (but not both).  If they have a 
bomb then they also set a trigger for themselves.  This trigger is a value based upon the 
activation energy curve (described supra) and if, during the course of the run, their perceptions 
of the situation yield a value greater than their trigger they will explode their bomb killing 
themselves and some number of people around them.  Data are gathered from civilians when 
events of interest happen to them.  These events include: creation, detainment, first detection and 
first detection that increased their suspicion level above the security threshold, suicide bombing, 
and anytime they are removed from the simulation. 

Passengers and Bad Actors Move Left to 
Right Towards Turnstiles 

Sensors Sensors Turnstiles Identified Bad Actor 

False Alarm 

Good Actors 

Security Staff 

Security Staff 
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The Sensors 

 
Sensors are categorized by one of three types; two types of passive millimeter wave 

(MMW), and one type of infrared (IR)1.  The sensors are placed in fixed locations about the 
environment.  The primary purpose of the sensors is the detection and classification of concealed 
weapons under a person’s clothing at this public venue. It is often desirable to screen people 
from a standoff distance to reduce the chances of long lines or unnecessary crowding. However, 
the composition, placement, and tasking of semi-autonomous sensor assets, the extraction and 
utilization of actionable information from these systems, and the generation of reasonable 
concepts of operations are important problems that have not yet been resolved.  

 
The first stage of this effort involved the development of passive MMW sensor models 

that can be used to accurately predict the detection and classification probabilities of concealed 
weapons at range.  In the MMW band, objects are described by their apparent temperature–a 
combination of the actual temperature and the temperature of the reflected background. For a 
metallic object, the apparent temperature is basically the background temperature. A passive 
MMW imager uses a radiometer (energy detector) to estimate the apparent temperature in a 
beam pointed at the object. After accounting for system noise and possible antenna losses, the 
effective contrast temperature between an object and its background across each beam can be 
determined as a function of the imager aperture size, focal length, detector time-bandwidth 
product, weapon size, sky and ground temperatures, and the corresponding weapon emissivities 
(the amount an object radiates). The detection probability is determined using the effective 
contrast temperature and the number of beams covering the object at a fixed false alarm 
probability. A similar procedure is used to determine the classification probabilities for various 
weapon sizes and shapes with possibly different material compositions. 

 
The simulation uses these detailed high fidelity models to develop performance curves 

that simulate probability of detection (pd) as well as the probability of false alarms (pfa).  When 
an agent that has a gun or bomb moves through a sensor beam the pd and pfa scaled for distance 
from the sensor are provided as evidence.  The pd and pfa are considered evidence that 
accumulates to increase the suspicion that a given agent is carrying a bomb or a gun.   A random 
variable modeled possible occlusion from clothes and other travelers; this resulted in situations 
where a sensor would not return a “hit” even if a passenger had a bomb or a gun. 
 

EXPERIMENTAL DESIGN 
 

A full factorial design of experiments was used for the initial, exploratory analysis 
reported in this paper.  As initial testing confirmed that the performance of this system is highly 
dependent upon sensor performance and the behavior of the security agents, the experimental 
design varied parameters associated with those features.  Table 1 presents the specific parameters 
and their associated values.  Due to the high degree of randomness in the design, each design 
point was run 25 times for 5000 time-steps.  This gave us a sample size of approximately 70,000 
agents per design point, or 3.5 x 108 total agents. 
 

 

                                                
1 Results using IR sensors are not discussed herein. 
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Table 1: Parameter values varied in the initial experiment. 

Parameter Name Parameter Values 
Sensor Degradation  1, 0.75, 0.5 
Security Agent Threshold  0.6, 0.7, 0.8 
Civilian-pd 0.012, 0.0125, 0.013 
 

Sensor degradation is a parameter that affects the sensor’s likelihood of detecting an 
agent.  If the agent is detected then the sensor reports back the appropriate pd to the Bayesian 
Updater (BU).  As described supra, the BU creates a “suspicion” score for each agent detected 
by the sensors.  The BU assumes independence of observations to manage the combinatorial 
complexity that would result from determining a myriad of conditional probabilities, similar to 
an approach taken in a recent technical report from General Electric (Skatter 2005).  The security 
agent set a suspicion level threshold that sets the trigger when the security agent will attempt to 
detain a civilian agent.  Finally, the Civilian-pd models the probability of detection that is passed 
to the BU as evidence for determining the suspicion level of a civilian (an agent without a bomb 
or a gun). 

 
The simulation introduced several modeling constructs.  Specifically, sensor degradation 

was defined as an abstract concept to scale how well the sensors deal with very noisy 
environments and to specifically model phenomena such as sensor occlusion.  Varying the 
security agent threshold allowed an exploration of the effects of the faith the security agents have 
in their sensor information.  The higher the threshold the higher the necessary information 
required before a suspicious individual will be detained.  Finally, varying the civilian-pd provide 
a path explore the effects of changes to the sensor fusion algorithm.  When civilian-pd values are 
greater than 0.01 the suspicion level of a civilian will increase.  At values of about 0.02 this 
growth is very slight but non-linear.  Therefore, if the civilian chooses a path that leads them 
through many sensors or causes them to linger in a sensor field they eventually may have a 
suspicion score that is greater than the security agents’ threshold for action.  The results of this 
experiment are presented, infra. 
 

SIMULATION RESULTS  
 

Overall, the sensor suite was able to identify roughly 96% of the bombs and guns that 
were being carried into the venue.   There was a larger variance for detecting bombs versus guns, 
but both performed reasonably well considering that the scalar was dropped to 50%, meaning 
that in a given time-step there was only a 50% probability that a sensor would register a hit on an 
agent who had a gun or bomb.  Table 2 provides a summary of the simulation results. 

 
As part of the experiment we investigated how increasing the likelihood that “innocent” 

agents would be incorrectly determined to have a bomb or gun by virtue of being in the sensor’s 
range when an actual threat was detected.  For a very small increase (<0.5%), the likelihood of 
the “innocent” agent being falsely detained rose significantly.  This is seen as the probability of 
false detainment that has a mean of 0.648, but a large standard deviation of .466 and a range of 
values of 0.991. 
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Table 2: Result Summary  

Variable Mean StDev Minimum Maximum Range 
P(Detect_Bomb) 0.955 0.023 0.906 0.993 0.086 
P(Detect_Gun) 0.968 0.013 0.944 0.993 0.049 
P(Miss_Gun_Bomb) 0.040 0.013 0.010 0.068 0.058 
P(Correct Detainment) 0.960 0.013 0.932 0.990 0.058 
P(False Detainment) 0.648 0.466 0.000 0.991 0.991 

 
Although the simulation was highly stylized, some clear areas of optimality were 

observed.  Consider the probability of correct detainment shown in Figure 3.  At low suspicion 
levels (meaning more likely to detain) and low scalar (meaning less sensor hits) the probability 
of correct detainment falls significantly.  This trend is even more pronounced in the diagram 
illustrating the probability for correctly detecting a bomb.  Interestingly enough, while this area 
has non-optimal performance for the probability of detecting a bomb, there are other apparent 
areas of even poorer performance.  Similarly, the performance of the probability for missing a 
gun or a bomb is non-optimal in this area. 

  
By way of comparison, Kaplan (2005) offers an idealized assessment of the operational 

effectiveness of sensors.  Specifically, he describes the probability of timely detection given 
detection of the device on arrival shown as Equation 2 (Idealized Probability of Timely 
Detection Given Detection on Arrival): 
 

 

Figure 3  Surface Plots: Prob(event) vs. Suspicion Threshold and Scalar 
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where L is the distance to the target, l is the distance to detection and E(L) is the mean distance 
to the target. 
 

In the simulation setup, the distance to detection was 40 meters and the distance to the 
target was 268 meters.  Entering these parameters into Equation 2 yields an idealized timely 
detection of .983, given that the bomber was detected.  This corresponds reasonably well to the 
summarized results from the simulation, which yielded a probability of .960, indicating that 4 
percent of the bombers/gunners were able to either attack or get through the security.   
 

INSIGHTS 
 
The importance of effectively identifying hazardous materials on potential passengers 

cannot be overestimated.  Los Angeles International Airport is anticipating in excess of 78 
million passengers per year by 2015, up from 68 million in 2000.  Historically, 65 percent of the 
attacks on airports resulted from portable explosives as well as the majority of the 4280 fatalities 
resulting from attacks on aircraft (Schell 2003).  Cleary, aggressive use of technology and 
innovative tactics are critical to attempt to mitigate this very real threat. 

 
Our exploratory research results indicate that by using optimistic sensor models and 

stylized agent behaviors, roughly 96% of the guns or bombs would be detected or interdicted.  
These estimates are extremely preliminary but compare favorably to the theoretical calculations.  
However, the simulation does give cause for concern.  While individual sensor performance was 
modeled accurately and to published specifications for MMW and IR radars, perfect tracking 
was assumed which facilitated the accumulation of evidence.  In essence, once an agent was 
identified as possessing a gun or a bomb a probability was ascribed to the agent and subsequently 
modified as additional evidence was gathered.  In practice in a crowded venue such as a stadium 
or airport, such perfect tracking is impossible and disambiguating radar hits is non-trivial.  The 
net result is that it is likely that the numbers presented here are optimistic.  Consequently it is 
reasonable to infer that a purely technical solution will likely not provide adequate security.  

 
To address this gap there are a number of tactics that the blue agents can employ to 

enhance their technical advantage.  This is consistent with the current state of the practice that 
seeks to increase the security capability of airport personnel with techniques such as behavioral 
pattern recognition (Elliott 2006) which train personnel to spot and understand erratic behavior.  
Towards this end, additional experimentation is warranted to develop creative blue tactics that 
will increase the perceived contextual distance of red agents and reduce the likelihood of 
undesirable action. 
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ABSTRACT 

This paper presents an agent-based model of a Real Time Gross Settlement (RTGS) 
payment system. Banks are represented as agents who exchange payment requests, and 
decide on the timing and the mode of settlement based on a set of simple rules. While 
highly stylized, the model features the main elements of a real-life system, including a 
central bank acting as lender of last resort, and a simplified money market. Simulations 
are run to predict the impact of a disruptive event on the flow of interbank payments. 
When one of the banks participating in the system is hit by such an event, resulting in the 
impossibility to perform transactions, three distinct phases emerge. The first one is 
characterized by inflated liquidity expectations, the second one features a thickening of 
the money market and of payment queues, and the third one is marked by an increase in 
defaulted obligations. In order to staunch the flow of losses and restore the orderly 
functioning of the payment system, central bank intervention must not only be timely, but 
also relatively intense in terms of the amount of liquidity funneled to the system. 

Keywords: Agent-based modeling, Payment systems, RTGS, Liquidity, Crisis simulation 

INTRODUCTION 

In modern exchange economies, the reliability and the efficiency of payment systems 
represent fundamental pre-conditions for smooth and safe financial transactions of banks, firms, 
and households.  

The value of payments has increased dramatically in the last decade, as a result of 
financial liberalization, innovation processes, and increasing globalization of the real economy. 
In the European Union, interbank payments amounted to 57 times annual GDP in 2005, up from 
40 times at the end of the Nineties. Given these developments, in the last decade central banks 
and market participants have been devoting specific attention to the payments settlement phase, 
where financial risks are more likely to produce potential systemic impacts. The need to manage 
and mitigate such risks, at the same time facilitating the handling of an increased volume of 
transactions, has led to the widespread adoption of Real Time Gross Settlement (RTGS) systems, 
where individual transactions are settled in real time and with immediate finality.  

� Corresponding author address: Claudia Biancotti, Bank of Italy, Department of Economic and Financial 
Statistics, Via Nazionale 91, 00184 Rome, Italy; e-mail: claudia.biancotti@bancaditalia.it. 
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Such systems require each participant to hold adequate liquidity levels on an intraday 
basis; should this not be the case, streams of payment operations might go unfulfilled, triggering 
undesirable domino effects. A disruptive event, be it physical, technical or financial, may induce 
prolonged illiquidity conditions, with potentially severe consequences for economic activity. It is 
therefore very important, especially for central banks as promoters of financial stability, to gain 
an understanding of how these illiquidity conditions arise, which parts of the system they affect 
most, and which strategies are most effective when attempting to counteract them.  

This paper presents an agent-based model aimed at discerning how a traumatic event 
affecting a single bank at a given time impacts on liquidity levels and expectations of all other 
banks participating in the same payment system for the rest of the operational day. While by no 
means exhaustive in representing the complexity of actual RTGS systems, the model 
incorporates the core behavioral rules of banks under ordinary conditions; emerging post-crisis 
behavior appears to be consistent with observations of real-life episodes, if still very simplified. 

The paper is structured as follows. Section 2 presents a brief overview of the literature on 
the simulation of payment systems. Section 3 describes the operating principles of a stylized 
RTGS system. Section 4 provides the detail of our agent-based model. Section 5 discusses the 
results. Section 6 concludes and puts forth proposals for future work. 

SIMULATION METHODS FOR PAYMENT SYSTEMS 

The simulation approach is very suitable for the representation of payment systems: it 
enables researchers to build models closely replicating the real operational environment, 
unconstrained by the existence of numerous complex interrelations which are typically hard to 
represent through traditional econometric tools. Simulations provide information both on the 
normal functioning of the system and on extreme, not frequently observed scenarios. Input data 
can be of different kinds: time series of payments submitted by banks can be used for “what if” 
analyses under different settlement mechanisms, whereas stochastic inputs can be either used for 
theoretical studies or for models aimed at extrapolating the consequences of particular behavioral 
assumptions on small-scale settings.  

These techniques are now a reliable support in designing payment systems that can 
control their typical risks, as described by the Bank of England (2000): credit, liquidity, 
operational, and legal. The Bank of Finland pioneered the construction of simulation models by 
building an ad hoc algorithm (Leinonen, 2005): a deterministic stream of payments is accepted 
as input and dealt with according to different sets of rules. Bank behavior is taken as given, or is 
made able to evolve in a predetermined manner.1

When considering the largish menu of possible simulation methods currently available, 
the agent-based framework (Gilbert and Terna, 2000; Fioretti 2004) appears to the best option 
for our task. Payment systems are coherent in a recognizable way, but their elements, 
interactions, and dynamics generate structures admitting surprise and novelty which cannot be 
defined a priori. They are more of the sum of their parts; also, the time dimension is explicitly 
relevant in their functioning, in that different aggregate scenarios may emerge according to the 

1 Payment systems can also be represented as a complex network, with banks as nodes and mutual liabilities/claims 
defining the arches. This kind of modeling is, however, static: in the sense that the time dimension is not directly 
taken into account. Network theory has been exploited to study the main features of real interrelations among banks 
(Boss et al., 2004), making it possible to understand the concentration level of the system, i.e. whether few banks are 
responsible for the bulk of the links. The consequences of catastrophic events are simply modeled by removing a 
specific node and measuring the performances of the rest of the network.
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payment sequence and rules governing interactions. In other words, they fit the definition of 
complex systems as provided by Wolfram (1994).  

In a way that lends itself well to agent-based modeling, the behavior of commercial 
banks, at least in the short run, can also be represented in terms of a simple and consistent set of 
rules, governing a core set of decisions. Given a flow of payments, banks mainly choose in 
which order these payments have to be submitted in the system, and how to obtain the liquidity 
necessary to meet obligations, subject to known constraints (Markose et al., 2006). The set of 
available strategies can be described in the language of game theory (Bech and Garrat, 2003), 
and translated into algorithms with ease. Learning mechanisms can also be implemented, 
allowing banks to move from a set of rules to another according to the values of an objective 
function dynamically updated by simulation results. Predictive learning modules can double as 
tests of whether banks’ adaptive behaviors converge to a steady state in terms, for example, of 
the liquidity committed in the system (Galbiati and Soramäki, 2007).  

SOME RELEVANT FEATURES OF RTGS SYSTEMS 

Figure 1 describes the basic functioning of an RTGS environment. In the following, we 
give a sketch only of those features that are especially relevant for our simulation, and do not 
appear to have been fully considered in any other similar exercise. For a comprehensive 
illustration of the underlying system, see Arnold et al. (2006).  

Independent of the underlying instrument (bills, checks, electronic transfers, etc.), each 
payment operation in an RGTS context generates an integrated process, going from the initial 
decision to transfer funds to a counterparty and until the final settlement in central bank money. 
In such processes, the main role is played by commercial banks: at some stage, payments 
between customers of different banks are likely to be treated as interbank flows of liquidity 

Several intraday liquidity sources are available to banks. Within the system itself, each 
bank does normally rely on a continuous flow of incoming payments from its counterparties. 
Moreover, it can obtain central bank intraday credit, which entails a cost either explicit, if such 
credit is subject to a fee, or implicit, whenever the provision of funds is not priced but is 
conditional on the availability of collateral. Alternatively, funds can be borrowed from other 
banks, in the interbank market.    

Since liquidity is costly, banks are however involved in a strategic game, possibly 
affecting the time pattern chosen to send payments. More specifically, they face, on a continuous 
time basis, a trade-off between liquidity and delay costs. By releasing payments as soon as funds 
are available they satisfy customer and counterparty needs and benefit from a sound reputation, 
but can incur high liquidity costs, to the extent that they borrow from the money market or the 
central bank. On the other hand, banks can more effectively play on the intraday dynamics of the 
money market by choosing to delay payments, at the expense of increased sytemic uncertainty 
and worsening of reputation. 
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FIGURE 1 Basic functioning of an RTGS environment

DESCRIPTION OF THE MODEL 
    
We model a stylized version of a “plain vanilla” RTGS system, excluding advanced 

liquidity management tools such as optimization and centralized queues. The model is 
implemented in the StarLogo2 environment, and it includes seven breeds of agents: banks, the 
central bank, payment requests, defaulted operations, interbank loans, crisis events and craters, 
representing banks hit by such events and accordingly unable to perform any operation. One 
StarLogo second corresponds to one real-life minute.  

During the setup phase, representing the start of the operational day, banks are endowed 
with a starting level of cash and collateral. During the day, for every tick of the clock, each bank 
hatches a certain number of new agents, representing aggregations of all payment requests to be 
delivered to a single counterparty in that moment. For computational reasons, the RTGS system 
is treated as direct-debit based, with payments always requested by the payee. Payment requests 
are assigned individual deadlines, ranging from “upon reception” (time-critical payments) to a 
certain number of minutes after reception. Amounts, deadlines and counterparties are determined 
through a random draw, whose features can vary depending on the desired scenario.  

Each payment request proceeds to cross the StarLogo terrain at fixed speed towards its 
destination. Upon arrival, it is queued until its deadline expires, and triggers the settlement 
routine. It is noteworthy to stress that this submission rule allows for the implicit modeling of 
settlement delay costs banks incur: for each operation, the delay cost is assumed to be a 

2 Starlogo TNG Preview 4.2, released in April 2007, freely available at http://education.mit.edu/starlogo-tng/.
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discontinuous function of time with a jump at the payment deadline, being lower than liquidity 
costs until the deadline and greater afterward.3

From the moment a payment request is generated and until it is settled, the amount 
thereof is incorporated in the expectations of a liquidity change for both the originating and 
receiving bank. We therefore assume that in each moment banks are perfectly informed on all 
payment requests concerning them either as payer or payee; at time t banks are able to calculate 
their future liquidity up to the moment T, where T-t is the maximum lifespan of a payment 
request generated at t. The expectation is constantly updated as new payment requests enter the 
world.  

When the settlement process starts, the intended payer tries to meet its obligation with 
cash. If the cash balance held at the moment is not sufficient, it tries to pledge collateral at the 
central bank, who provides liquidity based on 100% percentage. If collateral is also insufficient 
the bank tries to borrow on the money market (“short” bank), thus looking for a lending 
counterparty (“long” bank). The short bank i randomly draws a potential counterparty k among 
all the other banks with the exception of j, the bank who originated the payment request pij

t.
Bank k agrees to the loan if the condition pij

t�E [Lk
T] is met; E [Lk

T] is the expected cash balance 
for k at time T. In other words, the loan to cover pij

t is extended on the basis of both present cash 
balances and future liquidity expectations, as determined by other payments currently in 
existence initiated by or sent to the potential lender.  

Whenever a loan request is refused the payment request bounces, and the short bank 
looks for another lender. A counter keeps track of the number of bounces per request: when they 
exceed a certain threshold - a function of the number of possible available counterparties - the 
bank who has to settle the payment is unable to obtain sufficient funds from anyone. The request 
is cancelled and flagged as defaulted obligation, whose amount is recorded as an instance of 
insolvency by the short bank, and as a loss by the intended payee bank. Liquidity expectations 
for both ends of the transaction are adjusted accordingly.  

Disaster is simulated through the introduction of an agent of the “disruptive event” breed. 
This agent can be called from the StarLogo interface and its job is to pick a bank at random and 
destroy it, turning it into an agent of the “crater” breed. A crater symbolizes a completely 
inactive bank, who neither makes or receive payment requests, nor operates in the interbank 
market (as lender or borrower). In the thirty StarLogo seconds after the disruption has taken 
place, no agent is aware of it, and all surviving banks continue their routine activity. A random 
process then makes the banks aware of disaster, with the probability of awareness increasing 
over time. Once a bank is aware, it stops requesting payments from the bank-turned-crater, no 
longer considers it as a counterparty for loan requests, transforms all payment and loan requests 
that are pending toward the crater into defaulted obligations, and updates losses and expected 
liquidity. 

