
Proceedings of the

Agent 2007
Conference
on Complex Interaction and Social Emergence

ANL/DIS-07-2

Decision and Information Sciences Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 900
Argonne, IL 60439-4832

www.anl.gov

Northwestern University
Norris Center
1999 Campus Drive
Evanston, Illinois

November 15-17, 2007

A U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC

Co-hosted by
Argonne National Laboratory
Northwestern University

In association with
North American Association for Computational Social and Organizational Sciences

Suggested Citations:

Proceedings: North, M.J., C.M. Macal, and D.L. Sallach (editors), 2007,

Proceedings of the Agent 2007 Conference on Complex Interaction and Social Emergence,

ANL/DIS-07-2, ISBN 0-9679168-8-7, co-sponsored by Argonne National Laboratory

and Northwestern University, November 15-17.

Paper: Jones, A., and B.C. Smith, 2007, “Title of Paper,” in Proceedings of the

Agent 2007 Conference on Complex Interaction and Social Emergence, ANL/DIS-07-2,

ISBN 0-9679168-8-7, M.J. North, C.M. Macal, and D.L. Sallach (editors), co-sponsored

by Argonne National Laboratory and Northwestern University, November 15-17.

Availability of This Report

	 	 Decision	and	Information	Sciences	Division	Office

 Argonne National Laboratory

 9700 South Cass Avenue

 Argonne, Illinois 60439-4832

 Telephone: (630) 252-5464

 Home page: http://www.dis.anl.gov/

 Agent home page: http://www.agent2007.anl.gov

Reproduced from best available originals.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government	nor	any	agency	thereof,	nor	UChicago	Argonne,	LLC,	nor	any	of	their	employees	or	officers,	makes	any	warranty,	express	

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product,	or	process	disclosed,	or	represents	that	its	use	would	not	infringe	privately	owned	rights.	Reference	herein	to	any	specific	

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document	authors	expressed	herein	do	not	necessarily	state	or	reflect	those	of	the	United	States	Government	or	any	agency	thereof,	

Argonne National Laboratory, or UChicago Argonne, LLC.

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne,
see www.anl.gov.

A U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC

Co-hosted by
Argonne National Laboratory
Northwestern University

In association with
North American Association for Computational Social and Organizational Sciences

Northwestern University
Norris Center
1999 Campus Drive
Evanston, Illinois

November 15-17, 2007

Proceedings of the

Agent 2007
Conference
on Complex Interaction and Social Emergence

ANL/DIS-07-2

CONTENTS

Foreword.. ix

Agent Conference Invited Speakers and Presentations from 1999–2007 xi

Acknowledgements.. xiii

Organizing Committee... xiii

THURSDAY, NOVEMBER 15, 2007

Methods and Techniques — Parallel Track I

Multiplatform Methods

The Importance of Being Docked

S.K. Johnson, MT.K. Koehler, and D. Quinn, The MITRE Corporation......................... 5

Measurement and Validation Methods

Integrating ABM and GIS to Model Typologies of Playgroup Dynamics in Preschool
Children

W.A. Griffin, S.K. Schmidt, A. Nara, P.M. Torrens, J.H. Fewell, and C.M. Sechler,
Center for Social Dynamics and Complexity, Arizona State University 17

An Inferential Approach for Validating Agent Simulations

A. Yahja, National Center for Supercomputing Center, and K.M. Carley,
Carnegie Mellon University... 25

Comparing Agent Trajectories

H.V. Parunak, S. Brophy, and S. Brueckner, NewVectors Division of TechTeam
Government Solutions, Inc... 41

Evolutionary Methods

SugarScape on Steroids: Simulating over a Million Agents at Interactive Rates

R.M. D’Souza, M. Lysenko, and K. Rahmani, Michigan Tech. University 53

Evolutionary Multi-agent Teams for Adaptive Optimization

L. Hanna and J. Cagan, Carnegie Mellon University ... 61

iii

The El Farol Bar Problem and Computational Effort: Why People Fail
to Use Bars Efficiently

W. Rand and F. Stonedahl, Northwestern University .. 71

Toolkits Track — Parallel Track II

Toolkit Surveys

Anatomy of a Toolkit: A Comprehensive Compendium of Various Agent-based
Modeling Toolkits on the Market Today

C. Nikolai and G. Madey, University of Notre Dame .. 87

Our Summer with Repast: Forging a Modeling and Simulation Foundation

T.A. Bergin-Hill, M.T. McMahon, and B.F. Tivnan, The MITRE Corporation............... 99

Emerging Toolkits

Adaptive Simulation: A Composable Agent Toolkit for War Game Adjudication

D. Duong, The U.S. Office of the Secretary of Defense... 117

Introducing GROWLab: A Toolkit for Layered Agent-based Modeling

N.B. Weidmann and L. Girardin, International Conflict Research, ETH Zurich............ 125

IDEAS – Interactive Development Environment for Agent-based Simulation

A. Perrone, University of Venice; and A. Pellizzon, University of Padua....................... 135

NetLogo Toolkit Developments

Turtle Histories and Alternative Universes: Exploratory Modeling with NetLogo
and Mathematica

E. Bakshy, Northwestern University and University of Michigan;
and U. Wilensky, Northwestern University.. 147

Examining Group Behavior and Collaboration Using ABM and Robots

P. Blikstein, W. Rand, and U. Wilensky, Northwestern University.................................. 159

Repast Toolkit Developments

Visual Agent-based Model Development with Repast Simphony

M.J. North, Argonne National Laboratory and The University of Chicago;
E. Tatara and J. Ozik, Argonne National Laboratory; and N.T. Collier,
Argonne National Laboratory and PantaRei Corp. .. 173

iv

ROAD Map: Transforming and Extending Repast with Groovy
J. Ozik, M.J. North, and D.L. Sallach, Argonne National Laboratory and
The University of Chicago; and J.W. Panici, Northern Illinois University..................... 193

Model Exploration Module

L. Gulyás, R. Bocsi, and R. Mészáros, AITIA International, Inc.; and
M.D. Iványi and G. Szemes, ELTE-IKKK Simulation Center.. 207

FRIDAY, NOVEMBER 16, 2007

Computational Social Theory

Orientation and Action

Modeling Collective Cognitive Convergence

H.V. Parunak, T.C. Belding, R. Hilscher, and S. Brueckner, NewVectors Division
of TechTeam Government Solutions, Inc. .. 221

Modeling Situated Abstraction: Action Coalescence via Multidimensional Coherence

D.L. Sallach, Argonne National Laboratory and The University of Chicago 231

Nexus: An Intelligent Agent Model of Support between Social Groups

D. Duong, L. Murphy, J. Johnson, and M. Ottenberg, The U.S. Office of
the Secretary of Defense; and R. Marling, B. Sheldon, and S. Stephens,
Marine Corps Combat Development Command.. 241

High-fidelity Mathematical Models of Social Systems

J. Jeffrey, Northern Illinois University .. 247

Network Dynamics

The Dynamics of Network-Effects in Two-sided and Multi-sided Markets:
An Agent-based Approach

W. Granigg, Martin-Luther University, Halle-Wittenberg, Germany 261

Axelrod’s Metanorm Games on Complex Networks

J. Galán, University of Burgos, Spain; and M. Latek, M. Tsvetovat,
and S. Rizi, George Mason University... 271

Network Fracture: How Conflict Cascades Regulate Network Density

E.M. O’Grady, M. Rouleau, and M. Tsvetovat, George Mason University 281

v

Organizational Theory and Practice

Agent-based Simulation of Product Innovation: Modularity, Complexity, and Diversity

S.H. Chen and B.T. Chie, National Chengchi University, Taiwan 295

The Evolution and Persistence of Dominant Roles in Interorganizational Relationships

V.A. Barger, University of Wisconsin–Madison .. 307

The Dynamic Endogenous Evolution of Voter Preferences

A.A. Perez, Trinity College Dublin, Ireland .. 319

Spontaneous Coordination

D. Diermeier and C. Andonie, Northwestern University... 329

SATURDAY, NOVEMBER 17, 2007

Social Simulation Applications — Parallel Track I

Social Interaction and Cognition

Legal Agents: Agent-based Modeling of Dispute Resolution

M.T.K. Koehler, George Mason University-Center for Social Complexity..................... 347

Agent-Based Modeling of Usability from a Distributed Cognitive Perspective

J. Eden, The iSchool, Drexel University .. 359

Spy v. Spy: A Utility-based Approach to Agent-based Adversarial Reasoning

P. Barry, G. Jacyna, and M. Koehler, The MITRE Corporation..................................... 369

Banking, Finance, Business, and Economics

An Agent-based Model for Crisis Simulation in Payment Systems

L. Arciero, C. Biancotti, L. D’Aurizio, and C. Impenna, Bank of Italy 381

Adversarial Risk and Financial Instability: A Hybrid Model

M. Bragen, D.L. Sallach, P. Thimmapuram, H. Rich, and J.F. Burke,
Argonne National Laboratory.. 391

Modeling the Transition to Hydrogen-based Transportation

M.R. Mahalik, G. Conzelmann, C.H. Stephan, M.M. Mintz, and T.D. Veselka,
Argonne National Laboratory; and G.S. Tolley and D.W. Jones, RCF Economic
and Financial Consulting Inc. ... 407

vi

Social Simulation Applications — Parallel Track II

Health Care and Epidemics

A Simulator for Continuous Agent-based Modeling

J. Duggan, National University of Ireland .. 421

Socio-Technical Systems

Ensemble Computing in Agent-based Modeling for Transcending Paradigmatic
Boundaries in Decision Theory – Understanding Tribal Politics

L.A. Kuznar, Indiana University – Purdue University, Fort Wayne................................ 433

Business Network Topology and Rigidities in Production

G. Castañeda, El Colegio de México; and R. Chavarin, Universidad de Guadalajara.. 443

Social Simulation Applications — Combined Track

Spatial Agents

Geospatial Exoskeletons for Automata in Agent-based Models

P.M. Torrens, Arizona State University... 457

Enactment Software: Spatial Designs Using Agent-based Models

T. Narahara, Harvard University .. 465

SHULGI: A Geospatial-based Tool for Modeling Human Movement and Interaction

S. Branting, The University of Chicago; Y. Wu and R. Srikrishnan, Argonne
National Laboratory and Illinois Institute of Technology; and M.R. Altaweel,
Argonne National Laboratory and The University of Chicago 475

vii

viii

FOREWORD

Welcome to Agent 2007, co-hosted by Argonne National Laboratory and Northwestern University, in
association with the North American Association for Computational Social and Organizational Science
(NAACSOS). This is the eighth year of the Agent conference series. As at previous meetings, this year’s
conference maintains a three-theme organization: (1) methods, toolkits, and techniques; (2) computational
social theory; and (3) social simulation applications.

The broader theme of the 2007 conference is Complex Interaction and Social Emergence.
Agent modeling has transformed scientific methodology across a number of disciplines. One of the
strengths of agent simulation is its ability to represent fine-grain and dynamic interactions among diverse
types of actors. Because rich interactions are a frequent source of emergent complexities — including
social norms, institutions, and transformations — this focus has significant theoretical potential and, thus,
implications for computational techniques and various types of applications, as well. Agent 2007
encourages researchers to explore and report on their modeling of complex interactions and on the diverse
forms of emergence that arise from their work.

Our invited speakers — Ian Foster, Rosaria Conte, and Leigh Tesfatsion — are leaders in their fields,
with contributions in diverse areas of agent-based modeling. Ian Foster is the Arthur Holly Compton
Distinguished Service Professor of Computer Science at The University of Chicago and Director of the
Computation Institute, a joint project between The University of Chicago and Argonne National
Laboratory. At Argonne, he leads computer science projects aimed at developing advanced distributed
computing (“Grid”) technologies.

Rosaria Conte is a cognitive and social scientist and head of the Laboratory of Agent-based Social
Simulation at the Institute for Cognitive Science and Technology at Italy’s National Research Council.
She also teaches Social Psychology at the University of Siena. Her research fields of interest range from
agent theory and architecture to multi-agent systems, and from game-theory to cultural evolution and
social simulation.

Leigh Tesfatsion is a Professor of Economics at Iowa State University whose current research focuses on
agent-based computational economics (ACE), the computational study of economic processes modeled as
dynamic systems of interacting agents. Her particular interest is the development of empirically based
ACE frameworks for the study of restructured electricity markets.

The combination of conference presentations will help us to explore the present results and future
prospects of agent-based modeling. We hope that you will find the conference to be both educational and
stimulating. We appreciate your participation and look forward to your future contributions.

The Center for Complex Adaptive Agent
Systems Simulation
Decision and Information Sciences Division
Argonne National Laboratory

Charles Macal
Michael North
David Sallach

Northwestern Institute on Complex Systems
Center for Connected Learning and
Computer-Based Modeling
Northwestern University

Uri Wilensky
Lynne Kiesling
William Rand

ix

x

AGENT CONFERENCE INVITED SPEAKERS AND
PRESENTATIONS FROM 1999–2007

Agent 1999

Robert Axtell: Why Agents? On the Varied Motivations for Agent Computing in the Social

Sciences

Agent 2000

Kathleen Carley: Computational Social Science: Agents, Interaction, and Dynamics
H. Peyton Young: Conventional Contracts

2001 (Agent conference not held due to conflict with National Academy of Science-sponsored

Sackler Colloquium)

Agent 2002

Nigel Gilbert: Varieties of Emergence
Kathleen Carley: The Tension between Transparency and Veridicality
Lars-Erik Cederman: Levels of Complexity: Endogenizing Agent-based Modeling
Scott Page: The Interplay of Differences

Agent 2003

Steve Bankes: Next Steps for Social Simulation: Increasing the Utility, Improving the Rigor
R. Keith Sawyer: Assessing Agent Communication Languages
Lars-Erik Cederman: Explaining State Size: A Geopolitical Model

Agent 2004

Roger Burkhart (Methods): Standardizing an Agent Life-cycle Model
Michael Macy (Theory): Social Life in Silico: From Factors to Actors in the New Sociology
Peter Hedstrom (Theory): Social Mechanisms and Social Dynamics

xi

Agent 2005

Steve Bankes (Methods) – Supporting the Modeling Life Cycle
Joshua Epstein (Applications) – Generative Social Science: Applications of Agent-Based

Modeling
Lars-Erik Cederman (Theory) – Growing Sovereignty: Organizational Shifts in State Systems

Agent 2006

Uri Wilenski (Methods) – Designing Agent-based Modeling Environments to Promote

Restructuring of Scientific Representation and Education
Scott Page (Theory) – It’s as Simple as ABC: Agent-Based Culture
Noshir Contractor (Applications) – From Disasters to WoW: Enabling Communities with

Cyberinfrastructure

Agent 2007

Ian Foster (Methods) – Agents in an Exponential World
Rosaria Conte (Theory) – Agent Theory: A Missing Requirement of Generative Social Science
Leigh Tesfatsion (Applications) – Agent-based Testbeds for Social Science Research, Teaching,

and Training

xii

ACKNOWLEDGMENTS

We acknowledge the support of many people in organizing Agent 2007, particularly Kathy Ruffato of
Argonne’s Decision and Information Sciences (DIS) Division, who – with assistance from Dee Albarado
– handled registration, administration, and logistics, and DIS’s Margaret Clemmons, who contributed to
planning and publication efforts. Argonne’s Technical Services Division (TSD) prepared the Program
Book and the Proceedings. Mary Fitzpatrick served as the project manager, with editorial support from
Andrea Manning and document processing support from Louise Kickels and Lorenza Salinas. Design
services were provided by TSD’s Michelle Nelson.

ORGANIZING COMMITTEE

Charles M. Macal, Argonne National Laboratory and The University of Chicago
Michael J. North, Argonne National Laboratory and The University of Chicago
David L. Sallach, Argonne National Laboratory and The University of Chicago
Lynne Kiesling, Northwestern University

xiii

xiv

Thursday, November 15, 2007

Methods and Techniques
Parallel Track I

Multiplatform Methods

THE IMPORTANCE OF BEING DOCKED

S. K. JOHNSON, The MITRE Corporation, McLean VA
M. T. K. KOEHLER*, The MITRE Corporation, McLean VA

D. QUINN, The MITRE Corporation, McLean VA

ABSTRACT
The concept of docking agent-based models has been stressed in many venues for a
number of years. In the decision-support context docking can take on a very important
role and we have found docking to be an important exercise not when moving from one
framework to another but rather when moving from one version of a model to another. In
the decision-support context a great deal of time and energy is spent in the Validation,
Verification, and Accreditation cycle so a model may be trusted for a particular use. This
paper describes the docking exercise we undertook in order to move confidently from a
validated modeling framework to one that had not been face validated. The methodology
includes taking very large sample runs from each version of the framework. Output
analysis included standard descriptive statistics and non-parametric sample comparisons.
Of particular note is that at some levels of aggregation the two models appear to behave
very similarly. As one disaggregates groups of agents and looks more closely at the
results, however, one begins to find differences. This highlights one of the most
important lessons of our docking exercise: just like agent-based modeling, docking must
be done at an appropriate level of abstraction for the questions at hand. One must
understand the context in which the model(s) are to be used in order to understand what
differences are of practical significance and what differences can be tolerated. Our
output analysis techniques and results will be discussed in detail.

INTRODUCTION

“The purpose of computing is insight, not numbers.”

~R. W. Hamming

In general, there are a number of reasons why one would want to compare, or dock
(Axtell 1996), models. First of all, one simply may be curious about the similarities and
differences between two models. These models may seem quite similar or quite different at first
glance and a deeper understanding is desirable. Second, one may wish to understand the
theoretic difference between models or to understand which model did a better job of
representing a common theoretic foundation. Third, one may wish to utilize a model as a
decision-support tool and, therefore, must know which model is best and in which contexts.
Fourth, one may use the comparison to understand the significance of similarities or differences
found in the output of the models. This by no means exhausts the reasons one might wish to
compare models but it highlights some of the major ones.

Things change a bit as we move from the academic field to a decision-support context.

Here model comparisons become more pragmatic. In many cases the comparisons are done with
an eye towards which model is best and in which contexts. This type of comparison can extend

* Corresponding author address: Matthew Koehler, The MITRE Corporation, 7515 Colshire Dr., MailStop H305,
McLean, VA 22015, e-mail: mkoehler@mitre.org

5

to different versions of the same model. Furthermore, in the decision-support context it is likely
that a model has undergone some sort of verification, validation and accreditation (VV&A). See
Koehler, et al. 2006 for a more through discussion of VV&A in this context. Loosely speaking,
Verification is determining whether or not you built the model correctly, Validation is
determining whether or not you built the correct model, and Accreditation is determining if the
model is good enough to use for its intended purpose (Hartley 1997). VV&A can be very time
consuming, difficult, and costly. Of course effort put into VV&A is a function of the role the
model will play. Models that will be relied upon heavily will under go more rigorous VV&A
than will models that are used for thought experiments or to gain rough order of magnitude
insights. When moving from one model to another, especially when it is different versions of the
same model, any aspects of the original VV&A that can be carried over would be very
beneficial. In this particular case we discuss moving from MANA (McIntosh 2007) version
3.0.39 (MANA3) to MANA version 4.00.2 (MANA4). Here docking is used as evidence for the
claim that the VV&A done for one model may be valid for another model. We have spent a
great deal of time face validating MANA3. Now that we are moving to MANA4 we would like
to make the argument that the face validation from MANA3 can carry over (at least to some
extent) to MANA4. This may prove difficult, however, as there have been a number of changes
made to MANA4. Table 1 highlights some of the more important changes.

Table 1: Major changes made in MANA4.

New in MANA4
Agents have orientation and bearing
Agents can move in formations
Agents have sensor and weapon orientation
Agents can have multiple sensors
Sensors can be of multiple types
Sensors and weapons have look angles
Sensors and weapons have slew rates

The evidence we will use for this argument will come from a docking experiment we

undertook between MANA3 and MANA4. As discussed by Robert Axtell (Axtell 1996) docking
can be achieved in three basic categories. Essentially, docking is the alignment of two different
models to understand if one model can subsume another. In the case at hand we wish to say that
the two models (MANA3 and MANA4) are not different. Axtell proposes three levels of
docking: identity, where two models produce identical results; distributional, where the two
models produce statistically indistinguishable results; and relational, where the two models
produce output that “behaves” in the same way, meaning that similar changes in inputs cause
similar changes in outputs but the distributions are statistically distinct. The necessary level of
docking is a function of the empirical relevance of the models, which, in turn, is a function of
how the models are relied upon and is the topic of the next section.

Specifying the Relevance of an ABM and Level for Docking

Axtell’s Framework of Empirical Relevance (FER) relates a model to its input data and
output (Axtell 2005). The relationship is, generally, input data of various types are necessary to

6

create an ABM; once the model is run it will create output data that will relate to real-world
phenomena in some particular way. There are four levels to Axtell’s FER. Level 0 is,
essentially, a well functioning program that is bug free. Level 0 models have qualitative
correspondence at the agent level. This means that the agents behave in a manner that is
logically consistent with the subject being modeled. Level 1 is the next level of Axtell’s FER.
Level 1 is macro-level qualitative correspondence to the dynamics of interest. In this level the
agent activity generates dynamics, as a whole, that relate to the phenomena being modeled. For
example, a group of agents trading with each other may produce a clearing price for the artificial
market. This clearing price may not relate to a real-world clearing price but one was found.
Axtell’s levels continue with Level 2. Models that fall into this category have macro-level
quantitative correspondence with the real-world phenomena being modeled. These models
produce the correct distributions within their output. For example, Axtell’s model of firm size
produces a power-law distribution that is the same as real-world data on the distribution of firm
sizes in the US (Axtell 2001). The final level of this framework is that of Level 3. In this level
the model not only has macro-level quantitative correspondence but also micro-level
correspondence. In general, very few ABMs achieve this level of empirical relevance. This is
because it is difficult to specify such a model and even more difficult to obtain the data necessary
to estimate such a specified model.

In the decision-support context the weight put upon model output and the importance of

decisions based upon said output will necessitate that the model achieve a particular level of the
FER. Here MANA is being used in a decision-support context to aid subject matter experts
(SME). MANA is only one part of the whole decision-support infrastructure. Furthermore,
MANA is to be very fast turnaround. Therefore, MANA is understood to provide rough order of
magnitude answers to what-if analyses. This places MANA squarely on Level 1 of the FER
scale. MANA needs to be in qualitative agreement at the macro-level and have reasonable
micro-level behaviors. This implies that identity between MANA3 and MANA4 is not necessary
to conclude that they are equivalent. Therefore, distributional equivalence is adequate to
conclude that these models are equivalent, and relational equivalence may be adequate.

RESULTS

As we have already stated, we are interested in showing distributional equivalence of the

two versions of the simulation, rather than identity. In our docking experiment, only the versions
of MANA were different. We used the same scenarios with the same random seeds and ran the
same number of sample runs through the two versions of the simulation.

We tested several types of scenarios, with variable levels of complexity in terms of

terrain, agent behaviors, agent interactions with each other and their environments,
communications, and weapon systems. Our objective was to test a set of scenarios with low,
medium, and high complexity in both versions. We hypothesized that our results would show
statistically indistinguishable results between versions since we did nothing to the scenarios other
than port them into each model and run them a large number of times. However, if significant
differences occurred, would they happen across all of the scenarios, to include the simplest set of
scenarios, or would they happen in just the more complicated cases?

The low level complexity scenarios simply exercised important features of the models in

the simplest manner possible. The medium level complexity scenario added slightly more
complicated terrain, weapons, communications, agent and squad behaviors, and contained a few

7

more squads than the low level complexity scenarios. The high level complexity scenarios have
the same terrain as the medium level complexity scenario; however they have a much more
sophisticated communications structure, more types of agents, a much larger variety of more
complicated weapons, as well as more complicated agent interactions. We setup our experiment
to test a variety of scenarios to determine if VV&A should be done on each scenario moved from
MANA3 to MANA4 or if we could assume based upon this docking experiment that VV&A is
independent of the MANA version and would transfer from MANA3 to MANA4 with the
scenario.

Though MANA produces a reasonable set of output data, for the sake of simplicity we

chose to use the most basic MANA output statistic: casualties. First, we did a crude comparison
of raw casualty numbers by scenario, by replicate, and by side between the two versions of the
simulation and found that identity did not exist for any of the scenarios. However, since we do
not require identity, the next set of tests explored whether or not the differences between the
versions of MANA were statistically significant or if we could claim distributional equivalence
of the versions.

We treated the data as a paired sample for our experiment because we used the same

scenario with the same random seeds with the before and after elements represented by the two
versions of the simulation. We ran the parametric Paired Sample t-Test and the nonparametric
Wilcoxon Signed Rank Test and Sign Test as our test procedures. The Paired Sample t-Test
assumes the data comes from a normal distribution. The Wilcoxon Signed Rank Test does not
assume the distributions of data are normal, however it does assume the distributions are
symmetric. The Sign Test does not assume normality, nor does it assume symmetry, but it has
less power to detect significance if there is symmetry. Review of the Q-Q plots for each of the
datasets indicated that most of the distributions had heavy tails, and therefore appeared to deviate
from a normal distribution. Evaluation of the measurement for skew, which is one indicator of
how far from symmetric distributions are, clustered the majority of values for each of the paired
differences in the scenarios tested within the -0.1 to +0.1 range. Since most of the data sets
appeared inconsistent with a normal distribution and since their values for skew did not tend to
be too extreme, we are reporting the Wilcoxon Signed Rank Test results in this paper. Of note
however, in almost every case, the three tests produce the same results with respect to statistical
significance (Bhattacharyya 1977; Gibbons 2003).

Table 2: Wilcoxon Signed Rank Test results between MANA3 and MANA4 for the
highest level of aggregation for each scenario complexity level.

Complexity Level - Scenario
Name Pairs

Wilcoxon Signed
Rank Test

Low - Four Groups Blue Casualties MANA V3 to MANA V4 0.279
 Red Casualties MANA V3 to MANA V4 0.141
Low - Two Groups Blue Casualties MANA V3 to MANA V4 0.143
 Red Casualties MANA V3 to MANA V4 0.311
Low - Two Groups with
Communications Blue Casualties MANA V3 to MANA V4 0.138
 Red Casualties MANA V3 to MANA V4 0.980
Medium - Scenario 1 Blue Casualties MANA V3 to MANA V4 0.797

8

 Red Casualties MANA V3 to MANA V4 0.000
 Civilian Casualties MANA V3 to MANA V4 0.259
High - Scenario 1 Blue Casualties MANA V3 to MANA V4 0.000
 Red Casualties MANA V3 to MANA V4 0.000
High - Scenario 2 Blue Casualties MANA V3 to MANA V4 0.000
 Red Casualties MANA V3 to MANA V4 0.000

In addition to testing several levels of scenario complexity, our experiment also consisted

of testing the same metric at various levels of data aggregation for the low, medium, and high
complexity sets of scenarios. The highest level of aggregation is represented by the Blue, Red,
and Civilian casualty pairs. Table 2 shows the p-values for each of the pairs tested for each
scenario between the two versions at the highest level of aggregation. None of the casualty pairs
tested for the low level complexity scenarios had significant results (all p-values > 0.1), whereas
all of the casualty pairs tested for the high level complexity scenarios had statistically significant
results (all p-values < 0.0). The medium level complexity scenario returned significance only for
the Red casualty pairs between the two versions (Red p-value < 0.0), but the Blue and Civilian
comparisons were not significant (Blue p-value = 0.797; Civilian p-value = 0.259). At this level,
what these results imply is that we cannot claim distributional equivalence across the board, but
we can make the claim for distributional equivalence in some instances. For our experiment, this
means that the simple scenarios are distributional equivalent. However, this does not hold once
we increase the level of complexity. Unfortunately, distributional equivalence appears to be
scenario dependent.

However, is the presence or absence of distributional equivalence only scenario
dependent or does it also depend on the level of data aggregation? Do the pairs that exhibit non-
significance at the highest level of aggregation also show non-significance for each of their
respective sub-categories when the datasets are disaggregated? The next step to the experiment
was to break the data into sub-categories and run the same statistical tests using the same metric,
total casualties by sub-category by side. This process was repeated for each of the scenarios. We
did this to see if we could determine the largest contributors to the differences. For space
reasons only the data for the medium level complexity scenario is reported.

We hypothesized that we would see the same outcomes when we disaggregated the data

into sub-categories as we did for the highest level of aggregation. For the low complexity
scenarios, all of the sub-categories by pair had non-significant results. As expected, in the high
complexity scenario nearly all of the Blue and Red pairs returned significant results.
Interestingly, however, in the medium complexity scenario we found that we did not have
distributional equivalence when comparing the sub-categories. Tables 3 and 4 display the p-
value results for the medium complexity scenario disaggregated into killer and victim squad
categories respectively. The data in these tables appear to support the idea that distributional
equivalence is dependent not only on the scenario and the complexity of the scenario, but also on
the level of data aggregation.

In Table 2, for the medium complexity scenario we saw that the Blue casualty and
Civilian casualty pairs did not have statistically significant results between the two model
versions, whereas the Red casualty pairs were significant. Tables 3 and 4 show mixed results for
the individual squad pairs for both Blue and Red. In Table 3, half of the Blue squads had
significant results and half did not and almost all of the Red pairs returned non-significant

9

results. This data indicates that between the two versions of MANA the Red killer squads were
the same and had about the same number of casualties attributed to them; however, the Blue
killer squads were split and did not necessarily have the same number of casualties. If we look at
Table 4, we see that for the majority of the Blue and Red pairs, we also get significant results,
which suggests that the victim squads were not necessarily the same between the two versions.
The results for Red are reasonable because the results at the highest aggregation level for Red
were significant. However, the results for Blue in Table 4 seem counterintuitive. At the highest
level of aggregation, the results for the Blue casualty pairs were not significant between the two
versions, but as we disaggregated from the highest level, the results became significant. These
outcomes indicate that the victim squads for Blue were not necessarily the same between the two
versions, even though the overall number of casualties for Blue was not significantly different.

Table 3: Wilcoxon Signed Rank Test results between MANA3 and MANA4
by killer squad category for medium complexity level scenario.

Complexity Level -
Scenario Name Pairs

Wilcoxon Signed
Rank Test

Medium - Scenario 1 Blue Kills on Red .
 Blue Advance Guard 0.000
 Blue Cargo Truck 0.360
 Blue Convoy Commander 0.027
 Blue Forward Security 0.525
 Blue Fwd Security Command 0.004
 Blue Gun Truck 0.837
 Blue Rear Security Command 0.000
 Blue Rear Security 0.734
 Red Kills on Blue
 Red IED 1 0.259
 Red IED 2 0.285
 Red Attack Vehicle 0.000
 Red IED 3 0.157
 Red RPG 0.250
 Blue Kills on Civilians
 Blue Advance Guard 0.518
 Blue Cargo Truck 0.892
 Blue Convoy Commander 0.063
 Blue Forward Security 0.039
 Blue Fwd Security Command 0.152
 Blue Gun Truck 0.148
 Red Kills on Civilians
 Red RPG 0.004

10

Table 4: Wilcoxon Signed Rank Test results between MANA V3 and MANA V4
by victim squad category for medium complexity level scenario.

Complexity Level - Scenario
Name Pairs

Wilcoxon Signed
Rank Test

Medium - Scenario 1 Blue Victims .
 Blue Advance Guard 0.285
 Blue Cargo Truck 0.000
 Blue Convoy Commander 0.000
 Blue Forward Security 0.000
 Blue Forward Security Command 0.000
 Blue Gun Truck 0.000
 Red Victims
 Red Pickup Truck 0.000
 Red IED 2 0.157
 Red Attack Vehicle 0.000
 Red Rifle Squad 0.000
 Red RPG 0.006
 Red Sniper 0.227
 Red Observer 0.044
 Civilian Victims
 Civilians 0.259

CONCLUSION

As highlighted above docking can be a difficult undertaking even when comparing
seemingly equivalent models. We set out to determine if MANA3 was distributional equivalent
to MANA4. Clearly, except in trivially simple cases we cannot make that claim. Where does
that leave us? Ultimately it is up to the decision-maker to decide if any of the statistically
significant results have practical significance within the decision-support context in question. If
the models function in a sound manner, and if the distributions of data between versions, even
though statistically significant, differ by a small amount, then the decision-maker may still
accept the models as equivalent. This is the case because the statistical significance may have
little or no practical significance. However, one cannot, prima impressionis, claim that a VV&A
assessment will move from MANA3 to MANA4.

It should be noted, however, that this comes as no surprise given the numerous changes
highlighted in Table 1. The most significant of these changes include agent orientation and the
behavior of sensors. In MANA3 agents and sensors had no orientation; there was no difference
between front and back. In MANA4 agents and sensors have, inter alia, an orientation and a
speed associated with changing orientation. Agent success and failure is premised highly upon
an awareness of the environment. Therefore, changes to the behavior of sensors and the way

11

agents “look around” the environment will impact scenario results. MANA4’s inclusion of
orientation for both agents and sensors significantly increases the verisimilitude of the
framework. Finally, as we wanted to make as direct a comparison as possible between the two
versions of MANA no attempt was made to change default settings in MANA4 to better emulate
behaviors of MANA3. Given the higher verisimilitude of MANA4 one, in fact, may not want
MANA4 to exactly match MANA3.

Table 5: Medium complexity scenario descriptive statistics for MANA3 (Old) compared
to MANA4 (New)

Percentiles

 N Mean
Std.

Deviation Minimum Maximum 25th
50th

(Median) 75th
BlueOld 500 4.016 1.68089107 1 15 3 4 5
BlueNew 500 3.972 1.71262435 2 14 3 4 4
RedOld 500 16.796 2.264650367 7 22 15 17 19
RedNew 500 16.16 2.17896668 9 21 15 17 18
CivilianOld 500 10.404 3.25052547 2 19 8 11 13
CivilianNew 500 10.162 3.066359588 1 20 8 10 12

Table 6: High complexity scenario descriptive statistics for MANA3 (Old) compared to
MANA4 (New)

Percentiles

 N Mean
Std.

Deviation Minimum Maximum 25th
50th

(Median) 75th
BlueOld 394 138.8654822 13.48921637 57 180 134 140 146
BlueNew 394 128.1395939 3.685237151 116 138 126 128 131
RedOld 394 259.1142132 3.213307415 248 267 257 259 262
RedNew 394 270.5025381 2.999786872 261 279 268.75 271 272

This, again, highlights the role of the subject matter expert and decision-maker. For

example, if we recall from Table 2, the results for Red were statistically significant. But if we
look at Table 5 the Red means between the two versions (MANA3 = Old; MANA4 = New) do
not differ by a large factor and the distributions of data between the two versions are similar. In
this instance, a decision-maker may conclude that the results are not practically significant and
that the models are equivalent. However, this may not be the case for every scenario. Recall that
in Table 2, the results were statistically significant across the board for the high complexity
scenarios. The descriptive statistics in Table 6 for one of the high complexity scenarios indicate
that the distributions of data for the Blue pairs differ by a much larger factor. In this case, the
decision-maker may deem the results practically significant, because in reality, this may mean
the difference in whether or not an operation is halted or continued. In this case, carrying over
the VV&A of the scenario may not be possible; thus, necessitating a new VV&A cycle for
MANA4.

12

REFERENCES

Axtell R., 2005, “Three Distinct Kinds of Empirically-Relevant Agent-Based Models,”

Brookings Institution Center on Social and Economic Dynamics Working Papers.

Axtell R., 2001, “Zipf Distribution of U.S. Firm Sizes,” Science, 293(5536), 1818-20.

Axtell R, R. Axelrod, J. Epstein, and M. Cohen, 1996, “Aligning Simulation Models: A Case

Study and Results,” Computational and Mathematical Organization Theory, 1:123-141.

Bhattacharyya, G. and R. Johnson, 1977, Statistical Concepts and Methods, John Wiley & Sons,

Inc.

Gibbons, J., and S. Chakraborti, 2003, Nonparametric Statistical Inference, Marcel Dekker, Inc.

Hartley, D., 1997, “Verification & Validation in Military Simulations,” in Proceeding of the

1997 Winter Simulation Conference, K. Healy, D. Withers, and B. Nelson, editors.

Koehler, M, P. Barry, and T. Meyer, 2006, “Sending Agents to War,” in Proceedings of the

Agent 2006 Conference. Chicago, Il: Argonne National Lab.

McIntosh, G., D. Galligan, M. Anderson, and M. Lauren, 2007, “Recent Developments in the

MANA Agent-based Model,” in The Scythe, issue 1, The Naval Postgraduate School,
Monterey, CA.

13

14

Measurement and
Validation Methods

INTEGRATING ABM & GIS TO MODEL TYPOLOGIES OF
PLAYGROUP DYNAMICS IN PRESCHOOL CHILDREN

W.A. GRIFFIN,* S.K. SCHMIDT, A. NARA, P.M. TORRENS, J.H. FEWELL,

and C.M. SECHLER, Center for Social Dynamics and Complexity,
Arizona State University

ABSTRACT

We illustrate an objective, non-intrusive method that tracks the behavioral, temporal, and
spatial data characterizing evolving group processes in children. This work establishes a
methodology combining behavioral observational data, GIS, and agent-based modeling
as an aggregate tool to give researchers the ability to establish group typologies according
to the behavioral and geospatial distributions of its constituents. The proposed integration
of behavioral coding with GIS, and the subsequent attempt to reproduce this aggregation
with computational simulation has not been attempted before. As such, this work
establishes an integrative protocol for measuring peer-to-peer processes and will serve to
modify the research criteria in scientific fields using behavioral observation of humans.

*Corresponding author address: William A. Griffin, ISTB-1 530 East Orange Street,
PO Box 874804, Arizona State University, Tempe AZ 85287-4804; email:
william.griffin@asu.edu . This material is based upon work supported by the National
Science Foundation under Grant Nos.: 0339096, 0338864, & 0324208. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation
(NSF).

17

mailto:william.griffin@asu.edu
mailto:shana.schmidt@asu.edu
mailto:atushi.nara@asu.edu
mailto:paul.torrens@asu.edu
mailto:jfewell@asu.edu
mailto:casey.sechler@asu.edu
mailto:william.griffin@asu.edu

Integrating ABM & GIS to Model Typologies of Playgroup Dynamics in
Preschool Children

William A. Griffin, Shana K. Schmidt, Atsushi Nara, Paul M. Torrens, Jennifer H.
Fewell, & Casey M. Sechler

The current study is an attempt to further the amalgamation of a multi-

disciplinary team that integrates human development, computer simulation,
biology, and geography. We rely on emerging technologies and methods in agent-
based modeling, social network analysis, and geographical information science to
address questions of current interest to scientists studying the typology, ontology,
and morphology of group dynamics. Our model systems consists of young
children, with each involved discipline contributing towards answering a critical
societal question, namely, how do children form relationships in the context of
transitions and change? We propose that children's play partners are multiply
determined by the combinatorial dynamics generated by a child's own
characteristics with those of his or her peers and the geo-spatial characteristics
unique to the environment. More specifically, we are proposing that four discrete,
yet related, interpersonal dynamics underlie the formation and maintenance of
group formation in preschool children. These four indices of behavioral and
affective patterning are the foundation of our ability to track groups as they form.
Each index provides unique, yet tractable, information about the groups as they
arise, disband, or maintain levels of stability. In aggregate, these indices provide a
quantitatively robust dataset that captures complex evolving processes. This
aggregate -- a compilation of behavior, affect, and geo-spatial location residing in
time -- is the basis for determining the validity of our computer simulation model.
Our objective is to reproduce the observed pattern of grouping behavior.

Playgroup Morphology and Ontology: Interaction, Process,

and Critical Components
Affect Tone. Children’s affective expression can be viewed as a series of

affect epochs. From these epochs, two aspects of each participant exchange are
generated: (1) affect valence and (2) matching rate. That is, for each child, any
social action with another child, provides an opportunity to generate moment
statistics (i.e., mean) of affective valence (i.e., positive, neutral, negative), either
for a specific episodic exchange or over an extended period of observation. In
addition, by gathering affect on each play partner, it is possible to compare
affective states between any two individuals at any given time during the
observation period; in effect, this permits an estimate of affect matching rates
within a dyad or group. Note that affect matching, a group level characteristic,
provides very different information about emotion than does the individual’s
general propensity to be in a particular affective state. In combination these two
features represent intra-individual and inter-individual affect signatures embedded
in time, space, and context.

Bid Ratio. Within group (and within some general exchanges) behavior is
generated by bid exchanges among its members. At the simplest level, what
members do (i.e., the type of behavior (e.g., swing, play in the dirt)) is secondary

18

to how a call to action is made .that is, the bid. Group cohesion is generated, not
from the activity generated by the bid, but by the successes of the bidding process.
Group maintenance is generated by successful bids; conversely, a series of
unsuccessful bids jeopardizes the group. Obviously, it is not the ratio of
successful to unsuccessful bids that inherently destabilizes a group but rather the
inability of the group members to accurately gauge the social situation exhibited
through this ratio .that reflects poor judgment, inadequate social skills, and so on.
Moreover, within our construction and coding of the bid process, we will examine
the intra-group bid structure. Specifically, as noted above, a bid can receive one
of four responses: (1) accepted, (2) ignored, (3) rejected, or (4) counter-bid by
other members of the group. Because of this potential response set, we expect
each group and each member of the group to display an unique distribution of
responses that have evolved from individual propensities combined with group
level reinforcement histories.

Intra-Episode Variability. After forming a group, the characteristics of
the group (i.e., group phenotype; see Fewell (2003) for discussion about group
level phenotypes) are evident by their affective (e.g., affect matching) and
behavioral probabilistic structure, or more precisely, the consistency of this
structure across episodes of play. This consistency, however, does not imply the
lack of either variability or drift. We should, for example, assume some adaptive
variability over time; any complex, evolving system typically evidences moderate
variability in response to fluctuations of endogenous components and exogenous
influences (Auyang, 1998). For playgroups, such fluctuations would come from
changes in the environment and the continuous entering and exiting of other
children in the group. Furthermore, we expect to see a drift in the structure as the
group matures. Again, this would be expected as group members learn to modify
their intra-group behavior as a function of history; they would or should be able to
telegraph bids (e.g., subtle behavioral cues .idiographic to the group .are enough
to initiate or terminate an action or play sequence). We propose that this third
feature can be captured using available mathematical tools that: (1) adequately
capture and describe the relevant socio-affective and behavioral characteristics of
the groups (see e.g., Griffin, 2000); and (2) parsimoniously elucidates intra-group,
inter-episode changes .either by estimating changes in probabilistic structure (e.g.,
sequential analysis) or covariance change (e.g., Price’s Equation).

Time-Space. The set of factors that influence play likelihoods can be
conceptualized as occupying an n-dimensional space along 4 primary axes: Affect
Matching, Bid Ratios, Inter-Episode Variability, and time-space. Whereas the first
three reflect intra-group behavior, the fourth dimension - time/space - represents
the milieu of these groups. As noted above, play propensity between two or more
children may be a function of who is available and where they are physically
located relative to some feature of the playground (e.g., swing set); of course, we
assume that these two aspects of play behavior are not independent. Time, within
the conceptualization of play presented herein, has multiple facets. First, there is
chronological time (e.g., 11:00 am). Second, there is calendar time (e.g., October).
Third, there is episode frequency (e.g., 3rd time a particular group is seen playing
together). And finally, there is episode duration. Groups are followed for an hour

19

in the proposed index coding system. Although there is the possibly of left
censoring, and to some extent, right censoring, the average duration of a play
epoch(s) is within an hour. We think that the Time-Space axis can be incorporated
into our conceptualization of playgroup dynamics via the GIS methodology
described above.

These four indices of behavioral and affective patterning are the
foundation of our ability to track groups as they form. Each index provides
unique, yet tractable, information about the groups as they arise, disband, or
maintain levels of stability. In aggregate, these indices provide a quantitatively
robust dataset that captures complex evolving processes. This aggregate - a
compilation of behavior, affect, and geo-spatial location residing in time - is the
basis for determining the validity of our computer simulation model. Our
objective is to reproduce the observed pattern of grouping behavior.

Observational Data Collection

Throughout the fall and spring, children’s naturally-occurring free-play
interactions are recorded. Observations are collected for 5 hours/day each
weekday for the academic school year. The observations commence on the first
day of classes, and each class has 3-4 coders collecting data each shift. Coders
rotate throughout the classroom, remaining unobtrusive and uninvolved in
children’s activities. They record data using handheld computers, with the data
automatically inserted into a database. Data from the handheld computers are
downloaded into a desktop computer and converted into files that can be read
directly into data management software. The advantage of using the handheld
computers is that time-stamped data can be collected efficiently, entered quickly,
and recorded with minimal error.

Figure 1. Map of the study site (e.g., outside area with a slide, climbers,

playhouse, trees)

Interval Coding. Using a GUI interface, observers identify the first child

in a randomized list and briefly (for 10 seconds) observe the child, record data,

20

and then repeat the procedure for the next child on the random list. During the
10-second period, the observer codes several dimensions of the child and his/her
context. For example, coders record whether the child is alone, with a teacher, or
with other children. For solitary, teacher, and peer codes, the target is observed
for activity (e.g., riding a bike, reading books, etc.), affect (i.e., positive, negative,
neutral) and the presence of social peers (i.e., peers involved in direct interaction)
and area peers (i.e., peers in the physical vicinity but not interacting with the
target child). On a fine-grained grid that is digitized to a spatial location on the
tablet PC screen, the start point (X,Y), stop point (X,Y), and farthest distance
traveled (X,Y) are recorded (see e.g., Figure 1). Additionally, when a target is
observed with a peer, we code who the child is playing with, the activity, the
affective exchange between the group peers, and the physical location of the
group. Such data are used to determine if the specific type of activity, affective
proclivities, and physical location influences the degree to which children interact
with others (e.g., we can compute separate models for distinct combinations of the
three factors).

Group Coding. Each week, the scan data are analyzed to determine
cohesive groups. Once a group is identified, a separate coder is assigned to
follow each child within the group. Each day, four one hour blocks (2 in the am
and 2 in the pm) are allotted for the group procedure. The coders first identify the
location of the group members. In a calibrated database, each coder begins
recording data into the tablet PCs on their respective child. In repeated 10 second
intervals (for 30 minutes), the observer records the context of the event, who is
present in the episode, the various affect and behavioral codes (e.g., bids,
referencing, attending), and the physical location of the interval. Additionally,
each child (whether group members or not) is randomly selected for 30 minute
individual increments. The procedure used for the individual index coding is
identical to the group observations; this method allows us to make comparisons
using similar observational methods for children who form groups vs. those who
do not.

Geographic Information Science and Tracking Playgroups

Once the field data are collected, they are transferred to a workstation GIS,
where they are organized into a rich longitudinal database of children’s movement
behavior. These data are then coupled to the behavioral observations and
aggregated and reconfigured as necessary to tease-out group movement,
clustering, spatial segregation, and spatial polarization. This can be done on a
one-to-one, one-to-many, and many-to-many basis for children. Additionally, it
can be expressed geographically relative to notable features in the play
environment: adjacency to sandboxes, distance from teachers, proximity to the
outer limits of the play space, etc.

Applying this methodology has the added benefit of allowing us to query
the database by spatial analysis and geovisualization. For example, using spatial
analysis, we can run a suite of spatial statistics over the data to look for the
formation of statistically-significant clusters of activity or conditions in the
model. We can also test for the tendency of certain behaviors to co-locate in

21

space, or identify group dynamics associated with patterns of spatial segregation.
Using geovisualization, we can also build-up instance-level and aggregate
surfaces of e.g., cooperation or disruptive behavior, and look at these clusters
relative to the features of the playground. For example, we can visualize hotspots
of collaborative activity, or coldspots where children’s play tends to be isolated.
The formation of databases of this form has the added benefit of providing a seed
data-set for our agent-based model, as well as acting as a calibration and
validation resource for our simulation.

We have developed a system for building time geography relationships
that captures events in space and time in a robust GIS framework. This allows us
to construct space-time paths and space-time prisms for individual, dyad, and
group behavior (examples using synthetic data for two children are shown in
Figure 2; this is an accurately scaled representation of the school). Doing so
further allows us to build a map of activities in time and space, e.g., in what
places do young children tend to spend the majority of their play time, how might
this differ from other children, how does this vary by time-of-day, how does this
alter when polarizing influences are absent, etc. These spatially explicit aspects
provide a critical component to the scenario building implemented in our ABM.

Simulating Playgroups: PlayMate

Using dynamic child behaviors to modify the likelihood of interacting
with another child, PlayMate provides a representation of postulated
developmental shifts in playgroup formation for children ages three to five years.
Framed around a state transition model, each child, represented as an agent, can
be in one of four states: (1) playing with another child; (2) playing with an adult
(a teacher); (3) playing alone after playing with another child; or (4) playing alone
after playing with an adult. Play likelihood across the four states is modified
through Play Propensity and Arousal (i.e., proxies of internal configurations),
with accumulating values in each of the four states for each child (see Griffin et
al., 2004, for a review).

22

Figure 2. Illustrating the spatial (X,Y) and spacetime (X,Y,t) paths of two

children.

To implement the simulation, a child is selected in round robin fashion to

play with another child from the available pool (one is randomly removed to
simulate a sick-day), and upon pairing, child i assesses child j on several
dimensions determined by the investigator; minimally, these include gender and
one relevant attribute (e.g., bidding behavior, affect, or a composite of both) being
examined. The greater the homophily, as assessed by closeness on the variables in
the model, the less likely the child is to exit the child-playing state and to continue
playing with other children. Transition rules condition arousal level updates, and
behavioral and affective exchanges as well as memory are updated through a
summative value after each play episode. The summative values are entered into a
tally matrix that, in turn, is converted to a child-to-child probability matrix. The
tally and probability matrixes are then compared to similar matrixes extracted
from the actual data. For model validation, PlayMate generates numerous
quantitative indicators of the structure and composition differences between the
simulated and real data; these include difference measures of Euclidian distance,
Mean cell values, Entropy, Uncertainty reduction (a measure of mutual
information), Solitary play, and row (i.e., child) signal-to-noise ratios. Each
measure is assumed to provide slightly different information about the
characteristics of the matrix structure. Our existing work validating PlayMate
centered on simulating and replicating the peer interaction patterns obtained from
coding individuals, with the incorporation of GIS and the Index coding procedure,
we will be developing new validation indices. These will necessarily be complex,
reflecting aggregate individual, group, and GIS data.

23

Data Simulation. Prior to running the simulations, each child receives a
score based on
the three factors of gender, attribute level, and memory. For gender, each child
receives a binary number (e.g., 0, 1), and rank orders for attribute scores are given
based a predefined hypothesis (e.g., similarity in affect across all domains drives
propensity for play). Finally, integers for memory rankings are based on a list of
recent play pairings, with a current capacity of five possible pairings. Simulation
runs typically consist of each child in the class playing 50 rounds in the round-
robin fashion. Subsequently performing the routine 50 times allowed us to obtain
approximately 120-200 play episodes, characteristic of the numbers obtained for
each child in the real data within each time frame. State shift and play partner
propensities are influenced by the three factors, with each variable weighted
according to the theoretical justification that displayed affect and bidding
behaviors are the strongest predictors of peer selection. Essentially, increased peer
preferences are determined by the aggregate of the three factors, with attribute
level difference modifying the likelihood of being in a child play state.

References
Auyang, S. Y. (1998). Foundations of complex-system theories: in economics,

evolutionary biology, and statistical physics. New York: Cambridge
University Press.

Griffin, W. A. (2002). Affect Pattern Recognition: Using Discrete Hidden
Markov Models To Discriminate Distressed from Nondistressed Couples.
Marriage and Family Review , 34 , 139-163 .

Griffin, W. A., Hanish, L. D., Martin, C. L., & Fabes, R. A. (2004). Modeling
playgroups in children: Determining validity and veridicality. In D. L.
Sallach, C. M. Macal, & M. J. North (Eds.), Agent 2003: Challenges in
Social Simulation (pp. 93-113). Chicago: University of Chicago &
Argonne National Laboratory.

Schmidt, S. K., Griffin, W. A., Hanish, L. D., Martin, C. L., & Fabes, R. A.,
Barcelo, H. Greenwood, P. (2005). Playmate: New Data, New Rules,
and Model Validity. In D. L. Sallach, C. M. Macal, & M. J. North (Eds.),
Agent 2004: Social Dynamics: Interaction, Reflexivity and Emergence
(pp. 339-353). Chicago: University of Chicago & Argonne National
Laboratory.

24

* Corresponding author address: Alex Yahja, 4038 NCSA Building, National Center for
Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801; e-mail: alexy@uiuc.edu

AN INFERENTIAL APPROACH
FOR VALIDATING AGENT SIMULATIONS

A. YAHJA*, National Center for Supercomputing Center, Urbana, IL

K. M. CARLEY, Carnegie Mellon University, Pittsburgh, PA

ABSTRACT

As the size and complexity of the agent-based simulation models increases so does
the time and resources needed to validate the model. Validation is critical for
replication of simulation results, which is a basis for scientific advance. Automated
and semi-automated tools are needed to support validation activities and so reduce
the time and number of personnel needed.

A tool called WIZER (What-If Analyzer) which embodies our inferential approach is
implemented. WIZER consists of four parts: an Alert WIZER, an Inference Engine, a
Simulation Knowledge Space module, and an Empirical/Domain Knowledge Space
module. The Alert WIZER characterizes simulation data with assistance from the
statistical tools it semantically controls, compares simulation data to empirical data,
and produces semantic descriptions of both the data and the comparison. The
Inference Engine performs both causal and “if-then” rule inferences.

WIZER is run on a simulator called BioWar which models disease spread in a
demographically-representative city population. The results show that WIZER
validates in a clear and automated manner the simulation models for the relative
timing of peaks of influenza incidence and school absenteeism. They indicate that the
inferential approach underlying WIZER can increase the transparency and reduce the
time for model validation.

Keywords: simulation validation, semantics, knowledge systems, causality,
virtual experiments

25

INTRODUCTION

Computer modeling and simulation provides a means of understanding and predicting
the behavior of real-world systems based on knowledge of basic laws, empirical findings,
and assumptions. It complements theory and experimentation/observation as the third pillar
of science. Simulations can be viewed as virtual experiments. Computing advances mean
better simulation models can be built. Typically, however, simulation results are designed
solely for human analysis and validation is provided by subject matter experts judging that
the model “feels right,” possibly after preprocessing the results using statistical tools. This
process is time-consuming and deficient in clarity, transparency and objectivity. The remedy
is usually prescribed in the form of a methodological approach (Yilmaz 2006), of which
Verification, Validation and Accreditation (VV&A) process is one, but validation remains a
cumbersome process.

NASA lost the Mars Climate Orbiter spacecraft on September 23, 1999. Mission

specifications called for using metric units, but the Lockheed Martin group sent navigation
information in English units. The mix-up meant that Lockheed Martin engineers modeled
navigation with pounds force (the English unit for measuring thruster impulse) while JPL did
their calculations in newtons (the metric measurement). One pound force is equivalent to
4.45 newtons. The software for the spacecraft thrusters uses the wrong unit. While
management failure played a role, this would never have happened if an automated validation
process existed – one as simple as tying-up each number with its semantics. The error would
have been caught early if a continuously validated spacecraft and orbital simulations existed.
Similar problems and misunderstandings happen in the modeling and simulation world where
researchers rarely are able to replicate others’ simulations quickly, precisely and reliably.