Depending on the simulated scenario, the central bank monitoring module may also be 
activated. Should this be the case, after a given amount of time after the disruption the central 
bank starts checking whether banks are delaying their payments beyond some pre-determined 
physiological threshold. If a bank features an excessive number of delays, the central bank 
supplies it with an amount of cash proportional to them. The intervention routine stops when the 
number of delays is back below the threshold. 

3 Though not game-theoretically founded, this rule reflects satisfactorily the fact that banks schedule a large share of outgoing
payments according to institutional cut-offs. These cut-offs are agreed with customers, who initiate payments, with the receiving
bank, when the payment arise from interbank trades (see e.g. the guidelines of the Euro Banking Federation for money market 
related payments), or established by the system rules (e.g. for payments related to monetary policy operations).
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PARAMETERIZATION AND RESULTS 

We parameterize our simulation based on real Summer 2007 data for the Italian RGTS 
system (BI-REL). More than 100 banks participate in BI-REL directly; for the sake of simplicity, 
we collapse them into five agents. Each agent is a “superbank”, incorporating banks that appear 
homogeneous in terms of payment traffic, opening balances, and collateral.4

Table 1 describes the five agents as they are in the real world. Superbanks 1 to 4 are 
aggregation of Italian banks, while superbank 5 is the aggregation of Italian branches of foreign 
banks. We draw simulated endowments and payment traffic from random distributions 
constructed so as to consider:  

1) end-of-day liquidity and collateral, used as a proxy of starting values;  
2) payment flows per minute among the five entities, obtained by excising certain 

categories of payments from the original dataset: intra-agent, cross-border, and payments to and 
from the central bank, whose role in our model is limited to the one of lender of last resort. The 
quota of neglected payments is subtracted from the endowments of cash and collateral at the 
beginning of the simulation. The stream of simulated payment flows sticks to the real 
distribution pattern, highly skewed, with frequent small payments and rare big ones. 

Figure 2 depicts the model predictions. The four panels represent the evolution of 
liquidity levels, liquidity expectations (expressed as differences between current liquidity and 
liquidity as estimated after the settlement of all payment flows currently existing in the system), 
money market thickness, and delays incurred by banks in settlement activity.  

Under normal operational conditions, the evolution of both liquidity and expected 
liquidity predictably resembles a random walk; the specific pattern observed in the sample is 
almost entirely driven by the few large payment orders circulating in the system, and the starting 
conditions do not appear to generate any path-dependent evolution. Banks rely on the money 
market infrequently, and mostly when they need considerable amounts of liquidity; the result is 
consistent with the real share of interbank loans, estimated at 5-7 per cent of the total intraday 
payment traffic. 

TABLE 1 Main scenario (€ millions) 

Agent 
number 

Average payments 
settled daily 

Largea payments settled 
(% of the total) 

Average end-of-day 
liquidity 

Average end-of-day 
collateral 

1 18,384 3.0 5,302 2,648 

2 22,669 6.6 3,583 3,947 

3 13,718 3.1 4,780 2,766 

4 18,451 8.8 2,211 850 

5 43,339 7.5 439 10,119 

Total 116,562 5.0 16,315 20,329 
a Payments are defined “large” if their amount exceeds the 95th percentile of the global distribution of 
flow values. 

4 The reduction in the number of agents, forced by computational limitations, impacts on the evolution of the complex system. 
The BI-REL system is, however, quite concentrated; two superbanks, for example, correspond to actual single banking groups, 
with a high level of internal coordination in the payment system.
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When the disruptive event occurs, and one of the banks is rendered unable to perform any 
operation, the system evolves through three distinct phases. At first, when no agent is aware of 
what happened, a spike in expected liquidity emerges. Banks keep on sending payment requests 
to the bank-turned-crater, incorporating the future settlement of such requests in their 
expectations; the crater, however, is not able to send out requests of its own, resulting in failure 
of the regular counterbalancing mechanism for expectations, and illusions of short-run liquidity 
increases for all its counterparties.  

This heralds the second phase, marked by a sizable boom of the money market. Banks 
experience a lack of liquidity, because they do settle all requests from the crater that were 
pending at the time of the disaster, but their own requests toward the crater are not settled. After 
consuming their whole endowment of collateral in exchange for central bank money, they try to 
counteract the lack of liquidity by turning to the money market. Since loans are granted based on 
current and expected liquidity both, and expected liquidity is artificially inflated for the reasons 
stated above, all banks are willing to lend to other banks money they do not yet have: the 
thickness of the interbank market rises sharply, and as the actual liquidity fails to come in, delays 
accumulate.  

The third phase sets in as banks start to become aware of the disruptive event. One by 
one, they realize that a bank is not operational anymore, and adjust their liquidity expectations 
accordingly. Money market activity slows down, and losses are accumulated.1
 The impact of central bank intervention depends crucially on both timing and intensity. In 
the scenario depicted in Figure 2 the central bank is relatively slow-moving, and it provides 
banks with small amounts of extra liquidity: this results in a reduction of delays to physiological 
levels, but it is not enough to staunch the flow of defaults completely. Runs of the simulation 
with different behavioral assumptions for the lender of last resort show that the amount of 
liquidity to funnel so as to neutralize the domino effect entirely can be estimated at somewhere 
between 1.5 and 2 times the aggregate starting liquidity in the system, depending on 
circumstances.  

CONCLUSIONS AND FURTHER RESEARCH 

The model predictions approximate the macro-features of reality adequately, but the 
framework can be improved along several directions, with the aim to better reflect real RTGS 
and money market environments. The payment submission process can be refined  moving from 
a direct-debit to a credit-transfer based system, where payments are submitted by the payer. The 
number of banks should be enlarged and some source of uncertainty could be introduced, by 
relaxing the independence assumption underlying the payment generation and the common 
knowledge hypothesis. Moreover,  banks should be assigned an end-of-day target in terms of 
cash balances, to mimic the interday liquidity management optimization they pursue during the 
maintenance period of required reserves.   

As for the central bank, it has to be considered that it autonomously makes and receives 
payments in real RTGS world, beyond the well-known liquidity supplier function. Modeling of 
the money market can be refined to take into account the role of overnight interest rates in 
influencing banks borrowing and lending decisions. Finally, the rest of the world could be 

1 Whether the system goes back to normal functioning, aside from the accumulated stock of defaulted obligations, depends on 
the relative impact of the disruptive event and its consequences compared with the global amount of liquidity in the system. 
According to our model, the system would not be able to react autonomously, i.e. without bailouts from the central bank, to any
crisis neutralizing one of its major players.
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introduced at least as an external shocking agent, also to account for the relevant (and increasing) 
real-life share of cross-border payment traffic.    
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ABSTRACT 
 

Because of its inherent complexity, terrorist attacks that attempt to disrupt the 
international financial system are difficult to model. The present project 
assembles three interaction layers — global, national, and regional, each with its 
distinct dynamics — in order to explore the types of risks the financial sector 
faces. The model that connects the three layers is a hybrid, with the first two 
mechanisms being in the form of systems dynamics mechanisms, and the third 
being a fine-grain agent simulation. Currently, a variety of scenarios are used to 
exercise the model, but it is planned that these will be replaced with a scenario 
generator that can perform sensitivity analysis as well. 
 
Keywords: financial system, systemic risk, adversarial risk, capital flight, 
liquidity crisis  

 
 

INTRODUCTION 
 
 Financial instability can be caused by endogenous or exogenous factors, or a 
combination of the two (Johansen and Sornette 2002). Exogenous factors can be highly 
disruptive and further exacerbated by endogenous weaknesses (Horwich 2000). A 
particular kind of exogenous threat to financial stability is posed by substate actors 
(van Creveld 1991). Unlike conventional exogenous dangers, the terrorist threat is 
intentional and, thus, designed to exacerbate and amplify natural weaknesses of the 
market.   
 

Days before the most recent U.S. presidential election, for example, Osama bin 
Laden (2004) released a speech to Al Jazeera in which he took satisfaction in putatively 
causing a million dollars of economic disruption for each dollar that Al Qaeda spent. He 
indicated that he and his co-conspirators will continue a policy of “bleeding America to 
the point of bankruptcy.”   

 
Economic and financial attacks can be used to complement and/or intensify more 

comprehensive terrorist attack goals. An attack on financial institutions might have 
multiple effects within a coordinated attack, including: 
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• Intensification of a complementary physical attack 
• Undermining of confidence in financial and/or government institutions 
• Prevention of the provision of liquidity or other financial resources 
• Penetration of banking institutions to conduct proscribed transactions 
• Generation of revenue for terrorist networks 
• Disruption of global financial stability 

  
However, attempting to model the consequences of an attack or a series of attacks is a 
vast, unwieldy process.   
 

The financial system is global, dynamic, and immersed in the much larger 
economic system. There is extensive data on financial transactions, but most pertains to 
endogenous economic and financial concerns that might mask the effects of an 
adversarial perturbation. Complexities notwithstanding, a critical part of mitigation 
requires recognizing vulnerabilities and assessing the potential mitigation effects of 
various possible policy alternatives.   

 
A model designed for these purposes will necessarily be partial. It must be 

notional in a way that seeks to decenter endogenous economic and financial interactions, 
while focusing upon perturbative effects and the conditions which heighten them. Such 
notionality will need to be multilevel, recognizing that financial processes interleave 
global, national, and local aspects. Finally, the threat itself must be modeled in order to 
trace its consequences. 

 
The present paper reports on a project that undertakes to address these objectives. 

An integrated model is presented that accepts a particular attack scenario and explores 
how the effects of the disruption spread through national, international, and regional 
financial and economic institutions. 

 
 

THE FINANCIAL DOMAIN 
 
 The global financial system can be conceived as having three interacting levels. 
First is the national system, which includes exchanges and their regulation, payment and 
clearance system infrastructures, and a central bank and its policy capabilities.   
 

There are multiple national systems, so their markets, payment systems, central 
banks, etc., influence each other internationally; thus, the second level is global. One of 
its major processes — the one addressed in the present model — is the flow of 
international capital. Investments of various types move from one currency to another, 
from one market to another, etc. Of course, the flow of investments influences the 
financial well-being of the impacted economies. The secure communications 
infrastructure has both national and international components, and some online markets 
(e.g., NASDAQ) can best be regarded as global as well.   
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The third level concerns firms and, especially, their operations that initiate and 
respond to orders and payments. These actors utilize financial infrastructures and are 
impacted by international capital flows. Their decisions, in turn, greatly impact national 
and global liquidity. Taken together, these three levels provide a complex target for 
terrorists, a platform for subtle policy considerations to the Federal Reserve Board, and a 
complex working environment for all financial participants.   

 
 

Exchanges and the Economy 
 

Stock markets impact and, in some ways, represent the larger economy with its 
diverse and intertwined industries. From the standpoint of disruption, there are two major 
categories of events:  (1) major market shifts, most of which are entirely endogenous, and 
(2) material and operational disruptions.   

 
The infrastructure component represents flows of transactions through the 

payment, execution, clearance, and settlement phases. Trading activities are processed 
only during normal (user-specified) operating hours on normal operating days subject to 
the exchange being available. The availability of the exchange can be limited by 
infrastructure and workforce availability as well as automatic shutdown due to market 
conditions. 

 
 

Global Capital Flows 
 

The capital flow mechanism is drawn from Tirole’s model (2002) of instability in 
emerging economies and is global in nature. Its focus is the tendency for capital to flee 
during disruptive crises. This pattern can be observed as arising in endogenous financial 
dynamics and has the potential to be exacerbated during adversarial attacks. More 
particularly, a massive and sustained withdraw of capital is potentially a source of deep 
economic disruption and, accordingly, one of the fervent goals of terrorist movements. 
Figure 1 summarizes the structure of the model. 
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FIGURE 1  The structure of capital flows 
 
During normal economic periods, the importance of return on investment 

(i.e., interest rates and economic productivity) causes the lower loops to dominate. 
However, in a crisis period, risk becomes more salient, and the upper loop dominates the 
flow of capital. 
 
 
Transaction Practices 

 
In addition to robustness issues related to physical infrastructure and operations, 

there are also robustness issues related to firm responses to disruption. As an example of 
the latter, after an adversarial attack on economically sensitive targets and/or international 
financial infrastructures, systemic risk can be exacerbated, albeit inadvertently, by a 
reluctance of firms to resume payments until the flow of payments owed them has 
resumed. Because there is a densely connected network of financial obligations, each 
delayed response, measured in hours, has the potential to create, and then intensify, a 
liquidity crisis, correlatively deepening the danger of national and global systemic risk. 

 
The robustness issues inherent in payment practices can best be captured by using 

a fine grain, agent-based model with the potential to clarify the effects of the range of 
responses of diverse firms to multiple interacting risks. The model differentiates 
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representation of firms as distributed by industry, region, and size on the basis of 
empirical data from the U.S. Census Bureau (see Figure 2 for an illustration). 

 

 
 

FIGURE 2  Illustrative firm data from the U.S. Census Bureau (Source: U.S. Census 
Bureau undated) 

 
 
Mechanism Integration 
 

Taken together, the three financial layers represent different scales of interaction 
and variegated types of risk. The capital flow mechanism is global in scope and places 
national issues in the context of international investment decisions. Notwithstanding its 
global interaction (see Figure 3), capital flow is the simplest of the three layers.   
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FIGURE 3  Global capital interactions 
 
The exchanges and economy mechanism is national in scope and more complex 

in focus. The exchanges are mostly physical and operational in form and thus can be the 
direct target of attack with resulting disruption. In periods of crisis, exchanges have the 
protective mechanisms of circuit breakers and margin calls, which are explicitly modeled. 
There are payment and clearing infrastructures that can be a target of attack and thus can 
be disrupted, causing further downstream effects. Finally, the economy incorporates 
diverse industries with varied geographical distributions and effects.   

 
The third mechanism, representing payment resumption, is the most local and 

detailed of the three. It represents firm-level decisions in the face of unanticipated and 
disruptive circumstances. To do so effectively, the payment resumption mechanism takes 
into account the factors to which decision-makers give weight, some of which are 
summarized in the preceding section. Two alternative decision models are available, and 
others can be incorporated as needed. 

 
 
Scenario Generation 

 
During the development of the present model, three scenarios were discussed, and 

one was developed in depth. The purpose was not only to shape the model mechanisms 
described above but also to lay the groundwork for the development of a more general 
scenario generator. The scenario generator will specify the nature and physical 
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consequences of one or more possible attacks and the propensities of firms to return to 
their standard business practices, as mediated by industry, region, and firm size. 

 
Notwithstanding the fact that warfare is presently largely asymmetric in form, a 

scenario generator is inescapably military in nature. It concerns the preparation and 
conduct of attacks designed to achieve maximum disruption of the financial system of the 
United States and, more broadly, the global economic system. Such attacks may be 
coordinated in complex ways and of extensive duration. Therefore, it is necessary to 
construct a scenario generation system that can probe the dynamics of the three financial 
layers and identify vulnerabilities that may cause such attacks to have a more disruptive 
impact than might otherwise be expected. 
 
 

MODELING FINANCIAL INTERACTIONS 
 
Market Index 
 

The Market Index as used in the model provides a diagnostic assessment for the 
rest of the model. While we do not explicitly model the immediate affects of a terrorist 
attack on the market index (the user supplies scenario data regarding the initial impact), 
we do model market changes as the initial impact ripples through the rest of the model 
(Figure 4). A stochastic stream of daily market fluctuations based on historical data from 
1975–2005 is used to prime the system and provide a “normal” operating environment 
for the model. As stated, the user must provide an estimated market index adjustment 
profile along with the scenario data that describes the attacks. 
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FIGURE 4  Monitoring the market index 

 
Exchanges 
 

The exchanges section of the model keeps track of the dollar volume flowing 
through the exchanges. The open hours of the exchanges are those of the New York 
Stock Exchange (NYSE): Monday through Friday, 9:00 A.M. to 4:00 P.M. Eastern time. 
During closed hours, no volume flows occur. The operability of the exchanges is also 
dependant on a number of other factors: workforce and infrastructure availability, secure 
communications availability, and automatic shutdown criteria (circuit breakers) defined 
by NYSE (each of which is described in detail in a later section). The total time required 
to complete a transaction is four days on average, with one day each utilized for 
execution and clearance and two days utilized for settlement. These dollar volumes 
“change state” as they flow through the system (Figure 5). 

 
 

FIGURE 5  Monitoring the dollar volume flow through the Exchanges 
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Workforce Availability 
 

We want to be able to model attacks against people as well as against 
infrastructure (e.g., as in the anthrax release). The operation of the exchange is dependant 
on the availability of the workforce. If the workforce is reduced in number for any 
reason, there can be a decrease in the capability of the remaining workforce. We define a 
capacity factor that ranges from 0 through 1 where 0 indicates no capacity and 1 indicates 
full capacity. This capacity is then used to adjust the processing times of the various 
stages of the exchanges. Currently, the user specifies this workforce capacity factor 
profile as input. However, another model could easily be integrated that would compute 
this capacity on the basis of scenario parameters. Note that the effects on workforce 
capacity are not limited to attacks: that is, the model could be used to analyze the impact 
of a pandemic flu outbreak. There are currently workforce capability factors for the 
exchanges, depository institutions, and payments systems. The factors for depository 
institutions and payment systems are structured identically to factor for exchanges.  
 
 
Infrastructure Availability 
 

As with the workforce, infrastructure must be available for the processing of the 
transactions through the exchanges. An infrastructure capacity factor similar to the 
workforce capacity factor is defined in the range of 0 through 1. This capacity factor is 
then applied to the processing times of the various stages of the exchanges. This 
capability factor can be used to model a variety of situations from actual infrastructure 
damage, to infrastructure contamination, to lack of required resources from outside 
sources (e.g., electrical power). Currently, the user specifies the infrastructure capability 
profile as input. However, it would be easy to integrate additional repair or 
decontamination models that would define this profile. There are currently infrastructure 
capability factors for the exchanges, depository institutions, and payments systems. The 
factors for depository institutions and payment systems are structured identically as for 
exchanges.  
 
 
Secure Communications 
 

We model FEDWIRE and other communications in the Secure Communications 
segment of the model. There are a number of steps required for completing a transaction. 
We explicitly model execution, clearance, and settlement, each of which contains 
multiple information and data flows between participants (Figure 6). Since we are 
modeling at a high level of aggregation in this segment of the model, we do not track the 
low-level detailed communications. We also only consider the communications generated 
by the exchanges and payment systems. The transactions cannot complete until all 
communications have completed. We created a Secure Communications Capability 
Factor with the range of values of 0 through 1 that defines the capability of the 
communications system and is used to adjust the data transfer times accordingly. Secure 
communications are available 24 hours a day, seven days a week. 
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FIGURE 6  The state of secure communications awaiting completion (Note: BF=Banking 

and Finance) 
 
Circuit Breakers 
 

In response to dramatic drops in the market in October of 1987 and 1988, the 
NYSE instituted, and the U.S. Securities and Exchange Commission (SEC) approved, a 
set of circuit breakers to reduce market volatility and promote investor confidence 
(NYSE Euronext 2007). These circuit breakers are explicitly modeled and are tied to 
drops in the Dow Jones Industrial Average (DJIA). They are summarized in Table 1. 
 
TABLE 1  NYSE circuit breaker policies 
 
Event (measured from the start of the 

trading day) 
Time of Day 

(Eastern) 
Halt Trading? 

Ten percent drop in the DJIA   
 Prior to 2:00 p.m.  For one hour 
 2:00 to 2:30 p.m. For 30 minutes 
 After 2:30 p.m. No halt 
Twenty percent drop in the DJIA    
 Before 1:00 p.m. For two hours 
 1:00 to 2:00 p.m. For one hour 
 After 2:00 p.m. Close exchange for the day 
Thirty percent drop in the DJIA   Close exchange for the day 
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FIGURE 7  Circuit breaker shutdown timer 
 
Margin Calls 
 

Investors can purchase securities on margin using some personal cash along with 
cash borrowed from the broker. The investor intends that the value of the securities 
increase sufficiently so that the loan from the broker can be paid and a profit is realized. 
To protect the broker, the investor must keep cash or other securities in a margin account 
with the broker. The value of this account must be kept at or above a minimum 
requirement. If the value falls below this minimum requirement, a margin call is issued 
and the investor must provide additional cash or securities. The investor can accomplish 
this by providing additional cash or by selling securities. In the event the investor does 
neither, the broker himself can sell securities owned by the investor.  