Computational modeling and analysis focuses on employing computers to build

model specifications, verify code, and execute simulation. Indeed, the notion of
computational modeling and analysis usually means a quantitative run completed by
computers and inference/analysis on the results of the computer run completed by human
experts. Computers are not employed to help automate inference, validation, model
improvement, or experimental design. Figure 1 depicts this imbalance in automation. Recent
advances in data mining made automated analysis more common, but data mining deals only
with empirical data, not with automatic building, validating, and improving models. Machine
learning approaches can be applied to learning logical, mathematical, and statistical models
from data, but they have not been extended to automatic construction, validation, and
improvement of simulation models.

26

FIGURE 1 Automation of Inference, Validation and Model Improvement

We take the road less traveled to automate validation: an inferential approach uniting

simulation with ontological, causal, and knowledge-based reasoning. A tool is implemented
based on the approach. This tool is applied to a simulation testbed called BioWar (Carley et
al. 2003) which emulates how a city’s population reacts to influenza outbreaks.

OUR INFERENTIAL APPROACH

Our inferential approach for validation consists of causal reasoning, knowledge-based
reasoning, ontological reasoning, and the scientific method. We call the tool WIZER for
What-If Analyzer. WIZER is a knowledge-based tool; the importance of knowledge – and
the reasoning based on that knowledge – is emphasized. While WIZER uses statistical tools,
they are used in the context of knowledge bases and inferences. Simulation and its outputs
are described based on knowledge. Inference rules and descriptions of statistical tools are
encoded semantically. WIZER consists of an Alert module, an Inference module, and two
knowledge space modules. Figure 2 below shows the diagram of WIZER.

Figure 2 WIZER Diagram

The Alert module does two tasks: (1) describing data using statistical and pattern
classification tools, (2) matching a data description with empirical data, producing semantic

27

alerts. Alerts here are defined as semantic characterizations of numerical data (not just alerts
in the sense of imminent danger). For example, the Alert module can semantically describe
the ups-and-downs of a school absenteeism curve taking into account other semantic or
contextual information such as holidays and weather-incurred closings. While not depicted in
the figure, the Alert module can also semantically categorize input data and empirical data.

The Inference Engine takes in the outputs from the Alert module, the simulator’s

causal diagram, a meta-model of the simulation's knowledge space, combined with empirical
data, domain knowledge, and parameter constraints (of the domain knowledge space), to
determine which parameters, causal links (Pearl 2000, Pearl 2003), and model elements to
change – or not to change – and how. The Inference Engine calculates the minimal number of
perturbations to the simulation model to best fit the outputs. The model (including the causal
diagram) and any potential alternate models are coded into ontologies and rules.
Perturbations are implemented as the effects of ontological and rule-based reasoning. An
inference produces new parameters for the next simulation. This cycle repeats until a user-
defined validity level (which can be defined semantically) is achieved. The user interface
module is not shown in the figure for clarity.

The Domain knowledge space module provides domain knowledge to the Inference

Engine. Empirical data can change domain knowledge and domain knowledge can ascertain
what empirical data are relevant. This depends on the strength of evidence supporting the
knowledge and the data. The Simulation knowledge space module provides the simulator
with knowledge such as the causal network of the simulation model. The Inference Engine
produces new parameter values and possibly new links for the Simulation knowledge space
module. The simulator influences and is influenced by the Simulation knowledge space
module. The parameter data is empirical, but this empirical data is used in the simulator.
Because the empirical data used in the simulator is not the same as the data used for
validation, the delineation is clear. Both domain and simulator knowledge spaces are
represented by a graph. We use an RDF-based semantic representation. This semantic
representation describes and facilitates control of simulation models, knowledge spaces,
results, inferences, and statistical tools. In the N3 notation, the basic syntax for RDF is a
simple one: <variable1> <relationship> <variable2>, where variable1 represents a subject,
relationship a verb, and variable2 an object part of an English sentence. In our
implementation, the verb “causes” can specify empirical relationships. In a conventional
ontology and semantics, an ontological and semantic relationship is defined conceptually and
logically – based on description logics – and not empirically. Scientific method is employed
to get empirical causal relations.

RESULTS OF WIZER RUNS ON A SIMULATION TESTBED

Here we present the results of WIZER runs on the BioWar simulation testbed.

BioWar (Carley et al. 2003) is a city-wide simulation model of weaponized biological and
chemical attacks on a demographically-realistic population with a background of naturally-
occurring diseases.

We describe below the results for one validation scenario that examines the relative

timing of the peaks of the children’s absenteeism curve and the incidence curve. The

28

empirical data for this scenario is gathered from the National Institute of Allergy and
Infectious Disease (NIAID).

Validation Scenario: Absenteeism Curves

The variables and output values for this scenario are as follows.
• Outputs for empirical matching: we choose the simulated actual incidence and school

absenteeism drug purchase curves.
• Variables: because the onset of absenteeism is influenced by symptom onset and

symptom severity, these two factors are important model variables.

The knowledge base consists of causal rules and “IF-THEN” rules related to the

causal ones. The causal conceptual diagram is as follows:
(causes symptom-onset absenteeism-onset)
(causes symptom-severity absenteeism-onset)
(convertible infection-rate incidence-rate); computable from each other.

 Onsets are computed with reference to the time of infection. The rules related to the
causal relations are as follows:

(if-then (toosoon absenteeism-onset) (op-lengthen symptom-onset))
(if-then (toolate absenteeism-onset) (op-shorten symptom-onset))
(if-then (toosoon absenteeism-onset) (op-lower symptom-severity))
(if-then (toolate absenteeism-onset) (op-higher symptom-severity))
(if-then (tooshort absenteeism-vs-actual-incidence)

(op-toosoon absenteeism-onset))
(if-then (toolong absenteeism-vs-actual-incidence)

(op-toolate absenteeism-onset))

The simulation instantiations of variables are as follows:
(setvalue symptom-onset 2)
 (setpriority symptom-onset 3); priority for conflict resolution
(setvalue symptom-severity 3)
 (setpriority symptom-severity 1)

The simulation instantiations of outputs are as follows. One BioWar simulation of

Hampton city (population 142,561 persons) with 100% scale is run. The Alert WIZER
computes the peaks of the actual-incidence and school absenteeism curves. It outputs the
relative timing of the peaks. The following figure shows the actual-incidence curve.

29

Figure 3 The Peak of Incidence Occurs on Day 128

As shown, the peak of incidence occurs on Day 128. Day 1 is the start of the

simulation, corresponding to September 1, 2002. In the simulation trial, the relative time
difference between simulated absenteeism and simulated actual-incidence peaks is 10 days.

(setvalue absenteeism-vs-actual-incidence 10)
The empirical data gives 1-4 days as the incubation period for influenza. Absenteeism occurs
a day after the end of incubation. Thus, the empirical data are as follows:

(setvalue emp-absenteeism-vs-actual-incidence-lowval 2)
(setvalue emp-absenteeism-vs-actual-incidence-highval 5)

Figure 4 The Peak of School Absenteeism Occurs on D

30

As shown, the peak of school absenteeism occurs on Day 138. The curve is
discontinuous on Saturdays and Sundays because schools are closed. Days 115-121 are
holidays.

The Inference Engine compares the relative timing of absenteeism and incidence

peaks with the empirical relative timing. After conflict resolution based on the priority value
(here other weighting factors are not considered), it produces the following inference

(toolong absenteeism-vs-actual-incidence)
(op-higher symptom-severity)

because the absenteeism peak lags 10 days behind the incidence peak; twice as long as the
empirical maximum of 5 days.

The inference is that the symptom-severity (the relative magnitude of manifested
symptoms) should be increased. For the next cycle of the simulation, symptom severity is
increased by 100% using an encoded rule about critical point heuristics. BioWar is re-run and
then WIZER is re-run. The following figure shows the resulting school absenteeism curve.

Figure 5 The Peak of School Absenteeism after Change Occurs on Day 132

As shown, the peak of school absenteeism now occurs on Day 132. The Inference

Engine compares the relative timing of absenteeism and incidence peaks with the maximum
empirical relative timing. After conflict resolutions are performed, it now produces the
inference of:

(within-range absenteeism-vs-actual-incidence)
(op-valid)

The relative time difference between absenteeism and actual-incidence peaks is now

4 days, less than the previous cycle's relative time difference of 10 days, and now one day

31

shorter than the maximum empirical time difference. Thus, the peak of school absenteeism
has moved into the valid, empirically bounded range of 2-5 days. The Inference Engine
announces that the simulated absenteeism curve peak is now valid.

The following figure shows the school absenteeism curves before and after the

parameter value change.

Figure 6 School Absenteeism Curves before and after Parameter Value Change

As shown, after changing the parameter value, the absenteeism peak moves closer to

the incidence peak (as shown by the black vertical line).

Validation Measures

Validation is measured based on a piece of knowledge that corresponds to a data

stream. For the results on school absenteeism above: initially, the simulated school
absenteeism peak occurs later than it should be. Thus this data stream has zero validity,
strictly speaking. After parameter values were changed by WIZER, the simulated
absenteeism peak moved to within the empirical range, achieving validity.

WIZER versus Response Surface Methodology

BioWar has hundreds of parameters. The resulting parameter space is gigantic.

Suppose that the Response Surface Methodology or RSM (Myers and Montgomery 2002,
Carley et al. 2004) is used to completely characterize BioWar for validation. Let us assume
that that BioWar has 200 parameters (a conservative number) and that each parameter can

School Absenteeism before and after Change

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

17
4

18
0

day

pe
rc

en
t a

bs
en

t

before
after

32

have 3 different values (3 levels), the parameter space is 3^200 cells, unmanageable with any
current technology. As BioWar is stochastic, each cell requires multiple virtual experiments
(assume here 40 virtual experiments) to achieve statistically significant results.

Experimenters, of course, can divide the system into modules and validate module by

module, assuming all other modules have reasonable parameter values and the existence of
some modularity in the system. If this is done for BioWar, experimenters can probe the
relationships between incidence rate and infection factors such as ailment effective radius
(initial infection radius), ailment exchange proximity threshold (person-to-person
transmission of bioagents for contagious diseases) and base rate (initial infection rate).
Assuming each of these factors has 3 levels (3 possible values) the following table shows the
number of cells required.

TABLE 1 Cell number for incidence factors validation

 Parameter Categories Size

Ailment effective radius 500, 1000, 1500 meters 3

Ailment exchange proximity threshold 500, 1000, 1500 meters 3

Base rate 10%, 30%, 50%, 70% 4

As shown, the total number of cells required is 3 x 3 x 4 = 36 for the non-stochastic

case. Being stochastic, BioWar requires at least 36 x 40 = 1,440 virtual experiments.

WIZER enhances the way experimenters decide which parameters and what

parameter levels to choose by codifying the knowledge in a form that is clear, explicit, and
operable by computers. With its inference engine, WIZER can reason about parameters and
simulation results, producing new inferences. Furthermore, utilizing its knowledge inference,
WIZER can reduce the number of virtual experiments needed. The above number of virtual
experiments for RSM of 1,440 is the upper limit of what WIZER needs. Typically, WIZER
needs fewer due to its inferences about simulation results after each simulation cycle. The
better the inferences and the knowledge bases, the fewer the number of required simulation
runs.

The following table shows what WIZER gains when used for BioWar. The gain is

compared against what normally transpires when humans do the validation. The numbers are
first-order estimates. The time it takes for WIZER depends on computer speed, memory, and
storage capacity. In addition to BioWar, we have validate a simulation model of socio-
cognitive co-evolution called CONSTRUCT (Carley 1991) using WIZER with comparable
performance gains.

33

TABLE 2 Advantages of WIZER versus manual validation for BioWar

Aspect of validation Manual validation WIZER

Time to generate input data Days if not weeks, due to the

data access rights, usage
policy, non-disclosure rules,
privacy concerns, data
ownership rights, and other
problems.

Days if not weeks, and
longer than what it takes if
done by human, as the data
needs to be formatted and
prepared for computer
processing

Number of points in response
surface that can be estimated

1 per 10 minutes 20 per 10 minutes

Number of data streams One data stream examination
per 15 minute

Many more data stream
examinations (>15) per 15
minutes, limited only by
computer speed

Knowledge management Difficult Facilitated
Number of rules processed One per 5 minutes 300 per 5 minutes
Number of causal relations
considered

One per 5 minutes 300 per 5 minutes

Selection of experimental
variables

Implicit but good, depending
on experience

Explicit and computer
operable

Use of statistical tools Depends on experience Encoded in the inference
Documentation of inference
and experiment steps

Need extract work Included in the inference
trace

Ability to explain simulation
results

Depending on experience Part of inference trace

Enforced precision No Yes
Enforced clarity No Yes
Man-hours Large Medium-to-Large
Retention of knowledge Depends on personnel Facilitated
Large problem solving Possible, e.g., by careful

analysis
Facilitated

34

ON THE CONSTRUCTION OF KNOWLEDGE SYSTEMS

 While the automation of simulation validation brings efficiency, there is an upfront
investment in the construction of knowledge bases and inference rules. There is also a
research question of how one validates the knowledge bases and inference rules.

Our perspective on the above issues is multi-faceted. The knowledge codification in a
form that is clear, explicit and operable by computers facilitates replication of simulations
and their results. Replication of results is critical for scientific progress. Current practices of
simulation validation (which is usually done by people who construct the simulation) leave
this critical issue of replication as an afterthought. As a result, it slows down the scientific
advance of modeling and simulation. The codification of knowledge is necessary to do sound
engineering and science. Current codification focuses on model specifications and usually
has a form of formalized English language. (Codification for code verification can be done
using formal methods.) It is straightforward to require that the codification be done not just
for model specifications but also for validation specifications and that it be done in a form
that is operable by computers. It is a simple extension of existing activities to cover broader
scope. The fact that now the codification allows computer automation will recoup some of
the time and resources investment spent on codification. Needless to say, this is similar to
building houses by designing detailed engineering models beforehand. People can build
houses without detailed designs but this often results in a quality-problem and delays in
construction. Indeed, quality does matter, not just quantity. Codification also facilitates
collaboration. To ameliorate the startup investment cost, we are implementing simulation
infrastructure to help modeling and simulation practitioners encode their model and
validation specifications in a form operable by computers.

An investment in clear, explicit and computer-operable representation of knowledge
for specification and validation is also useful because this higher-level of representation can
help reduce errors in the specification and validation process. This is analogous to the fact
that high-level languages such as Java helps reduce programming errors and increase
programmer productivity as contrasted to the low-level assembly language or machine-level
machine-code. An upfront cost here is the compiler and, in our case, the knowledge bases
and inference rules. In fact, modeling and simulation itself is an investment vis-à-vis
construction without models. Boeing is successful in using computer modeling and
simulation in lieu of physical prototyping in the construction of its latest airplanes.

 Avoiding a conflict of interests, it is a good practice to separate people or institutions
who build a simulation system with those who validate it. Thus, the validation people will
build their own knowledge bases for validation. Current validation process has already put
validation specifications on paper. It is an extension to current activities to put those
specifications in a form that is clear, explicit and operable by computers. We will have
knowledge bases from validation stakeholders and from model builders. Comparing these is
one way to validate the knowledge bases. The fact that we structure our knowledge bases
according to causality simplifies the validation of the knowledge bases. The issue of
knowledge bases validation as a whole, however, is a subject for another paper.

Another aspect of validation of large and complex simulations is the need to facilitate
collaborations among diverse experts located at various locations. For this, an explicit and

35

clear specification of simulation models and results facilitates collaborations. WIZER and
cyberinfrastructure components can help researchers setup, run and replicate simulations
with precision and speed.

The conventional knowledge systems have a weakness of being brittle, which means
that the inferences will go awry if they are employed outside the specified application
domain. It is also hard to ensure the correctness of knowledge and inferences when new rules
are added. We address these issues by restructuring rules in knowledge bases using causality
and by using knowledge systems strictly within their application domains. For large
simulations such as BioWar, we have multiple knowledge modules representing different
domains. This is similar to what happens in human problem solving: epidemiologists deal
with diseases and symptoms, city health officials deal with quarantine and other response
policies, police deal with how to maintain security and order, first-responders deal with how
to give first-aid quickly, etc. As causality is empirical, the inferences are grounded on
empirical knowledge and data. Structuring knowledge bases along causality is one way to
partition the knowledge bases into smaller, more coherent and more manageable knowledge
bases. A related work on scaling up knowledge bases is structure-based partition (Amir and
McIlraith 2005, Ramachandran and Amir 2005). As WIZER is a knowledge-based causal
system, it can scale well given appropriate knowledge including statistical knowledge.
BioWar itself is a sufficiently complex model to test validation approaches: it can represent a
demographically-realistic, spatiotemporally-realistic, and features-rich city with millions of
people. In the real-world, statistics is used to scale economic models and market indicators
are used to scale the model measurements. If we would like to have precise world-scale
validated economic models/simulations, we will encounter the challenge of getting the proper
data before the challenge of inference. As more and better economic data become available,
WIZER can scale with the data and help build better economic models.

We have argued above that it is critical and necessary to invest in a clear, explicit and
automated representation and validation of simulations because we need to have replications
to do good science. It is also a good engineering practice to have design schematics covering
the entirety of the system (not just model specifications but also model behaviors and results)
that can be automatically checked and executed by computers. While it takes time and
resources to construct knowledge bases and inference rules, Table 2 indicates that once this is
done we can recoup the investment and get the dividends. The needed investment is also
reduced as the construction of knowledge bases and inference rules can piggy-back the
model specification activities.

DISCUSSION

WIZER is unique in that it pioneers ontological and knowledge-based inference for
simulation validation and model-improvement. WIZER is a causal and logical reasoning,
hypothesis building & testing, and simulation control engine with statistical and pattern
recognition capabilities. It strives to employ deep and structural knowledge by employing
causal and ontological reasoning. WIZER seeks to emulate scientists doing experiments and
analyses via the scientific method, rather than providing another methodological approach or
programming environment. The causal reasoning component provides link to empirical data
and knowledge of scientific experiments.

36

While other toolkits such as Swarm (http://wiki.swarm.org), TAEMS (O’Hare and
Jennings 1995, Lesser et al. 2004), and Repast (http://repast.sourceforge.net) provide
programming environments for agent-based simulation systems, WIZER is designed to help
with scientific experimentation, validation, scenario analysis, and model improvement.
WIZER is able to run on top of any simulation system, including those constructed using
Swarm and Repast toolkits.

The following table compares WIZER and other tools:

TABLE 3 Feature comparisons between WIZER and other techniques

 WIZER Swarm/TAEMS/Repast Evolutionary Data
 Strategies Farming

Programming
environment?

No Yes No No

Unit of inference Rule and
causation

None Evolutionary
and genetic
operators

Data
growing
heuristics

Object of
operation

Simulation,
data and
knowledge

Code Simulation
and data

Data

Experimentation? Yes,
automated

Yes, human operated Yes,
automated
(fitness)

No

Knowledge
operation?

Yes No No No

WIZER differs from evolutionary programming (Fogel 1999), evolutionary strategies,

and genetic algorithms in that it does not need a population of mutation/crossover candidates
nor does it need mutation, crossover, or other evolutionary and genetic constructs. Instead,
WIZER applies knowledge inference to simulations to determine the next simulation run. If
the result of inferences mandates a radical change, a revolution will occur. From the
historical point of view, evolution took millions of years to affect change, while the
application of the scientific method after the Renaissance advanced science and affected
changes on the Earth’s surface in only a few hundred years.

Our approach facilitates the integration of simulation and knowledge inference. As a

simulation runs, producing perhaps emergent behaviors, simulation-based knowledge is
automatically captured and analyzed. As knowledge changes, the simulation can be changed.

37

For social sciences, the inferential approach allows investigation of the foundations of
social networks, first by the validation of agent-based systems and in future by the validation
of more realistic systems (e.g., physical models). Unlike the Exponential Random Graph
Model (ERGM) or p* (Robins et al. 2006) which attempts to characterize the probability of
social network structures in a top-down manner using pure statistics, WIZER can be used to
characterize a range of agent behaviors and the resulting emergent social behaviors from
agent interactions in a bottom-up fashion and within a proper context of the application and
semantics. Our inferential approach indicates a path toward more profound theories for social
interactions and group behaviors.

In the scientific community, the explosion of data and the need for collaboration
paved the way for cyberinfrastructure, which is an infrastructure for data acquisition, data
management, knowledge sharing, visualization, and collaboration over the Internet for
scientists and engineers. The linkage between simulations within cyberinfrastructures and
knowledge inferences is not yet automated. Our approach suggests one way to automate the
linkage and thus provide a simulation infrastructure for scientists and engineers. This may
speed up the analysis of massive data sets. Social scientists, artists and humanists in
particular need a simulation infrastructure to play out and investigate phenomena that cannot
be described by math, logic and statistics alone.

The inferential approach underlying WIZER for simulation validation facilitates more

precise research in organization and management sciences. As data become more available,
aided by high performance computers, the simulations become more precise enabling more
detailed theories to be built and tested.

38

References

Amir, E. and S. McIlraith, 2005, “Partition-Based Logical Reasoning for First-Order and
Propositional Theories,” Artificial Intelligence, 162 (1-2), pp. 49-88.

Carley, K.M., 1991, A Theory of Group Stability. American Sociological Review, 56(3):

331-354.

Carley, K. M., D. Fridsma, E. Casman, N. Altman, J. Chang, B. Kaminsky, D. Nave, and A.

Yahja, 2003, “BioWar: Scalable Multi-Agent Social and Epidemiological Simulation
of Bioterrorism Events,” Proceedings of North American Association for
Computational Social and Organizational Science (NAACSOS) Conference 2004,
Pittsburgh, PA, http://www.casos.ece.cmu.edu/casos_working_paper/carley_2003_biowar.pdf.

Carley, K.M, N.Y. Kamneva and J. Reminga, 2004, Response Surface Methodology, CASOS

Technical Report CMU-ISRI-04-136, Pittsburgh, PA

Fogel, L.J., 1999, Intelligence Through Simulated Evolution: Forty Years of Evolutionary

Programming, Wiley Series on Intelligent Systems, New York, NY.

Lesser V, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R.

Podorozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang,
2004, Evolution of the GPGP/TAEMS Domain-Independent Coordination
Framework. Autonomous Agents and Multi-Agent Systems, Volume 9, Number 1,
Kluwer Academic Publishers, pp. 87-143.

Myers, R.H. and D.C. Montgomery, 2002, Response Surface Methodology: Process and

Product Optimization using Designed Experiments, 2nd ed., New York, NY: John
Wiley.

O’Hare, G. and N. Jennings, 1995, Foundations of Distributed Artificial Intelligence, Wiley

Inter-Science, pp. 429-448.

Pearl, J., 2000, Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge

University Press.

Pearl, J., 2003, “Statistics and Causal Inference: A Review,” Test Journal 12 no. 2

(December): 281-345.

Ramachandran, D. and E. Amir, 2005, Compact Propositional Encodings of First-Order

Theories, in 20th National Conference on Artificial Intelligence (AAAI'05).

Robins, G., T. Snijders, P. Wang, M. Handcock, and P. Pattison, 2006, “Recent

Developments in Exponential Random Graph (p*) Models for Social Networks,”
Social Networks, forthcoming.

Yilmaz, L., 2006, “Validation and Verification of Social Processes with Agent-Based

Computational Organizational Models,” Computational & Mathematical
Organization Theory, vol. 12, no. 4, pp. 283-312.

39

40

COMPARING AGENT TRAJECTORIES

H.V. PARUNAK,* S. BROPHY, S. BRUECKNER
NewVectors division of TTGSI

ABSTRACT

Sometimes it is desirable to measure the difference between the spatial trajectories of two
or more agents. The naïve measure (the sum of Euclidean distances between locations at
successive timesteps) increases with the lengths of the trajectories, which is not suitable
for some applications. This paper explains the problem that motivates such a comparison,
describes the design of the comparison that we are using, and gives an example of its ap-
plication.

 Keywords: trajectories, prediction, comparison

INTRODUCTION

It is often useful to invoke spatial metaphors, such as “location,” “move,” and “trajec-
tory,” in describing agent behaviors.

Like any system, a software agent has a state, the vector of all variables that describe its
condition. By analogy with the <x, y, z> vector of physical location, we call the set of all states
that the agent can assume its “state space,” and its current state is its “location” in that space
(which may be continuous or discrete, and may or may not have a proper metric). For some
agents (e.g., robots or routing agents), an important component of their state is their physical lo-
cation, but it is also useful to think of an agent searching for information as having a location in
“semantic space,” or of a planning agent as occupying a location in “task space.”

When agents make decisions, they often change their state, and we say that they “move”
in their state space. Similarly, successive decisions constitute a “trajectory.” Again, these terms
are understood literally for physically situated agents, but are applicable metaphorically to any
agent.

For some applications, an agent’s trajectory is more important than its individual move-
ments, and the set of trajectories of several agents is more important than their individual trajec-
tories. To analyze such systems, we need to compare trajectories and characterize them collec-
tively. This paper offers some tools for this purpose

Section 2 motivates the comparison of agent trajectories in the context of a specific mod-
eling construct, the polyagent. Section 3 describes several measures that can be used to compare
trajectories. Section 4 gives an example of using the measure.

* Corresponding author address: H. Van Dyke Parunak, NewVectors, 3520 Green Court, Suite 250, Ann Arbor, MI

48105; e-mail: van.parunak@newvectors.net.

41

MOTIVATION FOR A MEASURE

Our polyagent technology for predicting the fu-
ture (Parunak and Brueckner 2006) represents each
domain entity by multiple ghost agents, each exploring
a different alternative future for the entity. For clarity,
we assume that the future under consideration is a pos-
sible path through two-dimensional space, though
paths through more complex structures (such as se-
mantic networks or hierarchical task networks) can
also be explored.

We wish to interpret the set of trajectories dis-
covered by the ghosts. In particular, we are interested
in characterizing their divergence over time. The prob-
abilistic behavioral models of the ghosts emulate interactions of their entities with one another
and with the environment. Since these interactions are highly nonlinear in most domains, they
tend to result in phenomena such as divergence and bifurcation, and can also characterize the
ghosts’ environment.

Figure 1 illustrates divergence and bifurcation. Ghost time is indexed by τ and real-world
time by t. Ghost simulation begins in an environment whose state corresponds to a point in the
past relative to t. When τ = t, we compare ghosts with the real entities that they represent, and al-
low the fittest ones to run into the future to form predictions. The upper bundle diverges beyond
the “prediction horizon” (Parunak, Belding et al. 2007). Detecting this divergence would enable
the system to avoid wasting resources on exploring further. The lower bundle bifurcates. In this
case there is still predictive value in running the ghosts ahead, but detecting the branch point is
crucial for understanding the system.

The degree of divergence depends heavily on the environment. For example, if ghosts are
exploring possible paths for a pedestrian in the middle of an open field, they will diverge more
than ghosts exploring paths for the same pedestrian at the bottom of a long, narrow valley. Dis-
tinguishing these cases can enable us to make more efficient use of the population of ghosts, and
can also provide a useful characterization of the environment in its own right.

For our purposes, a measure of trajectory similarity should meet three requirements.

1. It should be independent of trajectory length, so that we can apply it across trajectory
bundles of different lengths, and use it to monitor similarity as a trajectory evolves.

2. It should be tolerant of both temporal and spatial offset. Two trajectories that follow the
same path but at slightly different times, or that run parallel to one another but not in ex-
actly the same location, should be considered similar to one another, with the degree of
similarity decreasing smoothly as the differences increase.

3. It should be efficient to compute. This requirement is motivated by our desire to use the
measure in a real-time feedback loop to modulate the generation of polyagent ghosts.

Figure 1 Trajectory analysis: Ghosts
run past “Now” into the future to make
predictions. The upper bundle di-
verges at τ1, while the lower one bifur-
cates.

42

The gold standard for measuring things is a metric, which is a function d from a Cartesian
power of a set X to the reals that exhibits non-negativity, identity of non-discernibles, symmetry,
and subadditivity. In general, our functions do not satisfy all of these conditions, so we call them
“measures.”

DEVELOPING A MEASURE

Our approach to comparing trajectories has three components: measuring the difference
of a pair of paths, extending this measure to a bundle of trajectories, and converting the un-
bounded measure of difference to a bounded measure of similarity.

Pairwise Comparisons

We will compute our metrics on some ex-
perimental paths. Figure 2 shows the first test set:
eight trajectories in two bundles, moving from left
to right. Half of the trajectories in each bundle
zigzag to simulate stochastic variation around the
main course of the bundle. We want our distance
measure to show that these two bundles separate,
then converge.

The naïve starting point for comparing tra-
jectories is the sum of the Euclidean distances between corresponding points in the trajectories.
If di is the Euclidean distance between the ith pair of points in a trajectory of length N, the dis-
tance is ∑

=

N

i
id

1
. When we have more than two trajectories, we take the mean of the pairwise dis-

tances. This approach is reasonable when
• All trajectories have the same number of steps
• All trajectory steps are of the same time duration
• All trajectories start at the same location

The sum of pointwise Euclidean distances is monotone nondecreasing as the length of the
trajectory increases, since each additional step may add more difference. Thus pairs of long tra-
jectories show a larger difference from each other than pairs of short ones, simply because they
include more points, violating our first requirement. Some form of normalization is needed.

The obvious normalization is by the length of the trajectory, giving the average separa-
tion per step,

∑
=

N

i
id

N 1

1

If we apply this measure in real-time, the number of items in the sum and thus the nor-

malizing constant increase throughout the run, with undesirable consequences. Figure 3 shows
the point-by-point Euclidean distances (the upper zigzag line), and the running average separa-
tion (the lower line). In the lower line, while the divergence of the trajectories is clearly marked,

Figure 2 Eight trajectories from left to
right. Four take the upper path, four take
the lower. On each path, two go straight,
while two zig-zag around them.

43

their subsequent convergence is much less
clear, because the change is diluted by the
many differences already included in the
average.

For monitoring trajectory prox-
imity during execution, a running average
of point-wise trajectory separations over a
Scoring Window is more effective than
an overall average. In our tests, a scoring
window of 4 is long enough to smooth the
scores. The wider the scoring window, the
longer it takes for the score to reflect a
change in path similarity patterns. We use
the scoring window to normalize scores
for the various refinements discussed be-
low. Figure 4 shows the behavior of a scoring window of width 4 on the trajectories of Figure 2.
It smooths out the zigzags and gives a distance profile that corresponds to our intuition about the
overall behavior of the bundles, but it lags the actual movement of the trajectories by 2 time steps
(half the width of the window).

The Euclidean measure does not recognize path pairs that follow identical routes with a
small time lag as being similar, and thus does not satisfy our second requirement. Two alterna-
tive mechanisms can accommodate time lapses, step windows and the Laurinen algorithm.

The step window method uses two parameters, the Past Step Limit and the Future Step
Limit, to define a window of comparison around the matching point on the paired path. For each
point on one path, the distance is computed to every point on the other path that falls within this
window. The shortest such distance is that point’s distance from the other trajectory. Then these
distances are averaged over the trajectory.

This approach captures the similarity between some lagging paths, but shows discontinui-
ties as paths move within the window, and cannot discriminate between paths that lag at different
distances if they all fall within the window. These problems result from the abrupt boundaries
and arbitrary length of the window. In ad-
dition, of the four conditions for a formal
metric, the step window method violates
all except nonnegativity. The main culprit
is asymmetry: the sum of distances of
points in trajectory A to the closest points
in trajectory B is not necessarily the same
as the sum of distances of points in trajec-
tory B to the closest points in trajectory A.

A more general method for align-
ing paths that are not exactly aligned tem-
porally is Laurinen’s algorithm (Laurinen,
Siirtola et al. 2006), which explicitly in-
cludes temporal distance when measuring

Figure 3 Point-by-Point and Running Average
Distances

Figure 4 Running average, scoring window = 4

44

the separation between points on two trajectories. Applying this algorithm requires defining a
mapping from time to space. We multiply the time-distance between the comparison steps by a
Step Weight Factor and use the result as a third component in the Euclidean distance computa-
tion (along with the x-distance and y-distance components) in selecting the closest matching
points between two trajectories. (The Step Weight Factor is analogous to the speed of light in
special relativity, in its role of rendering space and time commensurate.) In our polyagent appli-
cation, agents can move a maximum of five cells at each time step, so we set the step weight to
1/5 = 0.2. This approach allows lagging paths to score as similar, and provides a smoother func-
tion than does the step window approach.

By itself, this computation is asymmetrical, and violates the same three metric conditions
as the step window method. To ameliorate the problem, Laurinen computes the distance in both
directions and chooses the maximum of the two. This approach violates only the triangle ine-
quality. In practice, in spite of this shortcoming, it is serviceable as a well-defined measure of
trajectory similarity.

Figure 5 shows the effect of these two ad-
justments on time-lagged paths. Four trajectories (a
straight one and a zigzag one for each of the upper
and lower branches) are synchronized with each
other. One straight trajectory for each branch is de-
layed by three time steps, and one zigzag trajectory
for each branch is delayed by four time steps. The
upper curve uses a scoring window of 4, but makes
no correction for lagging, and as a result gives a
higher distance (about 7) than the same measure ap-
plied to time-synchronized trajectories in Figure 4
(about 6). The lower two curves, nearly superim-
posed, show the Laurinen measure with step weight
0.2 (slightly higher) and past step limit = future step
limit = 5. Both cases greatly reduce the penalty im-
posed by the time lag.

Dealing with Bundles

The methods discussed so far define a similarity between two paths. In some applica-
tions, we want to characterize the tightness or looseness of a bundle of trajectories.

The naïve approach (used in the plots so far) is to average the similarity scores of all pos-
sible pairs in the bundle, requiring O(N2) operations. In keeping with our third requirement, we
prefer a linear time algorithm to enable the similarity score to be used as a live feedback control.
Various Pairing Strategies can reduce the computation while maintaining the same scoring pat-
tern. We explored four strategies:

1. PATH_PAIRS computes all path-pair combinations (2N(N-1) operations).

2. MEAN_PAIRS compares all paths against the bundle mean location (2N operations).

Figure 5 Distances of time-lagged
paths. Top: scoring window 4. Middle:
Laurinen with step weight 0.2. Bottom:
past limit = future limit = 5.

45

3. INTO_MEAN measures the distance from
individual paths to the mean (N opera-
tions).

4. FROM_MEAN measures the distance
from the mean to individual paths (N op-
erations).

The MEAN_PAIRS approach results in a
score that follows the same trend, but is generally
lower than the full PATH_PAIRS score, because
the bundle mean is usually closer to a path than
the score that path would get when compared to
all of the paths individually.

Laurinen measures the difference between
two paths in both directions and takes the maxi-
mum. PATH_PAIRS and MEAN_PAIRS follow this convention (thus the factor of two in the
number of operations). Notice the impact of this convention when reasoning with mean paths.
INTO_MEAN uses only the components of the score from each individual path to the mean,
while FROM_MEAN uses only the components from the mean to the individual paths. The
mean path naturally tends to be straighter than the individual paths, resulting in a systematic dif-
ference between INTO_MEAN and FROM_MEAN.

Consider comparing the mean path with a path that mostly follows the group, but loops
out and then back into the bunch (Figure 6). First, consider the INTO_MEAN score from point e
on an individual path to the mean path. All of the nearest points (a, b, or c) on the mean path are
far away. But in computing the FROM_MEAN score, points a, b, and c will find close points on
the individual trajectory (d, d, and f, respectively), and their relatively large distance to point e
will never enter the computation.

Figure 7 shows all four scores for the trajectories of Figure 2.

This observation enables a further efficiency. Since MEAN_PAIRS uses the larger of the
INTO_MEAN and FROM_MEAN scores, and since
INTO_MEAN is usually larger than FROM_MEAN,
INTO_MEAN is an efficient surrogate for
MEAN_PAIRS. However, one may prefer to use
FROM_MEAN instead, for the following reason. The
mean over a set of trajectories tends to smooth out
their individual variations, and so FROM_MEAN
automatically smooths without the time lag imposed
by a scoring window. Figure 9 compares the
FROM_MEAN scores with windows of 1 and 4. As
the distance increases relative to the variance, the
measure with scoring window of 1 (the left-most
curve) becomes almost as smooth as that with a win-
dow of 4 (to the right), and without the lag.

Individuals
Mean

æ

æ æ

æ

æ

à

à

à

à

à

ì
ì

ì

ì

ì

ò ò

ò ò

ò

a,d c

f

e

b

Individuals
Mean

æ

æ æ

æ

æ

à

à

à

à

à

ì
ì

ì

ì

ì

ò ò

ò ò

ò

a,d c

f

e

b

Figure 6 INTO_MEAN vs. FROM_MEAN.
Points a, b, and c are on the mean path;
points d, e, and f are on one of the individ-
ual paths.

Figure 7 Bundle scores. Top:
PATH_PAIRS. Middle: INTO_MEAN =
MEAN_PAIRS. Bottom:
FROM_MEAN.

46

In applications, the use of the mean both to compute
the baseline trajectory and to combine the differences
of individual trajectories from the baseline is sensitive
to outliers, and in practice we prefer to use medians
for both of these computations.

Similarity Calculation

Our measures so far are unbounded upward. It
is often more convenient to have a measure that is
bounded (say, in [0,1]). The naïve transform, to com-
pute the similarity as the inverse of the distance, 1/d,
would work if our separations were always > 1. When
computing the distance for a bundle, rather than just a
pair of paths, or when using a scoring window, the dis-
tance can be < 1, resulting in similarity scores > 1.
Several approaches are possible.

We could define the similarity to be 1 for any
distance < 1. The step function generated by this ap-
proach loses information as to whether the computed
bundle distance is increasing or decreasing for small
separations.

We could scale the similarity as N/(N+d). This
transform avoids the step function, and raises the val-
ues to use more of the 0 to 1 range. But the shape of
the curve still drops off too quickly for distances that
should all be close to similar.

The transformation we have found most satisfactory is a sigmoid (Figure 8),

)(1
1

doffsetsteepe
similarity −−+

= ,

Offset determines the distance that is mapped to a similarity of 0.5, and steep determines the
steepness of the transform at that point. For our
test cases, offset = 2 and steep = 2.5 closely fol-
low the naïve 1/d transformation. Figure 10
shows the similarity obtained by this transforma-
tion from the INTO_MEAN measure with scor-
ing window of 4.

USING THE MEASURE

This section analyzes some actual ghost
trajectories from a military scenario that shows

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Separation

Si
m

ila
ri

ty

Figure 8 Sigmoid Transformation, for
steep = 2.5 and offset = 2

Figure 9 Smoothing effect of
FROM_MEAN

Figure 10 INTO_MEAN distance for Figure
2 transformed to similarity

47

the effect of the environment on their movement. The terrain includes both open areas and roads.
When ghosts are on a road, they prefer to follow it, but in open terrain they move more freely.
Our plots do not show terrain features explicitly, but we will describe them for the examples we
discuss.

In addition to plotting the INTO_MEAN similarity score, we also plot the option set en-
tropy (OSE). Our similarity scores are global measures, appropriate for centralized use in manag-
ing a polyagent system, but not accessible to individual agents. An agent can monitor its option
set entropy locally. So the relation between these two characteristics is of great interest.

In this application ghosts live on a square lattice, and make their choices stochastically,
spinning a roulette wheel with as many segments as they have next possible steps (the “option
set”) whose segments are weighted in the following fashion. First, the ghost combines a number
of environmental signals (“digital pheromones”) from each option that it may choose into a sin-
gle attractiveness score for that option. In our application, the options are the cells to which the
ghost may move in the next step. Then, to adjust the degree of determinism in the system, we
map the attractiveness to a probability using the Boltzmann distribution,

∑
=

i

tw

tw

i i

i

e
ep /

/

where wi is the attractiveness of the ith option, pi is the
probability of moving to that option, and t is the Boltzmann
temperature. When t is large compared with wi, each option
has an equal chance of being selected. When t is small, the
choice becomes more deterministic in favor of the most at-
tractive option.

The entropy over the option set probabilities, nor-
malized by the log of the number of possible steps, reflects
how much guidance the ghost has at that step. This option
set entropy (OSE) varies from 0 when the ghost is
moving deterministically to 1 when it is executing
a random walk. OSE is a good summary of how
converged an agent system is (Brueckner and Pa-
runak 2005). Might it serve as a local indicator of
the convergence of an agent bundle?

Figure 11 shows 19 trajectories that remain
on a road system. The trajectories all begin at the
dark area toward the lower-right of the figure.
Figure 12 shows the similarity1 and average OSE
across all agents for this system.

1 INTO_MEAN, Laurinen step weight 0.2, scoring window 4, transformed through sigmoid with offset = 2 and

steep = 2.5.

Figure 11 Ghosts on a road
system

Figure 12 Similarity (descending curve)
and OSE (gently rising curve) for Figure
11

48

Consider first the similarity. The trajectories diverge initially as
the ghosts spread out. Then, between time 20 and 30, they come closer
together, before continuing to diverge beyond time 33. At time 20 the
ghosts reach the crossroads. Because they have several options avail-
able (note the small peak in OSE at time 20), they tend to loiter in the
area for a few moments, and their local trajectories converge. Once
each ghost converges on a road to follow out of the crossroad, the simi-
larity again falls.

The OSE rises gently until the ghosts reach the crossroad,
where it reaches a local maximum, then levels off for the rest of the
run. The initial increase reflects the ghosts’ initial exploration. The
peak reflects their contemplation of the crossroad, and the final level
portion corresponds to their constrained exploration of the various
roads.

Now consider the 59 trajectories in Figure 13. Figure 14 shows
similarity and OSE. The ghosts, again moving
from south to north, begin in open terrain where
they spread out, reflected in decreasing similarity.
The OSE is constant during this time: the environ-
ment does not constrain the ghosts, other than a
general attraction toward the roads at the north. At
time 12, some trajectories discover the road emerg-
ing from the right-hand side of the main cluster,
and this constraint causes similarity to level off. At
time 17, further roads branch out. Because the
ghosts have multiple roads from which to choose,
similarity begins to drop again, while the addi-
tional movement constraints from the roads cause
the OSE to drop. The rise in OSE from time 22 to 27 corresponds to the first wide spot on the
left-hand road, offering ghosts more options. Because they loiter in this region, the decline of
similarity is less pronounced. OSE again decreases as the ghosts follow the roads leading from
this wide spot, then increases gently again after time 33, as they discover the wider set of options
at the end of the left-hand road.

These examples show that while OSE and similarity are sometimes correlated, they
measure different things. OSE reflects how constrained individual ghosts are, while similarity re-
flects how close they are to one another. All four combinations can occur. Highly constrained
ghosts can be close to or far from one another, as can ghosts that experience little constraint.
Correlations emerge when ghosts that are generally traveling in the same direction reach a deci-
sion point, which increases their OSE and at the same time allows them to catch up with one an-
other, increasing their similarity.

CONCLUSION

It is often desirable to characterize the trajectories exhibited by a set of agents. In our
work, these trajectories represent alternative possible futures being generated by a polyagent, and

Figure 13 Shift from
open terrain to roads

Figure 14 Similarity (steadily decreas-
ing) and OSE (varying) for Figure 13

49

the degree to which they converge is an important index of the quality of the predictions. Such
measures may be useful in other applications as well (for example, clustering targets into groups
within which the behavior is similar). We seek measures that are independent of the trajectory
length (so they can be used for real-time control of the agents), tolerant of both temporal and spa-
tial offset, and efficient to compute. Naïve measures do not satisfy these requirements, but the
transforms presented in this paper provide a rich toolbox that we are using in analyzing predic-
tive trajectories.

ACKNOWLEDGMENT

This research is funded by the National Geospatial-intelligence Agency (NGA) under
contract GS-35F-4912H. The views expressed in this paper are solely those of the authors, and
are not endorsed by the NGA or the US Government.

REFERENCES

Brueckner, S. and H. V. D. Parunak, 2005, Information-Driven Phase Changes in Multi-Agent

Coordination. Workshop on Engineering Self-Organizing Systems (ESOA, at AAMAS
2005), Utrecht, Netherlands, Springer. 104-119.
http://www.newvectors.net/staff/parunakv/AAMAS03InfoPhaseChange.pdf.

Laurinen, P., P. Siirtola, et al., 2006, Efficient Algorithm for Calculating Similarity between Tra-

jectories Containing an Increasing Dimension. 24th International IASTED Multi-
Conference on Artificial Intelligence and Applications (AIA2006), Innsbruck, Austria.
392-399. http://delivery.acm.org/10.1145/1170000/1166957/p392-
lau-
rinen.pdf?key1=1166957&key2=6755105711&coll=&dl=ACM&CFID=15151515&CFT
OKEN=6184618.

Parunak, H. V. D., T. C. Belding, et al., 2007, Prediction Horizons in Polyagent Models. Sixth

International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS07), Honolulu, HI. 930-932.
www.newvectors.net/staff/parunakv/AAMAS07PH.pdf.

Parunak, H. V. D. and S. Brueckner, 2006, Polyagents Model Multiple Futures Concurrently.

Social Agents: Results and Prospects (Agent 2006), Chicago, IL, Argonne National
Laboratory.

50

Evolutionary Methods

SUGARSCAPE ON STEROIDS: SIMULATING OVER A MILLION AGENTS AT
INTERACTIVE RATES

R. M. D’SOUZA *, Dept. of MEEM, Michigan Tech. University

M. LYSENKO, Dept. of Computer Science, Michigan Tech. University
 K. RAHMANI, Dept. of MEEM, Michigan Tech. University

ABSTRACT

In this paper we present a new technique for simulating mega-scale Agent-Based Models (agent
population sizes exceeding one million) at interactive rates. We achieve this performance by leveraging
the computing power of Graphics Processing Units (GPUs). To test our system, we implemented
SugarScape, a simple model with many common ABM features. We are able to achieve over 50 updates
per second with agent populations exceeding 2 million on an environment with a resolution of 2560x1024
with visualization.

Keywords: ABM Simulation toolkit, GPGPU, Parallel Computing

INTRODUCTION

Due to the emergent nature of Agent-Based Models (ABMs), it is critical that the population sizes
in the simulations match the population sizes of the dynamic systems being modeled [1]. In domains such
as social modeling, ecology, and biology, the agent population can exceed several million. However, the
performance of current agent simulation frameworks is inadequate to handle such large population sizes.
Single core CPU performance has stagnated due to physical limitations. This fundamentally limits the
performance of all serial frameworks for ABM simulation. Parallel computing frameworks designed to
run on computing clusters suffer due to the bandwidth limitations [2]. Issues such as load balancing and
synchronization can severely degrade performance [3]. Moreover, visualization is inefficient in
distributed systems because of the amount data that must be communicated to the computer node that
handles the display.

In this paper we investigate Graphics Processing Units (GPUs) as an alternative platform for

ABM simulations. GPUs are powerful parallel processors designed to perform graphics functions such as
rigid body transformations and special effects such as lighting. Driven by the 3D gaming industry, GPU
computing power has been growing at a rate far exceeding Moore’s law [4]. New generations of hardware
have opened up more features for programming allowing GPUs to perform tasks other than graphics
computations.

GPUs are appealing for large scale ABM simulations for two reasons: one is the sheer number
crunching computational power. An NVIDIA GeForce 8800GTX has an average throughput of 512
GFlops [5], while a top-of-the-line Intel Xenon 2.6 Ghz quadcore processor has a theoretical maximum
throughput of only 63 GFlops. More importantly, the memory bandwidth of the GeForce 8800GTX GPU
is rated at 820.9 Gbps, while the Xenon is rated only at about 68 Gbps. The second major advantage is
cost. The GeForce 8800GTX GPU retails at $600 while the Xenon processor costs over $1000.
Additionally, Xenon processor suffers from cost overheads due to custom mother boards. Graphics cards
on the other hand can be mounted on much cheaper computer hardware.

Because of the high degree of parallelism, the computational model of GPUs is very different

from traditional programming. Taking advantage of the new data-parallel architecture is non-trivial and
requires radically new algorithms. In this paper we investigate ABM simulation using the GPU. To the
best of our knowledge, this is the first attempt at using GPUs for ABM simulation. The following sections

53

will briefly describe the implementation of SugarScape [6], an ABM model that captures most of the
behaviors of social sciences ABMs.

APPROACH

 The act of forcing a GPU to perform computational labors beyond computer graphics is known as
General Purpose GPU (GPGPU) programming. This technique requires a radical shift from traditional
serial programming techniques [7]. While older GPUs only supported a limited set of behaviors, modern
graphics cards have rich programmable functionality. By exploiting these capabilities, it is possible to run
general numerical computations on specialized GPU hardware. GPUs follow a single instruction multiple
data programming model, which does not fit conventional programming methods.

 In GPGPU terms, textures (used to store image patterns) act as memory. Color channels in each
texel (smallest data element) are used to store values of variables. Updating data values of textures is
typically accomplished using shaders. In our implementation, variables for agent states are stored in agent
state textures (Figure 1). Variables representing the environment states are stores in environment state
textures. At each step, the environment and agent state textures are updated using pixel shaders. To make
the updates iteratively continue throughout the simulations, a method called ping-ponging is used [8].
Using framebuffer objects, results of the updates is written back to another texture without
communicating with the CPU. Since all computations are done by the GPU, our method is not hampered
by the slower bandwidth of the connection (PCI express) between the CPU and GPU. CPU is involved
only in processing some user input, and issuing rendering commands to the GPU.

Figure 1 Agent state textures

SUGARSCAPE ON THE GPU

In this paper, we implement SugarScape to show that GPUs can be used to simulate large scale

ABMs efficiently. SugarScape is an extremely relevant model since its has most of the important
components of social simulation. Agents in SugarScape have a number of attributes such as vision and
metabolism, and are capable of adapting to varying environments. We implemented rules G (sugarscape
growback), R (agent replacement), M (agent movement), S(agent mating), P (pollution formation), and D
(pollution diffusion). In the following sub-sections, we briefly explain the implementation of each of
these rules.

Sugarscape Grow Back (G)

Sugarscape grow back is by far the simplest rule to implement on the GPU. To do this, we store
the current level of sugar inside one of the color channels within the world texture, and the maximum
sugar level within another channel. Re-growing the sugar then becomes an image processing operation,
where the sugar-level channel is replenished at a given rate until it reaches saturation. Supposing that the

54

sugar-level is stored in the red channel, while the limit is stored in the green channel, we get the following
simple shader written in GLSL shader language:

vec4 next_sugar(vec4 prev_sugar, float regrowth)
{

return vec4(min(prev_sugar.r + regrowth, prev_sugar.g), prev_sugar.gbr);
}

Movement (M)

 Updating an agent’s position can be performed using a pixel shader applied to the agent state
texture with the current world state as input. The basic idea for this operation is similar to that used in
various GPU particle system [9], with the added twist that the agents are moving according to the state of
the sugar-level in the outside world texture. Assuming that the sugar is stored in the red channel of the
texture, and that the agent vision range is given by the constant VISION, the following code updates the
agent’s position.

vec2 next_position(vec2 prev_position, sampler2DRect world)
{
 vec2 best_position;
 float best_sugar;

 for(int i=-VISION; i<VISION; i++)
 for(int j=-VISION; j<VISION; j++)
 {
 vec2 p = prev_position + vec2(i, j);
 float s = texture2DRect(world, p)).r;

 if(s > best_sugar)
 {
 best_position = p;
 best_sugar = s;

 }
 }

 return best_position;
}

 A somewhat more difficult task is the problem of performing environment agent interactions. To
do this, we must use a separate rendering pass to perform a scatter operation [10]. The idea is to write the
agents into a separate agent collision map using a separate rendering pass [11]. From this collision map
we can locate agents directly based on their spatial position, which makes environment and agent-agent
interactions possible.

agent state texture

collision map

Figure 2 Agent scatter

55

 Scattering the agents is typically performed using a vertex shader. A vertex array of indices with
the same dimension as the agent state texture is initialized. Using a series of shaders, this array is then
drawn into the collision map to determine the positions of each agent. There are two basic methods for
scattering using a vertex shader. The most primitive is to use the render-to-vertex-buffer extension, and
directly scatter the agents in such a fashion. A much simpler and faster method is available on the latest
GeForce8 cards using vertex-shader-read-from-texture. With this feature, the vertex array is allocated
and initialized once, and subsequent scatter passes simply read from the agent state texture as they are
scattered. Figure 2 illustrates the scatter operation.

Replacement (R)

Handling agent death is accomplished using a state flag. If set to dead, then the agent is simply
not updated, and not scattered during other phases. Using conditional branching, this test can be made
extremely efficient. For simple replacement, the position and attributes of the agent can be randomized
upon death, rather than killing off the agent. However, this strategy is not compatible with mating.
Therefore, we only implement the death aspect of replacement, and allow mating to create a dynamic
population.

Mating and Reproduction (M)

Agent replication is one of the most difficult aspects of any agent based model to implement
properly. Making it work on the GPU is one of the key difficulties inherent in realizing efficient models.
The basic problem is analogous to memory allocation. Given a new agent, we wish to place it within an
empty (dead) agent cell within the state texture. A simple sequential algorithm to perform this replication
is to traverse the set of all agents until an open space is found, then place the new agent into the first
available memory location. Unfortunately, this is not likely to perform well for any realistic models given
both the enormous number of agents, together with the enormous amount of replications per update.

Figure 3 Stochastic memory allocation process (a) initial state (b)
mapping (c) state after 1 iteration

(a)

(b)

(c)

 Further improvements on the basic sequential allocation technique are possible, using objects
such as freelists, but none of these are suitable for parallel allocation. In order to gain the necessary
amount of speed, we use a novel stochastic parallel allocation strategy. The key to this approach is to
relax the assumption that all allocations must succeed immediately. Agent replication is initiated by
setting a flag within the agent state texture that signals that the agent is gravid or about to reproduce (Fig.
3(a)). The basic goal of the allocator is to place each newly created agent into one of the empty cells. In
other words, it must match each gravid cell to a unique empty cell (Fig. 3(b)). This can be accomplished

56

by defining a random invertible map, from the agent state texture onto itself. For the purposes of the
GPU, a linear shift is sufficient. A single iteration of this technique with an offset of 3 is shown in Fig. 3.
In this iteration, the map “*” is successful while as the map “**” is unsuccessful (Fig. 3(a), Fig 3(c)).
Subsequent iterations with different offsets may solve this. As the number of iterations increases, the
probability of success quickly converges to 100%.

Pollution Formation and Diffusion (P &D)

 Implementing pollution once again requires use of the collision map. Assuming that the
concentration of the pollution is stored within a separate color channel of the world texture, it is possible
to blend the collision map together with the information contained in the agent state texture to add more
pollution to the environment. Pollution diffusion is handled using finite differences over the background.
Both processes can be carried out simultaneously within the world texture, and evaluated at the same time
as the environment growback.

RESULTS

 In our prototype implementation, we have achieved over 50 updates per second with agent
population size exceeding two million on an environment with a resolution of 2560x1024 with
visualization. Figure 4 shows a screen shot of the visualization. Figure 5 shows the scalability of our
system. We are able to freely interact with the simulation as it runs, and dynamically change model
parameters without any perceptible degradation in performance.