 
Since such forced sales have the potential to shift prices in the market, as well as 

have a negative effect on investor confidence, we explicitly model these margin calls (at 
a high level of aggregation). We use a mechanism similar to that used for circuit breakers 
with an additional component. While circuit breakers are triggered only during extreme 
market conditions, margin calls occur on a daily basis regardless of market conditions. So 
we add stochastic margin call transactions to the system based on historical data. We then 
monitor the changes in the market index and amplify the margin calls as the market index 
drops beyond the user-specified limits (Figure 8). 
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FIGURE 8  Monitoring market fluctuation with respect to margin calls 

 
Payment System 
 

The model explicitly models the Payment System (PS) of the U.S. economy. The 
dollar volume of payments that requires clearance and settlement (such as the issuance of 
a check) are tracked by the model. Three sources of these payments are available within 
the model: exchange payments, foreign indirect investment payments, and sector 
payments (payments by individual firms). The Payment System is dependant on four 
separate capability factors: PS Infrastructure Capability, PS Workforce Capability, 
Depository Institution Infrastructure Capability, and Depository Institution Workforce 
Capability. The integration of the System Dynamics model with the Agent models of 
Transactions and Cash Pinch occurs in the Payment System segment of the model 
(Figure 9). The agent models aggregate their data and provide it in a System Dynamics-
compatible form. 
 

 
FIGURE 9  Payment systems linkage to agent models 
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International Cash Flow 
 

The International Cash Flow segment of the model analyzes the indirect effects of 
a terrorist attack on the United States through the direct effects on Economic 
Productivity, Interest Rates, and Systemic Risk. The model considers both Return on 
Investment (ROI) Risk  and prospective undermining of the Safe Haven assumption of 
foreign investors reacting to investment opportunities in the United States. When the 
opportunities are favorable, foreign investment tends to increase; when unfavorable, they 
tend to decrease (Figure 10).  
 
 

 
 

FIGURE 10  Monitoring foreign investment 
 
Two agent models have been integrated with the System Dynamics. Each models the 
payments made and received by individual firms. They implement two different firm-
level philosophies of payment resumption after a terrorist attack.  
 
 
Transactions 
 

The Transactions segment of the model generates the hourly payables from and 
receivables to the firms that are of interest within a geographic region, industry, and size 
for the scenario under consideration. The annual payments, receivables, and the number 
of firms are collected from the U.S. Census Bureau’s online database. On the basis of this 
data, individual Firms are created that belong to a specific industry (i.e., are assigned a 
four-digit North American Industry Classification System [NAICS]) and geographic 
region (i.e., assigned a U.S. State) and that have expected annual payments and 
receivables using a Pareto distribution. The expected annual payments are distributed into 
expected daily payments and then into expected hourly distributions using Gamma 
distributions. Each hourly payment is categorized into mandatory, necessary, and 
contingent portions. The actual transactions (payments and receivables) can be modeled 
either by Field Effects or Cash Pinch mechanisms. The two mechanisms are described 
below. 
 
 
Field Effects 
 

The propensity of the Firms to pay any outstanding dues is modeled using the 
Field Effects. The field effects have components that are generic, regional, and industry-
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specific. The user inputs the field effects for the adverse conditions (e.g., terrorist attacks) 
and for the recovery period. The actual hourly payments are a function of expected 
hourly payments and field effects. Any payments that are not paid in the current hour are 
accumulated into a backlog and scheduled into the next month’s expected payments. 
 
 
Cash Pinch 
 

The Cash Pinch agent model uses a Cash-On-Hand perspective to determine 
which, if any, payments will be made. Each individual agent (firm) starts off with a 
specific amount of cash in its possession along with a schedule of expected payments and 
receivables. The schedule is per month and is repeated for each month in the simulation.   

 
All spending is classified as either discretionary or nondiscretionary. As the 

model executes, the firm compares the cash on hand with its payments and receivables 
for the day and determines whether there are sufficient funds to pay all bills. When there 
is a cash shortfall, the firm will determine which, if any, of its bills will be paid on time. 
Discretionary spending is first curtailed. Any discretionary payments in arrears are 
considered nondiscretionary at the point at which the new payable date is assigned. The 
goal is to remain solvent through the time frame. The model makes the simplified 
assumption that business makes a profit. During times of anticipated financial problems, 
the firms will divert available cash to run the business.  
 
 

CONCLUSION 
 

The banking and financial sector provides services to the American economy and 
increasingly to an integrated global economy. Accordingly, it is vast, dynamic, and 
interwoven in complicated, evolving ways. No model can do full justice to its 
complexity.   

 
At the same time, the banking and financial infrastructure is a target for terrorism, 

both directly and as a collateral consequence of attacks on other primary targets. A 
successful attack on the financial infrastructure is likely to have ripple effects throughout 
the country and the world. Thus, for the sake of protection and mitigation, it is imperative 
that we model the financial infrastructure, including its vulnerabilities, interactions, and 
the threats it faces. 

 
The present project assembles three interaction layers — global, national, and 

regional — with each having distinct dynamics in order to explore the types of risks the 
financial sector faces. The model that connects the three layers is a hybrid, with the first 
two mechanisms being systems dynamics, and the third being an agent simulation. 
Currently, a variety of scenarios is used to exercise the model, and a scenario generator 
that will perform sensitivity analysis is in the near-term plan. 
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ABSTRACT 
 

At the Agent 2004 conference, Stephan and Sullivan reported on an agent-based model 
running under Repast J that describes how a personal transportation system might 
transition from petroleum to hydrogen. In this paper, we extend the original model in 
several ways. First, in place of a rectilinear grid of roads, we use the road topology of a 
real metropolitan area, the Los Angeles basin. Second, while the earlier model added 
hydrogen-dispensing stations on the basis of a rather simple algorithm, in the present 
model, station agents attempt to plan their investments on the basis of imperfect 
knowledge of driver fueling behavior, the expected penetration of hydrogen, the plans of 
competitors, and the amount of fuel they estimate will be dispensed. In addition, the 
driver agents are more complex. Their incomes vary, and they live and work in areas 
corresponding to that income on the basis of demographic data. They have attributes such 
as “greenness” that affect their willingness to pay more to operate a vehicle that has 
desirable environmental characteristics. We take advantage of Repast Simphony’s 
networking capabilities to set up relationships between the agents on the basis of their 
home neighborhoods, their places of work, and common characteristics. The agents are 
influenced in their purchase decisions not only by their personal experience and a general 
“belief space” reflecting the attitude of society in general toward hydrogen but also by 
interactions with their peers. We examine how a transition to hydrogen succeeds or fails 
as these various attributes are varied and given greater or lesser influence. 

 
 Keywords: multi-agent modeling, hydrogen transition analysis, infrastructure investment 

modeling, social networks  
 
 

INTRODUCTION 
 

Hydrogen holds great promise as an automotive fuel. It emits no greenhouse gases either 
when burned in an internal combustion engine or when used to power a fuel cell, and ideally it 
can be made in a way that releases no net CO2 to the atmosphere. Fuel-cell-powered vehicles can 
achieve energy efficiencies two or more times those of their internal combustion engine 
counterparts. Nevertheless, hydrogen faces formidable obstacles in replacing petroleum as the 
fuel of choice for automobiles. While many technical hurdles remain to be overcome, another 
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equally perplexing problem is how to induce both consumers to buy hydrogen-powered vehicles 
and investors to build refueling infrastructure when each depends upon the other for viability and 
neither exists today. This conundrum is often referred to as the “chicken and egg” problem and is 
especially severe for hydrogen because of the large costs involved, although the challenges are 
by no means confined to this problem. 
 

At this point, it appears impractical and expensive to equip passenger vehicles with two 
separate powertrains, one for hydrogen and one for gasoline.1 Thus, a transition from petroleum 
to hydrogen will likely have to succeed on its own through reinforcing feedbacks. We can 
envision a few strategically located hydrogen fueling stations (HFSs) that would induce an early 
adopter group to purchase hydrogen-powered vehicles (HPVs), and that those increasing 
numbers of vehicles would encourage more investment in infrastructure, and so forth. But how 
could this sustained transition be achieved, particularly in the early stages? Where should early 
HFSs be located, and how might investments be scheduled? What may be the range of business 
models and strategies employed by potential investors in the underlying infrastructure? What 
types of drivers, if any, should be targeted as the first customers for HPVs, and what 
inducements would be most effective? How does the early adopter group interact with the 
remaining majority of consumers, and how does that interaction affect the transition? Standard 
econometric models are at a disadvantage in answering these questions because a successful 
transition will likely depend upon a diversity of players. We use multi-agent modeling and 
simulation to address some of these key questions. 

 
 

MULTI-AGENT HYDROGEN TRANSITION MODEL 
 
Agent-based modeling (ABM) can be especially helpful in analyzing complex problems 

such as hydrogen transitioning that involve a diversity of players. Such modeling uses many 
“agents” which are heterogeneous autonomous actors and decision-makers. Agents can be given 
various and differing characteristics, and they interact with one another according to rules 
specified in a computer simulation. At the Agent 2004 conference and elsewhere, we reported on 
a Repast-based ABM of the transition from petroleum to hydrogen developed at Ford Motor 
Company (Stephan and Sullivan 2004a and 2004b, Stephan 2005), and similar work has been 
carried out by others (Schwoon 2007). This initial model gave interesting results, showing 
different transition behaviors depending, for example, upon what relative weights drivers put on 
worry and inconvenience. However, it had a number of serious limitations. For example, it did 
not model a “real” metropolitan area; the investor agents’ criterion for investment, depending 
only upon weighted traffic counts, may have been overly simplistic; it did not take used car 
markets into account; and, finally, the driver agents, while capable of being influenced in their 
buying decisions by a global “belief space,” did not interact individually with one another. 

 
Under a U.S. Department of Energy (DOE)-sponsored project, a team drawn from 

Argonne National Laboratory, RCF Economic and Financial Consulting, Inc., Ford Motor Co., 
and other organizations is building a new analysis tool and continually expanding and enhancing 
it. The results reported here are from supplementary experiments that focus only on specific parts 
of the core model. In particular, the paper concentrates on the sensitivity of hydrogen vehicle 
                                                 
1 Other schemes have been tried. On-board fuel reformers capable of producing hydrogen from gasoline were 

attempted in the 1990s but abandoned as impractical. BMW is currently testing a “dual-fuel” hydrogen/gasoline 
vehicle with a conventional internal combustion engine that can be switched to run on either fuel. 
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market penetration to differences in preferences and learning behaviors among drivers of 
hydrogen automobiles under simplified assumptions about infrastructure investors. The driver 
utility function considered here is a modified version of the one used in the core model, so that 
the experiments reported here should be viewed with these limitations in mind. 
 
Agent Environment and Agents 

 
In the present simulation, we choose as our model region a 100-by-50-mile rectangular 

area centered on the Los Angeles, California metropolitan area and divided into 5,000 square 
cells (Figure 1). In addition, there is a 25-mile-wide buffer zone surrounding this region in which 
agents do not live but into which they may travel. The roads on which agents travel include 
actual interstate expressways and “ubiquitous” local roads passing through every cell except 
where there are natural barriers. Driver agents are given a number of characteristics:  income, 
“greenness,” degree of concern about running out of fuel, and buyer-type “personalities.” High-, 
middle-, and low-income driver agents are randomly located predominantly, but not exclusively, 
in neighborhoods of the same type on the basis of demographic data and are distributed such that 
the overall agent population density scales to the real population density (Figure 2). Similarly, 
agents are randomly but preferentially assigned to “jobs” in locations chosen to be relatively near 
their homes and the average salary levels of which preferentially match their incomes. 

FIGURE 1  Los Angeles, California metropolitan area showing modeling grid structure (not 
including “buffer zone”) and major expressways as laid out in the grid format 

 

FIGURE 2  Population densities (households per square mile) in the model area 
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In addition to the driver agents, there are investor agents who build hydrogen refueling 
stations at strategic locations where anticipated fuel sales will be sufficient to make a profit. The 
results presented here are based on an investment decision strategy that is more simplistic, that 
is, investors place or remove HFSs on the basis of suitably weighted traffic counts and sales as 
opposed to exogenously supplied thresholds. We are currently testing more sophisticated 
investment algorithms. Our more advanced agents make their investment decisions with 
imperfect knowledge of driver vehicle purchase and fueling behaviors, the expected penetration 
of hydrogen, the plans of competitors, and the total demand for fuel. Given the uncertainties they 
face, the investor agents try to do the best they can, possibly make non-optimal decisions, and 
learn from their experience. Our advanced investor agents work with limited knowledge about 
what has happened in the past (such as fuel sales in particular locations) and have some crude 
assumptions on what might happen in the future. With this limited knowledge, they develop 
demand expectations for use in making their investment decisions. As the driver agents respond 
to the roll-out of the supply infrastructure by purchasing HPVs and hydrogen fuel, the investor 
agents receive feedback on the actual demand realization. They use this information in an ex-
post analysis to revise their expectations and adjust their future investment plans by using a 
simple form of Bayesian learning. Rather than having single-value expectations, our investor 
agents have subjective probability density functions of sales. The investors use rules of thumb to 
determine whether and where to locate fueling stations. Similar to our driver agents, investor 
agents have a utility function they try to maximize. This approach allows us to distinguish 
between different types of investor agents with different attitudes toward risk, ranging from risk-
prone to risk-averse. 
 
Agent Decision Rules 
 

For brevity, we will concentrate our discussion of agent decision rules in this section on 
the model’s driver agents. In the course of a simulation, driver agents drive to and from work and 
to various destinations in the model region and the buffer zone. Drivers note the presence or 
absence of HFSs (whether or not they actually own an HPV). They accumulate either real (when 
driving an HPV) or potential (when driving a conventional vehicle [CV]) inconvenience and 
worry. On the basis of the increasing prevalence of vehicle-based global positioning system 
(GPS) units, we expect that drivers will have access to real-time data on the locations of HFSs 
and automated route planners that will show in advance whether it is possible to make a trip 
using an HPV and where to stop for fuel. Thus, drivers need not be concerned about the distance 
to the next HFS but nevertheless will suffer some worry if the distance between two HFSs takes 
their fuel below an agent-dependent “comfort level” for refueling. Drivers suffer inconvenience 
if there is no HFS in either their home or their work cells and also if they have to make a special 
trip to refuel before starting on a planned trip. Finally, agents are inconvenienced if their 
refueling habits must be altered as a result of owning an HPV. Serious inconvenience is suffered 
if the agent cannot make a desired trip with his or her HPV because of a lack of HFSs en route. 
An agent suffers inconvenience to a lesser extent if he/she must make a special trip to refuel or 
must refuel before he/she would otherwise want to in order to be able to reach a more distant 
HFS. 

 
When it comes time to purchase a car, the agent weighs the pluses and minuses he/she 

sees of owning hydrogen versus conventional technology.2 All factors are cast in terms of 

                                                 
2 In order to engender the maximum number of purchases from a limited number of agents, our driver agents own 

fleets of 1,000 “millicars” (millicar = 1/1000 car) and buy/sell a specific number of these millicars every quarter 
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present-value dollars and summed up in the driver agent’s personal “utility function.” These 
factors include the difference in capital cost of the two types of vehicle as well as the difference 
in operating cost per mile. The latter term is converted to a present-value amount on the basis of 
the number of miles the agent expects to drive over the time period in which he wants to recoup 
any additional capital investment. The driver assigns dollar values to intangible factors. For 
example, he places a cost on the inconvenience of having to make a special hydrogen refueling 
trip based in part on the distance traveled. The agent sums up all such trips he made (or would 
have had to make if he had had a hydrogen car) over his driving experience, but weights recent 
experience more heavily. (Clearly, it is a rare driver who performs this math in the real world, 
but most drivers have some experience-based intuitive understanding of the inconvenience they 
can expect to suffer as a result of a scarcity of HFSs. It is this intuitive weighing of many 
different factors that we seek to simulate with a utility function.) 

 
An important new feature is the ability of the driver agents to interact with one another 

and influence each other’s buying decisions. Drivers are assigned personality types 
characterizing their buying behavior, as shown in Figure 3. An Early Adopter, for example, 
considers it a plus to be one of the first to buy a new technology; a Fast Follower also likes new 
technology but wants others to try it out first, etc. Thus, any agent’s purchase of an HPV 
influences other agents’ buying decisions either positively or negatively. Agents can interact 
with one another through four spheres of influence. The first is a global influence. Agents drive 
around and see others driving HPVs, see HPVs on television, and hear pundits expounding upon 
them. As more and more drivers switch to hydrogen, many personality types are persuaded to 
buy such vehicles themselves. Many, but not all, types want the new and uncommon:  for 
example, if everyone has adopted a particular technology, “Techno-freaks” feel it is time to 
move on to something new. 
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FIGURE 3  Driver agent “buyer personality types” 
 

A second sphere of influence is the neighborhood. Talking with neighbors, seeing HPVs 
parked in front of their houses, and passing them on neighborhood streets likewise influences 

                                                                                                                                                             
on a schedule such that 1,000 millicars are replaced over a time period corresponding to the time that the agent 
would own a single car. 
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prospective buyers. In our model, the radius of such influence can be set exogenously. The third 
sphere is work. A driver talks with colleagues or sees them driving HPVs and is influenced by 
their choices. The fourth sphere is through social networks, where an agent is connected with 
friends or family not necessarily living in his neighborhood or working at his place of work. 
Some agents will be “opinion makers,” having extensive networking connections and having 
high influence on others. This last sphere, however, is still being implemented and is not 
reflected in our current results. All these parameters are summarized in the agent’s utility 
function as follows: 
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In this equation, Utilityn(t) is the utility of an HPV for agent n at timestep t. It is 

normalized to range from -1 (strong desire for a CV) to +1 (strong desire for an HPV) by a 
normalization factor omitted for clarity. It is based on the agent’s previous hydrogen utility 
multiplied by an exponential time-decay factor d plus his utility during the current timestep 
multiplied by (1 – d). In this way, older experience is discounted more heavily. ΔCapCost is the 
difference in capital cost between a CV and an HPV, and InconvDIn,i represents the various types 
of distance-independent inconvenience agent n has experienced. DrPersn is a function based on 
Figure 3 giving the influence agent n receives when a fraction, fHs, of the agents in influence 
sphere s have HPVs. The terms in square brackets are distance-dependent parameters: 
DistDrivenn is the distance agent n has driven in the last timestep; ΔOpCost is the difference in 
operating cost per mile between a CV and an HPV; InconvDDn are the various types of distance-
dependent inconvenience the agent has encountered in his driving; and Worry is the worry he has 
experienced. The weights that the agent puts on the intangibles inconvenience, influence, and 
worry are represented by the terms w1-w4. (While the wn’s can vary from agent to agent, all 
results shown in this paper are based on common values for all agents). Finally, all the distance-
dependent terms are multiplied by a factor PVMultiplier to convert the experience over the 
quarter to a present value on the basis of a given discount rate and the agent’s anticipated driving 
over his desired payback time period. 

 
As mentioned, agents have different levels of income. Income designation determines not 

only where they live and work (and consequently who their peer groups are) but also fixes the 
schedule on which they buy cars and whether those cars are purchased new or used. In the 
current model implementation, we assign agents to one of three income groups:  high (20%), 
middle (60%), or low (20%). High-income drivers buy only new cars and then scrap or resell 
them as used cars on a regular schedule (where the age distribution has a median car age of 
~4 years); middle-income agents also buy only new cars, but keep them until they are scrapped 
(median age ~9 years); low-income agents buy only used cars (those sold by high-income 
agents) and keep them until they are scrapped (median age ~14 years). The buy/sell/scrap 
distribution schedules were adjusted to match U.S. data for overall car ownership and scrappage 
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(Davis and Diegel 2007).3 Annual driving distances for older vehicle are discounted to reflect 
the fact that older cars are driven less (ibid.). In the results that follow, we typically simulate 
about 7,000 driver agents (representing about 0.1% of the driving population of the area), 
although we have made runs with as many as 70,000 agents. 

                                                

 
 

MODEL RESULTS 
 

The model results presented here are based on agent-assigned characteristics that are not 
necessarily meant to be realistic but rather are held relatively simple to show how the model 
works. We choose values for model parameters such that a significant percentage of our agents 
switch over to HPVs during the 20-year simulation.  
 
 
Base Case – No Social Interaction (i.e., No Influence) 
 

Figure 4 shows the penetration of HPVs into the existing fleet of CVs over a 20-year 
period. At the end, 64% of the vehicles on the road are hydrogen-powered. However, this figure 
varies dramatically by driver income level. While 81% of the vehicles owned by high-income 
agents are HPVs, they account for only 45% of low-income agents’ vehicles. This result emerges 
from the fact that in our model, low-income drivers buy only used cars and buy them only from 
high-income drivers. Thus, for a period of some years before high-income drivers have first 
purchased and then sold HPVs, low-income drivers are restricted by the used car market to CVs 
only. As HPVs enter the used car market, they buy them whether they want the technology or 
not, since they are restricted in their choice by market availability. 
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3 The schedules used are a compromise between a close approximation to reality and programming complexity. A 

possible future enhancement is to create a used car market in which all agents can participate and where prices 
are market-determined. 
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While this is an extreme case to a certain extent, it does reflect a real-world fact that used 
car buyers have to take whatever is available. When we run the model without this constraint, 
low-income buyers begin to buy HPVs as soon as they become available in their vintage, and in 
fact at the end of the 20-year period, they exceed the middle-income agents in percentage of 
HPVs owned. This (perhaps) counterintuitive result is explained by the fact (again, in our model) 
that low-income agents buy cars more frequently (and scrap them more frequently) than do 
middle-income buyers. 
 