Figure 4 Sugarscape screen shot

 All simulations were carried out on a single desktop. The computer hardware consisted of AMD
Athlon 64 bit CPU with 1GB of main RAM running Ubuntu7.0 operating system. The graphics card is an
NVIDIA GeForce 8800 GTX. The total cost of the system is under $1,400.

57

0

50

100

150

200

2.
62

E+
05

5.
24

E+
05

1.
05

E
+0

6

2.
10

E+
06

Number of agents
U

p
d

a
te

s
p

e
r

se
co

n
d

Figure 5 Scalability

CONCLUSIONS

 We have successfully implemented an ABM simulation on the GPU. Our simulation runs entirely
on the GPU and takes full advantage of the ultra high memory bandwidth and computational power. To
the best of our knowledge, there are no single computer ABM frameworks that can deliver the
performance of our prototype system. We suspect that our prototype will outperform High Performance
Computing (HPC) clusters as well. Currently, statistics calculation is not implemented. However, we are
working on an algorithm that is based on image histogram generation, a topic well researched in computer
graphics [12]. While the simulation performance of GPUs is phenomenal, programming them is
completely counterintuitive. In the future we plan to develop libraries for essential ABM functions to ease
deployment of ABM simulations on GPUs.

REFERENCES

[1] Gilbert, N., Bankes, S., 2002, Platforms and Methods for Agent-Based Modeling, PNAS, 99(3) :7197–
7198.
[2] Quinn, M. J., Metoyer, R., Hunter-Zaworski, K., 2003, Parallel Implementation of the Social Forces
Model, in Proceedings of the Second International Conference in Pedestrian and Evacuation Dynamics
(August 2003), pp. 63-74.
[3] Scheutz, M., Schermerhorn, P., 2006, Adaptive Algorithms for Dynamic Distribution and Parallel
Execution of Agent-Based Models, Journal of Parallel and Distributed Computing, 66(8):1037-1051.
[4] Pharr, M., Fernando, R., 2006, GPU Gems2: Programming Techniques for High-Performance
Graphics and General Purpose Computing, Addison-Wesley Publishing.
[5]] nVidia, (2007), GeForce 8800 Specifications/Performance.
[6] Epstein, J. M., and Axtell, R. L., 1996, Growing Artificial Societies: Social Science From the Bottom
Up. MIT Press.
[7] Göddeke, D., 2005 , Gpgpu Tutorials - Basic Math, available at http://www.mathematik.uni-
dortmund.de/~goeddeke/gpgpu/tutorial.html
[8] Pharr, M., Fernando, R., 2004, GPU Gem 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, Addison Wesley.
[9] Kruger, J., Kipfer, P., Kondratieva, P., Westermann, R., 2005, A Particle System for Interactive
Visualization of 3D Flows, IEEE Transactions on Visualization and Computer Graphics, 11(6):744-756.
[10] Sheuermann, T., and Hensley, J., 2007, Efficient Histogram Generation Using Scattering on GPUs,
To appear in proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (SI3D
'07).

58

http://www.mathematik.uni-dortmund.de/%7Egoeddeke/gpgpu/tutorial.html
http://www.mathematik.uni-dortmund.de/%7Egoeddeke/gpgpu/tutorial.html

[11] Millán, E., and Rudomín, I., (2006), Impostors and Pseudo-instancing for GPU Crowd Rendering. In
GRAPHITE ’06: Proceedings of the 4th international conference on Computer graphics and interactive
techniques in Australasia and Southeast Asia, 49–55, New York, NY, USA, ACM.
 [12] Fluck, O., Aharon, S., Cremers, D., and Rousson, R., 2006, GPU Histogram Computation. In
SIGGRAPH ’06: 18 ACM SIGGRAPH 2006 Research posters, page 53, New York, NY, USA, ACM
Press.

59

60

EVOLUTIONARY MULTI-AGENT TEAMS FOR ADAPTIVE OPTIMIZATION

L. HANNA, Carnegie Mellon University, Pittsburgh, PA.
J. CAGAN,∗ Carnegie Mellon University, Pittsburgh, PA

ABSTRACT

This paper explores the ability of a team of autonomous software agents to deal with
changing optimization environments by evolving to use the most successful algorithms at
the points in the optimization process where they will be the most effective. The
communal agent team organizational structure employed in this work allows cooperation
of agents through the products of their work and creates an ever changing set of
individual solutions. An evolutionary approach is used, but evolution occurs at the
strategic rather than solution level. As an application of this work, individual solutions
will be tours in the familiar combinatorial optimization problem of the traveling
salesman. With a constantly changing set of these tours, the team, each agent running a
different algorithm, must evolve to apply the solution strategies which are most useful
given the set at any point in the process. As a team, the evolutionary agents produced
better solutions than any individual algorithm used.

 Keywords: Evolutionary agents, adaptive optimization, traveling salesman problem

INTRODUCTION

For many complex optimization problems such as combinatorial optimization problems,
exact algorithms and solution strategies for determining the optimal solution often don’t exist or
are so involved that they are only practical for specific applications under specific conditions. In
other words, it is very difficult to determine for each possible starting point in a highly multi-
modal design space, what is the best strategy for moving the solution closer to the global
optimum. The conditions that motivate using specific solution strategies, if they’re even known,
may change rapidly as the design space is traversed.

Thus we argue that solution strategies should evolve dynamically as conditions change,
i.e., as new solution states are discovered during the optimization process, the best strategies may
be employed at the correct time to achieve maximum improvement of individual solutions.
Evolution is not a new concept, but the use of evolutionary processes on the solution strategies is
very different from typical genetic algorithms where genetic operators reproduction, mutation,
and selection are usually applied to the solutions. Here, the solution strategies are recombined,
altered, and removed through these genetic operators based on their success in improving
solutions.

However, in order to ensure that a globally superior solution is obtained, evolving
strategies should also be organized and coordinated in such a way that the design space is
explored in as many promising directions as possible when new solutions are presented. The

∗ Corresponding author address: Jonathan Cagan, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA.

15213; e-mail: cagan@cmu.edu.

61

idea of cooperation of strategies for design space exploration, in addition to their evolution for
maximum effectiveness, has led to the assertion that strategies should be embodied in
independent, autonomous software agents, which evolve at a population level to determine the
best solution strategy for a given set of solutions but also cooperate to more thoroughly explore
the design space.

The evolution of agents, representing solution strategies, at a population level is a rather
unique concept. Grefenstette (1992) explored the evolution of solution strategies for predator-
prey scenarios, but with the goal of producing a single ‘super strategy’ from the evolution of a
population of strategies (a strategy consisting of a set of decision rules) which could then be
applied to the predator-prey scenario (which was the simulated to determine the fitness of
individual strategies). Our aim is to evolve an efficient team of agents. Because of the
constantly changing set of solutions, the presence of agents in the team which run inferior
strategies, even in diminished numbers, strengthens the performance of the entire team: again, no
one agent can accomplish what the team as a whole is capable of.

TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) was chosen as an application for the proposed
framework because it is such a well known and straightforwardly defined problem, though the
goal of this work is not to present an algorithm which solves the TSP better than any other
algorithm thus far. The objective of the TSP is, given a set of cities and a cost function for each
pair of cities, to find the round trip tour with the lowest cost that visits each city once and only
once. For the problems we will explore in this paper, the cost, or distance, function between
cities is a ‘pseudo-euclidean’ function described by Padberg and Rinaldi (1987).
 Though more successful algorithms have been developed (the reader is referred to
Applegate et. al (2006) and Laporte (1992) for descriptions of the best known and most current
algorithms), for this work only a few have been chosen in three categories of algorithms,
construction, improvement, and reduction. Construction algorithms are so named because they
take, as input, an incomplete or partial tour and return either a complete tour or a longer partial
tour after adding cities in a predefined manner. For this study three simple and straightforward
construction algorithms, nearest insertion, farthest insertion, and arbitrary insertion, were used
(Golden et.al. 1985). Improvement algorithms, as their name would suggest, improve an existing
partial or complete tour by rearranging the order of the cities in the tour based on different rules.
There were three improvement algorithms used in this study, 2-Opt (Bentley, 1990), 3-Opt
(Syslo et. al 1983), and a simple mutation. Reduction algorithms break down complete tours into
partial tours. In this work, two very basic reduction algorithms are employed. The first of these
is random reduction, which involves simply randomly removing a random number of cities in the
tour. Best partial reduction, the second reduction algorithm, returns the best partial tour (the tour
with the shortest average leg length) containing half of the total number of cities in the same
consecutive order as the original tour.

62

METHODOLOGY

Evolutionary Agents

To perform genetic operations such as crossover and mutation, individuals in an evolving

population are most easily represented by binary strings. The binary string defining an
individual agent in the evolving team of the proposed framework represents the decisions the
agent will make in its lifetime. We argue that decisions should be the primary element of an
agent’s genetic makeup because autonomy, the ability of an agent to make decisions on its own
without being told what to do, is essential to the definition of an agent (Wooldridge et. al. 1995;
Sachdev 1998). For the particular application of the TSP, agent decisions were defined as
follows:

1. From what memory will a tour be chosen,
2. Which tour from that memory will be worked on,
3. How will the chosen tour be worked on (i.e. which algorithm will be run), and
4. Where (which memory) will the new tour be put once work is completed on it.

Thus, the genetic string of each agent consists of four binary chromosomes identifying these

properties (see Figure 1). The choice methods define the characteristics of a tour which an agent
will choose, i.e. if the agent will choose the best tour, the worst tour, be biased towards better
tours, or be biased towards worse tours. The significance of the memories will be discussed in
the next section.

Figure 1 Structure of proposed evolving agent genetic string

Agent Organization: Creating an Evolutionary Multi-Agent Team

The agent system architecture developed is similar to the asynchronous team architecture

developed by Talukdar, et. al. (1998) in that it incorporates the idea of shared memories, which
allow agents to cooperate indirectly by providing a place for agents to present their work so that
it is visible and available to others. However, in those systems the characteristics of each agent
and the rules for their relationships to the memories are specified a priori (Sachdev 1998; De
Souza 1993). In the proposed system the agent-memory cycles are evolved by including input
space and output space decisions in the agents’ chromosomal representations (toMemory and
fromMemory). For the specific application of the Traveling Salesman Problem, only two
memories were used: one for partial tours (tours that do not contain all of the cities) and one for
complete tours. The tours in these memories evolve over time through the genetically
determined actions of the agents, rather than through recombination and mutation within the

63

population of solutions as would occur in a typical genetic algorithm (Grefenstette et. al. 1985;
Potvin 1996).

ALGORITHM DESCRIPTION

Our proposed Evolutionary Multi-Agent System (EMAS) algorithm simulates temporal

asynchrony by dividing the overall process into discrete iterations. Each iteration, all agents
undergo activation, at which point they make decisions and perform actions based on their
genetic sequence. After all agents have been activated, reproduction occurs, in which parents
are selected and new agents are created. Reproduction and activation both involve a simple
operator for mutation. Finally, the agent community undergoes selection, where the weakest
individuals are removed from the population. In this section, each of these important functions is
discussed in detail.

Mutation

In the proposed framework, mutation is used for two purposes. The first purpose,
common to most evolutionary and genetic algorithms, is to make the system more stochastic –
mutation allows a more thorough exploration of the design space for individuals by introducing
randomness into their creation. In the proposed framework individuals are also mutated when
they are not being successful. This secondary mutation is a way of allowing individual agents to
adapt to an environment by trying new decision methods, achieving diversity by variation. Both
types of mutation are random, meaning that a single randomly chosen bit is altered in the binary
gene.

Activation

Each iteration, all agents are activated. Activation of an agent consists of verification that

it is able to work (some memory-algorithm combinations are incompatible, i.e. construction
cannot be performed on a complete tour) and simulation and testing to determine if it will make a
positive difference. Simulation is an important step: agents will not place a solution they know
will decrease the average solution quality into their destination memory. This keeps the quality
of solutions in the memory high (i.e. keeps the average tour length low). As stated earlier, if an
agent is unsuccessful, i.e. unable to improve the average solution quality, after three tries, the
agent undergoes mutation. If an agent is successful in coming up with a solution that increases
the average solution quality, it then inserts the new tour into its destination memory. A flowchart
of agent activation is shown in Figure 2.

64

Figure 2 Flowchart of agent activation

Fitness

A key principle in both selection and reproduction is the concept of fitness. It is often

difficult to establish a meaningful method for deciding who should live and reproduce and who
should not. Thus, before going into detail on the procedure for reproduction and selection, it is
important to establish the method of evaluation of individuals. In the proposed framework, the
indication of an agent’s success is embodied in its score. Score is based both on the amount of
improvement made by the agent to the average solution quality in its destination memory and the
number of times it has been activated (its ‘age’). When agents mutate, their score is reset to zero
but their age remains the same.

65

Reproduction

After activating each agent in an iteration, agents with a score above zero are paired up as

parents and allowed to reproduce. Each agent may only reproduce once in an iteration, and
during reproduction is subjected to crossover with a randomly assigned partner at a single
random crossover point. The resulting two children each have a 50% chance of being mutated.
After they are created, the children agents are activated.

Selection

When new agents are added through reproduction, the worst agents are selected from the
population to be eliminated, keeping the population size constant. Selection begins by sorting
the agents by score from lowest to highest. Agents with the same score are then sorted by age,
the oldest on the bottom and the youngest on the top. Once sorting is complete, agents are
removed from the bottom of the list until the population is back to its original size.

RESULTS

Though our primary goal in this work was not to develop a method for solving TSP to
optimality, the quality of the solutions reached by the evolutionary team of agents proposed in
this work was very good compared to the performance of the individual algorithms on their own.
The solution quality reached by our Evolutionary Multi-Agent System (EMAS) algorithm were
consistently better than those reached by the other base algorithms and hybrid algorithms (a
priori designated construction algorithm followed by improvement algorithm).

The base construction algorithms nearest and farthest insertion always produce the same
final optimization solution for a given starting city, so running these algorithms for each of the
starting cities is a good measure of the average effectiveness of each of these base algorithms.
Similarly, the same starting tour will always lead to the same final optimization solution after
running any of the base improvement algorithms presented. Though the random order of city
addition in arbitrary insertion makes the final tour different even for the same starting city,
testing each starting city still provides a good estimation for the effectiveness of this algorithm as
well. Thus, for the 48-city problem, EMAS was run 48 times (100 iterations each time) and
compared to the solutions resulting from running construction algorithms from each starting city
and then running improvement algorithms on the resultant tours. Table 1 clearly indicates that,
on average, the solution quality produced by the EMAS algorithm is much better than any of
these hybrid algorithms. Similarly, the histogram in Figure 3 shows that the majority of
solutions reached by the EMAS algorithms were within 1% of optimal, whereas only two of the
other hybrid algorithms had any solutions at all in that range.

66

Table 1 Mean and standard deviation of hybrid algorithms compared to EMAS algorithm for 48-
city problem

Figure 3 Histogram of 48-city problem comparing best solution consistency of EMAS to that of
hybrid algorithms

 The consequence of this increased quality of solutions was computation time. Because
EMAS involves running several of the base algorithms each iteration, it is expected that the
amount of time required to reach the solutions generated is much higher. A single run of 3-Opt
on any individual starting tour for ATT48 would take less than a second, whereas a single trial of
EMAS run on ATT48 for 100 iterations takes an average of around 8 seconds. As mentioned
earlier, however, it doesn’t matter how many times this algorithm is run on the same starting

Algorithm Mean (% from Optimal) St. Dev. (%)

3-Opt+NI 3.27 2.67
3-Opt+FI 3.47 1.52
3-Opt+AI 3.08 1.32
2-Opt+NI 9.61 2.32
2-Opt+FI 6.68 1.1
2-Opt+AI 6.09 2.06
EMAS 0.68 0.61

67

tour, it will always produce the same final tour, which as we have just shown for the base
algorithms (construction only and improvement only) is usually worse than the result of the
EMAS algorithm. We show in Table 3, however, that even running the same number of
algorithms as would be run during a single trial of EMAS (10 algorithms * 100 iterations) in
random order without employing the evolutionary aspect of the EMAS algorithm will still result
in worse solutions.

Table 2 Comparison of EMAS to randomly generated algorithm activation order for ATT48
(Averages of 50 trials)

 Mean (% from Optimal of
average tour in Complete

memory)

St. Dev.
(%)

Avg. Time
(sec)

1000 Randomly Ordered Algorithms 4.83 0.354 2.45
EMAS 4.38 1.66 8.33

SUMMARY AND DISCUSSION

The results present a convincing argument for the evolution of agents in a team at the
population level. Decisions have likewise proven to be a useful genetic property of agents in
such an evolutionary setting. The evolutionary teams evolved to generate better solutions than
the base algorithms alone. We have also shown that the strength of the EMAS algorithm lies in
its ability to evolve the best team each iteration. Evolution and activation within this team
results in solutions that are better than simply running the same number of algorithms randomly
on a similar set of solutions. We thus argue that the use of evolutionary agents to determine the
best solution strategies dynamically is a strong approach to adaptive optimization.

We have also begun to test this strategy with a much larger, 532 city TSP with even
better results in terms of solution quality. In so doing we have identified patterns in how the
EMAS algorithm allocates types of agents throughout its run. We hypothesize that we can take
advantage of such patterns to improve run time in future work.

Acknowledgements

This research was sponsored by the Air Force Office of Scientific Research, Air Force

Material Command, USAF, under grant number FA95500710225. The U.S. Government is
authorized to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of AFOSR or the U.S. Government.

68

REFERENCES

Applegate, D.L., R.E. Bixby, V. Chvatal, and Cook, W.J. 2006. The Traveling Salesman

Problem. Princeton University Press, New Jersey, USA.
Bentley, J.L. 1990. “Experiments on Traveling Salesman Heuristics,” Proc. 1st Annual ACM-

SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA. pp. 91-99.
De Souza, P.S. 1993. “Asynchronous Organizations for Multi-Algorithm Problems” Ph.D.

Dissertation, Carnegie Mellon University, Department of Electrical and Computer
Engineering.

Golden, B.L. and W.R. Stewart, 1985. “Empirical Analysis of Heuristics,” in The Traveling
Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys, eds.
John Wiley.

Grefenstette, J.J., R. Gopal, B.J. Rosmaita, and D. Van Gucht. 1985. “Genetic Algorithms for the
Traveling Salesman Problem”. Proc. 1st Int’l Conf. on Genetic Algorithms. pp. 160-168.

Grefenstette, J.J. 1992. “The Evolution of Strategies for Multi-Agent Environments”. Adaptive
Behavior 1 (1) pp. 65-89.

Laporte, G. 1992. “Traveling Salesman Problem: An Overview of Exact and Approximate
Algorithms”. European Journal of Operational Research. Vol. 59, no. 2, pp. 231-247.

Padberg, M. and G. Rinaldi. 1987. “Optimization of a 532-city symmetric traveling salesman
problem by branch and cut.” Operations Research Letters 6, 1-7.

Potvin, J. 1996. “Genetic Algorithms for the Traveling Salesman Problem”. Annals of
Operations Research, Vol. 63, no. 3. pp. 337-370.

Sachdev, S. 1998. “Explorations in Asynchronous Teams” Ph.D. Dissertation, Carnegie Mellon
University, Department of Electrical and Computer Engineering.

Syslo, M.M., N. Deo, and J.S. Kowalik, 1983. “Discrete Optimization Algorithms with Pascal
Programs,” Prentice Hall, Englewood Cliffs, NJ.

Talukdar, S., L. Baerentzen, A. Gove, P. De Souza. 1998. “Asynchronous Teams: Cooperation
Schemes for Autonomous Agents”. Journal of Heuristics, 4. 295-321.

Wooldridge, M. and N.R. Jennings. 1995. “Intelligent Agents: Theory and Practice” The
Knowledge Engineering Review 10 (2), 115-152.

69

70

THE EL FAROL BAR PROBLEM AND COMPUTATIONAL EFFORT:
WHY PEOPLE FAIL TO USE BARS EFFICIENTLY

WILLIAM RAND∗, Northwestern University, Evanston, IL

FORREST STONEDAHL, Northwestern University, Evanston, IL

ABSTRACT
Does how much an agent thinks about its own actions affect the global properties of a
system? We use the El Farol Bar Problem to investigate this question. In this model, the
El Farol Bar represents a scarce resource. Does the amount of computational ability that
agents possess affect resource utilization? For instance, if agents attend the bar randomly
on average 50 people will go to the bar. On the other hand, if agents act as neoclassical
economics suggest, its not clear what the average attendance at the bar will be, but in this
paper we will argue that it will also be near 50. In Arthur’s original model, he showed,
using a simulation involving an ecology of strategies, that the average attendance of the
bar converged to 60. Fogel et al. gave their agents more computational power and let
them use a evolutionary algorithm; they showed that the average attendance at the bar
was 56, not 60. If we examine these four results of (1) random agents, (2) perfect agents,
(3) Arthur’s agents, and (4) Fogel et al.’s agents, we can ask whether there is a
relationship between computational effort and attendance at the bar (e.g. the utilization of
a public resource). To investigate this question we look at a model where we can control
the computational power that each agent has to predict the attendance each week.

 Keywords: machine learning, agent-based modeling, El Farol Bar Problem, genetic algorithms

INTRODUCTION

 Truly adaptive agents are one of the promises of agent-based modeling, but they are
rarely used. This is particularly surprising since adaptation is one of the advantages that many
people list as a reason to use ABM instead of other modeling techniques. When Holland (1995)
discussed complex adaptive systems (CAS) and their relationship to ABM in Hidden Order, he
devoted an entire chapter to adaptive agents, and specifically mentioned internal models as one
of the mechanisms that define a CAS, and one of the most classic agent-based models, the El
Farol Bar Problem, utilized adaptive agents.

In 1994, Arthur posed a problem he called the El Farol Bar Problem. The El Farol Bar is

in Santa Fe, New Mexico and on Thursday nights it plays Irish music. There are 100 people in
Santa Fe who like Irish music, but if more than 60 of them attend the bar then the bar is too
crowded and no one enjoys the bar. If everyone attends the bar randomly, i.e. each Thursday
they flip a coin to decide if they should attend, then the bar will be underutilized since on
average 50 people will go to the bar. In other words, if the agents spend no computational effort,
the bar is underutilized. On the other hand, we could consider what would happen if the agents
act as neoclassical economics suggest and each agent does their best to predict the attendance of
the bar (i.e. uses an infinite amount of computational effort). In this case, there seem to be two
possible results, either (1) each agent predicts exactly the same attendance at the bar, in which
case every agent will either go to the bar or stay home, or (2) since there is an infinite number of

∗ Corresponding author address: William Rand, Northwestern Institute on Complex Systems, 600 Foster Street,

Evanston, IL 60208-4057; e-mail: wrand@northwestern.edu.

71

ways to predict the next number in a finite sequence each agent will have a different prediction;
assuming that half of these predictions are that the bar will be crowded and half that it will not be
crowded, then half of the ‘neoclassical’ agents will go to the bar, and half will stay home. In
either case the average attendance at the bar will be 50, and the bar will be underutilized.

Arthur (1994) suggested a third model. He gave each agent a ‘bag of strategies’ that they

could use to predict the bar attendance and every week the agents used the strategy that would
have worked the best had they used it in the previous weeks. Arthur showed, using a simulation,
that the average attendance of the bar using this ‘ecology’ of strategies wound up being 60 and
thus under this model the bar was maximally used. At the end of his paper, Arthur speculates
that if he had used an evolutionary algorithm instead of the ‘bag of strategies’ technique that the
results would have been similar.

Fogel et al. (1999) decided to take up Arthur’s challenge and re-ran the El Farol

simulation but allowed each agent to use an evolutionary algorithm with 10 strategies that
evolved over 10 generations each week. Fogel et al. showed that in their model the average
attendance at the bar was 56, not 60. The agents were doing better than random, but the
attendance was not at 60, as Arthur had originally suggested.

If we examine these four results of (1) random agents, (2) perfect agents, (3) Arthur’s

agents, and (4) Fogel et al.’s agents, we see that there is a different amount of computational
power being employed and a different average attendance at the bar. Is there a relationship
between computational effort and attendance at the bar (e.g. the utilization of a public resource)?
We will investigate this question in this paper. We begin by examining some related background
to the question at hand. From there we pose a possible hypothesis and postulate what it would
entail. We then build a model to test this hypothesis, where we can control the number of
evaluations that each agent carries out each week (i.e., the amount of computational power given
to each agent). We explain how this model fits within our general framework for agent-based
modeling and machine learning, and we discuss the design of this model. We then present the
results of an experiment where we varied the computational effort of each agent. Finally we
conclude by discussing these results within the larger context of adaptive agents, and the trade-
off between computational effort and resource utilization.

BACKGROUND

Arthur’s original paper (1994) was more concerned with critiquing neoclassical
economics than it was with investigating the particular properties of the El Farol Bar Problem.
However, his research still represents one data point in our investigation into how computational
power affects resource utilization. Fogel et al.’s extension (1999) of Arthur’s work was more
concerned with questioning the stability of the attendance at the bar and how randomness and
evolution of strategies affected the long-term dynamics of the El Farol Bar Problem. Still this
work has also started to answer the question of how computational ability affects resource
utilization. Wolpert et al. (2000) examined how to automatically configure agents to best utilize
a bar. Whereas we are interested in how computational capabilities affect the overall
performance of the system when the agents do not care about the overall resource utilization,
Wolpert et al. take a more engineering approach to the question at hand, and design a system that
attempts to optimally utilize the bar. There has been other work on the El Farol Bar Problem
(Edmonds, 1999) and its refined version, The Minority Game (Challet et al., 2005), but the
relationship between computational power and resource utilization is rarely investigated.

72

HYPOTHESIS

Our relationship of concern is the correlation between computational power and resource
utilization. Though the connection between these two variables may be impossible to discover in
general, we can begin by investigating it within the scope of the El Farol Bar Problem. As we
laid out in the introduction, there are four data points that we already have to help us investigate
this relationship. The first is random agents, which result in an average attendance of 50. The
second is neoclassical agents, which we argue will result in an average attendance of 50. The
third and fourth data points are Arthur (1994) with an attendance of 60 on average, and Fogel et
al. (1999) with an attendance of 56 on average. How exactly to relate these to computational
power is difficult, but clearly random agents possess the least computational power, since they
do no computation except flipping a coin, and neoclassical agents possess the most
computational power, since they are assumed to have infinite resources. The results from Arthur
and Fogel et al. both fall somewhere between these two extremes. If we think of computational
resources as the number of evaluations that we allow each agent to perform on its pool of
strategies with the current history of attendance then we can actually quantify this resource. In
Fogel et al.’s case this is easy. Each agent runs an evolutionary algorithm each week in which it
evaluates 20 strategies (10 parent strategies and 10 child strategies) for 10 generations, resulting
in 200 evaluations. In Arthur’s case this is more difficult since he does not specify how many
strategies each agent has in his original paper, but he lists as example numbers of strategies, 6,
12, and 23. Since Arthur’s model does not create new strategies and just evaluates the extant
strategies, then we can use 6, 12, or 23 as an approximation to the number of evaluations
Arthur’s agents carry out each week. Regardless Arthur’s agents use less computational
resources each week than Fogel et al.’s but more resources than the random strategy. We can
graph these (rough) data points on a figurative plot (see Figure 1).

 In Figure 1, there is a line representing a possible relationship between the number of

strategy evaluations and the average attendance at the bar. This line is a hypothesis, but it is a
reasonable hypothesis. The general reasoning is that if the agents have too little computational
power then their behavior is essentially random. However, if the agents have too much
computational power then their predictions start to resemble each other. Since the number of
data points that the agent is using to evaluate each strategy is small (usually around 10), there is
only so much data that the agents possess. As a result, after a certain point additional refinement
of strategies does not result in an improved prediction. If agents were able to remember which
strategy they had used in the past and make sure and choose a different strategy then the results
might be different, but in the current model if the agents have found a strategy which correctly
predicts the previous attendance then they will stay with it regardless if the same strategy failed
them in the past. As a result, in the end the strategies of all agents will start to look similar. The
more similar the agents’ strategies look, the more likely all of the agents are to take the same
action. In the extreme, if all agents take the same action then each week they will all go to the
bar or all stay home, assuming they stay home or go to the bar with a uniform probability, this
will result in an average attendance at the bar of 50.

On the other hand, if the agents are boundedly rational, and only possess a limited

amount of computational power their strategies will likely be very different from each other.
This will result in each agent choosing a strategy that works fairly well, but if also likely to be
different than the other agents. This will create the ‘ecology’ of strategies that Arthur discusses.
Given limited computational power it is unlikely that the agents will find an optimal strategy for
the past n weeks and thus they will all converge to suboptimal solutions. The hypothesis

73

expressed by Figure 1 is that this heterogeneity of solutions in boundedly rational agents will
result in some agents attending but not all of them.

FIGURE 1 Computational Resources vs. Average Attendance.

 To investigate this hypothesis we examined the El Farol Bar Problem with a group of
agents where we could control the number of evaluations that each agent carried out each week.
Before we get to the details of how this experiment was carried out, we will examine how we
placed this model within the larger ABM-Machine Learning framework that we previously
developed (Rand, 2006).

 FRAMEWORK

At a high level, ABM and Machine Learning (ML) (Mitchell, 1997; Hastie et al, 2001)

utilize fairly simple algorithmic structures to control their flow of operation. Roughly these
algorithms can be described as: initialize the system, observe what is happening, refine the
system, take actions, and repeat until time is up. As a result it is easy to examine how these
systems can be integrated. Let us use the El Farol Bar Problem as an example.

 Arthur’s original model included a simple ML technique in it. In Arthur’s model all the

agents had a group of strategies. They would take this set of strategies and see which strategy
would have done the best of predicting the bar attendance if they had used it in the past. Since at

74

each time step a new data point is generated it is possible that the actual strategy from the group
of strategies that each agent will use can change at every time. This is a very simple ML
technique. Initialize the population of strategies by generating some random strategies, like take
last week’s attendance double it, subtract the third to last week’s attendance from last weeks, or
take a running average of the last three weeks attendances. Then at each time step the algorithm
observes how the strategies have done on the current set of training data, i.e. the previous bar
attendances. After that, the algorithm refines the internal model by selecting the best strategy
given the new data. Finally the algorithm acts on the strategy that reflects the refined model and
repeats. As Arthur speculated (1994) and Fogel et al. showed (1999), the original El Farol Bar
algorithm of a ‘bag of strategies’ could be replaced by another standard ML technique.

We wanted to make use of a different ML technique than the one Arthur described.

There are many different ML techniques and there is no obvious best technique, but partially
since it was originally suggested in Arthur’s paper, we decided to investigate the use of an
evolutionary algorithm, and employed the genetic algorithm (GA) as originally devised by
Holland. As we have mentioned, Fogel et al. had previously explored a similar technique within
the El Farol Bar Problem. The GA makes sense in this context because it has the ability to create
a fairly robust time series predictor (by doing simple regression) and it is similar to Arthur’s
original technique, in that it considers a population of solutions, evaluates them, and decides
which strategy to use. In addition the GA is often described as manipulating schemata and thus
may be similar to the human process of induction (Holland et al., 1986) which is what Arthur’s
original model was intended to emulate. As a result of all of these factors we chose the GA.

We then placed the original El Farol Bar Problem and the GA within the context of the

Integrated ABM-ML cycle that we had previously described (Rand, 2007). The result is
illustrated in Figure 2.

75

FIGURE 2 The El Farol Bar Problem and a GA within the context of the Integrated ABM-ML
cycle.

EXPERIMENT

We used the framework description from Figure 2 to guide the development of an
implementation of the El Farol Bar Problem in NetLogo (Wilensky, 1999). Similar to Fogel et
al. (1999), we used an auto-regressive (AR) model, whereby a strategy consists of a list of real-
valued numbers; these numbers are weights (in a weighted linear combination) that are used in
predicting the attendance at the bar, based on attendance in previous weeks. Specifically, for a
given strategy S with AR coefficients (w0, w1, ... wL), where L is the number of preceding weeks
considered when predicting attendance, we have the following prediction formula:

In this equation, p(t) is the prediction for the attendance at week t, and a(t – i) is the

actual recorded attendance at week (t – i). For our experiment, we fixed L at 10 weeks. Each
agent had its own population of 10 strategies (initialized with weights drawn uniformly at
random between -1.0 and 1.0), which we evolved over time using a real-valued genetic
algorithm. Our model differs from Fogel et al. (1999) in several ways. Fogel et al. created
offspring solely through asexual reproduction – each of the weights in the parents’ strategy was

76

mutated by adding a zero mean Gaussian random variable with standard deviation 0.1. While
our simulation also used this method for mutation, mutation was not the primary genetic
operator. Each weight was mutated only with probability 1 / (2L). Instead, staying closer in
form to the simple genetic algorithm (Holland, 1975), our primary genetic operator was
crossover, whereby two parent strategies (lists of weights) are split and recombined to form new
offspring. Fitness evaluation for a strategy consisted of measuring the sum of the prediction
errors, if the strategy had been employed for the last L weeks. Each agent uses 2L weeks worth
of attendance history, so that it can perform this evaluation. Specifically, the fitness of strategy S
at current week t is defined as:

In this equation, we employed a linear error function where any error is weighted equally.

This differed from Fogel et al., who used squared error for fitness, biasing selection toward
strategies that do not make egregious errors. In order to evaluate fitness in early weeks, we
provided “false” historical data – that is, a(-1), a(-2), ... a(-L) were each initialized to random
numbers between 0 and 100. We used a strictly generational GA, where a generation of 10
parents is replaced by 10 children in each generation, whereas Fogel et al.'s method evaluates 10
newly created children and 10 parents from the previous generation and chooses the 10 best
strategies to create the next generation. Finally, we used tournament selection with a tournament
size of 3.

The primary goal of our initial experiment was to examine the relationship between
society-wide resource utilization (formalized as the bar attendance) and the amount of
computational effort expended by the agents (formalized as the number of generations of
strategy evolution the agents were allowed per week). Whereas Fogel et al. (1999) fixed the
number of generations per week at 10, we allowed this parameter to vary from 0 to 20. Note that
in the 0 generations per week case, no evolution is occurring at all. In this case, each agent has
only a fixed set of 10 strategies to choose from, which is, in some respects, similar to Arthur's
model (1994). We ran the model for 500 weeks per run and carried out 30 runs for each
parameter setting. Fogel et al. found that the behavior of his system reached a “steady-state” of
chaotic oscillation after 100 weeks, so our choice of 500 weeks seemed sufficiently large.

In several details, our experimental set up has deviated from that of Fogel et al., and it is
important to note that we are not attempting to exactly replicate their experiment or results.
However, by investigating the same problem and using a similar strategy representation, our
work is comparable to theirs, and differs mainly in some particular details of the evolutionary
algorithm, which Fogel et al. admitted were chosen somewhat arbitrarily. Thus despite these
differences, a secondary goal of our experiment was to determine if our results support the
general findings of the prior work by Fogel et al (by showing them to be robust despite variations
in the general evolutionary algorithm).

RESULTS AND DISCUSSION

For each run, we measured the attendance at the bar in each of the 500 weeks. Since the
early weeks could be skewed by the random initial conditions, we decided to concentrate on the
attendance behavior during the last 100 weeks of each run. The first metric we examined was

77

the mean attendance, as this was the quantity focused on by previous work (Arthur, 1994, Fogel
et al., 1999). This is shown in Figure 3.

FIGURE 3 The mean (over 30 runs) attendance at the bar in the last 100 weeks versus the
number of generations evolved each week. Standard error bars are shown.

 Fogel et al., using 10 generations of evolution per week, found a mean attendance of
56.32. Our result for 10 generations per week was 56.52. The difference between these values is
on the border of statistical insignificance, and given that we made several differing choices in our
experimental setup, we feel our results support the previous findings of Fogel et al. Furthermore,
our model exhibited the same non-convergent oscillations around the mean, found by Fogel et al.
In addition, as we noted above, the 0 generations-per-week case is similar to Arthur's model of
bounded rationality. However, as shown in Figure 3, even without evolution, our mean
attendance was only 57.69, falling well short of Arthur's predicted convergence around 60.

While making comparisons to previous results is interesting, our primary goal, which was

not investigated by Fogel et al. (1999) and Arthur (1994), is to determine the effect on mean
atttendance of varying the amount of computational effort given to agents, i.e. the number of
generations-per-week. Figure 3 generally supports the hypothesis that we explained earlier. As
we increase the computational power of the agent, the average attendance at the bar decreases.
As can be seen in Figure 3, the difference between consecutive points on the x-axis is not
always statistically significant, but the general downward trend is statistically significant. As we
explained previously, one possible explanation is that as the amount of computational power

78

increases the agents’ strategies start to converge, which drives down the average attendance at
the bar. Thus Figure 3 lends some credence to this hypothesis but further work is required to
confirm this hypothesis. In future work, we plan to investigate the diversity of strategies being
employed across all agents.

 This result was interesting, but it also prompted us to question whether mean attendance
is the best metric to capture “resource utilization.” For instance, consider that there are two
qualitatively different attendance ranges – if 61 people attend the bar, then no one is happy,
whereas if 59 people attend the bar, then 59 people are happy. It is not clear that it makes sense
to simply average the values 59 and 61, when computing resource utilization. For this reason,
we defined a separate metric, which we shall call “societal benefit”, which is simply the number
of happy bar patrons per week. When the bar is overcrowded, the “societal benefit” for that
week is 0. We measured the average societal benefit across the last 100 weeks, and the results
are shown in Figure 4.

FIGURE 4 The average (over 30 runs) societal benefit in the last 100 weeks versus the number
of generations evolved each week. Standard error bars are shown.

Similar to Figure 3, the relationship is that resource utilization decreases as we increase
the amount of computational power given to the agents. The trend here is even more apparent.
Part of this trend is obviously due to the decrease in attendance at the bar, but that is not the
whole story. We know from the previous work of Fogel et al. (1999) that toward the end of the
run, the average bar attendance usually fluctuated wildly. One explanation for the decrease in

79

societal benefit might be that these fluctuations result in fewer people attending the bar when it is
below capacity. To investigate this hypothesis, we examined the standard deviation of the
attendance at the bar. Figure 5 illustrates the standard deviation of the mean attendance at the
bar over the last 100 weeks versus the number of generations of evolution per week. As can be
seen the standard deviation does increase as the computational resources increases – that is,
allowing the agents more time to evolve their strategies results in a greater amplitude of the
chaotic oscillation in attendance. This supports the idea that the population is fluctuating wildly
and that is why the societal benefit is decreasing. However, precisely why additional
computational resources causes an increase in the size of the fluctuations remains a subject for
further study.

FIGURE 5 The average (over 30 runs) of the standard deviation of the mean attendance in the
last 100 weeks versus the number of generations evolved each week. Standard error bars are
shown.

FUTURE WORK AND CONCLUSION

 These initial results are tentative, and there is more work that needs to be done to
substantiate the hypotheses that we have suggested. For instance, the number of generations per
week might not be the deciding factor that influences the societal benefit and the mean
attendance at the bar. Another possible factor is simply the total amount of evolution. For
instance, in the 5 generations per week case at week 500, each agent has undertaken 2500
evaluations, while in the 20 generations per week case at week 500, each agent has undertaken

80

10000 evaluations. One possible explanation is that the behavior of the 5 generations per week
case at week 500 is comparable to the 20 generations per week case at week 125. Initial
investigations indicate this is not the case, but additional verification is warranted. Investigating
the diversity of the final strategies employed by the agents would also help substantiate some of
the claims that we have discussed. Finally, it would be useful to look at the entire attendance
distribution histogram rather than just aggregate measures like means and standard deviations.

Still, we have begun to investigate what the relationship between computational power
and efficient resource utilization is. This experiment is a first step toward understanding if there
are general claims to be made about this relationship. These tentative results indicate that it
might be possible for simple machine learning algorithms to be given a limited amount of
computational power and still achieve an ecology of strategies that produces a greater resource
utilization than a more complex learning algorithm with greater computational power.

REFERENCES

Arthur, W. B. (1994). "Inductive Reasoning and Bounded Rationality." The American Economic

Review 84(2): 406-411.

Challet, D., M. Marsili and Y. Zhang (2005). Minority Games. Oxford, UK, Oxford University
Press.

Edmonds, B. (2000). “Gossip, Sexual Recombination and the El Farol bar: modeling the
emergence of heterogeneity.” Journal of Artificial Societies and Social Simulation. 2 (3).

Fogel, D. B., K. Chellapilla, et al. (1999). "Inductive Reasoning and Bounded Rationality

Reconsidered." IEEE Transactions on Evolutionary Computation 3(2): 142-146.

Hastie, T., R. Tibshirani, et al. (2001). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. New York, Springer.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, MIT Press.

Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity. Reading,

Massachusetts, Perseus Books.

Holland, J. H., K. J. Holyoak, et al. (1986). Induction, MIT Press.

Mitchell, T. M. (1997). Machine Learning, McGraw-Hill.

Rand, W. (2006). “Machine Learning meets Agent-Based Modeling: When no to go to a Bar.”

In the Proceedings of Agent 2006. Chicago, IL.

Wilensky, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-

Based Modeling. http://ccl.northwestern.edu/netlogo.

Wolpert, D. H., K. R. Wheeler, et al. (2000). “Collective Intelligence for Control of Distributed

Dynamical Systems.” Europhysics Letters. 49 (6), p.708.

81

82

Thursday, November 15, 2007

Toolkits Track
Parallel Track II

Toolkit Surveys

ANATOMY OF A TOOLKIT:

A COMPREHENSIVE COMPENDIUM OF VARIOUS AGENT-BASED MODELING

TOOLKITS ON THE MARKET TODAY

C. NIKOLAI*, University of Notre Dame, Notre Dame, IN
G. MADEY, University of Notre Dame, Notre Dame, IN

ABSTRACT

With so many toolkits available, the choice of which one is best suited for your project

can be overwhelming. Moreover, different communities of users prefer different aspects
of a toolkit. This paper is a survey of the toolkits that are available today and how they
compare to each other from a multi-stakeholder perspective. Our goal is to provide users

the ability to better choose a suitable toolkit based on the features abstracted from various
documentation and the first hand experiences of a broad range of communities of users
and compiled into an easy to use compendium. In addition, we expand the Agent Based

Modeling body of knowledge to include information about a breadth of characteristically
and historically diverse platforms.

Keywords: Agent Based Modeling and Simulation, Agent Based Modeling Toolkits,
Multi-stakeholder Community

INTRODUCTION

 Agent Based Modeling (ABM) toolkits are as diverse as the community of people who
use them. With so many toolkits available, the choice of which one is best suited to a project can
be overwhelming. Current toolkit surveys are helpful but are limited to four or five mainstay and
characteristically or historically similar platforms (Railsback et al 2006; Tobias et al 2004; Castle
et al 2006). Moreover, recent surveys are presented from the point of view and for the intended
audience of one or two communities of interest (Railsback et al 2006; Tobias et al 2004).
However, different groups of users prefer different and sometimes conflicting aspects of a
toolkit. For example, social scientists, who may have little or no programming experience are
concerned more with ease of use, the degree of programming skills required, and the inclusion of
intuitive interfaces to manage simulations. Many, in general, are not concerned about whether
the software is open source or restricted open source. To computer scientists, however, the type
of license that comes with the toolkit is a big consideration; they want the ability to “get behind
the scenes” of a toolkit and to have the programming flexibility to modify or extend the software
with third party applications if necessary. They also generally prefer saving execution time by
programming simulations themselves rather than using built-in interfaces. Teachers of ABM, on
the other hand, want packages that are easy to learn, that offer pedagogical insights, and that
provide the student with the ability to transition to more difficult and comprehensive toolkits in
the future.

 In this paper, we survey the current state of the art in ABM toolkits, and we compare
them to each other from a multi-stakeholder perspective. Our goal is to provide users the ability

• Corresponding author address: Cynthia Nikolai, Department of Computer Science and Engineering,

University of Notre Dame, Notre Dame, IN 46556; email: cnikolai@nd.edu.

87

to better choose a suitable toolkit based on the features abstracted from various documentation
and the first hand experiences of a broad range of communities of users and compiled into an
easy to use compendium. We use a combination of both scaled and quantifiable evaluations to
create a taxonomy of toolkits for each characteristic of interest. This is followed by a text
explanation of each feature, including how and why a feature is ordered in each paradigm. Some
of the characteristics we evaluate include supported platforms, programming language and
degree of programming skills required to create a model/simulation, major domains for which a
toolkit may be used, type of license the toolkit includes, ease of use and completeness/robustness
of a toolkit, the maximum number of agents supported, and the ability to extend a toolkit with
third party software. We also capture a history of the toolkits, explaining the influences that
united to produce them and how different parallel threads of the ABM community emerged over
time.

 This paper is structured as follows. In section I, we provide a short introduction to ABM.
This is followed in section II by a description of our methodology; In section III, we include a
preliminary compendium of taxonomies.

BACKGROUND

Agent based modeling is a framework for modeling a simulation based on creating a set
of autonomous objects, called agents or entities. An agent is “an abstract or physical
autonomous entity which performs a given task using information gleaned from its environment
to act in a suitable manner so as to complete the task successfully. The agent should be able to
adapt itself based on changes occurring in its environment, so that a change in circumstances will
still yield the intended result.”1 The goal of agent based modeling is to have a many simple
entities, by which we can discover the emergent behavior of a system. In this paper, we evaluate
the toolkits on the market today which use this framework for modeling and simulating agents.

METHODOLOGY

Goals

 We began this research by studying survey design techniques (Arsham 2002; Creative
Research Systems 2006; US GAO 1993; US GAO 1992; Walonick, 1997). First we outlined the
specific goals we hope to achieve through this survey so that we could identify our measurement
variables, and structure our question designs appropriately. The specific goals of this research
are:

1. to help multi-stakeholder users choose an ABM toolkit based on the characteristics
available

2. to compile a broader list than is available of toolkit characteristics into one easy to use
reference for users

3. to find out why type of classes of users are using each ABM toolkit
4. to ascertain what characteristics different communities of users when choosing an ABM

toolkit

1 there are many different and equally valid definitions of ABM, but for the purposes of this research, we will
choose this one. This one is an informal definition by G.W. Lecky-Thompson quoted in (Hermans 97).

88

Population Sample

Next we selected a sample population to achieve each of the goals. In order to achieve
goals 1 and 2, we have decided to contract a developer from each toolkit under consideration.
We have developed a specific survey for this group and this set of goals. (See appendix A for a
list of toolkits under consideration) In order to achieve goals 3 and 4, we have decided to sample
the users of each toolkit. We will sample about 5-10 users from each toolkit. We will achieve
this by contacting the user’s groups and/or the mailing list of the toolkits. We have developed a
specific survey for this group and this set of goals.

Data Analysis

In order to analyze the data, we will use three main analysis techniques: measures of
central tendency; measures of distribution, measures of association, and measures of causation.
In order to facilitate this, we have designed the survey questions to facilitate these types of data
analysis. For example, we have structured the survey with as few open ended questions as
possible. For most values, we have a list of qualified answers. We also have incorporated many
questions from an open ended format to a qualified, anchored scale.

Sources of Error and Countermeasures

The major sources of error in this research are various forms of biases that may be
inadvertently or intentionally introduced. In order to reduce inadvertent biases introduced in the
structure of the questions themselves or from the respondents, we researched and applied proven
survey design techniques that address exactly these issues (Arsham 2002; Creative Research
Systems 2006; US GAO 1993; US GAO 1992; Walonick, 1997). For example, we familiarized
ourselves with the population by reviewing the literature on the subject and talking with subject
matter experts. We specifically selected the sample populations and determined sample sizes to
eliminate biases and errors and be able to generalize to the population at large. We developed
the goals and identified corresponding measurement variables and then designed our questions to
evaluate the measurement variables and achieve our goals. We determined appropriate sample
populations and sample sizes. We also structured the questions such that we addressed the
limitations of each type of question to reduced its inherent biases. Some of the techniques we
used include writing clear questions, using syntax and linguistics to facilitate question
understanding and respondent recall, developing unscaled response lists, developing questions to
minimize question bias and memory error, tailoring questions to minimize respondent bias,
tailoring questions to minimizing measurement error, using odd numbered Likert scales to allow
for neutrality in decisions by the respondent, quantifying all scaled values, anchoring our scaled
lists, allowing escape choices for the respondent, including room for additional comments,
incorporating a pledge of anonymity, avoiding inappropriate questions and questions that do not
contribute to the goals, including an incentive, organizing the line of inquiry to maintain user
interest and avoid bias, categorizing topics by heading, using lists to avoid biases in memory
recall, qualifying the alternatives equally to avoid question biases, avoiding “yes” biases, asking
more specify questions at beginning and more broad question at the end of the survey, initiated
plans for follow-up for respondents and non-respondents, designing the questionnaire layout and
graphics to facilitate user satisfaction and interest in the survey, defining words that could be

89

construed in a non-standardized way or in a different context to facilitate standardization
interpretation of the questions, and finally pretesting the questionnaire to help validate our
survey.

In order to eliminate potential intentional bias, we only ask the developers to evaluation
their own toolkit; we let the user’s evaluate comparable toolkits on the market. However,
because the developers can be biased toward their own software, in order to validate answers to
these questions, we ask the users directly to evaluate important characteristics of the toolkit and
comparable toolkits on the market. In order to eliminate skewed sample data toward one or two
major platforms, we have chosen samples from each toolkit user’s group.

Data Validation

We will use current literature and expert opinion to validate developer and user
responses; we also will use information collected through open source channels and expert
opinion to validate the responses.

Potential problems noted

 The major potential problems we may encounter are low response rate. In order to reduce
non-responses, we plan to implement proven techniques to make the surveys easy, simple,
understandable, standardized, and pleasurable to the user. We also have included an incentive:
at the end of the collection period, we will have a drawing to give away three $20 gift certificates
to developers who respond to the survey. In addition, we will have a drawing for three $20 gift
certificates for users who complete the survey. We will attempt follow-up contacts with the non-
respondents per the survey design guidance. If we still do not have a response, we will try to fill
in the missing data as best as we can. A similar problem we may encounter is if people do not
answer questions or if answers to questions are unclear to the authors. In order to account for
missing data and information for which we need respondent clarification, we will attempt to
contact the individual, if follow-up contact has been authorized by the respondent.

Limitations

Some of the limitations of this research are that we have a relatively small sample size, so
the extrapolation may be less accurate for the entire population. There are general limitations of
survey data and of this form of questionnaire, which include missing data, non-responses,
question biases, memory biases, respondent biases, unstandardized interpretation of the
questions. Another limitation is that we assume that all toolkits written in different languages by
the same developers or development groups have congruent capabilities. For example, we
assume that anything one can do with the objective C swarm toolkit can also be implemented
with similar results in Java based swarm. In reality, there are subtle differences and nuances
between the two that may be important to users of the toolkits. Fourth, this survey is more of a
broad study of the ABM field rather than an in-depth study of one or two platforms. As such, we
do not go in depth for any one toolkit. Finally, the current list of important characteristics that
are being evaluated for each toolkit are based on current literature, which is has been geared
mostly toward the social science community.

90

Preliminary Results

Then we gathered and assembling as much information as possible on various toolkits
from open sources and documentation. Taking some the questions that are important based on
current literature (Railsback et al 2006; Tobias et al 2004; Castle et al 2006), we use the
following list of characteristics that commonly are traded off in choosing a toolkit. Some of
these characteristics include platforms supported, programming language required, degree of
programming skills required, ease of use, maximum number of agents supported, license
employed, ABM history/roots. Note that this list is not complete and may change as the
responses from our questionnaires direct. They simply are a starting point and a preliminary
point of validation for this research. (See appendices B-E for beginning taxonomies for several
characteristics)

Completion of the taxonomies and more in-depth explanations will follow when as we
obtain and validate results from our surveys. Note, in the final results, we also will include a full
representation of features for each toolkit in an easy to use matrix format that allows for quick
and comprehensive comparison of particular characteristics across different toolkits, or an
examination at all characteristics across one specific toolkit.

FUTURE WORK

Currently, we are in the pretest phase of the survey design. In the next step, we will
deploy our surveys, collect the responses, and start analyzing and interpreting the results.

CONCLUSION

Different communities choose a toolkit based on various sometimes conflicting and

contradictory aspects as other communities. In this work, we explore what aspects different
communities value in choosing a toolkit. We also survey the current capabilities of the toolkits
that are available today to help users choose an appropriate toolkit for their purposes. We
explore a breadth of the current state of the art, and we organize the information into a
compendium of taxonomies for easy access and comparison of features. When we complete the
work, we will include a tabular formulation of the results as well.

ACKNOWLEDGEMENTS

We are very grateful to Dr. Greg Madey, Tim Wright, Scott Christley, Ryan Kennedy,
Alec Pawling, Matt Van Antwerp, and Ying Zhoufor their contributions to this paper.

91

REFERENCES

Arsham, Hossein, 2002, “Questionnaire Design and Survey Sampling,” available at

http://www.sysurvey.com/tips/arsham.htm.

Castle, Christian J. E., and Andrew T. Crooks. 2006, “Principles and Concepts of Agent-Based

Modelling for Developing Geospatial Simulations,” Working paper 110, Centre for
Advanced Spatial Analysis, University College London.

Creative Research Systems, 2006, “Survey Design,” available at

http://www.surveysystem.com/sdesign.htm.

Hermans, Björn, 1997, “Intelligent Software Agents on the Internet: An Inventory of Currently

Offered Functionality in the Information Society and a Prediction of (Near) Future
Developments,” First Monday, Vol II No 3, available at
http://www.firstmonday.dk/issues/issue2_3/ch_123.

Railsback, S. F., S. L. Lytinen, and S. K. Jackson. 2006, “Agent-Based Simulation Platforms:

Review And Development Recommendations,” Simulation 82: 609-623.

Tobias, R., and C. Hofmann. 2004, “Evaluation of free Java-libraries for social-scientific agent

based simulation,” Journal of Artificial Societies and Social Simulation 7:1.

U.S. General Accounting Office, 1993, “Developing and Using Questionnaires,” GPO Access;

available at http://archive.gao.gov/t2pbat4/150366.pdf.

U.S General Accounting Office, 1992, “Quantitative Data Analysis: An Introduction,” GPO

Access; available at http://archive.gao.gov/t2pbat6/146957.pdf.

Walonick, David, 1997, “Survival Statistics,” StatPac, Inc, available at

http://www.statpac.com/statistics-book/index.htm.

92

Appendix A

Toolkits Under Consideration

ABLE
Act-R
Ada
Agent Development Kit
AgentBuilder
AgentKit
AgentSheets
AnyLogic
Ascape
Brahms
Breve
Cormas
Cougaar
DeX
DOMAR
ECHO
ECJ
iGen
ISAAC
JADE
JAS
JASA
JCA-Sim
jES
JESS
LSD
Madkit
MAGSY

MAML
Mason
MAS-SOC
Matlab
MIMOSE
Moduleco
NetLogo
OBEUS
openStarLogo
oRIS
Ps-I
Quicksilver
Repast
SDML
Sim++
SimAgent
SimBioSys
SimPack
SME
SOAR
StarLogo
StarLogoT
Sugarscape
Swarm
TeamBots
Vensim
VSEit
ZEUS

93

Appendix B

Programming Language Required

94

Appendix C

Domain Designed For

95

Appendix D

License Employed

96

Appendix E

History/Roots of ABM Toolkits

97

98

OUR SUMMER WITH REPAST:
FORGING A MODELING AND SIMULATION FOUNDATION

T.A. BERGEN-HILL, *MITRE Corporation, McLean, VA
M.T. MCMAHON, MITRE Corporation, McLean, VA

B.F. TIVNAN, MITRE Corporation, McLean, VA

ABSTRACT

The success of a large-scale agent-based model and simulation (ABMS) depends on
finding the right development tools for each phase of its development lifecycle. To that
end, the authors spent three months evaluating free agent-based modeling software, with
the goal of acquiring a tool set that would start with rapid prototyping and would progress
to parallel and distributed runs on a cluster-type computing environment. The products
we reviewed during this study include NetLogo, Repast J, Repast Simphony, and
ProActive. In this paper, we describe the efforts required to create and maintain various
models within each of these products, along with their respective strengths and
limitations. We present our results as a progression through a candidate tool set that will
serve as our foundation for upcoming ABMS efforts.