 
Early Adopters and Luddites 
 

We now assign personalities to our agents and allow them to interact with one another. 
For purposes of illustration only, we deem all high-income agents to be Early-Adopters 
(hereafter referred to as HI-EAs), all middle-income agents to be Fast Followers (MI-FFs), and 
all low-income agents to be Luddites (LI-LUs), as illustrated in Figure 3. First we turn on Global 
Influence. That is, our agents our influenced by the fraction of HPVs they see on the road, 
regardless of where they see them or who owns them. We cut off the “population of influence” at 
an age of five years, so that agents ignore the technology of cars older than this age. The weight 
of this influence is deliberately chosen to be high. For MI-FFs and LI-LUs it ranges from -$2,000 
to +$2,000 as the fraction of HPVs on the road increases from 0 to 1. That is, when only a small 
fraction of cars are HPVs, these agents regard an HPV as being worth $4,000 less to them than 
when everyone owns an HPV. For HI-EAs, the range is from +$2,000 to zero. 

 
Figure 5 shows the results for this case. Because there are very few HPVs on the road at 

the start, the MI-FFs have no one to follow, so they stick with existing technology. HI-EAs start 
out strongly buying HPVs, but the total HPV vehicle fraction grows significantly slower than 
before, and this eventually pulls down their adoption rate. Finally the MI-FFs begin to adopt 
more rapidly as the HPV fraction rises above a critical threshold. The LI-LUs are prevented from 
buying HPVs early on because of their unavailability, then forced to buy them at the end when 
CVs are not available. When this constraint is removed, the adoption curve for this group 
becomes smoother. 
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Neighborhood and Work Influence 
 

In our final illustration of this simulation sequence, we remove Global Influence and 
substitute Neighborhood Influence and Work Influence. Figure 6 illustrates the Neighborhood 
Influence case, since the Work Influence results were very similar. Compared to the No 
Influence (Figure 4) and even the Global Influence (Figure 5) cases, the adoption of HPVs by 
MI-FF buyers is very slow, while that of HI-EA buyers has increased slightly back to the “no 
influence” level. Why should this be the case? Recall that, while neighborhoods are not 
completely income-segregated, middle-income agents, which constitute the majority of the 
population, are much more likely to see others like themselves as they look around their 
neighborhoods rather than the high-income agents needed to kick-start the MI-FFs’ adoption. 
Consequently, adoption among middle-income agents never gets off the ground. Low-income 
agents are even less likely to see high-income agents in their neighborhoods, and consequently, 
when they are not forced to buy HPVs, these Luddites eschew the new technology almost 
completely. 
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CONCLUSIONS 
 

The examples illustrated above have given us confidence in the model design. As more 
sophistication is built into the model and driver and investor agents are given more diverse and 
realistic characteristics, we believe the model will allow us to gain insights into how the complex 
problem of interacting agents evolves in both realistic and extreme circumstances. 
 

The purpose of the full model for the overall project is to study the development of 
hydrogen infrastructure. Infrastructure suppliers and purchasers of hydrogen vehicles react to one 
another’s behavior in the chicken-or-egg interactions of the early transition to a hydrogen 
economy. Drivers will not purchase hydrogen vehicles unless hydrogen fuel is available 
conveniently, and the incentive to supply fuel depends on the existence of hydrogen vehicles to 
use the fuel, all occurring within a spatial context. The full model will allow the investor agent 
supplying infrastructure to decide whether to supply hydrogen from distributed production at fuel 
stations or from centralized facilities with pipeline or truck delivery to the stations. The investor 
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agents make their decisions on the basis of profitability, but with allowance for risk aversion in 
their utility functions. They are “satisficers” (imperfect maximizers) who may make mistakes in 
their expectations about the future. A key feature is that they learn from their mistakes by using a 
Bayesian approach as events unfold. The mistakes drive the system off course, while learning 
acts as a corrective mechanism. The full model will contain multiple investor agents who 
compete with one another. The full model also explores whether government interventions are 
needed to help speed adoption in response to energy policy goals.   

 
As noted earlier, the experiments reported here focus on the “driver side” of the model, 

using simplified assumptions about investors. The utility function of driver agents in the full 
model differs from that used in the experiments reported here. The driver behavior in the 
experiments here differs by using a weighted average of current and past utilities to change 
behavior over time. While the experiments reported here are intriguing, it is to be emphasized 
that they do not reflect any conclusions from the overall project. 
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A SIMULATOR FOR CONTINUOUS AGENT-BASED MODELING  
 

J. DUGGAN∗, National University of Ireland, Galway. Ireland. 
 

ABSTRACT 
 

This paper describes a simulation environment that can be used to integrate population-
level dynamics with those occurring at an individual, or agent-based, level. The benefit of 
this approach is that individual agent behaviour may be mapped at a detailed level, using 
differential equations, and aggregated over the entire population in order to determine 
population-level dynamics. Furthermore, individual agents can interact with one another, 
in terms of a social network structure. The environment is firmly grounded in the system 
dynamics approach, and, unlike conventional agent-based simulation environments, 
programming is not required in order to specify agent interactions and behaviours. The 
approach is validated by using the classic SIR model of contagion.  
 
Keywords: System Dynamics, Agent Based Modelling, Simulation, SIR Models 

 
 

INTRODUCTION 
 

This paper proposes an extension to the System Dynamics (SD) method in order to 
provide a novel way for modeling multi-agent systems. Gilbert and Troitzsch (2005) comment 
that “a natural way of programming agents is to use an object-oriented programming language,” 
and frameworks such as RePast (North et al. 2006), AnyLogic (Borschev and Filippov 2004), 
and NetLogo are commonly used to achieve this goal. A characteristic of the ABM approach is 
the focus on agent heterogeneity, namely, identifying the differences in agents and simulating 
their interactions and behaviour over time. System Dynamics is an alternative approach to agent-
based simulation, and employs as a robust and well-defined methodology to model the behaviour 
of decision making entities. The resulting simulations are run in continuous time, and, do not 
require programming expertise on behalf of the modeler. However, a disadvantage of the system 
dynamics approach regards the scale of agent models. Current system dynamics tools are not 
amenable to the construction of large scale agent societies, and so the possibilities for extending 
the heterogeneity of models is limited. The approach presented here addresses provides an 
approach and technology that allows large scale agent models to be built, based on sets of 
differential equations. 

 
SYSTEM DYNAMICS 

 
The systems approach to problem solving has many strands and influences, and originally 

emerged as a reaction to the reductionism advocated by the traditional “divide and conquer” 
approach to science, namely, that in order to understand a complex system, one must take it apart 
and understand its constituent parts. Systems thinking involves taking a holistic approach to 
problem solving, by identifying the manner in which systems interact in order to uncover 
insights regarding overall systems behaviour. System Dynamics (SD) is one of the most widely 
used systems approaches in the world, and was created and pioneered by Jay W. Forrester 
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(Forrester 1958, Forrester 1961) as a means of simulating the behaviour of social systems, 
explaining that behaviour, and crafting effective long term policies (Lane 2006). Sterman (2000) 
defines SD as “a perspective and a set of conceptual tools that enable us to understand the 
structure and dynamics of complex systems” and, because of its underlying mathematical 
foundation, SD is also “a rigorous modeling method that enables us to build formal computer 
simulations of complex systems and use them to design more effective policies and 
organizations.”  
 

Forrester’s key insight followed on his study of manufacturing supply chains, and his 
observation that the chaos apparent in inventory levels throughout the supply chain could not be 
explained solely by external effects. He demonstrated that many problems were in caused 
internally, by the decisions of managers who were not fully aware of the feedback structures that 
were present in the overall system. Forrester argued that feedback is a critical component of 
human decision making, as many management decisions  lead “to a course of action that changes 
the state of the surrounding system and gives rise to new information on which future decisions 
are made” (Forrester 1969).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 1  Limits to growth in a feedback system 
 
 

Decision makers who do not take account of the feedback view often encounter policy 
resistance, where “well-intentioned policies are delayed, diluted and defeated by the unforeseen 
reactions of other people” (Sterman 2000). A simple example of this is captured in Figure 1, 
which shows two feedbacks. The first, a reinforcing feedback, models the “word of mouth” 
phenomenon, where demand fuels orders, which in turn increase the installed base, and this leads 
to further demand. The second loop, a balancing feedback, acts to dampen this growth, because 
capacity limitations in the system mean that as orders rise, so to does the order completion time, 
which reduces customer satisfaction, and this in turn leads to order cancellations. It is the 
interaction of these loops that determines how the system behaves over time, and while sales 
may grow exponentially at first, any serious capacity constraint will cause this growth to flatten 
over time. A possible solution to this would be to increase capacity early (a proactive strategy) in 
the product’s life cycle, rather than increasing the capacity at a later stage (a reactive strategy).  
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Figure 1 illustrates how feedback structures can be captured qualitatively, using causal 
loop diagrams. In order to formally model dynamic systems, these feedbacks must be 
represented quantitatively, through stock and flow diagrams. Flows are formal expressions of 
policy, where equations are formulated to capture the key decision rules that control the rates of 
flow through a system. Stocks are accumulations (e.g. number of employees, balance in a bank 
account, number of people queuing), and the completed models are run as a set of non-linear 
differential equations. However, a disadvantage of current system dynamics tools is that they do 
not provide the mechanism to construct large-scale agent models. The approach presented here 
addresses these shortcomings by providing an approach and technology that allows large scale 
agent models to be built, based entirely on sets of differential equations.  
 
 

SYSTEM DESIGN 
 

Figure 2 illustrates the conceptual design, and this is an adaptation of Sterman’s (2000, 
p.515) representation of how decision rules govern the rates of flow in systems. The central idea 
is that each agent is represented by an individual stock and flow structure. An agent changes its 
state by processing information cues: in this generic model, these cues can be based on the 
agent’s own state, information from other agents, and information from the aggregate system 
state. This aggregate system state is a summation of the individual rates of change for each agent 
in the population, and so feedback exists between the aggregate level and the individual agent 
level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Conceptual Design for Continuous Agent-Based Modelling 
 

FIGURE 2  Conceptual design for the continuous agent based modeller 
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FIGURE 3  Architecture for the continuous agent based modeller 
 

The system architecture is captured in Figure 3. The major software components are: 
 
CABM Builder. This takes as input three model types, and creates: (1) a symbol table 

containing each equation to be solved, including stocks, flows and auxiliaries, and (2) a 
neighbourhood model that places each agent in a grid-like structure so that information cues 
from neighbours can be taken into account for an agent’s decision making. The number of 
equations created is a function of the number of agents. For example, if each agent is represented 
by thirty equations, and there are one hundred agents, then there will be three thousand equations 
in the symbol table (excluding those equations that are specified as part of the aggregate model). 
 

CABM Solver. This solves all numerical equations contained in the symbol table, and 
also has special-purpose routines that can aggregate variables in the model, and calculate 
neighbourhood values for each individual agent. 
 
 

There are three main types of input for the CABM Builder: 
 

The aggregate model, which corresponds to the “System State” element of Figure 2. 
These are the stocks and flows that capture the aggregate dynamics for the system of interest. 
The key states in this model will change based on an aggregation of all the changes at the agent 
(or lower) level of the model. 
 

The agent models, which express important agent heterogeneities in the system under 
consideration. Each agent model can have different formulations for key decision equations.  
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The agent instances, which specify how many of each agent are to be created for a 

simulation run, and also can be used to vary the specified parameter values of individual agents.  
 

In order for the system to work, three categories of mapping must be achieved when the 
models are combined. The first of these is mapping from the detailed level to the aggregate level, 
where a high-level flow is formulated based on an aggregation of lower level, or agent, flows. A 
stock and flow is identified as an aggregate by including the tag “<is_aggregrate>” as part of it 
definition (see Figure 4). For an aggregate flow, no equation is specified: instead, a purpose-built 
function – called AGGREGATOR() – is invoked, and during the simulation run this function 
will aggregate all the relevant agent flows. 
 
 
 
 
 
 
 
 
 

 

 

 

FIGURE 4  Defining stocks and flows at an aggregate level 
 
 

At the agent level, any flow that must aggregate to a higher level is specified with the tag 
“<is_subflow>”, and the super flow, which is the flow that it aggregates to, is specified (Figure 
5). In this example, the string “$NAME$” will be replaced by the specified agent name when the 
model created. Stocks at the agent level are defined in a similar manner (Figure 6). Furthermore, 
if a rate at the agent level is procedurally complex, a callout routine can be written (in C#) to 
evaluate it. Rates at the agent level that mirror an aggregate rate are usually programmed to flow 
over one time step, and so state switching occurs at discrete points in the simulation.  
 
 
 
 
 
 
 

 

FIGURE 5  Defining flows at an agent level 
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FIGURE 6  Defining stocks at an agent level 
 

The final mapping relates to agent-to-agent communications, where an agent uses 
information from other agents in order to arrive at a decision. In order to facilitate this, the agents 
are modelled as a society in a grid-like structure. In figure 7, a society of 100 agents are shown, 
where each of these has a similar stock and flow structure. The purpose-built function 
NEIGHBOURHOOD_AVERAGE() will find the average for a given model variable from across 
all of its immediate neighbours, and this value that then be used as an important cue in an agent’s 
decision making process. This value would play an important part in triggering whether or not an 
individual agent may change its state (for example, from susceptible to infected in a model of 
contagious disease). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 7  Information exchange between agents and the grid society structure  
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CASE STUDY: SIR MODEL 

 
To illustrate how the system operates, a well-known case – the SIR Model - is selected. 

This has been widely modeled using both SD and agent-based methods. For this solution, the 
aggregate and agent components are shown in Figure 8. At an aggregate level the population is 
divided into three stocks: susceptible (S), Infected (I) and Recovered (R). The infection and 
recovery rates determine the rate of flow between these stocks. However, unlike the usual SD 
approach, these rate equations simply flow aggregators, and are determined by what happens at 
each individual agent level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 8  Two-level model of the SIR phenomenon  
 

At each agent level, the SIR structure is employed, however in this case, the sum of all 
states must be 1 (i.e. an individual agent can only be one of S, I or R at any one time), and the 
rates are not continuous, so that states change at one point in time in a switching-type action. The 
recovery rate is simply a pipeline delay based on the infection rate (i.e. recovery follows 
infection after a certain number of time has elapsed). The infection rate is determined by: (1) the 
proportion of neighbours that are already infected and (2) the infectivity of the agent. An overall 
infection probability is calculated, and a [0,1] random number generated in order to decide 
whether an agent has been infected. If this happens, their state changes accordingly. 
 
 

At a technical level, the complete model can be specified using mathematical equations, 
with a minimum of actual code. Underlying the model is a grid-based social network, where each 
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agent occupies a cell on the grid, and is influenced by its neighbours, a structure that has 
parallels with a cellular automata model. Sample results from a simulation are now shown. 
 

Figure 9 shows the overall aggregate behaviour of the agents. There are 100 in total, and 
the stock of susceptible starts at 95, and depletes as the infection spreads. As the recover rates 
pick up, the spread of the infection slows, and an equilibrium is reached.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 9  Aggregation of results by SIR categories 
 

A more detailed analysis can also be viewed based on the overall state of the “grid” as 
time progresses. Figure 10 shows how the agent states have changed over a time interval of 5. 
Each rectangle represented 100 agents, and green maps onto susceptible, red is infected and blue 
recovered.  
 

 
 

FIGURE 10  Change in agent states from time 0 to 5 
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Finally, Figure 11 shows a detailed trace of how individual states change over time. The 
time axis is vertical, and ranges from 0 through to 20. Each row across the diagram represents an 
agent’s state at a particular point in time, and based on this it can be observed when an individual 
agent changed from one state to another. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 11  Mapping of agent state changes over time 
 

 
CONCLUSIONS 

 
This paper has presented an approach and a simulation system that can model agent-

based systems using System Dynamics. There are a number of advantages to this, including: 
 

• Building on existing knowledge. Models built using this approach have access to 
the rich body of knowledge within the field, including a wide variety of models 
that capture dynamic decision making processes across a range of disciplines. 

 
• Scalability and Performance. Given a compact and lightweight numerical solver, 

this approach is scalable and should be able to accommodate a high number of 
agents and calculate results speedily. 

 
 
Future work will include building a graphical user-interface for the current system, and 

also constructing a high performance numerical solver that will have the capability to simulate 
large populations of individual agents. 
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ABSTRACT 
 
The data outputs of agent-based models are extremely complex and that complexity is 
compounded by the uncertainty surrounding model parameters. Ensemble computing utilizes sets 
of models with varied parameter setting to explore the potential worlds a model could produce. 
This uncertainty is compounded when different models appear to derive from different scientific 
paradigms. I present a framework in which models derived from different paradigms are placed in 
an ensemble, whose varied outputs allow exploration of the various strengths and weaknesses of 
different decision theoretic paradigms. Specifically, theories and models derived from rational 
choice theory, risk sensitivity theories, social psychology, prospect theory, bounded rationality 
and culture norm theories are compared. Empirical data on political alliances in a patrilineal New 
Guinea tribe are used to measure the relative effectiveness of different theories. While ensemble 
computing can test competing hypotheses, its best use is in identifying the key elements any 
theory must have to be explanatory and predictive. This work applies to research on decision 
making and traditional tribal politics, including in regions of the world in turmoil such as Sudan, 
Somalia, Iraq, and Afghanistan.  
 

Keywords:  exploratory modeling; ensembles; decision theory; theory testing 
 
INTRODUCTION 
 
This paper is a follow-up to a modeling study of coalition formation in a New Guinea 
tribal village [Kuznar, 2006]. The evolution of coalitions among men in this village was 
used to test the efficacy of theories of political and economic decision-making drawn 
from rational choice, prospect theory, bounded rationality and risk sensitivity paradigms. 
The preliminary study identified four models that performed particularly well, sigmoid 
group (SG), full prospect theory (PT) (including effects of probability weighting, loss 
aversion and framing), and the smart agent prestige bias  (sP3) and smart conformism 2 
(sC2) models. In this paper, I present the results of more rigorous validation metrics that 
allowed finer discrimination among the competing theories.  
 In this paper, I present the results of more robust metrics used for exploring the 
strengths and weaknesses in decision theory models. The empirical case example used to 
test these models concerns the evolution of political alliances among men in a tribal 
village of New Guinea (present day Irian Jaya).  This case provides an example of how 
exploratory modeling may enhance scientific evaluation, offers a preliminary test of 
decision theories, and suggests future hypotheses. 
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EXPLORATORY MODELING 
 
 In exploratory modeling, the breadth of scientific ideas is captured in an ensemble 
of alternative models, rather than a single comprehensive model [Bankes, 2002:7264; 
Lempert, et al., 2006; Kleijnen, 1997]. Then, the resulting parameter space from these 
alternatives is searched for models that explain phenomena or models that are robust 
against perturbations of their parameters [Lempert, et al., 2006]. Exploratory modeling 
has been used for applied purposes such as weather forecasting [Palmer, 2000] and policy 
analysis [Bankes, 1993].  Since social scientists often propose theories derived from 
different paradigms, exploratory modeling may assist them in dealing with their own 
deep uncertainty. I present a relatively simple case where 24 decision models, derived 
from several different paradigms, are tested against one another to explore their relative 
explanatory power. I concentrate on only versions of the models that correspond to 
specific published propositions. A full exploration of each model’s parameters and 
variables would require the use of the more sophisticated sampling strategies enumerated 
above.  
 

MODELING THE KAPAUKU OF IRIAN JAYA (NEW GUINEA) 
 

The Kapauku are a tribal people who live in the highlands of Irian Jaya. Their 
economy is based on growing yams and raising pigs, they control territories that contain 
their farmland and villages, they have cultural norms of patrilineal descent, and they 
practiced extensive warfare in the first half of the 20th century. The anthropologist 
Leopold Pospisil made detailed and extensive observations of Kapauku economy and 
politics during the decade of the 1950’s, and he published data on the individual 
economics and political affiliations of the 55 adult men who comprised the political 
network of the Kapauku village of Botekubo [Pospisil, 1963, 1972]. Two prominent 
features of Kapauku culture are men’s obsession with wealth acquisition and the 
intensely political nature of men’s lives. Kapauku political coalitions center around 
tonowi (wealthy men), who are both economically successful and politically powerful 
[Pospisil, 1963:11, 48]. I use Pospisil’s data on individual men’s wealth and political 
affiliations to test competing theories of decision making by simulating men’s decisions 
with theorized decision rules and examining which rules produce Kapauku-like alliances. 

I have developed a general computational model of risk-taking in which agents 
interact via a coordination game with an optimal Nash mixed strategy of probabilistically 
cooperating and defecting with partners [Kuznar, et al., 2006]. This general model was 
adapted to represent the political behavior of the 55 men in Botekubo.  The simulation 
begins with each man in his own alliance, and coalitions evolve as men join or defect on 
one another according to programmed decision models.  Competing decision models are 
evaluated based on the speed and accuracy with which alliances structurally similar to 
those observed in Botekubo form.  
 