Keywords: Repast, NetLogo, ProActive, cluster

INTRODUCTION

During the development lifecycle of an agent-based model and simulation (ABMS),
different needs arise at each phase. Initially, a “quick-and-dirty” prototype is required to verify
the problem domain with the customer and to preview the simulation’s look-and-feel. After
feedback is received, what follows is the formulation of the model and a subsequent semi-robust
implementation. Once it is working sufficiently, providing reasonable results for a small input
set, the model is pushed to its computational limits and beyond, requiring the eventual use of
large-scale computational hardware. The success of the simulation depends on finding the right
development tools for each phase.

To that end, the authors spent three months evaluating free ABMS software, noting the
steps required to utilize each tool and to transition the simulation to another tool. The goal of
this research is to acquire a tool set that would start with rapid prototyping and would progress to
a system capable of parallel and distributed runs on a cluster-type computing environment.

Our requirements include the capability of deploying a prototype model developed on a

Windows workstation to a distributed-memory Linux cluster. In addition to investigating the
issues with cross-platform development (e.g., Windows workstation to Linux workstation), we
also discuss the issues with transitioning to parallel models (e.g., Linux workstation to Linux

* Corresponding author address: Tobin A. Bergen-Hill, The MITRE Corporation., 7515 Colshire Drive, McLean,

VA 22102-7539; e-mail: tbergenhill@mitre.org.

99

cluster). Using the parallelism terminology found in North and Macal (2007), the initial goal for
the cluster capability is “coarse-grained” parallelism, i.e. a parameter sweep for a trade study or
objective function analysis for parameter optimization (Fujimoto 2000, Lin 1994). The eventual
goal is a “fine-grained” parallel simulation, i.e., the use of separate processes within the model
itself.

In this paper, we describe the efforts required to create and maintain various models
within each of these toolkits, along with their respective strengths and limitations. We note
which products have the ability to co-exist in a simulation. Where there are conflicts or issues,
we investigate whether the problems are intrinsic to the tool itself or whether they stem from the
ongoing development of the tool. We present our results as a progression through a candidate
tool set that will serve as our foundation for upcoming ABMS efforts, and we discuss the
decisions made for selecting the tools. Our hope is that others within the modeling and
simulation community who are at the initial stages of a project and who have considered any of
these tools can benefit from our experience and recommendations, and that they can apply our
template to make their project a success.

Related Work

One of the more similar efforts we’ve found is the HLA_GRID_Repast system from a

consortium led by the University of Birmingham (Zhang et al. 2005). As a system for executing
large-scale distributed ABMS over the Grid, it is definitely relevant. However, we did not want
to be bound by a single protocol for network communication nor by a specific target system.
We’re seeking a flexible framework that allows us to choose the network protocol for the
situation and to run on a variety of operating systems and hardware configurations.

Another similar effort is the MACE3J testbed. According to Gasser and Kakugawa
(2002), it is designed for multiple granularities of parallel execution and can run on a variety of
work stations. We recognize that MACE3J is a likely candidate for further evaluation; however,
our time constraints for a related, development project restricted the number of toolkits that
would receive detailed attention.

RESEARCH

 Seeking a progression of toolkits that would lead us from prototype to a massively
parallel ABMS, we reviewed multiple existing tools across different development environments
and systems. We started with the list of free toolkits cited in the ABMS text by North and Macal
(2007), and narrowed it down to a handful of candidates. Before presenting our review notes,
we’ll briefly discuss our approach to simulation parallelization.

Parallelization Approach

When refactoring a simulation to a distributed architecture, there are numerous tradeoffs

to consider. In a shared-memory parallel (SMP) environment, threads can utilize shared memory
to exchange data. But in a distributed-memory implementation, agents don’t have access to
shared memory and must have an explicit communication facility, which yields model design

100

overhead as well as runtime communications overhead. Also, the spectrum of parallelization
granularity ranges from trade study/parameter sweeps (e.g., batch mode) to simulation-level
granularity (e.g., HLA integration) to fine-grained distribution of a single agent. The most
suitable level of granularity again is a factor of the desired quantity of network communications
verses computational power.

In our investigation, we have kept in mind general parallel design approaches (Buyya

1999): partitioning of a model, inter-process communications, mapping to the hardware, and
agglomeration of results. In the modeling and simulation domain, this general approach distills
to determining, for a given model, the best approach to partitioning that model in a manner
which diminishes run-time overhead (communications), while still enabling distribution across
processors in a cluster environment. We describe our partitioning scheme in the Findings section
of this paper.

Product Review

The products we reviewed during this study include: NetLogo 4.0 beta, Repast J v3,
Repast Simphony Alpha 2, and ProActive v3.2.1. A summary of our notes can be found in Table
1 below. The rest of this section expands on the strengths and limitations of these toolkits. To
help contrast the simulation architecture of each toolkit, we provide a comparison of different
demonstration models in Appendix A: Demo Model Comparison.

Table 1 Toolkit Comparison Chart.

Toolkit Strengths Limitations
NetLogo • Easy-to-use language

• Java interface
• 2D & 3D display

• Not meant for large scale
simulations

• No multithread support
• No distributed simulation support
• No batch run support

Repast J • Handles medium-scale numbers
of agents

• Contains several useful
simulation classes

• 2D display
• Supports multithreaded events
• Supports distributed batch runs

• Designed for single host execution
per run, not for distributed
simulation

• No 3D display
• Made obsolete by Repast Simphony

Repast S • Handles medium-scale numbers
of agents

• Contains several useful
simulation classes

• 2D & 3D display

• Still in development
• No distributed simulation support
• Bound to only one development

environment (Eclipse)
• Currently cannot function with

101

• Supports multithreaded events ProActive in a distributed fashion

ProActive • Supports distributed processes
(and consequently large-scale
simulations)

• Minimally intrusive API
• Configure distribution through

XML file

• No simulation architecture
• No visualization capabilities
• Clutters the command line
• Makes debugging difficult

The selection of these toolkits over others warrants explanation. One toolkit similar in

purpose and structure to Repast is Swarm (Minar et al. 1996); however, we chose to review
Repast because of its availability in Java and because of our familiarity with Repast. We also
selected NetLogo to review instead of StarLogo (Colella et al. 2001) because of our existing
proficiency with NetLogo and because of NetLogo’s ability to interface with native Java 1.5
applications.

NetLogo

An ideal rapid-prototyping toolkit for ABMS is NetLogo (Wilensky 1999). We started
with version 3.1.4 and migrated to version 4.0 beta 5 halfway through the summer. NetLogo has
many strong points. Its script language is easy to use, which is no surprise given that it was
originally developed for educational purposes. It features a “Java extensions” interface that links
the NetLogo script with external Java routines. The display, which is essential to understanding
and debugging the simulation, can switch between 2D and 3D, although the simulation is based
on a 2D grid. And there are over 150 models that come with the distribution, to serve as
examples.

As a prototype tool, NetLogo is not meant for large-scale simulations. There is no
support for multi-threading natively in NetLogo, only through farming the work to threaded Java
code. Similarly, NetLogo is not set up to support distributed simulations; its HubNet feature is a
form of participatory simulation meant for human interaction, not high performance computing.

Repast J

Repast, or the REcursive Porous Agent Simulation Toolkit, is a medium-scale ABMS

toolkit that has various forms (North et al. 2006); for our study, we focused on Repast for Java
(Repast J) and Repast Simphony (Repast S). Repast J provides an execution environment with
an optional GUI for controlling the execution and monitoring of the simulation. It features
several useful simulation classes including a discrete-event scheduler, representation of the
model space, batch-mode utility classes, and a built-in 2D visualization capability. For agent
representations, Repast J has no explicit agent class, but it does offer adaptive behavioral tools.

For our purposes, we used a subset of the Repast J classes:

- SimModelImpl: This is a partial implementation of the SimModel interface, through
which Repast drives the simulation. Each Repast simulation must provide a SimModel
subclass.

102

- Schedule: This serves as a discrete-event scheduler. The simulation can specify the order
in which events (or “actions”) are executed.

- BasicAction: All simulation events inherit this interface class in order to be stored and
executed by the scheduler.

- SimInit: This class is responsible for loading and executing the model, with optional GUI
controls or batch mode operation.

- DistributedSimInit: This experimental stand-in for SimInit uses ProActive to distribute
batch runs of the model across a given set of hosts.

- Random: This class encapsulates CERN’s Colt random number utilities. An instance of
this is placed in SimModelImpl, and the seed can be either generated from a timestamp or
explicitly specified for reproducibility.

Both versions of Repast feature a scheduler that supports concurrent actions, simply by

specifying a non-zero duration argument. But there are no constructs to support a distributed
simulation, only distributed batch runs. The Parameter Wizard makes it easy to specify
parameter sweeps for batch runs. It produces a parameter file, which can be passed in on the
command line arguments to the SimInit class. SimInit will run the model in batch – but in serial
fashion, not simultaneously.

To perform simultaneous distributed batch runs, Repast-J provides an undocumented
mechanism that utilizes ProActive. DistributedSimInit establishes the virtual nodes from the
ProActive descriptor and creates RemoteBatchController instances on each virtual node. The
HomeController class tells the group of RemoteBatchControllers which model to instantiate and
run; it also hands them the parameters to use for that run. We’ve noted how to run simultaneous
batch runs in Appendix B: Simultaneous Multi-Host Batch Runs In Repast J.

Repast S

Currently in the alpha stage of development, Repast Simphony is a complete redesign of
the Repast toolkit. As described by North and Macal (2007), “the Repast S runtime is designed
to include advanced features for agent storage, display and behavioral activation, as well as new
facilities for data analysis and presentation.”

Repast S makes use of configuration files (model.score and scenario.xml) to specify the
roles of the classes in a simulation model. As stated in its preliminary documentation, the central
class is the Context, which organizes the agents, denotes the relationships of its members
(through “projections”) and holds numerical data in data layers. There is also the
ContextBuilder, which does the work of storing information in the Context. The configuration
files identifies the ContextBuilder, the agent classes, and which Context to use.

Of the toolkits reviewed, we encountered the most platform-related issues when working

with Repast Simphony and Eclipse, the development environment to which Simphony is tied.
The case of the file names, ISO encoding of data files, and use of Java annotations (e.g.
@override) created compile and run-time issues on Linux systems. Also, Simphony binds us to
a specific Java version; on Fedora Core 5, SELinux inhibits the use of Sun’s Java. Most
importantly, though, is the different packaging used for the platform-independent distribution of
Repast Simphony versus Windows, which uses the intrinsic Eclipse packaging system. Luckily,
we found workarounds to these issues to allow us to continue research.

103

When integrating the ProActive toolkit into our Repast Simphony simulation, we

experienced interference from the Repast Simphony runtime environment – something that we
didn’t encounter with Repast J. First, in order to allow third party JAR files to be used, we had
to place them within the directory containing the repast.simphony.core package, and we had to
explicitly add the names of the JAR files to that package’s manifest and build properties. (With
Repast J, it was sufficient to include the JARs in the ProActive descriptor’s class path variable.)
Second, when we configured the simulation to spawn separate processes with their own JVMs
from within the simulation, any serialized application-level class that is passed to these processes
results in an exception. The spawned Repast S process cannot resolve the temporary ProActive
“stub” class. (The Repast J spawned processes had no problems with class resolution.) Finally,
we could not locate the means for activating code upon simulation end. This is required in order
to properly clean up the ProActive processes. While the ModelInitializer interface provides a
“hook” that is activated upon startup, no such “hook” exists for shutdown – even overriding
Object.finalize() did not work.

We also attempted to investigate the batch run capability of Repast Simphony on a Linux
environment. But, following the instructions provided in the Alpha release, we were
unsuccessful. Again, we anticipate that the next release will hopefully address these issues.

ProActive

As described by Baude et al. (2006), ProActive is “a Java-based middleware

(programming model and environment) for object and component oriented parallel, mobile and
distributed computing.” It provides a minimally intrusive interface to managing distributed
object instances. Consequently, it does not have any built-in simulation architecture or
visualization capabilities, which makes it an ideal supplementary package to Repast.

To distribute an object, the application uses a ProActive method to turn it into an “active
object” which can then be placed on a specified host, or “virtual node”. The application interacts
with the object through the normal method calls, as long as the arguments to the methods can be
serialized. Return values from objects cannot be immediately accessed, since they are only
proxies to the value. The application can check whether the proxy’s value has arrived prior to
accessing it.

The main configuration file for ProActive applications is called the Descriptor (or PAD),
because it describes which machines are available and how many JVMs to run on each. It also
describes the class path for the spawned processes. The file is not quite platform independent;
on Windows machines, none of the specified paths should contain any spaces.

To support load balancing, ProActive provides the means to migrate active objects
between virtual nodes. There is a fair amount of overhead to each active object, however. For
large-scale simulations that need to migrate agents, an alternative is to make the agent
serializable instead of an active object. Then the agent can be passed between virtual nodes
using regular method invocations.

Running a ProActive-enabled application requires the use of extensive scripts that
configure environment variables, add many JAR files to the class path, and JVM command-line
arguments. Consequently, debugging a ProActive application within an IDE (such as NetBeans

104

or Eclipse) is difficult because all these run-time parameters must be reproduced. We have yet to
be successful in using a debugger with ProActive.

Both distributions of Repast come with ProActive file. However, this version is not
current. In the case of Repast-J, which includes ProActive classes within its JAR file, this causes
problems on Linux with NetBeans: when specifying the JAR files in the Libraries section of
NetBeans, ProActive.jar must appear above repast.jar in order to use the more recent version.

FINDINGS

From the set of toolkits reviewed, we have found two potential paths of progression for

an ABMS, as illustrated in Figure 1. The “current” path reflects what is possible with the current
state of the toolkits; it is a complete progression from prototype to a large-scale distributed
simulation. The “future” path is based on promised capabilities from the Repast Simphony
development team.

Figure 1 ABMS Development Progression Paths.

Current Path

Using the toolkits in their current state, we have had success with the following
progression of development:

• Stage I: Prototype in NetLogo
• Stage II: Pure Java
• Stage III: Repast J simulation
• Stage IV: Distribute simulation via ProActive

The next few sections discuss the transition between these states.

Stage I to Stage II

Current Path

Future Path

NetLogo Manual
Java Port

Repast J ProActive

NetLogo ReLogo Repast S ProActive

Pr
ot

ot
yp

e

D
is

tri
bu

te
d

105

Going from NetLogo script to Java code is currently a manual process. Initially, this
process can start by using Java extensions from within the NetLogo script for key components of
the simulation’s business logic. But to go completely to Java, the NetLogo representations of
turtles and patches require a Java counterpart, along with the visualization and event loop. The
turtle classes will require movement methods, and both the turtles and patches will need
NetLogo-like query operations. It turns out that the turtle classes become the simulation’s agent
classes.

It is debatable whether it is necessary to put the simulation into an intermediate pure Java
form, or whether to go directly to using the Repast J classes. It is easier to debug the
simulation’s logic when in pure Java. However, the port will produce temporary classes that end
up being replaced by their Repast J counterparts (e.g. schedule, visuals, and terrain). Working
directly in Repast will prevent redundant work.

Once the port is complete, the NetLogo prototype can still be developed, as long as the
changes are tracked and reproduced on the Java side. But at some point, modifications must stop
flowing down.

Stage II to Stage III

Adapting a Java simulation to the Repast-J framework is relatively straightforward
because the requirements are minimal:

- Provide a subclass of SimModelImpl with the begin() and setup() methods overridden
- Schedule events using the Schedule and BasicAction classes
- Fire a stop event when the simulation has finished

Repast J does not have an agent interface class, so there are no restrictions on the agent
representation.

With regards to visualization, the simulation could use the 2-D visuals provided by
Repast J. In order for agents to be rendered, the agent class must implement the Drawable
interface. Also, the SimModelImpl subclass must create some representation of the model space
(e.g. Object2DTorus), a DisplaySurface and an Object2DDisplay. Alternatively, the simulation
could use a third-party visualization toolkit, such as Java3D. We chose to use Java3D because
there are certain advantages to having the viewpoint at the agent level (e.g. obscuration of field
of view affecting agent logic).

Another reason to use a separate visual toolkit is to prepare the simulation for a
distributed, batch run. The results can be logged to data files and replayed through the visuals.
If there’s a need to see the visuals during the simulation run, then a communication link can be
established between the Repast process(es) and the visual process. But this will introduce a
performance penalty.

Stage III to Stage IV

Going to a distributed framework is the most difficult transition to make because of the
impact on the simulation’s architecture. The simulation engineer must determine how to

106

partition the execution across different machines while keeping the amount of network traffic to
a minimum. The initial impulse is to make the agents themselves become separate processes; but
if the agents require constant communication with its neighbors, the overhead of the supporting
network communications will outweigh any benefit to be had by distributing the simulation.

Instead, we recommend that the engineer work at a larger level, deciding how to carve
out large pieces of the simulation that can operate nearly independently, which we’ll call a
“domain.” Each domain will be responsible for managing all agents within an area – in the same
process. To address the boundary condition problem - e.g., when an agent travels between
domains – we can learn from parallel battlefield simulations and define the domains
geographically (Nicol 1988). Each domain should also write its results to a uniquely named log
file. When running on a cluster environment, we recommend writing to a file on the local file
system. Otherwise, the cost of writing to a NFS-mounted drive negates the performance benefits
of distributed processing.

Since the SimModelImpl subclass cannot be serialized and passed to the domains,
another class is required to act as a coordination object. Domains would send any needed run-
time statistics to the coordination object (in addition to logging data locally); however, this
should be kept to a minimum because it is a major performance bottleneck. Domains can also
notify the coordination object when they’ve finished, which can signal Repast J that the run has
ended.

When the simulation begins, the following should occur within the SimModelImpl
subclass’s begin() method:

- Read in the PAD file
- Activate the virtual nodes
- Create the domains as a ProActive group, using the list of available virtual nodes
- Create the coordination object as an active object and pass it to the domains
- Schedule an action whose execute() method performs the following:

o Check with the coordination object to see whether the domains have finished, and
if so, fire a stop event

o Display statistics (if enabled)
o Update the domains
o Schedule another action

Once the simulation ends - either because the domains indicated that they have finished,

or because the user presses the stop button - a stop event will be triggered. The SimModelImpl
subclass needs to handle this event by cleaning up the ProActive active objects and killing all the
JVMs on the virtual nodes.

After the simulation has been outfitted with ProActive, it must be tested to make sure the
functionality has been preserved. We recommend using the following progression of PAD files:

- One virtual node that is using the same JVM as the Repast application
- Multiple virtual nodes that are using different JVMs but on the same host as the Repast

application
- Multiple virtual nodes, each on a different host

107

The final step is adding the ability to perform simultaneous batch runs using Repast J and

ProActive. For details on how to accomplish this, see Appendix B: Simultaneous Multi-Host
Batch Runs In Repast J.

Future Path

Based on the limited information we’ve heard about the next release of Repast Simphony,
we anticipate that the following progression will be possible:

• Stage I: Prototype in NetLogo
• Stage II: ReLogo
• Stage III: Repast Simphony simulation
• Stage IV: Distribute simulation via ProActive

The next few sections explain the transitions between these states.

Stage I through Stage III

Our speculation is that Repast Simphony will be packaged with a utility dubbed
“ReLogo”, which will parse NetLogo script and turn it into Repast Simphony Java code. This
will make obsolete the manual process of converting NetLogo to Java from the “current” path.
The anticipated release of ReLogo is November 2007.

Stage III to Stage IV

As in the “current” path, the process of outfitting a Repast simulation with ProActive
constructs is still performed manually. The intent was to demonstrate at summer’s end the
ability to run a Repast Simphony simulation in a distributed fashion. However, we were unable
to successfully invoke methods on active objects that reside in a separate JVM (either on the
local host or a remote host).

The test application we used is a modified version of ProActive’s n-body simulation. We
added the minimum constructs necessary to convert it to a Repast S simulation. For detailed
steps on this procedure, see Appendix C: Repast Simphony – ProActive Integration Notes.

NEXT STEP

While we are content with using the “current” path as a template for our ABMS work, we

look forward to the streamlined process featured in the “future” path. We hope to see the
ReLogo mechanism in the next release of Repast Simphony, and we hope to solve the issues
preventing ProActive from reaching its full potential in Repast S.

We wish to explore other ideas to reduce the work involved. Since the use of ProActive
centers on properly configured descriptor files, we would like to construct a tool to compose and
generate PAD files. Another improvement would be to write a better parameter sweep
mechanism in Repast that would vary parameters while running on different groups of hosts; this

108

would require removing the group name as a parameter and providing it through some other
means of input. This custom parameter sweep could also support varying multiple parameters
per run, going beyond what is provided in Repast. We are also seeking ways to incorporate
ProActive constructs in a semi-automatic fashion, perhaps as custom hooks within the ReLogo
conversion process.

REFERENCES

Baude F., L. Baduel, D. Caromel, A. Contes, F. Huet, M. Morel and R. Quilici, 2006,

“Programming, Composing, Deploying for the Grid”, GRID COMPUTING: Software
Environments and Tools, pp. 205-229, London, England: Springer-Verlag.

Buyya, R., 1999, High Performance Cluster Computing, Volume 1, Architectures and Systems,

NJ: Prentice Hall.

Colella, V. S., E. Klopfer, M. Resnick, 2001, Adventures in Modeling: Exploring Complex

Dynamic Systems with StarLogo, New York, NY: Teachers College Press.

Fujimoto, R.M., 2000, Parallel and Distributed Simulation Systems, New York, NY: Wiley And

Sons

Gasser, L. and K. Kakugawa, 2002, MACE3J: Fast Flexible Distributed Simulation of Large,

Large-Grain Multi-Agent Systems, The First International Joint Conference on
Autonomous Agent and Multiagent Systems, Vol. I, pp. 745-752, New York, NY: ACM
Press.

Lin, Y., 1994, Parallel independent replicated simulation on a network of workstations,

Proceedings of the Eighth Workshop on Parallel and Distributed Simulation, pp. 73-80,
New York, NY: ACM Press.

Minar, N., R. Burkhart, C. Langton, and M. Askenazi, 1996, The Swarm Simulation System: A

Toolkit for Building Multi-Agent Simulations, Working Paper 96-06-042, Santa Fe, NM:
Santa Fe Institute.

North, M. and C. Macal, 2007, Managing Business Complexity: Discovering Strategic Solutions

with Agent-Based Modeling and Simulation, New York, NY: Oxford University Press.

North, M.J., N.T. Collier, and J.R. Vos, 2006, "Experiences Creating Three Implementations of

the Repast Agent Modeling Toolkit," ACM Transactions on Modeling and Computer
Simulation, Vol. 16, Issue 1, pp. 1-25, New York, NY: ACM Press.

Nicol, D.M., 1988, Mapping a battlefield simulation onto message-passing parallel architectures,

Distributed Simulation, pp. 141-146, San Diego, CA: Society for Computer Simualtion
International.

Wilensky, U., 1999, NetLogo, Evanston, IL: Center for Connected Learning and Computer-

Based Modeling, Northwestern University.

109

Wilensky, U., 2002, NetLogo Mousetraps model,
http://ccl.northwestern.edu/netlogo/models/Mousetraps, Evanston, IL: Center for
Connected Learning and Computer-Based Modeling, Northwestern University.

Zhang, T., G. Theodoropoulos, R. Minson, S. Turner, W. Cai, X. Yong, and B. Logan, 2005,

Grid-aware large scale distributed simulation of agent-based systems, European Simulator
Interoperability Workshop (Euro-SIW) paper 05E–SIW–047, Toulouse, France.

APPENDIX A: DEMO MODEL COMPARISON

The comparison of various demonstration models distributed with the toolkits can be
found in this appendix. These examples supplement the discussion of the toolkits found in the
Product Review section.

NetLogo MouseTrap

One model that comes with three of the toolkits is the MouseTrap simulation, which
originally came from the Swarm toolkit (Minar et al. 1996). The version for NetLogo (Wilensky
2002) is simply represented by three functions:

- setup: resets the traps (i.e. the patches) and the balls (i.e. the turtles)
- go: controls the triggering of the traps and introduction of new balls
- move: move the ball in a random direction up to a specified maximum distance

Repast J MouseTrap

The Repast-J representation of MouseTrap takes the form of three classes:

- MouseTrapModel: a subclass of SimModelImpl. This class manages the simulation,
houses the simulation space and display, and tracks the current number of active balls.
The begin() method constructs the model out of MouseTrap classes. During the run, its
scheduleTrigger() method schedules a TriggerAction for each trap that fires.

- MouseTrap: the representation of the “agent”. The trigger() method randomly chooses
which neighboring traps are triggered by the balls launched by the trap, passing them to
the model’s scheduleTrigger() method.

- TriggerAction: a subclass of BasicAction, this holds a reference to a MouseTrap instance.
The execute() method triggers the trap and updates the display.

Repast S MouseTrap

The Repast S representation of MouseTrap includes the following core classes:

- MouseTrap: This is the agent representation, as designated in the model.score file. Its
trigger() method is similar to the Repast J version.

110

- MouseTrapsCreator: This is the ContextBuilder for the demo and is designated as such in
the model.score and scenario.xml files. It creates a grid projection for the context and
fills it with MouseTrap agents. It also adds a data layer to the grid projection.

- TrapInitializer: This ModelInitializer subclass triggers the first trap. The scenario.xml
file identifies this as the model’s initializing class.

- TrapTrigger: Implementing the IAction interface, this class is similar to the
TriggerAction class in the Repast J version.

ProActive n-Body

Unfortunately, there was no MouseTrap simulation that came with ProActive. Instead,
we’ll use an n-body simulation to demonstrate how a ProActive ABMS is structured. Below is a
description of the main classes used in the n-body simulation:

- Domain: This class manages each Planet in the simulation, calculating the forces exerted
on it by its neighbors. It relies on distributing the resulting sum to all other Domains (and
their planets). It then notifies the Displayer to update the planet’s position. This is one of
the “active objects” in the simulation.

- Start: This class reads the PAD file and activates the virtual nodes, then creates the
Displayer, the Planets and their Domains. It launches the Domain processes on the
virtual nodes, using the ProActive group construct. When the Domains finish the
specified number of iterations, they notify this class.

- Displayer: Acting as a wrapper for the planetary display, this class is handed to each
Domain by the Start class. Like the Domain, this is also an active object.

- Planet: This is the “agent” of the n-body simulation, and has several physical properties
to regulate its motion.

APPENDIX B: SIMULTANEOUS MULTI-HOST BATCH RUNS IN REPAST J

This appendix discusses how to utilize Repast J and ProActive to perform simultaneous

batch runs. The main difficulty is to prevent each run (which itself uses multiple hosts) from
executing on remote hosts that are currently executing other runs. To accomplish this, the
DistributedSimInit class can be used in combination with a special parameter sweep:

1. Make multiple virtualNode mappings in the XML file:
- “remote”: these are the nodes that will have the SimModelImpl subclass
- “WorkersN”: these are the groups of nodes that will perform the work; N is the number of

nodes in the “remote” group

2. Add a property: vnMapping; this will indicate which virtual node mapping for the model
to use for its workers

3. Define a property sweep file where the inner-most sweep is the vnMapping property;

have it cycle through the different WorkersN values.