DECISION THEORY 
 

The field of decision theory is divided among several different paradigmatic lines, 
including traditional (canonical) rational choice, various bounded rationality approaches, 
and prospect theory.  Sigmoid utility represents another alternative, in part derived but 
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also departing from rational choice [Kuznar, 2007].  Each paradigm gives rise to 
numerous specific theories.  
 
Rational Choice 
 

Core elements of rational choice include the assumptions that individuals have 
full knowledge of their preferences and resources, that individuals maximize their utility, 
and that individuals are selfish [Cowell, 1986:Chapter 4]. Nash optimal solutions to 
competitive or cooperative interactions assume rational capabilities and so represent 
rational choice decision models.  

 
Sigmoid Utility 
 

Sigmoid utility theory maintains that an individual’s position in a wealth 
distribution influences that individual’s sensitivity toward risk [Kuznar, 2002; Friedman 
and Savage, 1948; Kuznar, 2007]. Individuals on the cusp of a class boundary, where 
increases in social rank (climbing the social ladder) bring large increases in wealth and 
status, are expected to be risk prone, or to take chances. I have applied this approach to 
understanding various forms of political behavior from voting, to political coups, to 
rebellions, to modern day terrorism [Kuznar and Frederick, 2003; Kuznar, et al., 2006; 
Kuznar, 2007]. Since joining a group of unknown individuals carries risk, risk prone 
individuals are more likely to join, and risk averse individuals are least likely to join. This 
approach is derived from rational choice, but departs by being particularly sensitive to 
others’ payoffs and by allowing envy at others’ well-being (rather than greed for one’s 
self) as a motivator. 
 
Group Affiliation 
 

Social psychologists argue that small group dynamics can override selfish 
motives, especially in extremely risk-prone groups that tend to become highly socially 
isolated [Atran, 2003]. Therefore, the social psychological effect of small group 
dynamics on members of a group will be the reverse of the effects on individuals 
regarding risk sensitivity. Agents’ probability of joining with non-members will be 
inversely proportional to their group’s risk sensitivity; members of highly insular groups 
never join with outsiders.  By using sigmoid utility theory and Arrow-Pratt measures, this 
model combines elements of sigmoid and small group psychology paradigms.   
 
Prospect Theory 
 

Prospect theory [Kahneman and Tversky, 1979, 2000] is a collection of 
propositions about human decision making that are derived from and empirically 
supported by experimental studies.  Prospect theory’s three core propositions are that 
people systematically distort probabilities (overestimating low probabilities and 
underestimating high probabilities), that people are loss averse (experiencing twice the 
disutility of a loss than the utility of an equal gain), and that framing profoundly affects 
decision-making with people (people are risk prone when considering losses and risk 
averse when considering gains) [Kahneman, 2000].  Prospect theorists have derived 
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mathematical functions for probability weighting [Prelec, 2000:77] and the disutility of 
loss aversion [Tversky and Fox, 2000:104; Tversky and Kahneman, 1992:57] and I use 
these functions to model probability weighting (PW) and loss aversion (LA) respectively. 
I model framing (FR) by recording whether an agent’s wealth has increased or decreased, 
assigning an adjusted Nash optimal join probability for agents in a frame of gains or the 
reciprocal probability for agents in a frame of decreases.  
 
Prestige Bias 
 
  Prestige bias is the imitation of those with higher social status [Boyd and 
Richerson, 1985], and is a simple heuristic proposed by bounded rationality theorists. 
Prestige bias theories fail to specify the scales at which it operates.  Therefore, I modeled 
prestige bias at different scales including imitating a higher-status partner (Prestige 1, 
P1), imitating the household patriarch (Prestige 2, P2), imitating the wealthiest member 
of a coalition (Prestige 3, P3), and imitating the wealthiest member of the society 
(Prestige 4, P4). 
 
Conformist Transmission 
 
 Conformist transmission refers to the copying of normative behavior in a society 
[Boyd and Richerson, 1985], and is another bounded rationality decision heuristic.  As 
with prestige bias theory, conformist transmission theory offers no guidance as to what 
social norms are copied, those of a neighborhood, a tribe, a nation, or the global village.  
Consequently, I developed alternative models of conformist transmission including 
conformism to one’s household (Conformism 1, C1), to one’s alliance (Conformism 2, 
C2), and to the entire society (Conformism 3, C3).  Models assuming that probabilities 
were drawn on a [0,1] interval (naïve agents) vs. probabilities that bracketed the Nash 
optimum (smart agents) were run for both the prestige bias and conformism models. The 
models that bracketed the Nash optimum combine elements of quasi-rational choice with 
bounded rationality. 
 
Validation Metrics 
 

Evaluating the goodness of fit of computational models is challenging. To date, 
many validations consist of producing graphical outputs (or often 2-dimensional 
geographic maps) that look like some stylized fact the researchers are modeling [Kohler, 
et al., 2005; Lansing, 1993; Kuznar and Sedlmeyer, 2005]. Some computational 
methodologists label this “viewgraph validation,” and point out that while intuitive visual 
aids can be a useful starting point for validating models, they fall short of rigorous and 
thorough validations of the model [Kleijnen, 1995; Oberkampf and Trucano, 2002; 
Oberkampf, et al., 2004].  

It is necessary to use quantitative measures of a model’s performance in order to 
evaluate the degree to which different models are successful and in what ways 
[Oberkampf, et al., 2004]. Simulation researchers use Thiel’s Inequiality Coefficient 
(TIC) to compare model and empirical outputs and have expanded it to incorporate 
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multiple dimensions of goodness of fit [Murray-Smith, 1998; Kheir and Holmes, 1978]. 
The single-dimension metric is calculated as:  
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Where yi is an empirical measure, zi is a model output that corresponds to the empirical 
measure, i indexes the ith model run, and n is the number of runs. We use Thiel’s 
Inequality Coefficient to compare the number of coalitions generated by a model and 
mean coalition size to Pospisil’s data. Its values vary from 0 to 1, with 0 indicating a 
close fit (no difference). The normalized values of the TIC allow comparison of different 
models and different performance variables.  
 Point measures like means, variances and TICs are commonly used and provide 
one means of evaluating goodness of fit. However, one can have identical means drawn 
from very different data distributions. The Kolmogorov-Smirnov D – Statistic provides a 
non-parametric test for the equality of distributions [Blalock, 1979:266-269]. Models that 
produce statistically significantly different data distributions clearly perform poorly, and 
models with large p – values produce data distributions statistically indistinguishable 
from actual data. 
 

RESULTS 
 

An ensemble of 24 models represents the basic propositions of these theories, 
derived from four paradigms (rational choice, sigmoid utility, small group social 
psychology, prospect theory) (Table 1). Each model was run 100 times, and 10 model 
runs were selected from each run for analysis of how quickly the model converged to 
alliances similar to those empirically observed in the tribe.  The performance of each 
model at iteration 15 was used to standardize the comparisons.  
 
Table 1. Relationship between Decision Theoretic Paradigms and Decision Models 
Tested in Kapauku Simulation. 

 
Paradigms Models 
Rational Choice Nash optimum (N) 
Modified Rational Choice Sigmoid utility (S) 
Modified Rational Choice 
/ 
Social Psychology 

Sigmoid utility+Group affiliation (SG) 

Prospect Theory Probability weighting (PW), Loss aversion (LA), Framing effects (FR), 
PW+LA, PW+FR, LA+FR, PW+LA+FR 

Bounded Rationality naïve Prestige bias 1 (nP1), naïve Prestige bias 2 (nP2), naïve Prestige bias 3 
(nP3), naïve Prestige bias 4 (nP4), naïve Conformism 1 (nC1), naïve 
Conformism 2 (nC2), naïve Conformism 3 (nC3) 

Bounded Rationality / 
quasi-Rational Choice 

smart Prestige bias 1 (sP1), smart Prestige bias 2 (sP2), smart Prestige bias 3 
(sP3), smart Prestige bias 4 (sP4), smart Conformism 1 (sC1), smart 
Conformism 2 (sC2), smart Conformism 3 (sC3) 
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Four models provided close fits to empirical data, including sigmoid utility (S), sigmoid 
group affiliation (SG), smart conformism 2 (sC2), and loss aversion (LA). These results 
differ from an earlier effort that did not use Theil’s Inequality coefficient and 
Kolmogorov-Smirnov. In that earlier study [Kuznar, 2006], a prestige bias model and the 
full prospect theory model also performed well. The results from using more robust 
metrics are more discriminating. They also are more discriminating among the well-
performing models. Two models consistently performed well across all metrics, and they 
were the sigmoid utility (S) and smart conformism 2 (sC2).  
 
Table 2. Model Performance in the Kapauku Simulation. 
Model TIC 

Coalition 
Number 

TIC Mean 
Coalition 
Size 

Difference 
from Actual 
Coalition 
Number 

Difference 
from Actual 
Coalition 
Size 

No. 
Distribution 
Matches per 
20 runs 

Kologorov-
Smirnov 
mean p-
value 

Nash 0.118 0.105 3.35 0.55 15 0.258 
Sigmoid 0.074 0.066 1.40 0.24 15 0.252 
Group 
Affiliation 

0.095 0.085 2.30 0.39 11 0.199 

Prestige I  0.109 0.096 3 0.50 13 0.310 
Prestige II 
[0,1] 

0.267 0.252 11 1.37 1 0.024 

Prestige III 
[0,1] 

0.240 0.220 9.2 1.21 4 0.072 

Prestige IV 
[0,1] 

0.242 0.223 9.35 1.22 1 0.034 

Prestige II 
[0.3,0.9] 

0.145 0.128 4.2 0.64 14 0.275 

Prestige III 
[0.3,0.9] 

0.150 0.141 5.15 0.81 13 0.173 

Prestige IV 
[0.3,0.9] 

0.245 0.225 9.5 1.23 3 0.050 

Conformism I 
[0,1] 

0.204 0.181 7.1 0.99 5 0.112 

Conformism II 
[0,1] 

0.248 0.240 10.2 1.32 0 0.019 

Conformism 
III [0,1] 

0.213 0.192 7.7 1.07 7 0.172 

Conformism I 
[0.3,0.9] 

0.130 0.113 3.15 0.47 13 0.202 

Conformism II 
[0.3,0.9] 

0.083 0.073 2 0.35 15 0.230 

Conformism 
III [0.3,0.9] 

0.120 0.107 3.4 0.55 16 0.181 

PW 
(probability 
Weighting) 

0.171 0.163 6.2 0.94 10 0.199 

FR (Framing) 0.210 0.199 8 1.12 7 0.079 
LA (Loss 
Aversion) 

0.090 0.103 1.7 0.49 17 0.371 

PW FR 0.187 0.175 6.8 1.00 5 0.088 
FR LA 0.365 0.365 17.95 1.80 0 0.004 
PW FR LA 0.284 0.271 12.1 1.45 3 0.042 
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(Full Prospect 
Theory) 
Mean 0.181 0.169 6.58 0.896 8.5 0.152 
s.d. 0.077 0.075 4.15 0.422 5.9 0.106 
Threshold <0.104 <0.094 <2.43 <0.474 >14.4 >0.258 

 
 

A more fruitful approach is to explore new hypotheses by asking what the successful 
models had in common.  Successful models had two characteristics in common:  1) 
agents behaved in a quasi-optimal manner by selecting strategies that did not deviate far 
from Nash optimality, and 2) agents were not homogenous in their decisions.  Therefore, 
the specific models derived from four different paradigms might not so much accurately 
represent reality as much as capture some essential elements that a model must have to be 
valid.  
 

CONCLUSION 
 

Computational models provide new and flexible capabilities for representing 
social theories from different paradigms.  Exploratory modeling using ensembles of 
models provides a method by which competing theories can be tested.  The result of the 
testing may not be a single correct answer, but insights into what essential elements better 
theories must contain.  In the Kapauku case, theories related to rational choice, prospect 
theory, and bounded rationality each has some merit. In particular Kapauku men appear 
to have a general sense of what an optimal political strategy is, they may be imitating one 
another to refine their strategies, and their decisions appear to be conditioned by prospect 
theory biases, risk sensitivity, and group pressures to conform. Exploratory modeling 
with ensembles provides a method for more systematically searching the implications of 
these theories and suggesting new hypotheses that may aid in the search for more 
comprehensive and valid theories.   
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ABSTRACT 
 

An agent-based model is built with the aim of explaining the effect that organizational 
architecture has on the performance (network size and stability) of a business group. An 

artificial network is grown where each node (firm) is subject to random income shocks while 
the degree of flexibility of the productive system (labor marker rigidity and technology’s 
capita-labor ratio) is assumed exogenously. Two variants of network topology are considered: 
(i) decentralized management where each node makes local decisions and behaves 
opportunistically with a positive probability when a troubled partner needs to be rescued, and 
(ii) centralized management where financial transfers from other firm are made with certainty 

as long as it has available funds, although, the functioning of this topology entails some 
monitoring cost.  

 
Keywords: Business groups, network topology, economic volatility, labor rigidities 

 
 
 

INTRODUCTION 

       
 This paper attempts to understand why business networks may transform their topology or 
organizational architecture when the productive systems becomes less flexible, either because there 
is an increase in the rigidity of the labor market or because the participation of the firm’s fixed costs 
increases due to an industrialization process based on capital-intensive production. The hypothesis to 
be theoretically validated here with an agent-based model (ABM) asserts that these rigidities make 
more cumbersome the operation of a decentralized network where decision-making is entirely local 
and, thus, entrepreneurs have the incentive to transform the network adopting a centralized 
architecture. 
 Decentralization is less problematic in an environment with minor rigidities since a firm 
(node) can respond by itself to a negative shock in demand by adjusting its variable costs which are a 
relatively large component of the cost structure. The adjustment in variable costs is mandatory when 
the financial system exhibits deficiencies that inhibit cash flow smoothness through credit 
borrowing. On the contrary, a centralized network fosters the use of financial transfers among firms 
facing uncertain shocks when cost rigidities preclude a solution to the cash flow problem at the level 
of individual nodes. In spite of the higher monitoring costs, the centralization of a network is 
advantageous in this economic setting since it can overcome to a large extent the opportunistic 
behavior that go with decentralization. These costs are paid to keep a stringent control in the 
allocation of the subsidiaries’ cash flow surpluses and in the nodes’ management.  
 The ABM presented in this paper is built having in mind some features of the Mexican 
experience in the XIX and XX centuries (Castañeda and Chavarín 2007), and the artificial facts 
generated with it are contrasted with such experience.  However, it can be argued that the model is 
also adequate to explain the transformation of managerial practices and business alliances in any 
other country that undertook an industrialization process characterized by a steady increase in the 
rigidity of the productive system and the prevalence of institutional drawbacks that hampered the 
functioning of financial markets (Leff 1978, Weinstein and Yafeh 1995, Kali 2003, Khanna and 
Yafeh 2005, Feenstra, Hamilton and Lim 2002).  
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AN AGENT-BASED MODEL 
 
 When ‘growing’ a business network in the sense of Epstein (2006) it is possible to observe 
tick by tick how rapid the spin-offs expand and how the network responds to increased labor 
rigidities and higher volatility. In other words, the ABM allows the observer to discover the 
performance of a business network that changes from a decentralized status to a centralized one after 
the fixed costs have increased in the economy. Moreover, the simulation of the model with 
variations in critical parameters make possible to establish precise conditions that are required to 
validate the hypothesis theoretically.   
 
Methodology 

 
 Artificial business groups are grown assuming two different network topologies: (i) a 
decentralized management where each node can fail to meet its commitment to transfer resources to 
firms facing financial difficulties, and (ii) a centralized management where an implicit holding 
structure precludes opportunistic behavior by network members. The performance or macroscopic 
pattern can be measured in terms of the mean network size, its standard deviation and the time span 
for the network to collapse. 
 The model is very simple to avoid excessive parameters that can confuse the understanding 
on how the aggregate outcomes emerge; therefore, the heuristic rule for surplus nodes in the 
decentralized network is to rescue troubled firms with a probability p < 1 (where 1-p is the 
probability of opportunistic behavior); likewise, the remaining cash flow is used to form a new spin-
off that is connected to its parent firm, irrespectively of the amount earned in the previous tick. On 
the contrary, for centralized management there are monitoring costs that reduce earnings in each of 
the nodes, and the probability of being opportunistic is equal to zero since surplus firms are required 
by corporate offices to rescue member firms with a deficit, yet the new spin-offs are also attached to 
their parent firms. 
 
Income Shocks Due to Changes in Firms’ Demands 

 
 Starting with a central point in the grid of a torus, in each tick income fluctuates for the 
existing nodes according to a uniform distribution U[a, b]. Since fixed costs (k) are such that a < k < 
b it is likely that a firm can experience a liquidity problem through its life span, when the opposite 
happens the node creates a spin-off that becomes a member of the network. Nodes can be 
differentiated in terms of income volatility; for instance, those firms whose lower-bound income is 
zero have a higher probability of facing financial difficulties than those nodes where a > 0.  
 
Market Congestion and Diseconomies of Scale 

 
 Firms’ earnings are reduced because of market congestion, that is, with more network 
members the market has to be split and this precludes the network to grow without bound. Since 
competition between different networks is not implemented in the model, market congestion can be 
interpreted as the cannibalization of the clients between subsidiaries, branches or franchises that 
belong to the same business group. This constrain of network size can also be interpreted as 
diseconomies of scale that appear in large conglomerates. In the case of a centralized topology, 
firms’ earnings in each tick are also reduced through a monitoring cost that is proportional to firm’s 
income (0 < m < 1); presumably, more economic activity in a subsidiary requires more stringent 
controls by corporate headquarters.  
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Financial Rescuing of Troubled Firms 

 
 The procedure for the rescue operation is as follows: (a) with decentralized management the 
troubled firm can ask for support to autonomous surplus firms, each of them provide it with 
probability p < 1, thus if there are three surplus firms the probability of not getting any financial 
support is given by (1-p)(1-p)(1-p) since each node acts locally; (b) with centralized management 
surplus firms with enough funds have a mandate to help deficit firms that ask for it and hence p = 1. 
Three types of matching between surplus and deficit firms are considered in the model: power-
matching, random-matching and accumulated matching. With power-matching the troubled nodes 
with more ties coming out are rescued first, and surplus nodes with more ties coming out are asked 
last. This heuristic rule implies that powerful firms (those with more spin-offs) influence network’s 
decisions on who is initially rescued and whose funds are used. However, with random-matching 
deficit and surplus firms are sorted randomly and, thus, the order of the rescue operation does not 
depend on any specific feature of the firms or hierarchical consideration.  
 Because these two types of matching are applied in the centralized and decentralized 
architectures, the only differences between these topologies have to do with the value of p and 
whether monitoring costs are relevant or not. In contrast, accumulated-matching is only used by 
networks with centralized management. Under this heuristic all funds of surplus firms are 
accumulated in the network’s treasury and then used to rescue deficit firms sorted hierarchically, so 
that firms with more ties coming out are rescued first; therefore, when a centralized architecture 
adopts an accumulated-matching procedure its performance is compared with a decentralized 
topology with power-matching.  Furthermore, the remaining funds after the rescue operation are 
used by the contributing firms to create spin-offs regardless of architecture and matching procedure.   
 
Endogeneity of Opportunistic Behavior 

 
 In the case of decentralized management the probability of opportunistic behavior is 
endogenized. Since in each tick there can be a fracture in the network when a node vanishes due to 
liquidity problems and partners that are not capable or willing to provide financing, the out-coming 
nodes split from the rest of the group and give birth to different sub-networks. Therefore, the value 
of 1-p increases with the number of sub-networks to reflect the fact that under this new structure 
opportunistic behavior is more predominant. This artifact can be interpreted as increased fissures in 
the business group that make reciprocal funding less likely, the denial of funding can be understood 
as a decomposition in the social fabric of entrepreneurs involved in a decentralized network.  
 
The Model’s Pseudo-Code 

 
 A better understanding of the algorithm can be grasped by means of the diagrammatic 
pseudo-code presented in Figure 1. Notice that the exogenous parameters and procedures (identified 
with ovals and dashed arrows) that can be modified by the observer are the following: maximum 
income and degree of volatility that affect the nature of the random shocks; fixed costs and the 
selection of network topology that influence net earnings in each firm as a consequence of the 
socioeconomic environment and by making monitoring costs relevant, respectively; this latter 
selection, the possibility of making endogenous the probability of opportunistic behavior in 
decentralized networks and the sorting criteria for matching resources affect the rescue operation. 
The effect of market congestion is another exogenous parameter that is pre-specified in the program 
yet it is not relevant for the inferences of the model under a wide range of values. 
 Once the limits of the uniform distribution are specified by the observer, income shocks are 
seeded randomly in new and old nodes in each tick and, then, the proliferation of nodes determine 
the level of market congestion and net earnings for each firm. After the production process takes 
place with the given fixed costs and sales are defined in terms of market congestion, the financial 
situation of each firm is analyzed. Afterwards, resource matching takes place in terms of the sorting 
criteria defined by the observer, and in terms of the probability of opportunistic behavior. 
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 Nodes that are rescued stay alive in the network while troubled ones that do not receive 
support die; under the latter scenario the probability of opportunism increases as a function of the 
number of sub-networks that the dying nodes generate. Firms with available cash flow net of 
financial transfers create new spin-offs that depart from the parent node and a new iteration in the 
program ensues. Finally, when the financial fragility of the nodes is generalized the network 
collapses and the program stops.    
 
    
     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Diagrammatic Pseudo-code 
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SOME SIMULATIONS 
 
The Main Hypothesis and Variations in Monitoring Costs 

 
 This hypothesis asserts that a centralized architecture has a better performance in a post-
revolutionary setting (high fixed cost and high income variability) than the decentralized variant, 
while the opposite holds in a pre-revolutionary environment.1 Accordingly, for this hypothesis to be 
theoretically valid the two statements have to be met simultaneously for a range of the monitoring 
costs in the centralized topology. Figures 2 and 3 present the mean network size, estimated with ten 
runs, and its confidence intervals for the pre-revolutionary and post-revolutionary settings, 
respectively. For the point estimates of mean values the decentralized topology performs better in 
the pre-revolutionary period in the range [0.08, 0.25] while the centralized one has a better 
performance in the post-revolutionary period in the range [0.05, 0.2]; that is, taken these two 
intervals jointly it can be argued that the hypothesis holds for the intersection [0.08, 0.2]. Although, 
the range is shortened to [0.1, 0.15] when considering non-overlapped intervals with 95% of 
confidence.   
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Figure 2 Mean network size for the two topologies in a pre-revolutionary context 
Notes: (a) Each simulation is produced with three stages of 50 ticks each. The aim of the first stage is to let the network 

grow until it stabilizes due to market congestion.  The first two stages are run with a decentralized topology and the third 

stage with a centralized topology, which is the historical sequence of events. (b) A partial mean size for each topology is 

calculated using the arithmetic means of the last 10 ticks of stages two and three for the series of moving averages with 

30 values of the number of firms; then, the final mean size is obtained averaging the partial means of ten repetitions. (c) 

The intervals of confidence for the average number of firms are calculated with the mean plus-minus two standard 

deviations. (d) A pre-revolutionary setting is characterized by the following parameters: low fixed costs (k = 3), low 

volatility (a = 3, i.e. ratio-of-volatility = 1 in the NetLogo interface). (e) For the rescue operation firms were sorted using 

power-matching. (f) The probability of opportunistic behavior is endogenous and starting at 1-p=0.7.    

 
 In terms of the second indicator of performance (stability), results not shown in the paper 
indicate that the coefficients of variation of network size are higher with the decentralized topology 

                                                
1 The pre-revolutionary and post-revolutionary terms are chosen in reference to stylized fact of the Mexican history.  
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in both environments, irrespectively of monitoring costs; nonetheless, the gap between this indicator 
for the two topologies is much smaller in the pre-revolutionary setting (e.g. approximately 3 times 
lower). Therefore, in a pre-revolutionary environment network size seems to be a more important 
issue given the fact that the economy is less volatile and, hence, when this condition changes in the 
post-revolutionary environment a centralized architecture offers a better performance in terms of 
both indicators.  
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Figure 3 Mean network size for the two topologies in a post-revolutionary context 
Notes: (a) A post-revolutionary setting is characterized by the following parameters: high fixed costs (k = 5), high 

volatility (a = 0, i.e. ratio-of-volatility = 0 in the NetLogo interface).  

 

Stability of the Network and Counterfactual Exercise 
 
  In the following analysis the stability of each topology is tested in a volatile environment (a 
= 0) with high rigidities in the productive system (k = 6). The simulations are generated for a value 
of monitoring costs in the centralized topology which is within the range that validates the 
hypothesis (m = 0.13), and for an endogenous probability of opportunistic behavior starting at (1-p) 
= 0.7 in the case of a decentralized variant. An upper limit of 500 is set for the number of ticks and 
25 simulations are run for each topology, 11 of them reach this limit when networks are organized 
with the centralized architecture and none with the decentralized topology. Likewise, the median 
number of ticks until the network collapses is 239 for the centralized topology and 55 for the 
decentralized one. The minimum and maximum ticks for these topologies are [13, 202] in the 
decentralized case and [16, 500] in the centralized case. Accordingly, these results indicate that the 
centralized architecture becomes critical for the survival of the network in a post-revolutionary 
environment characterized by important rigidities in the labor market and capital intensive 
production.  
  Next, history is re-played by growing a network in a socioeconomic environment that 
moves from the pre-revolutionary to the post-revolutionary setting in five stages described by the 
following parameter values [(a=3, k=3), (a=3, k=4), (a=3, k=5), (a=0, k=5) and (a=0, k=5)], each of 
them lasting 50 ticks.  In the first four stages the decentralized architecture operates (with 
endogenous probability and 1-p=0.7) and, thus, 20 repetitions produce an average network size of 
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86, 53, 34 and 23,2  while in the fifth stage the firms transform to a centralized system (with m=0.13) 
as the stylized facts of history indicate for a an average network size of 27. In contrast, the average 
size remains in 23 firms when in the fifth stage a counter-factual exercise is simulated with firms 
sticking to the decentralized topology; therefore, the adoption of a centralized architecture has 
economic sense in a volatile and rigid environment.   
    
Phase Transition in the Opportunistic Behavior Space 

 

  The probability of opportunistic behavior in the decentralized topology (1-p) is modified 
within the range [0.5, 0.9] to calculate the average number of firms in the pre-revolutionary setting 
(k=3, a=3). Figure 4 describes the mean network size and its interval of 95% confidence calculated 
with 10 repetitions for each starting probability value. There is an initial plateau of the average 
number of firms for the starting values of 0.5 and 0.6, but network sizes drops sharply for a 
probability of 0.7 and, then, another plateau at a lower level is established for the values of 0.8 and 
0.9.  
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Figure 4 Mean network size for different opportunistic behaviors in a pre-revolutionary setting 

Notes: (a) Arithmetic averages are calculated with the last 10 ticks of stages with 50 ticks. (b) The first stage in the 

simulations considers (1-p) = 0.5, and this probability is increased one decimal points in each of the subsequent four 

stages. (c) Ten simulations are run and, hence, mean network size for each parameter value is calculated with the mean 

of the arithmetic average estimated in each stage of the simulation. (d) In the pre-revolutionary setting: k = 3, a = 3. 

  
 There is a phase transition when the opportunistic conduct in the rescue operation starts at 0.7 
since the emerging patterns in the dynamic system change drastically when crossing this threshold. 
The modification in the outcome of the model at this critical value is observed by running 10 more 
simulations in the post-revolutionary environment (a=0, k=5) for each of the two topologies. While 
for (1-p)=0.6 the average number of firms is 32 for the decentralized topology, this number is 29 for 
the centralized variant with monitoring cost of 0.13; means that are statistically different. This is the 
inverse result to the outcome obtained for (1-p) = 0.7 where the corresponding average sizes are 22 

                                                
2 First a partial mean size is calculated using the arithmetic mean of the last 10 ticks of the stage for the series of 
moving averages with 30 values of the number of firms; then, the final mean size is obtained averaging the partial 
mean size of the different repetitions.   
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and 28 (also statistically different), respectively. Accordingly, the hypothesis stated in this paper is 
theoretically validated only when the probability of opportunistic behavior in a decentralized 
architecture is relatively high, that is, for starting values of 0.7 or more.  
 
Different Types of Matching in the Rescue Operation 

 
 Now the robustness of the hypothesis is checked with regard to the type of matching used to 
rescue troubled firms. Two more alternatives are considered: (i) random-matching where surplus 
firms rescue deficit firms sorted randomly, and (ii) accumulated-matching where all surplus funds 
are accumulated in the network’s treasury and deficit firms are rescued in terms of their hierarchy 
(number of ties coming out)  until there are no more resources available. In terms of network size the 
results obtained for power and random matching are practically identical for an scenario with 
m=0.13 and starting (1-p)=0.7 (see rows 3-6,  Table 1). Again network stability is always better with 
the centralized topology and especially in the post-revolutionary context (see rows 9-12, Table 1). 
 Furthermore, with accumulated-matching the simulation results validate the hypothesis fairly 
well for both indicators of performance, network size and stability, in a scenario with m=0.13 and 
initial (1-p)=0.7. While in the pre-revolutionary environment the decentralized topology outperforms 
the centralized one with regard to stability (see rows 7 and 8, Table 1), in the post-revolutionary 
setting the centralized architecture is more stable and also generates larger networks. Notice, 
however, that the number of firms is statistically identical for both topologies in the pre-
revolutionary setting (see rows 1 and 2, Table 1). Statistical results not presented here indicate that 
using accumulated-matching the hypothesis holds in the intersection interval [0.11, 0.23] for both 
criteria (network size and stability).   
   
Table1 Network performance (size and stability) for different types of matching 
 

   Pre-

revolutionary 

Pre-

revolutionary 

Post-

revolutionary 

Post-

revolutionary 

 Type of 

matching 

Type of topology Average number

of firms 

Interval of 95%  

confidence 

Average number 

of firms 

Interval of     

95% confidence 

1 

2 

accumulated Decentralized 

Centralized 

85  

86 

(87.23, 82.77) 

(88.13, 83.87) 

23 

32 

(24.36, 21.64) 

(33.00, 31.00) 

3 

4 

power Decentralized 

Centralized 

86 

78 

(87.94, 84.06) 

(79.08, 76.92) 

22 

28 

(23.32, 20.68) 

 (28.88, 27.12) 

5 

6 

random Decentralized 

Centralized 

86 

78 

(87.55, 84.45) 

(78.78, 77.22) 

23 

28 

(24.30, 21.70) 

(28.49, 27.51)  

       

   Coefficients of 

variation 

Standard 

deviation 

Coefficient of 

variation 

Standard 

deviation 

7 

8 

accumulated Decentralized 

Centralized 

0.17 

0.37 

0.008 

0.012 

0.33 

0.26 

0.022 

0.013 

9 

10 

power Decentralized 

Centralized 

0.16 

0.12 

0.009 

0.004 

0.34 

0.18 

0.023 

0.008 

11 

12 

random Decentralized 

Centralized 

0.17 

0.11 

0.006 

0.004 

0.34 

0.19 

0.018 

0.010 

Notes: (a) The coefficient of variation is measured as the ratio of the standard deviation to the mean. A partial estimation 

is calculated with an arithmetic mean of the coefficients of variation for the last 10 ticks in the corresponding stage using 

moving means and moving standard deviations of the last 30 numbers of firms, then, a final estimation is calculated with 

the average of the partial estimations for 10 repetitions.  (b) The probability of opportunistic behavior is endogenous and 

starting at 1-p=0.7. (c) Monitoring cost in the centralized topology is such that m = 0.13.  
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CONCLUSIONS 

 
 This paper shows that once labor market became very rigid and the industrialization took 
place in Mexico during the 30’s-60’s of the XX century there were valid reasons to establish a 
centralized topology. The high fixed cost and the volatile economic environment made the 
monitoring costs prevailing in this topology less relevant and, thus, entrepreneurs designed a 
mechanism to solve automatically the liquidity problems experienced by each node of the network. 
This situation contrasted with the stylized facts of the 1870-1910 period, where the labor market was 
flexible and fixed cost relatively small. Under this socioeconomic setting prevailed a decentralized 
topology where each firm decided independently whether to rescue or not the troubled firms in the 
group. These facts are consistent with the Monte Carlo simulations produced with an ABM of 
network formation, at least for some range of monitoring costs and opportunistic behavior. 
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GEOSPATIAL EXOSKELETONS FOR AUTOMATA IN AGENT-BASED MODELS 
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ABSTRACT 
In this paper, I introduce a new approach to agent-based modeling in geospatial contexts. The 
novelty of the approach stems from introducing geospatial functionality as an exoskeletal wrapper 
around standard socio-communicative and goal-oriented agent-based AI. Operationally, I also 
introduce an integrated and symbiotic tight-coupling to motion capture and Geographic 
Information Systems, based on space-time Geographic Information Science. To prove the 
usefulness of the approach in simulation, I describe application of the model to a relatively well-
understood (yet widely misrepresented) scenario involving crowd evacuation in constrained 
infrastructure.  

 

Keywords: Geographic Information Science, geocomputation, geosimulation, multi-agent 
systems, agent-based models, geographic automata, urban simulation, crowd behavior, complex 
systems 

INTRODUCTION 
Geospatial functionality is essential in many agent-automata models. Geography is central to 

many agent rule-behaviors and is critical in defining agency. Indeed, for multi-agent systems that rely on 
environmental settings geography invariably occupies a pivotal contextual role in explaining and 
bounding actions and interactions between the system's constituent agents. There has been a recent surge 
in agent-based methodological development in Geographic Information Science and gecomputation and 
a steady growth in the application of agent-based models as experimental toolkits in physical and human 
geography studies. 

Despite the flurry of activity in agent-automata modeling and enthusiasm for their potential in 
pushing the geographical sciences in new directions, both tool-forging and applied examples have, to 
some extent, missed opportunities to imbue the research agenda with geospatial science and spatial 
thinking. Geographers and other social scientists building spatial models have adopted tools and 
techniques often developed in non-spatial domains with the result that much of their work lacks real 
geospatial functionality or abstracts from the full geography of the systems or phenomena that they are 
actually modeling. 

Chief among these problems is the use of cellular automata (CA) as agent-based models that 
require locomotion, even though they are relatively poorly suited to such applications. (As most 
developers of automata models know, gliders don't really exist outside the retina of the observing 
model-user (Faith 1998).) In many respects, this is a legacy of automata use in geographical models that 
was dominated by cellular models and a natural alliance between cells and digital geographic data 
structures and models based around rasters and raster-landscapes. Similarly, the first ABM development 
efforts in the geographical sciences were anchored in Geographical Information Systems that sported a 
slew of code libraries and common object models for reconciling raster layers over time, but treated 
dynamic vector models comparatively anemically. Similarly, spatial analysis is replete with 
methodology and algorithms for reconciling the composition and configuration of rasters through 
relatively straightforward schemes based on "map algebra". (These pattern-matching methodologies are 
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hugely popular in validating geographical models, despite widely-acknowledged problems and fallacies 
in their use.) Raster-based techniques and skills are standard in a geographer's skill-set, while relatively 
more complicated calculus for vectors and computational geometry is often not as well-developed. 
Geographers' (and Geographic Information Scientists in particular) natural comfort with conceptualizing 
systems in cartographic terms and the standard training for social-scientific geographers that often 
emphasizes qualitative methods and multivariate statistics over approaches like artificial intelligence 
(AI) or computable heuristics also contribute to these difficulties. 

The unfortunate situation that ABM modelers in geography are left with is that physics-inspired 
random walks and potential-field-following heuristics dominate geospatial models, ignoring over one 
hundred years of behavioral geography cataloging the myriad ways in which people differ from particles 
in fluid-flows or mobile pebbles under the sway of gravity or their own kinetic energy. Automata-based 
modeling in geography, having enjoyed a period of infancy in its development up until relatively 
recently, has not had to face these issues. However, as the methodological and applied research agendas 
of agent-based modeling and the geographical sciences have grown more closely aligned, the inability of 
the tools that are available to answer the questions to which we would like to deploy them has become 
quite problematic.  

In this paper, I introduce a novel approach to agent-based modeling by wrapping agents in a 
geospatial exoskeleton that affords them geospatial AI for their actions and interactions. (I refer to this 
as an exoskeleton because we leave certain core agent-based functionality intact, essentially 
“geospatializing” it via exoskeletal interfaces.) Semantically, the agent-automata that I deploy become  
geographic automata and the systems they form are better thought of as geographic automata systems. 
There is more to the scheme than semantic nuances, however. The conceptual foundation for the model 
is steeped in behavioral and urban geography theory. Mechanically, our modeling methodology is 
integrally bound to geosimulation, geocomputation, Geographic Information Systems, space-time 
analytics, and geovisulization. Introducing geographic agency from first principles in this way produces 
fantastic insight into the space-time processes driving even a relatively simple system such as crowd 
movement. 

GEOSIMULATION AND GEOGRAPHIC AUTOMATA 
Geosimulation (Benenson and Torrens 2004) sits in the background for the work that I will 

present, offering distinct advantages over conventional approaches. First, the traditional consideration of 
average and spatially-modifiable geographical units or (statistically) mean individuals is replaced in 
geosimulation. Instead, units are regarded as spatially non-modifiable entities, with individual 
descriptions and independent functionality. Where aggregates are considered, they are formulated 
generatively, built from the bottom up by assembling individual entities for the purposes of 
accomplishing an aggregate task or amassing an aggregate structure. Second, simulated entities are 
independent and autonomous in their geospatial behavior, turning attention to specification of 
individual-level behaviors when model-building. Entity behavior is not necessarily treated as spatially or 
spatiotemporally homogenous across the system being considered. Third, models are commonly 
designed as event-driven, rather than time-driven, and are built with packets of spatiotemporal change 
based on the independent internal clocks of simulated components. When put together to form a system, 
update of these clocks may be flexibly-defined and the methodology can reconcile diverse 
spatiotemporal scales. 

The idea of geosimulation has caught-on in agent-based modeling, thanks in part to development 
of operational toolkits that allow people to build their own geosimulation models (Benenson and Torrens 
2005), or to use of geosimulation as an interfacing mechanism (Bernard et al. 2002). In addition to its 
use in dynamic Geographic Information Science (Albrecht 2005), agent-based modelers in computer 
animation (Ali and Moulin 2005; Moulin et al. 2004), social geography (Koch 2003), location-allocation 
modeling (Ligmann-Zielinska et al. 2005), machine learning and data-mining (Filho et al. 2004), 
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human-computer interaction (Furtado et al. 2007; Furtado and Vasconcelos 2007), criminology (Melo et 
al. 2006), and medical epidemiology (Ward et al. 2007) have developed geosimulation models. 
Geosimulation has also been used to extend neighborhood functionality for CA methodology (Zhao and 
Murayama 2007). The work reported in this paper is part of our efforts to develop more core geospatial 
functionality for geosimulation-based agent models.  

Operationally, we use automata as the vehicle for geosimulation. We have developed a scheme 
for building Geographic Automata Systems (GAS), fusing the computational properties of automata 
with Geographic Information Science (GISci) functionality (Torrens and Benenson 2005). GAS are, 
fundamentally, automata and retain components from cellular automata and intelligent agents. We add 
the ability to express spatiotemporal relationships based on the full range of spatial analysis routines 
available in GISci. Geographic Automata (GA) may be located by any geo-referencing convention (L) 
and can also move through the spaces they occupy by any locomotion regime (RL). L allow GA to be 
registered in space and time (i.e. L = Lt), either directly or indirectly, on a one-to-one, one-to-many, 
many-to-one, or many-to-many basis. A typology or ontology (K) of GA entities mediates the nature of 
L and RL. Input to GA is considered geographically as neighborhoods of interaction and influence. GA 
neighborhoods may differ heterogeneously in extent and shape per GA and may change dynamically so 
that N = Nt. Neighborhood rules (RN) determine these changes. Neighborhood relationships, expressed as 
cognitive filters, social relationships, lines-of-sight, and so on can be introduced and allowed to vary 
over space and time. Many GA (G below) may be combined in a systems context, with each GA in the 
collective GAS coded heterogeneously: 
 

 ~ , , , , , , , where :   ; :   ; and :   .  
 

Among other things, this allows us to distinguish agent types based on their geospatial behavior. 
In the models to be described, five entity types (classes in an object-oriented sense) are used: World, 
FixedObjects, MobileObjects, Goals, and Probes. World represents the simulated environment (a city). It 
subsumes (contains, encapsulates) all other entities in the simulation. It also acts as a template for 
georeferencing, handling entities’ absolute position in the World and their position relative to other 
entities in the World. FixedObjects is used to represent the urban infrastructure and thus handles buildings 
and obstacles (parked cars, trees). FixedObjects do not move, although they can influence the movement 
of other mobile entities. MobileObjects represent people in isolation, crowds and the groups that they 
form, as well as particles (smoke, embers, mobile toxins). MobileObjects move, as the nomenclature 
suggests. Goals are used to structure events. They are used as space-time anchors, operating as beacons 
for actions to be executed. Goals may be used by specific groups or individuals, in specific places and/or 
at specific times. Probes function as data-collecting entities that linger in the model world with the intent 
to capture attributes of the simulation (as an executable computer program), the simulated system (as a 
synthetic representation of phenomena of interest or under study), and model entities’ states and actions. 
Probes are endowed with the ability to sift through data, sort it, and exchange it with caches for 
input/output to/from GIS as well as spatial and statistical analysis. 

GEOSPATIAL FUNCTIONALITY FOR A GEOSPATIAL MODEL 
The next step is to imbue this modeling scaffold with theory-driven heuristics. The sub-field of 

behavioral geography is replete with theory and explanation for human geospatial behavior. We take our 
cues, in developing geospatial functionality for our modeled agents, from decades of work in behavioral 
geography. 

First, we acknowledge that geospatial behavior is largely determined by heterogeneous 
geospatial traits per-agent. While seeming to behave with universal behavior at a macroscopic scale of 
observation, people move and navigate through urban settings with a great deal of individuality and their 
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movement behavior is formed heterogeneously from independent geospatial and geotemporal 
characteristics. Infrastructure characteristics are established and assigned to geometry in GIS. Pedestrian 
agents are endowed with characteristics from a synthetic data population, using statistical, geostatistical, 
and geodemographic inference to down-scale aggregate data sources to micro-levels. Motion capture 
and motion editing are used to produce realistic-looking movement, heterogeneously, per-agent. The 
technique also provides upper- and lower-bounds for pedestrian velocity, as well as free speed. This 
allows us to calibrate rates of acceleration/deceleration per agent, accounting for differences in habits, 
gait and allows us to encode body language into simulations geometrically.  

Second, we base our modeled agents on an assumption that they plan their paths geographically 
and use waypoints to develop a general sense of how to get somewhere. Path planning is introduced to 
the modeling framework per-agent as a low-level search heuristic that determines (graph-based) nodal 
waypoints through which agents then ambulate using a second, higher-level way-finding heuristic, 
whereby agents plan their route between waypoints before mobilizing.  

Third, we wrap agents with spatial cognition as part of their behavioral AI. A traditional 
automata-based socio-communicative and goal-oriented agent AI sits at the core of modeled entities' 
behaviors, but those routines are passed through a second layer of geospatial AI, thereby dictating when, 
where, and in what spatiotemporal contexts that functionality should be employed. Agent walkers are 
endowed with an individual-centric geography around themselves, used to filter the world as they move. 
This is formed as a vision cone centered on the agent and cast (as a ray) in a forward direction. Cone 
properties vary heterogeneously and spatiotemporally based on changes in pedestrians’ behavior, 
characteristics, and surroundings. Potential collisions are registered in an array and sorted for relevance 
(angry dogs may get priority for some people, but not others, for example). Once free from encounters, 
pedestrians navigate to return to their shortest path route. 

Fourth, we make use of the fact that people’s activities strongly structure their use of space and 
time. Walkers may organize their paths through space-time as events fashioned around their activity 
goals and these serve as spatiotemporal anchors. We have developed an integrated GIS-based analytical 
toolkit for sweeping the parameter-space of simulations and for registering simulations to real-world 
conditions, based on space-time paths and prisms for individual, dyad, and group behavior and 
isochrones for individuals, groups, and events.  

AN APPLIED EXAMPLE 
I will now demonstrate the usefulness of this approach through discussion of the model’s 

application to evacuation of agents through confined urban infrastructure. The physics of such effects 
have been well-modeled on the basis of association between the physical properties of crowd evacuation 
in such contexts and those of fluid and excitable media in granular or gas-kinetic environments (Helbing 
et al. 2000). However, true behavioral models have not been developed to model such situations, save a 
“social force” extension of Newtonian dynamics. 

The simulation is set-up as follows. Synthetic pedestrians were arbitrarily loaded to an urban 
scene and run with innate behavior. Motion capture data dictate their free, upper, and lower speeds and 
acceleration/deceleration (figure 1). They possess one higher-level driver, an impulse to evacuate from 
their seed position to a goal at the end of the modeled world. Only one exit exists.  
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FIGURE 1. Velocity data are derived from motion capture of a real-world actor’s movement. 

An A* algorithm is run to find the shortest route to that exit for each pedestrian. Pedestrians will 
follow this track unless their innate behavior dictates otherwise. At the onset of the simulation, 
pedestrians orient themselves in the direction of the exit. Taking a prompt from higher-level behavior 
(i.e., to proceed calmly to the exit, or flee at all costs), they quickly scale their velocity from a position 
of rest to their free speed, navigating, path-planning, and mobilizing to an assembly point on the other 
side of the exit (figure 2). Some pedestrians have line-of-sight to the destination, while others must steer 
clear of infrastructural objects (walls) before they can see the goal.  

Agents that make it to the exit early are able to evacuate the enclosed space relatively freely. 
However, a bottleneck soon forms at the mouth of the exit. As the crowd of pedestrians builds up behind 
and to the sides of this obstruction, a characteristic arch forms at the entry to the exit corridor, which 
impedes escape further. The crowd begins to wedge at ± 45 degree angles on either side of the exit. This 
is a well-known emergent property (Helbing et al. 2001). 

Probes continually report pedestrians’ positions. Those data are run through a space-time GIS 
that builds space-time paths as graphics and geometry, allowing the parameter-space of the simulation to 
be swept. As seen in figure 3, Agent 1 exits (the space-time path becomes a vertical, indicating rest) 
quickly, following the shortest path relatively free of collisions. Agent 2 encounters crowded conditions, 
however, taking longer to exit. Agents 3 and 4 proceed well until their geospatial AI is impeded by a 
jam toward the end of their space-time path. Compaction and expansion of their space-time paths is 
evident, illustrating frustrated cycles of speeding-up and slowing-down. These signatures are similar to 
those in car traffic jams following accidents (Nagel and Schrekenberg 1995). The onset of a traffic jam 
is clear (figure 2c, 3a). The slope of the space-time path of individual walkers rises sharply as 
pedestrians enter the exit corridor, leveling out somewhat thereafter (figure 3).  

Mapping textures to simulated pedestrians (cloth, hair) and infrastructure (concrete), lighting, 
and shadow-mapping is useful in generating realistic-looking simulations (figure 2). This is particularly 
important in conveying the themes of modeled scenarios to viewers of the simulation. Buildings may be 
rendered as transparent or reflective so that the dynamics of crowd flow can be viewed through dense 
simulated infrastructure as the simulation runs. 
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(b) 

 
(c) 

 
(d) 

FIGURE 2. (a) Seed conditions. (b) Nearby agents exit quickly (t = 3 seconds). (c) Gridlock forms for agents that arrive at the 
exit later; pressure builds as the crowd compacts (t = 33 seconds). Characteristic lateral wedges of jammed agents form at the 
exit’s sides, further obfuscating evacuation (t = 66 seconds). (d) As the pressure in the congested crowd subsides, evacuation 
proceeds more efficiently (t = 133 seconds.

(a) (b) 
FIGURE 3. (a) Space-time paths for all agents. Spatial movement is shown in (x,z), temporal movement in y. (b) Agent 1 
evacuates quickly and easily, as shown by the relatively straight and flat space-time profile. Agent 3 encounters some traffic 
over the last two-thirds of her journey. Agent 3 evacuates relatively slowly, while agent 4 has a difficult evacuation, as shown 
by the tortuous and steep space-time path of her movement. 

CONCLUSIONS 
A demonstration of the usefulness of behaviorally-driven models and analyses in developing 

realistic and intelligent synthetic representations of geospatial behavior in urban environments has been 
shown in this paper. The advantages of this approach have been illustrated through application of the 
scheme to evaluation of large-scale evacuation dynamics in downtown settings. The scheme that has 
been described is valuable in proving the underlying computation, but also demonstrates the potential 
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for approaches of this kind in exploring and generating theory in studying spatial cognition, sociality, 
collective behavior, and human-environment interaction. 
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ENACTMENT SOFTWARE: 
SPATIAL DESIGNS USING AGENT- BASED MODELS 
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ABSTRACT 
 

This paper introduces a potential use of agent-based computational models into 
architectural spatial design strategies. Visualization of the human behaviors within 
architectural spaces is one of the uncultivated areas in the field of architectural design. 
The use of agent-based computational tools such as NetLogo has a great potential to 
overcome various shortcomings in the existing architectural design software.  
 
Keywords: Architectural Design, Visualization, Agent-based Computation, NetLogo, 
CAD software, Image Rendering, Human Behaviors. 

 
 

INTRODUCTION  
 

Spatial qualities in architectural design cannot be fully evaluated solely by observing 
geometrical constructs without reference to inhabitants placed inside. However, imagining what 
happens to those inhabitants and appreciating their movement is difficult even for trained 
architects. Architects tend to underestimate the importance of the role of people inside their 
buildings; they are often not fully aware of the behaviors induced by the spaces which they 
design. The existing analytical means of architectural representations – plans, sections, 
elevations, axonometric, and perspective – are not sufficiently capable of visualizing the 
psychological behaviors of people.  

 
Behavioral aspects of the spatial design have yet to be addressed well in any existing 

architectural design tools. As architectural projects become increasingly more complex in their 
formal manifestation as well as functional requirements, new methods are sought to address the 
complexities. Contemporary designs by today’s leading architects are often filled with their 
signature expressions, and some of their design decisions seem to be executed based on their 
individual sensitivities and intuitions without enough concern for behavioral aspects of users.  
Today’s advanced computational design tools (CAD software) can produce complex forms and 
sophisticated visualizations of light, materials and geometry. But they are not suitable for helping 
people to quickly study and understand a spatial design as it would be inhabited. The proposed 
method lays a foundation for developing a new kind of software that overcomes this shortcoming 
by the use of agent-based computation. 
 
 In architecture, many spatial problems are indeterministic. Solutions to particular design 
problems are usually constrained by multiple criteria and are far from obvious. Normally, 
architectural design has multiple evaluation factors, and this fact prevents it from having simple 
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straightforward equations or methods to reach solutions. Moreover, this ambiguity and 
invisibility of spatial qualities tends to hide the actual problems from designers’ eyes. Aesthetic 
values may scarcely ever be quantified or objectively evaluated, but even mere functional aspects 
of architecture are hard to evaluate.  For instance, architectural codes respond to constituent parts 
of dimensional constraint in architectural spaces. However, for a building as a whole, whether or 
not the end products of assembly of all locally constrained parts are efficient and comfortable, 
are very difficult to predict before actual user involvement. A “walking actual human” on full-
scale mock-up can be one solution to check the level of comfort in architecture although time 
and cost that it takes to execute it is considerable. Another possible approach can be using a 
synthetic figure based on human behavioral patterns to test the performance of space before 
realization of the physical space.  

 
The paper seeks to find a tool with which to capture human reactions in architectural 

spaces in an animated format. By suggesting another layer of architectural quality hidden behind 
the constructive forms, this paper aims to bring the designers’ attention back to a man on the 
stage, and the eyes of a user. By walking a synthetic figure through architectural space, this tool 
will visualize the psychological response to architectural elements in motion.  

 
The main difference between conventional architectural representations and this tool lies 

in the presence of autonomous behaviors embedded in the figures. Through agent-based 
computation, it moves inside the model and displays various behaviors in reaction to spatial 
characteristics such as transparent surface, opaque surface, perforation and furniture. Typically 
all the figures in architectural animations are controlled, prepared, and inserted afterward, on top 
of their 3D models in a top-down manner. For example, most of the walking figures merely 
follow the paths that were drawn and reinterpreted by the designer on their 3D models, and their 
motions are post-rationalized by the creator (animator) of the presentations. There are some 
levels of discontinuity between the motions of the figures and their surrounding architectural 
environments since they are results of reinterpretations by the observers who reside outside the 
environments. This new tool attempts to omit this final tweaking process by according some 
level of cognition to these figures from the outset of the process. These cognitive capabilities 
include collision detection, obstacle (walls, etc.) detection, cognition among others, and 
cognition of the attractors in architectural environments.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
FIGURE 1. Proposed Tool (left), and Conventional design communication tools (right). 
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Re-Action to the architectural spaces, including the reaction to the different materiality of the 
architectural elements, is one of the most unique features implemented in this tool. These 
cognitions are directly embedded in the figures on the stage sets, and they are not from the re-
interpretation or the post-rationalization. 
 
 

METHODOLOGY 
 
The proposed method uses two platforms; the agent-based environment which computes 

the behaviors of each figure, and the 3-D visualization environment inside a rendering 
application. Results from the agent-based computation will define all the behaviors and 
movements of the figures. In other words, all the intelligence about the autonomous behaviors is 
acquired from the simulation program developed by the author in the programming environment 
in NetLogo (Wilensky, 1999.) In order to achieve physical three dimensional qualities in 
representation, all these behavioral information will be once translated (encoded) into text files to 
export the information into external visualization environment. 3d Studio Max release 8 is 
selected for the final visual representational platform due to its high-end rendering capabilities, 
and its availability among the architects and students. Furthermore 3d Studio Max release 8 
comes with CharacterStudio which provides standard bipedal character skeletons. This biped 
figure is used as an actor inside the Space Re-Actor’s environment based on the results acquired 
form the agent-based computation.  

 
In the field of architectural design profession, it is fairly typical for designers to build 3-d 

models of their own building designs within the CAD (computer aided design) software 
environments such as AutoCAD, 3d Studio MAX. The proposed method introduces walking 
scale figures in geometric models. The goal is to add a sense of place to the geometry, and 
augment the representation of its spatial quality for designers and audience. Through agent-based 
computation using NetLogo, they move inside the model and display various behaviors in 
reaction to spatial characteristics such as transparent surface, opaque surface, perforation and 
furniture.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2. The Agent-based Environment in NetLogo (left), and the 3-D Visualization (right) 
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The figure is assigned a psychological profile with a different degree of sociability, and reacts to 
proximity and visibility of others in the same model. In order to provide cognitive and behavioral 
capabilities to the figures in the agent-based environment, individuals are equipped with series of 
internal variables such as vision, memory, energy, level of curiosity toward attractors, sociability, 
and so on. NetLogo’s programming language is used to describe various architectural elements 
such as walls, glazing, doors, furniture, water feature, and so on as attractors which define the 
behavioral responses from agents on scenes. NetLogo’s pixel-based graphic environment allows 
users to import any architectural floor plans’ information from CAD software environments, and 
users can color-code preceding various attractors on their floor plans in real-time manner. 
Furthermore, computational results from NetLogo program can be exported into architectural 
animation software’s 3-D environment using text codes indicating every agents coordinates 
information and series of ASCII codes representing agents’ behavioral responses which are 
associated with proper motion capture files for bipedal character skeletons for cinematic 
representational purposes.  

 
Series of built and un-built works by Mies van der Rohe are selected for the case studies. 

Mies is regarded as one of the pioneer of modern architecture and left series of minimalistically 
composed plans for his projects. The spaces designed by Mies are relatively loosely defined in 
terms of the programs and the specific usages of each individual spatial compartment, thus 
results of human responses are less predictable, and they are considered to be suited for the study. 
The German Pavilion at the International Exposition in Barcelona (1928-1929) by Mies, usually 
referred to as the “Barcelona Pavilion” is one building on which the functionality of this tool, the 
Space Re-Actor, will be tested.  As a building type, a pavilion does not force any specific 
objective on the people visiting the building. Visitors’ behaviors will be in direct response to the 
building’s architectural features such as water features, benches, and sculptures, as well as to the 
transparency, opaqueness, or texture of the surface materials. They begin by wandering around 
the building and gradually find their ways toward what naturally attracts them. The visitors’ 
behaviors are induced by the architectural elements present, and this condition is well suited for 
solely concentrating on evaluating the spatial conditions.  

 
The followings are the examples of various reactions to architectural elements 

implemented in the synthetic figures. The tool also allows users to sketch and color-code the 
architectural elements to assign different qualities and characteristics to the materiality and 
features intrinsic to architectural spaces in real time manner.  

 
 
 
 
 
 
 
 
 
 
 

FIGURE 3.  Re-Actions to Architectural Elements. Interactions among Agents. Series of Re-
Actions gained from NetLogo are associated with various behavioral motion captured files. 
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• Attractor-based Reaction: users can assign attractors such as sculptures or water 
features. They attract visitors’ attention, and the visitors may halt for a moment to enjoy the 
views. For instance, the Barcelona Pavilion has two water ponds as major architectural features. 
Spatial allocation of these elements inside the overall composition by definition reflects the 
master designer’s intention and motivation to shape people’s circulation and experience. How 
the specific placement of those attraction features can manipulate the visitors’ behaviors and 
contribute to the overall experience of the pavilion are the questions to be explored by seeing the 
real-time reactions of walking figures.  
 

• Agents’ Variable-dependent Reaction: Depending on a visitor’s activity level, she or he 
might find comfort by sitting on the benches. Figures have an internal variable to measure their 
activity level (energy level) to check whether they feel like sitting or not. This type of attractor 
will be conditionally applied based on the internal variables of the figures. For instance, if the 
energy level is lower than a certain threshold value, they will start to seek the place to rest 
(furniture: Bench). After regaining the energy, they will go back to respond with the normal level 
of curiosity to other attractors.  
 

• Visibility-based Reaction: “Can see and can be seen” is an important concept for the 
behavior of figures. The synthetic figures have vision, and some of their reactions are based on 
visibility. Better visibility allows them to find not only the attractors but also the others inside the 
space who could influence their next moves. The tool calculates the visibility at every coordinate 
point of the accessible space.  
 

• Agents-to-Agents Reaction: Besides the simple avoidance and collision detections, 
interactions between the agents are considered. Having different degrees of sociability for figures, 
the tool can start to render an event in the scene. Heterogeneity among the agents governs the  
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- Sociability =  
- Curiosity    =  . . . . 
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FIGURE 4.  Agents’ Vision (left), Example of Stochastic Decision Process (middle and right) 
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variations in interactions among the visitors. Some like to have more interactions with others and 
some do not. When two sociable people meet within a certain level of proximity on the street, 
conversation will start, and this begins to add a sense of place to the geometry. 

 
Every trial of the tool produces different possible events, based on the stochastic decision 

making process which is implemented in figures. However, by seeing series of possible scenarios, 
users can identify behavioral tendencies and actions inherent in the space which they are 
designing. A series of behavioral choices are chained and branched out from the current states of 
the figure, and they will choose their next states based on situations from their surrounding 
environments, their internal variables, and the different probabilities with which possible next 
states are weighted. Likelihoods of one behavior over the other can be expressed by directing 
randomness to a certain manner. Their chances of occurring are not uniformly distributed. For 
the sake of simulation, these differing probabilities are interpreted and applied to the figure’s 
tendencies to select one state over the others. The interpretation of the events’ likelihoods should 
ideally reflect patterns of human behavior in real-life from available knowledge-based data. The 
aim of these exercises is to render the potential events and scenes of the building ideas, which 
had been left simply as states of geometry.  

 
Another implementation for the figures’ behaviors is called Privacy mapping. Privacy 

mapping is a concept for gauging the level of privacy inside the space. This method is 
particularly interesting for analyzing residential spaces. I based the concept on two proposed 
criteria: level of exposure to the exterior environment (public) and the numbers of others who 
can see within the house. The first criterion can be simply calculated by projecting invisible rays 
360 degrees around every point within spaces. Areas of visual exposure to the exterior in 
elevations are calculated using trigonometry, and it is simply the sum of these areas from the 
entire surroundings that indicates the privacy level of this coordinate point. This measure is 
based on agents’ locations and is highly influenced by the materiality (transparency) of the walls 
and partitions inside spaces. Any change of the materials and their locations may affect this 
measure which provides spatial hierarchy based on the privacy.  

 
One other criterion that I proposed is to measure privacy based on how many others are 

seen. When the density of the space is higher, people are likely to be seen by others, and this 
value will indicate the capacity of spaces that can maintain a level of privacy. The relationship 
between the distance around oneself and one’s perception of others has been introduced the 

 
 
 
 
 
 
 
 
 
 

 
FIGURE 5.  Plan of Country House by Mies, 1932 (left),  Privacy level, from Red being high to 
Purple, being low (middle), Personal distance among Agents (right). 
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studies such as Proxemics by Edward T. Hall. In “The Hidden Dimension,” Hall suggests that 
four feet is considered to be “personal distance” which maintains a small hypothetical protective 
sphere between oneself and others. This dimension also varies, depending on one’s cultural 
background, and is hardly ever objectified. It is an interesting idea to test the spaces with the 
different cultural dimensions possessed by various social groups. As a starting point of this study, 
any numbers of others within the dimension from Hall’s studies, plus-or-minus four feet in 
radius as a threshold value, are counted as people who can greatly influence one’s sense of 
privacy. Any others in visible areas outside of this distance are considered less influential; hence, 
those values decrease in inverse proportion to the distances from oneself.  

 
 

CONCLUSION 
 
The animated result from the tool brings a sense of place to the geometry by displaying 

the figures in motion. By observing the scales and numbers of footsteps that it takes to move 
figures from one location to the other, viewers can obtain a sense of speed and physical three-
dimensionality. The tool’s results offer a starting point for initiating users’ conceptions of a 
space and help them to immediately study a spatial design as inhabited. Through considering the 
results that I have obtained from the series of experiments using the Space Re-Actor, I began to 
realize that the importance of the tool lies in the effort to integrate “human involvement” into a 
spatial design. A space seems to exhibit different characteristics according to the numbers of 
occupants, their objectives inside the space, and the proportions of groups with different degrees  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 6.  The group of court house by Mies (1931) and various Behavioral Responses from 
plan schemes with different degrees of Privacy using the Space Re-Actor 
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of sociability. Behavioral aspects of the spatial design have yet to be addressed well in any 
existing design tools. One may be able to obtain discrete numerical data about people’s comfort 
levels as they depend on the density of a space through analytical means, but comfort and other 
characteristics in particular spatial layouts and conditions can be more fully grasped through the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Brick Country House by Mies (1923) and Animated results from the Space Re-Actor 
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use of simulations. Aggregation of all the architectural components, such as doors, partitions, 
windows, staircases, and furniture in specific layouts can be understood through the use of the 
Space Re-Actor.  
 

Describing the people’s behaviors computationally is a controversial issue. That “an 
Agent-based model can never perfectly duplicate human social interaction” is a perennial 
critique and a genuine problem for the computer and social scientists involved in behavioral 
simulations. Simulations are always based on premise that human beings will behave in certain 
ways under specific conditions. Even though possible behaviors are incorporated from actual 
events and scenarios, there is no proof that the behaviors include all possible occurrences. The 
scope of reliability of results obtained through behavioral simulation is a critical bone of 
contention for researchers, not only in computer science, but also in operations research, social 
science, behavioral economics, and so on.  

 
The fact that many scientists involved with neural-coding are actively using probabilistic 

approaches such as Bayesian analysis suggests that any study involving our “self” requires some 
degree of understanding of indeterminacy. Unlike discrete and determinant geometrical 
construction seen in architectural design, behavioral implementation can not be fully described 
without applying a notion of “indeterminacy.”  Describing a transition from one state to the other 
or one formal solution to the other by the decision of a human being may require a probabilistic 
treatment as is often true in nature.  

 
“Is this really Simulation?” is an interesting question. The Space Re-Actor provides 

animated possible scenarios based on the qualities inherent in architectural spaces. The 
plausibility or persuasiveness of these results probably depends also on viewers’ own attitudes 
and perceptions toward the “reality” around themselves. But the tool provides multiple 
interpretations of the spaces based on the stochastic decision process implemented in the figures, 
which is meant to reflect the indeterminacy of human behavior. “Reality,” I believe does 
possesses indeterminacy. To determine types of people visiting the Mies’s country house at 
particular times of the day is not realistic. Every trial of the tool produces different possible 
events, and the original intention was to identify tendencies in behaviors and actions by seeing 
series of possible scenarios. What we have witnessed in the several visualization results of the 
Space Re-Actor may not be certain to occur in reality. However, neither can one completely 
deny the potential occurrence of such events. It is, so to speak, dramatization tool for spatial 
designers, and I argue that the Space Re-Actor may more properly be considered as the first 
instance of a new category I am calling “Enactment software.” One’s attitude toward “reality” 
will surely influence how we regard this new tool, the Space Re-Actor.  
 

Spatial qualities in architectural design cannot be fully evaluated solely by observing 
geometrical constructs without reference to inhabitants placed inside. The consequent emergent 
behaviors of people induced by characteristics of spaces may be impossible to predict, and 
indicate another layer of spatial qualities beyond the visible, formal, and aesthetic. A method for 
informing designers about the potential interactions between human behaviors and the spaces 
they are designing will constitute a valuable tool. As a future exploration, these figures’ profiles 
or behavioral tendencies can be controlled by the users of the tool based on the conditions and 
the building types which they are considering.   
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ABSTRACT  
 
Theories and models of movement are central to understanding a wide range of social 
phenomena that crosscut numerous disciplines. Despite its importance, walking is one 
form of movement for which models are badly underdeveloped within tools such as 
transportation geographic information systems (GIS-T) that modern planners and 
researchers use. Analysts and researchers are in need of tools that can integrate the 
complexities of nonmechanized modes of transportation and are also capable of easily 
producing appropriate models that can be studied in the service of making critical 
decisions and obtaining useful insights within different social-theoretical perspectives. 
This paper introduces the developing agent-based modeling tool called SHULGI. This 
tool enables multiple sociological and socio-physical processes to be incorporated in 
order to assess different factors that can impact transportation decision making and 
events. Particular attention is given to SHULGI’s modeling capabilities for addressing 
pedestrian movements within an urban context. Models discussed in this paper include 
metabolic and human decision models that will enable different types of agents to 
develop satisficing or optimizing route selections. These selections can impact overall 
traffic and movement within the transportation networks addressed. Simulation 
functionality and outputs provide a preliminary demonstration of SHULGI’s capabilities. 
 
Keywords: Pedestrian Movement, Agent-Based, GIS-T, Repast Simphony, Archaeology 

 
 

INTRODUCTION  
 

Theories and models of movement are central to understanding a wide range of 
phenomena that crosscut numerous disciplines. Models of how people move and interact are 
complicated by the fact that people are thinking agents. We perceive the world and the actions of 
people around us and chose to alter our own movements and activities accordingly. This context 
is experienced by nearly everyone, every day, and it is something that scholars working within 
the broad interdisciplinary boundaries of location theory have strived to understand for centuries 
(von Thünen 1826; Weber 1909; Christaller 1933). A critical question in location theory is how 
does transportation and movement through space affect activities and the use of space at 
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particular places? This seemingly simple question belies a complex dialectic between 
transportation and land use that plays an important role in defining human-human and human-
environment interactions.  

 
This paper introduces an object-based geosimulation environment for modeling 

transportation, called SHULGI, which seeks to address this critical question in location theory. 
SHULGI uses the newly released Repast Simphony (Repast S) modeling toolkit as its 
foundational technology (North et al. 2005). With a modular object-based framework, SHULGI 
is designed as an easy to use, flexible simulation tool that can model multiple modes of 
transportation at multiple temporal and spatial scales. This paper will begin to demonstrate 
SHULGI’s capabilities in modeling pedestrian traffic within an urban context. Despite its 
importance, models for addressing walking in existing spatial modeling tools, such as 
transportation geographic information systems (GIS-T), are largely underdeveloped. SHULGI 
incorporates a methodology for modeling pedestrian movement as developed by Branting 
(2004), which has demonstrable applicability in both the present and the past. 
 
 

SOCIAL THEORY AND MOVEMENT 
 

While movement creates opportunities for nearly boundless sets of choices and actions, it 
is at the same time self-limiting. Choices individuals make concerning what to do at a given 
point in time, along with the routes chosen to get to the required location to engage in that 
activity, will variously constrain what individuals can do in wider or shorter spans around the 
time of that activity. The realization of the importance of choices and movement within the finite 
framework of time has been used for decades to powerful effect within time-geography as a way 
to parse social and individual actions and interactions (Hägerstrand 1970; Pred 1986; Kwan 
1999). The concept of the path taken by the individual through time and space is central to time-
geography conceptualizations, accurately reflecting the importance of linear movement within 
this equation. Traffic patterns, as the aggregates of individuals’ movement, can be seen through 
this lens of time-geography as constraining and, at the same time, as very revealing of the 
choices people make, including the activities they engage in individually and corporately. 

 
In a complementary theoretical vein, location theory has long stressed the importance of 

movement and transportation in parsing choice, particularly in terms of land-use planning. Land-
use and transportation form a symbiotic relationship in this regard, a point stressed by Blunden 
(1971). By the time of von Thünen around 1800, transportation was seen as a key factor in 
optimizing land-use allocation (von Thünen 1826). This was subsequently carried over into 
explicitly urban situations through work undertaken by Alonso (1964). Transportation and land-
use played a key role in the calculus of industrial production and consumption put forth by 
theorists such as Weber (1909) and Isard (1956) and research addressing the transport of goods 
and services (Christaller 1933; Lösch 1954). The importance of transportation and movement 
seen in each branch of these basic schools of location theory continues to this day, with 
transportation and land-use playing key roles in human-to-human and human-to-environmental 
interactions (Rapoport 1977; Rapoport 1990; Johnston and de la Barra 2000; Stough 2004).  
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MODELING MOVEMENT 
 
 
GIS-T Approach to Transportation and Pedestrian Traffic 
     

A methodology addressing both the paths and patterns of traffic along with their 
symbiotic relationship to land-use offers enormous possibilities for exploring not only the form 
of the built environment, but also the social and individual thoughts and actions involved in its 
creation and alterations. GIS-T provides particularly good tools and methods to address both of 
these areas and indeed is being used by city and regional planners around the world. GIS-T is a 
domain within GIScience that only emerged during the 1990s, linking together established 
transportation models and methods with the display and organizational abilities of GIS 
(Thill 2000; Goodchild 2000). It provides network-based modeling and analysis tools that are 
particularly effective in forecasting and exploring traffic patterns both at various levels of 
aggregation as well as individual movement.  
 

For situations where traffic is constrained, either through the framework of the built 
environment or through repeated practice (Helbing et al. 1997), GIS-T proves particularly 
effective. This applicability includes the case of pedestrian traffic, which might be considered 
much more variable than that of mechanized modes of transport (e.g., cars or trains) that require 
significant infrastructural investments (Branting 2004). There are a number of advantages to 
modeling pedestrian transportation using network-based approaches like those found in GIS-T 
(Branting 2004). Yet, surprisingly, this functionality is an almost unexplored area within the 
domain, with most GIS-T work focused specifically on modern mechanized transport. One of the 
key reasons why this is surprising is because walking is the most common mode of movement 
and transportation in the present as well as the past (Amato 2004; Solnit 2000; Branting 2004). 
For preindustrial cities, such as the ancient city at Kerkenes Dağ that is the focus of the case 
study below, modeling traditional modes of transportation like walking is crucial for 
understanding transportation. But even in present-day case studies, pedestrian transportation is a 
critical part of any transportation system and one that is growing in importance in light of issues 
with congestion and energy policies.  

 
While the pedestrian GIS-T methodology developed by Branting (2004) has performed 

remarkably well, there is room for improvement. Three key difficulties with the methodology in 
its current implementation were identified. First, there are limitations in the flexibility of the 
method. Dynamic activity in time and space has always presented problems for GIS 
(Peuquet 2001). This was compounded by difficulties in implementing more complex scenarios, 
particularly those involving interactions between people in time and space. Second, the 
methodology became cumbersome as the range of simultaneous factors applied to a given 
scenario was expanded. This difficulty was manifested less in terms of computational processing 
speed but had more to do with the specification of the combinatory interactions between the 
factors. Third, the pedestrian GIS-T methodology was difficult and expensive to utilize. Several 
commercially available software packages, including ESRI’s ArcGIS and Caliper’s Transcad, 
were used to power both the modeling and the enormous amount of data formatting and 
preparatory work necessary between the various stages. Significant investments were needed in 
terms of both time and money to apply the methodology.  
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Agent-Based Modeling and Transportation Modeling 
 

 Agent-based modeling (ABM) provides a way beyond these difficulties with the 
pedestrian GIS-T methodology. Numerous cases have applied ABMs to transportation issues 
(Rickert and Nagel 2001; Batty 2001; Lake 2001), particularly because ABMs provide clear 
benefits to understanding human choice and decision making in movements within grids or 
networks. SHULGI has been designed to take full advantage of this flexibility and to allow for 
future extensions within a modular framework. In addition, SHULGI has been designed to make 
the modeling of complex transportation easier than in the GIS-T methodology by facilitating data 
integration, analysis, and model creation and use within this framework. 

 
 Among the benefits of SHULGI, the system allows users to load different forms of 
spatial and nonspatial data, either through a user’s graphical user interface (GUI) or eXtensible 
markup language (XML) file reference, to instantiating simulation agents or other objects. Users 
can select from among the built–in least cost pathway algorithms, which currently include the A* 
and Dijkstra algorithms (Hart et al. 1968; Dijkstra 1959), or load those created by the user 
through XML references. In SHULGI, the A* and Dijkstra algorithms have been slightly 
modified so that they can factor multiple edge weights. Specific models that can be chosen in 
SHULGI include those that address pedestrian movements. These models address metabolic 
expenditures, velocities, and route decision making. The metabolism models that have been 
integrated include the Pandolf and McDonald models (Pandolf et al. 1977; McDonald 1961). 
These models take into account energy requirements over a given terrain. The velocities for these 
models are derived from studies of human walking (Sun et al. 1996; Kawamura et al. 1991). 
Time costs for the activity can also be determined from separate models such as Imhof (1968). 
Route decision models, which enable agents to decide where to go at a given time step, will be 
discussed shortly. In addition to using currently integrated models, users can create their own 
models, and then reference these within an XML structure to add the models within SHULGI’s 
model library that provides the full array of model choices to analysts.  

 
In SHULGI, models are not integrated directly with agent or entity objects; this aspect of 

its design is beneficial in that it allows various theoretical perspectives to be integrated using the 
same agent or entity1 types. In summary, users can select a range of models addressing a specific 
behavior, with processes relevant for applied theoretical perspectives strictly implemented within 
models. Users can use SHULGI and Repast S tools that allow the construction of additional 
models and objects (North et al. 2005; Parker et al. 2006). In addition, SHULGI can be run 
within a computer cluster; the current implementation uses Terracotta software 
(Terracotta 2007). Current simulation models can be executed by using process-oriented discrete 
events, enabling contextual data to be passed to objects applying processes at relevant simulation 
time scales.  
 
 Object types that can be instantiated with spatial (e.g., shapefile) and nonspatial 
(e.g., CSV file) data include those listed in Table 1. After the appropriate simulation data have 
been loaded, users can map the data to an object type (e.g., TransportAgent) applied in the 
simulation. Data loaded and mapped include velocity values or default initial locations. Mapping 
the specific object parameters and data is accomplished through XML references or a GUI that 

                                                 
1  Entity objects are software objects that have behaviors or processes associated with them. Entity objects can be 

agents; however, entities can also be noncognitive physical or environmental objects such as trees or river 
systems. 

478



applies users’ input. Regardless of the technique, users reference the locations (e.g., column 
titles, file locations) of the data values and the object variables that link to the data. Once the data 
mapping is complete, the simulation can be executed. Alternatively, simulation scenarios can be 
executed via batch runs, which can link to multiple computer nodes or a single computer. Batch 
mode is used for both verification and validation (V&V) as well as for producing a large number 
of results. Input data for batch simulations are all loaded via XML files using custom and 
Repast S batch mode capabilities. In batch mode, all mapping of object parameters with input 
data is performed automatically using XML files after the mode is launched. Figure 1 shows 
SHULGI’s current interface used for data, model, and analytical tool integration as well as data 
mapping to simulation objects. 

 
Table 1  Object types integrated in SHULGI 

Object Description 
TransportAgent Any type of moving agent 
ShulgiEdge Modified network edge 
Structure  Compounds or fixed structures 
Network A Repast S network object 
DestinationNode A node a TransportAgent desires to reach 
RoadNetworkNode A node a TransportAgent can traverse 

 
 

 
 
FIGURE 1  SHULGI’s interface that loads models and data as well as allows mapping of data to 
objects 
 
 

479



Kerkenes Dağ Case Study 
 

The primary area to which SHULGI has been applied to date is that of pedestrian 
movements and route decision making. Current example scenarios derive from data obtained 
from the archaeological site of Kerkenes Dağ, an ancient city in Turkey dating to the 6th century 
B.C. (Summers et al. 2005; Summers et al. 2007). This example is one of the same datasets used 
in the development of the GIS-T methodology, allowing a direct comparison between the two 
approaches. As with the GIS-T methods, the type of agent is disaggregated from a generic 
human being into different genders and age groups based on the differing walking characteristics 
of each (Branting 2004). Six different types of agents have been used so far: young men (aged 
10–34), young women (aged 10–34), middle-aged men (aged 35–55), middle-aged women (aged 
35–55), older men (aged 56–75), and older women (aged 56–75). The movement space that 
agents operate within SHULGI can be either a grid or network. In the examples executed, 
SHULGI has been applied using road networks. Road network edges (i.e., ShulgiEdge object) 
can store multiple weight values or calculate a given weight as needed in runtime. The Standard 
Decision Model (SDM) is a SHULGI test model used by agents to decide where to move based 
on agent goals. Calculated metabolic expenditures using the Pandolf or McDonald models, with 
inputs for slope and speed based on localized internal and external factors, determines how 
costly an edge is for the given type of agent in the Kerkenes Dağ examples. In other words, the 
more energy required to cross a given route segment, the more costly that entire route becomes 
to an agent. In this first example, agents simply determine where to go by finding the nearest 
DestinationNode (DN) that was not previously visited by an agent. The agent then determines 
the shortest path route using a least cost algorithm. A DN represents an ultimate destination that 
agents want to reach and that are associated with the center of compounds or walled urban 
blocks. Agents, therefore, attempt to visit each DN only once or until the simulation ends. In 
contrast, a RoadNetworkNode (RNN) is a type of DN that forms the ShulgiEdge nodes, but an 
RNN can be traversed continuously in the SDM. The following Java code in Figure 2 illustrates 
the decision step used by agents to find the path to the nearest DN. 
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public void decideTargetLocation(){ 

 target = null; 

 shortestPath = new ArrayList<ShulgiEdge>();   

 RoadNetworkNode lastStep = null; 

  

 //sort DestinationNodes, fined nearest node 

       PriorityQueue<DestinationNode> destinationQueue =  

priorityQueue(ta.getX(), ta.getY(), ta.getZ(), 

destinationNodes.size()); 

 destinationQueue.addAll(destinationNodes); 

       boolean got = false; 
while((!got || lastStep == null)&& !destinationQueue.isEmpty()){ 

  //potential node 

target = (RoadNetworkNode) destinationQueue.poll();  

 if (!visited.contains(target))  //see if visited node before 

   got = true; 

  else 

   continue; 

   

  lastStep = getLastStep(); // edge prior to DestinationNode 

  }  

 removeEdges(); //removes other destination nodes 

 if (lastStep != null) 

  findShortestPath(source, lastStep); //gets shortest path 

 addEdges(); //add all removed DestinationNodes 

       if (shortestPath.size() != 0)  //connect to final edge           

shortestPath.add((ShulgiEdge) network.getEdge(lastStep, target));

    

 } 

          

FIGURE 2  Decision step used by agents to find the path to the nearest DN 
 
 
Currently, output produced by SHULGI can be viewed or analyzed in different formats 

and within different tools. This function includes a GIS viewer that used GeoTools 2.3 
(GeoTools 2007) to output spatial changes and movements of agents. Chart tools and network 
layout displays can be used to visualize some of the results. Aggregate and agent outputs 
produced are also provided as comma delimited data, which can then be analyzed with Repast S 
or other tools. 
 
 
Results 

 
Results from SHULGI help demonstrate the modeling tools’ capabilities discussed 

previously. Scenarios have focused on energy expenditure by agents as they traverse the street 
network of Kerkenes Dag. Figure 3 shows the street network layout of the city with compounds, 
urban blocks, city wall, streets, and young male agents. In this image, GeoTools is used to 
visualize agents as they move across the network based on the SDM. One of the key interests for 
the initial modeling trials is to determine which roads are the most primary used by agents in 
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order to reach most destinations. Among other output results that can be displayed, the GeoTools 
viewer in SHULGI can show the number of instances that roads are used or the overall traffic 
volume. Other GIS output results can be selected by the user within a wizard editor coupled in 
SHULGI. Disaggregated and aggregated output, such as energy expended by agents, can be 
shown within graphs. Figure 4 indicates the mean energy expenditure of young men as they 
move along routes selected during simulation time steps. This graph is produced using Repast S 
plug-in tools for data output and display. In addition to mean energy expenditure, simulations 
record mean and maximum distance traveled as agents move along various routes (Figure 5); in 
this case, output is shown using Repast S chart tools. Figure 5’s results provide an indication as 
to whether or not young men need to travel significantly further in a given time instance to reach 
more distant nodes from their original locations. Other visual displays include network layouts; 
however, this display has not been used extensively in the current SHULGI scenarios. At this 
stage of SHULGI’s development, our efforts are focused on conducting V+V on the current 
models that have been integrated as well as on performing further tool enhancements to enable 
more detailed analyses of modeling results.  

  
These results are preliminary for the agent categories to which the scenarios have been 

applied, but outputs produced do show the benefits of applying an approach that can couple 
metabolic and other relevant cost and decision models within an overall ABM approach. By 
using models for social and physical processes affecting route costs, results can be used to assess 
optimal or satisfactory route selections for agents as influenced by multiple factors. 
 

 

FIGURE 3  The street network (in red), compounds (in yellow), city wall, and young male agents 
(blue dots) during the simulation as they move and reach compounds  
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FIGURE 4  Mean energy expenditure (MJ/time step) for all young male agents 

 

 

FIGURE 5  Mean (red) and maximum distance traveled (blue) during simulation time steps; 
distance measurements are in meters 
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DISCUSSION 
 

Although SHULGI’s full range of planned modeling capabilities have not been 
implemented, its tools have proven able to reproduce results developed within GIS-T 
applications and provide significant enhancements. By using an ABM approach, the modeling of 
pedestrian or other forms of movement can be far more flexible to theoretical applications and 
integration of alternative models and behaviors as compared to other geospatial approaches. 
Proper ABM design enables alternative models at varied temporal scales to be applied to 
different scenarios, allowing researchers to assess how individuals in a given transport structure 
may change or adapt their movements. The ability of SHULGI to simplify the integration of data 
and models for pedestrian movements addresses deficiencies in tools used by urban planners and 
geographers. 

 
We anticipate that as SHULGI develops further, enhanced capabilities will be enabled. 

For instance, although SHULGI has been executed on multiprocessor clusters, our effort seeks to 
make the inclusion of multiple nodes a relatively simple process for the user by using appropriate 
GUI-based tools within SHULGI’s main interface. We intend to apply and enhance SHULGI’s 
capabilities to address other domains, including the modeling of pedestrian traffic in modern 
urban centers, as the tool further develops. The development of SHULGI as a freely available 
tool will insure its affordability for scholars and researchers interested in applying this ABM 
technology to their own transportation and land-use research. 
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