4. In the model’s main() method, have it instantiate a DistributedSimInit class. Call its
open() method giving it the PAD filename, the model class name, and the sweep file.

111

Since vnMapping is a parameter that is being swept, and since the sweeping mechanism

only varies one parameter per run, the same parameters will be run across all workers sets, which
limits its usefulness. However, each run will use a different random seed, though – based on
time.

HomeController creates a persistent DataWriter, but does not specify its file name. After
all the batch runs occur, it tells DataWriter to write the current time at the end of the file; since
the filename is null, the exception occurs. To work around this, create a DataRecorder in the
model’s begin() method. This will automatically set the filename of DataWriter, so when the
batch runs finish, no exception will be thrown, and everything is cleaned up properly.

APPENDIX C: REPAST SIMPHONY – PROACTIVE INTEGRATION NOTES

The following notes reflect the steps needed to incorporate Repast Simphony and ProActive into
an ABMS. They are geared towards a Windows environment.

- Repast S (and Eclipse) must be stored in a path that does not have spaces in it. For
example: c:/program files/RepastS will cause problems with ProActive, but
c:/projects/RepastS is fine.

- Create a new project in Eclipse according to the write-up

- In the model.score file, point the Base Path at ../../repast_workspace/PROJECT_DIR

- Add attributes only to the model.score file; nothing else is required by RepastS

- Have the main model file inherit ContextBuilder, and provide a build() method

- To the project, add external libraries for ProActive:

o Right-click on the project and choose Build Path->Add External Archives...
o Browse to the ProActive directory and add the following:

 ProActive.jar
 ic2d.jar

o Repeat and browse to ProActive/lib and add the following:
 xercesImpl.jar
 bouncycastle.jar
 javassist.jar
 jsch.jar
 log4j.jar

o Repeat and browse to ProActive/lib/components and add the following:
 fractal.jar

o Copy these ProActive JARs to RepastS/repast.simphony/repast.simphony.core/lib

o Add fractal.jar, xercesImpl.jar and bouncycastle.jar to the RepastS runtime
component

112

o In Eclipse, locate the repast.simphony.core project and open the MANIFEST.MF
file

o Of the various tabs for the manifest, choose Runtime
o In the Classpath section, click New... then enter lib/your_lib.jar and click OK.
o NOTE: This will add it automatically to the MANIFEST.MF file as well as the

build.properties file
o In Eclipse, open the plugin_jpf.xml file in the repast.simphony.core project
o At the end of the <runtime> section, add a line for your JAR file, e.g.:

 <library id="your_lib" path="lib/your_lib.jar" type="code" />

- Add a PROJECT.launch file to your project
o Click on the pull-down menu for the Run button and choose Run...
o Select the "SimpleHappy" run configuration and click the Duplicate button
o Rename it to your project
o On the Arguments tab:

 Set the Program Arguments to "../../repast_workspace/nbody/scenario.rs"
(without the quotes)

 Set the VM Arguments to "-
Djava.security.policy=file:c:/projects/proactive/scripts/proactive.java.polic
y" (without the quotes)

 [Note: adding -
Dlog4j.configuration=file:c:/projects/proactive/scripts/proactive-log4j
actually prevents the log from appearing in the console]

o On the Common tab, click the Browse button next to "Shared File" and choose
your project

o Click the Apply button, then Close

This will allow you to run the simulation with a single virtual node running on the local JVM.
When the active objects are placed in a different JVM, the active objects are created without
problems. But when an active object is passed from the main process to the other process,
ProActive throws a ClassNotFound exception. The error still appears even when the application
classes are explicitly added to the classpath section of the PAD file.

113

114

Emerging Toolkits

ADAPTIVE SIMULATION: A COMPOSABLE AGENT TOOLKIT FOR WAR GAME
ADJUDICATION

D. DUONG, ∗ US Office of the Secretary of Defense

ABSTRACT

The Office of the Secretary of Defense/Program Analysis and Evaluation
Simulation Analysis Center is exploring war games and war game adjudicators, to
improve its ability to analyze irregular warfare. Adaptive simulation is a
suggested technique of composing simulations of cause and synchronizing them
through connections found in correlational studies. This toolkit of composable
simulations will be a hybrid of agent based models and fuzzy rules, that may be
used to adjudicate war games or play them without humans in the loop (HITL). It
may be used in an adaptive, quick turnaround modeling process in which models
are quickly assembled upon HITL moves that can adjudicate moves based on a
consensus of social theories.

 Keywords: Agent Toolkit, Agent Based Simulation, War game, Constraint Satisfaction,

Social Simulation, Computer Adjudication, Irregular Warfare, Fuzzy Systems

INTRODUCTION

The factor that is most significant to the type of computer analysis used on a war game is the
factor of how adjudication is performed. If the all of the moves of the game are expressed in the
computer, and the computer adjudicates all of the moves, then the computer may be able to play
the game on par or superior to human players using game trees. Such a game can be entirely
automated and analyzed by computer, and needs no human play. On the other hand, if humans
adjudicate, or the computer adjudications are ignored because of “psychological” moves that are
not adjudicated by computer, then the computer can learn from the moves of the humans in the
loop (HITL), but statistically significant analysis is more difficult to obtain. The X-game, the
extended game played by in the office of the secretary of defense to test irregular warfare
strategies in the global war on terror (Dunlap 2007), is more of the later case. This paper
presents a methodology for using computer technology to make the X-game more like the former
kind of game, thereby bringing it into the horizon of analysis

In a war game, someone or something has to make an educated guess on how groups of persons
will behave in situations. Subject matter experts (SMEs) would use heuristics on classes of
persons to make generalizations. SMEs are not able to walk out the individual choices that
humans would make to the degree that a computer could, but are more flexible in interpreting
the meanings of events and applying heuristics in context. A better computational ability to draw

∗ Corresponding author address: Deborah Duong, OSD/PA&E SAC1401 Wilson Blvd., Suite 300, Arlington,

VA22209. email: Debbie.duong.ctr@osd.mil

117

a picture of the social environment by walking through the implications of social actions would
enable a full automation of analysis, without the need for HITL. Full automation would allow a
complete statistical analysis of the robustness of strategies, as well as support the discovery of
new strategies through data farming and data mining the results. Short of improved technology,
duel analysis can be done, on both human and computer adjudicated games.

Advantages that Computer Adjudication has over SME Adjudication

Besides the obvious advantage of saving human resources, being around when SMEs may not be
able to, and achieving a statistically significant number of runs, computer simulation can do a
number of things that SMEs find difficult. Agent based computer simulation gives the same
advantage that war gaming itself gives to analysis: the ability to walk problems through. A SME
will tend to use heuristics to generalize about the attitudes of citizens, rather than walk through
their individual reasons, choices, and actions. Agent based simulations allow individual
behaviors to be walked through, so that the higher order effects of those behaviors are calculated.
Macro effects of micro actions are the forte of agent based simulation.

It has been said that we only have a tactical understanding of irregular warfare, making the
macro effects of micro actions the central mystery of irregular warfare science. Studies have
shown that SMEs have great difficulty in predicting how populations will react to events. This is
because social science does not have good theories of micro macro integration. Agent based
simulation can help develop theories of how micro actions effect macro level social phenomena
in irregular warfare scenarios. If there is no reliable way to connect the micro actions of warfare
to macro social attitudes, then walking out the micro actions of irregular warfare in the X-game
becomes of questionable use.

Many adjudications of the X-game could have been more accurate and less frustrating if agent
based simulation was used instead of a spreadsheet adjudicator. For example, participants could
not adjudicate comprehensive effects across national boundaries well, and international effects
were the purpose of including very many nations in the game. X-game participants divided
their assignments into individual countries without sufficient crosstalk, because complexity at
that level is hard for individuals to think about, and takes computer simulation to think out. The
spreadsheet adjudicator did not compute higher order effects, and as a result, the macro effects of
micro actions were not computed. For example, instead of computing out the effect of a terrorist
action on the value of currency, the spreadsheet adjudicator asked X-game participants to figure
this out. Being asked so many questions about the macro effects of micro actions that they did
not know the answer to was a frustrating waste of gamer’s time.

Further, participants had difficulty walking through information operations (IO) incidents. This
bothered them, because they felt that IO and the politicized environment, as well as how it
contributes to intelligence gathering, is essential to irregular warfare. Rather than walk through
the social dynamics of IO, they would use heuristics to adjudicate how a population would react.
The heuristics the SMEs used tended not to include details about how a population’s mind could
be changed, which was really the point of the game, and the source of frustration for players who
tried to improve their public support levels. X-game participants thought it was useless to walk
through individual IO scenarios when they did not know how to aggregate them to the strategic
level. Since “walking through” is the whole point of a war game, an agent based program that
could calculate the strategic effects of micro IO outcomes would encourage participants to walk
through the events that are the most relevant to the problem of irregular warfare.

118

An agent based simulation that walks through the effects of micro level actions on the macro
level economy would be a low risk replacement for the linear adjudicator of the first run of the
X-game. It would surpass its algorithms with only a small amount of work, and would continue
to improve and grow as more social phenomena is simulated.

Advantages that SME Adjudication has over Computer Adjudication

Xgame participants felt that the computer adjudication results were so separated from the verbal
game that they tended to be ignored by players, and not looked at to trigger events. They were
simply scorecards, and poor ones at that, that did not adequately reflect the verbal game. This
separation has more to do with computer adjudication in general rather than the particular linear
computer adjudicator of the first run of the X-game. Computer simulations are not good at
addressing human contexts. For example, X-game participants asked a contractor to put “a
kidnapping" in a simulation. But, the result of that kidnapping was not believable, because how a
population reacts to any event depends on the context, which they could not put in the
simulation. The world is too complex to put all possible contexts into simulations before the
particular details about a scenario are known. If basic processes of the model do not address the
cruxt of a situation, and if the important factors are not even entered into a model, then the result
is not valid.

An approach to dealing with the problem of context is quick turnaround agent based modeling.
That is, to have data and many relevant models and modeling practices ready at the beginning of
the study, and to write important parts of the model after the scenario is known, with the help of
an agent based simulation toolkit. There are some 200 computational social models in academia,
along with papers that describe them. Ideas from them that reflect social theories relevant to the
scenario may be put into an agent based simulation during the preparation phase of a war game.
Since the X-game had week long turns for extended study of actions, some of this time in the
game can be spent in putting the context of new actions that modelers did not think of in advance
into the agent based model. Quick turnaround agent modeling will allow creative moves to be
put into the computer adjudication, and will be available for more excursions in the post-game
analysis phase. Models will be available for future use, even if that use is just the borrowing of
design patterns, so that the turnaround time will be quicker as the toolkit grows.

A Toolkit of Composable Modules for Quick Turnaround Adjudication

The social world is so complex that we can not build a general model of it that will be valid in
every situation at the present state of social science. This complexity, in the context of irregular
warfare, makes the quick turnaround approach less risky in terms of verification, validation, and
accreditation (VV&A) than the traditional approach of using a previously VV&A-ed model and
only changing the data. The model must also be modified to the particular situation.

Composable models also enable the switching in and out of social theories. With composable
modules, the modeling phase would mostly consist of combining models or sub-classed models
together according to research done on the scenario. If the models come in modules that roughly
correspond to different social theories, then relevant sides of issues related to the scenario may
be assembled together into plausible alternative social environments to branch on. Both sides of
controversial issues would be represented. This is an important capability, as the US government
can not test strategies against only one social environment when social scientists have not come

119

to a consensus on what that environment is. Since the point of the game is to test the robustness
of strategies, they should be tested against possible social environments as well as against
possible enemy responses.

Agent based simulation should be used for this toolkit, not only because it can handle the micr-
macro integration problems of irregular warfare better than SMEs can, but also because it is
suited for recombination into new contexts. Agent based simulation is the most valid technique
for quick turnaround causal modeling because it models with first principles, while other forms
of adjudication tend to just model with correlated relations that do not apply outside of a
particular context. When first principles or the root causes of phenomena are modeled rather than
the appearance of phenomena, then a simulation becomes valid in new situations, and validity in
new situations is an important requirement for a quick turnaround modeling toolkit. For
example, X-game participants had difficulty with one of their computer models that simulated a
“gravity point”: a type of social homeostasis or healing, where the simulation goes back to the
original state after a perturbation. However, because the model simulated the appearance of the
homeostasis rather than the cause of the homeostasis, it occurred in every situation, even in
situations where the point of the game was to find ways to prevent healing. If phenomena is
simulated by assuming it is always true, then it can’t be valid for exploring when it isn’t true. In
contrast, a good agent based simulation uses first principles and has fewer assumptions. Most
phenomena in an agent based simulation is emergent from those few assumptions. Thus, agent
based simulation is a technique that allows basic assumptions to be walked through in new
contexts.

Combining Correlational Relations with Causal Models

In the first X-game, spreadsheets were used for computer adjudication because the agent based
simulation was not ready. X-game participants put relations such as from the Fund for Peace’s
failed states index (Fund for Peace et al, 2007) into adjudication spreadsheets, combined with a
random number generator to recognize that the relations were not always true. To put many
relations from SMEs into a simulation so that they make sense together, modelers should no treat
them as hard assumptions, as is done when relations are put into spreadsheet adjudicators.
Modelers must take care to limit the number of assumptions in a simulation, and to understand
the difference between correlational and causal models of social science, and how to apply both
kinds of models to a simulation. Social science has thousands of studies of how one
phenomenon correlates with another phenomenon. However, correlational relations can not be
put into the assumptions of a simulation because they do not explain cause, and do not address
why they are sometimes true and sometimes not. If they are put in as hard constraints, the model
will not be able to explore anything outside of those relations, and the fact that the correlation
coefficient is typically quite low in correlational studies of social phenomena makes it unrealistic
to assume that many of them would be true at the same time. Moreover, correlational studies can
not drive simulations : only causal models can do that.

Rather, correlational studies should be implemented as requirements to models of cause, or soft
constraints on an answer that is determined by causal models. Observed correlations can and
should be requirements for the higher order effects that result from theoretically based causes.
Figure 1 illustrates composed causal models that are constrained in their outcome at designated
points of correlation with events in other causal models.

120

FIGURE 1 Correlational studies as soft constraints on models of cause, in a composition of
models

A toolkit of composable models would cover both larger basic social theories of cause and
smaller, more correlational studies. Causal theories would be expressed in simulation modules,
while correlational studies would provide data upon which a designation of correlation between
modules, or between modules and data, may be based. Designated correlations will place soft
constraints on the consensus formed between sets of correlated modules at the places designated
as correlated. Simulation modules would be synchronized at these places of correlation, so that
they create a single picture of the social environment.

Fuzzy Rules to Implement Correlational Relations

Fuzzy rules are better implementations of soft constraining relations on simulation modules than
spreadsheets are. Fuzzy rules work well with rich ontologies as distance metrics for simulation
events. According to Weisel and Moya (2007), in order to be composed together, simulation
events in different simulations must be related and described by a distance metric. Fuzzy rules
can be used to decide whether a simulation event has come close enough to be designated as
correlated with an event in another model, so that these models may be synchronized.

Fuzzy distance metrics can also represent gradient for use in data mining techniques and
database retrieval of close cases, as is needed for case based reasoning. Fuzzy rules learned from
HITL moves by data mining techniques such as the Center for Army Analysis’ ACTOR program
(O’Brian, 2003), can be added to hand-designed fuzzy rules from correlational studies, and put
back into the composed model as soft constraints for post game runs without HITL. This would
be useful for scaling, for example, to derive rules from war games of a few factions, and then test
them on a more realistic simulation of 300 factions.

Adjudication rules in the form of fuzzy rules reflect the qualitative nature of social phenomena.
As a method of soft computation, they are robust with respect to data, using the kind of verbal
approximations that SMEs make. In a fuzzy system it does not matter if much of the data is
approximate. Additionally, fuzzy systems can handle rules that contradict themselves, such as
different SMEs or different correlational studies might make. Conflicting rules can just be added
together.

121

Fuzzy cognitive maps can implement soft constraints leading modules to a consensus of the
separate simulation models using constraint satisfaction methods. They can also implement the
relations and feedback of systems dynamics models, another type of non-causal macro level
model that can be used to put requirements on agent based simulations. With fuzzy rules, a quick
turnaround toolkit can incorporate relations from spreadsheet and systems dynamics models,
including feedback relations, into compositions of agent models.

Composing Simulation Models

The various simulations of major social theories, along with the designated points of correlation
from correlational studies, will come to a consensus on a picture of the social environment, even
though they may contradict each other. The phenomena in the different simulations will be made
to correlate with each other at the correlation coefficients of published studies as much as
possible. Individual simulations will have to adjust their states to the consensus state, and
continue simulating from the point of consensus. This may involve iterative re-computations of
simulation time until consensus is reached. Different simulations may be weighted differently in
weighted voting schemes Since this is a constraint satisfaction problem, feedback such as in
constraint satisfaction neural networks and fuzzy cognitive maps can help decide the consensus
state. The National Science Foundation’s Dynamic Data Driven Application System (DDDAS)
program has developed techniques for feedback between data and simulations can also help.

The toolkit for composable models would have some qualities of a federation of independent
models, and some qualities of a library of modules that need sub-classing in order to be
instantiated to particular problems. As in federation composablity, modules would be viable
without each other, for example, a model might use a draw from a distribution for phenomena it
does not simulate, or if there is a designated correlation point it might use a draw that has been
made to correlate with a draw from another simulation, or it might even replace the draw with an
event from a trusted deterministic simulation. Since social phenomena are dependent on each
other in the mathematical sense, theories can not switch in and out through neatly defined
interfaces, as one might expect from a library. Figure 2 illustrates this point. Rather, there is
functional overlap between theories, with different overlap depending on the theory. The same
events, or correlated phenomena, in different simulations can be made to match up,
synchronizing the simulations into one picture of the social environment at the designated points
of correlation. Even replicated simulations, which are simulations of the same theories
implemented differently, can benefit from coming to consensus through designated points of
correlation, because artifacts of their implementation would be weeded out.

122

FIGURE 2 The modules of the toolkit will have functional overlap, on the left, as
opposed to the traditional model of independent modules, on the right. Because social
science theories look at the same phenomena in different ways, modules will be
synchronized at their designated areas of overlap rather than through standardized
interfaces.

Conclusion

Although SMEs have difficulty thinking about the macro effects of tactical moves in war games,
they are still trusted more than computer simulation because they are better at understanding
human contexts. A toolkit for composable models would give us many capabilities, including
the ability to quickly adapt an agent model to the context of a move in the war game and the
ability to switch different models of the social environment in an out. As more of the human
context is put into a simulation, the simulation can replace the HITL game, so that irregular
warfare strategies may be tested for robustness against many more scenarios than is practical for
HITL games.

References

Dunlap, P., 2007, “Global War on Terror Analysis: An Extended Wargaming Approach,” 75th
 MORSS Symposium.

The Fund for Peace and the Carnegie Endowment for International Peace 2007, “The Failed
 States Index 2007,” Foreign Policy, August.

National Science Foundation, 2007, Dynamic Data Driven Applications Systems
 http://www.nsf.gov/cise/cns/dddas/

O’Brien, S. 2003, “Analyzing Complex Threats for Operations and Readiness (ACTOR),” 72cd
 MORSS Symposium.

Weisel, E. and L. Moya, 2007, “Towards an Architecture for Distributed Component Based
 Simulation,” European Simulation Interoperability Workshop.

123

124

INTRODUCING GROWLAB:
A TOOLKIT FOR LAYERED AGENT-BASED MODELING

N.B. WEIDMANN,∗ ETH Zurich, Switzerland
L. GIRARDIN, ETH Zurich, Switzerland

ABSTRACT

In this paper we introduce GROWLab (Geographic Research on War Laboratory) – a
software toolbox to facilitate the modeling, simulation, analysis, and validation of
complex social processes, with a special focus on geographic aspects. The paper aims to
give a general, non-technical introduction to agent-based modeling with GROWLab. It
focuses especially on the toolkit’s support for model structure, i.e. the creation of
complex agent configurations and hierarchies. An important feature of GROWLab is that
it makes possible the integration of real-world empirical data collected with a GIS. More
specifically, GROWLab can automatically create model structures from GIS datasets.
This way, it is possible to run a model either on real or artificial geographies without
changing the underlying data structures. We also introduce GROWLab’s GeoModel, a
geopolitical template model which makes different geographic and non-geographic
datasets readily available to the modeler.

Keywords: Simulation toolkits, GIS, conflict process models, agent hierarchies

INTRODUCTION

As agent-based simulations are getting increasingly complex and sophisticated,
simulation toolkits have become indispensable for the social science research community.
Toolkits help the model designer to quickly setup, run and evaluate a model, without having to
write the complete code from scratch. There are various toolkits out there (North et al. 2006;
Parker 2001; Luke et al. 2004; Minar et al. 1996). However, these toolkits aim to be all-purpose
products and try to target the entire broad field of social simulation. There is of course nothing
wrong with creating an all-purpose toolkit. However, the fact that an all-purpose toolkit must
necessarily remain general in order to make it applicable to a wide range of models limits the
functionality offered to a particular subfield.

This paper reports on our efforts to create a simulation toolkit especially tailored to our
requirements in the modeling of geopolitical processes. While developing a series of agent-based
models in this field, we increasingly became aware of the shortcomings of general-purpose
toolkits. We were often in need for agent structures more complex than grid spaces or simple
networks. Also, as many of our models are increasingly relying on geographic data, we required
support for different GIS data formats. Since there were quite a number of requirements common
to all our models, it was natural to create a library including this functionality and in doing so
avoid code redundancy.

∗ Corresponding author address: Nils B. Weidmann, International Conflict Research, ETH Zurich, 8092 Zurich,

Switzerland; e-mail: weidmann@icr.gess.ethz.ch.

125

The result of these efforts is the “Geographic Research on War Laboratory” (GROWLab)

library which supports modeling in the field of geopolitics and conflict research. The features of
this toolkit might be useful to other disciplines as well, especially since it attempts to address
challenges not specific to our area as for example the representation of agent hierarchies, and the
integration of GIS data. In general however, the increased specificity of GROWLab as compared
to other toolkits is likely to be useful to a narrower range of models.

Put very generally, ABM toolkits assist the researcher in three broad tasks: (1) setting up

the model structure, (2) specifying the simulation dynamics and (3) collecting output. Model
structure support is the storage and retrieval of (often different types of) agents and the
representation of their relationships. Whereas model structure is about the static parts of the
model and their relationships, toolkits also support simulation dynamics: What are the actions in
the model, and when are they carried out? Here, the toolkit supports both scheduling within a
single run of the model, but also more advanced executions such as batch runs across different
parameter settings. Finally, toolkits usually provide considerable support when it comes to the
collection of information from the model. Information about the current state of affairs can either
be provided by graphical displays of the model space and dynamics charts, or can be collected as
numerical output in files. This paper introduces GROWLab concepts and features along the three
categories of model structure, simulation dynamics and output collection.

MODEL STRUCTURE

In many agent-based models agents live in a two-dimensional grid world. These
Object2DGrids (in RePast) have two major functions: They store the agents themselves, and they
define relations (such as neighborhood) between agents. Correspondingly, in GROWLab we
introduce two interfaces capturing the two tasks: A layer is any collection of alike agents, and a
topology is a set of relationships between them. In addition, in order to represent hierarchies of
agents, we introduce the configuration interface. The following paragraphs explain layers,
topologies and configurations in detail.

Layer

A layer is a container for a set of alike and atomic agents. Layers offer general
functionality to manage the agents contained in them, but can also be used to collect aggregate
data about the entire population. A layer itself does not know about the neighborhood relations of
its agents – instead, this is achieved by imposing one or more topologies on a layer.

Topology

A topology is always defined on a layer of agents and defines a set of neighborhood
relationships between them. In this sense, a topology is equivalent to a network. Based on the
connectivity between agents, it can compute the neighborhood set of a given agents as well as
their distance from each other.

126

Configuration

Whereas topologies can only exist between agents of the same kind, GROWLab offers
the possibility to connect agents of different types to yield agent hierarchies. This is done using
configurations, which typically connect agents from two layers – the parent layer and the child
layer, as we call it in GROWLab. Configurations exist in different forms. The most general one
is the many-to-many configuration, which allows the connection of a parent to many children,
but also of a child to many parents. A more restrictive configuration is the one-to-many type,
relating one parent to many children, but permits at most one parent per child. The one-to-one
configuration adds the final constraint of only allowing exactly one child per parent.

A GROWLab model structure created with these building blocks is automatically kept in
sync: For example, an agent removed from a layer is also removed from the topologies defined
on that layer. Figure 1 illustrates the three core interfaces with a simple example of states and
their provinces.

(1)
(2)

(3)

(1)

State 1

State 2

Figure 1: Illustration of the GROWLab
model structure building blocks: (1)
Layers are containers for agents. The
top layer holds two states, and the
bottom layer serves as a container for
province agents. (2) A topology defined
on the state layer keeps track of the
relations between states. (3) A
configuration stores the membership of
provinces in states.

Spaces and Mappings

In order to represent agents in a spatial environment, we distinguish between a space
which is an empty set of locations, and a mapping which takes care of the assignments of agents

127

to locations in this space. This flexible design allows us to put agents at more than one position
(e.g. states can occupy more than one province in a grid), or even to use one space for many
different mappings. For example, this is useful when representing the extent of states and ethnic
groups in the same geographic space: Only one space object is required, whose locations are then
linked in two mappings.

GROWLab provides different types of spaces. On the one hand, it supports abstract
spaces such as grids and hexagonal spaces. On the other hand, there is support for spaces with
and explicit geographic reference, for example a GIS rastered space. Here, a location not only
knows its x- and y-coordinates, but also its precise coordinates in latitude/longitude. Moreover,
geographic spaces can compute the geodesic distance between locations.

MODEL EXECUTION

buildModel() and step() methods

Model execution in GROWLab follows closely the procedure introduced by RePast. Each

model essentially needs to implement two methods: buildModel() and step(). The former is
executed when a model run is initialized. Its purpose is typically to create data structures and
agents required for this run. The latter is called at every time tick and contains the simulation
steps to be run repeatedly. An important difference to RePast is the implementation of the
simulation engine. In GROWLab, a simulator object takes care of initializing and running the
model. The advantage of this approach is that one can select a simulator according to one’s
needs: GROWLab offers simulators with different graphical and batch run features.

Parameters

All parameters required for a model must implemented using the parameter classes
offered by GROWLab. More precisely, a parameter is encapsulated in a special class that not
only allows the storage of the parameter’s value but also its name and description. All parameters
are registered when the model is constructed initially such that they can be used both in graphical
and non-graphical runs. Parameter classes exist for all kinds of numeric parameters, booleans,
strings and enumerations.

Batch Runs

As stated above, the simulation toolkit must also provide a facility for automatic
parameter sweeps, i.e. “batch runs” in RePast terminology. By automatically initializing and
running the model for different values of the input parameters, the researcher can collect
statistics about the behavior of the model under varying conditions. Batch runs rely on the set of
parameters as described above. Batch runs can also be performed in parallel to get the results
faster, both on multiprocessors machines and on distributed grid computers.

128

MODEL OUTPUT

Separating Visual and Batch Models

We encourage, and enforce to a certain extent, the developer to provide separate
implementations of the model for graphical and non-graphical output. Essentially, apart from the
basic Model interface specifying the buildModel() and step() methods, two extensions define
how visual models and batch models should look like. A visual model will have to implement
the buildUI() method where all graphical elements are set up. A batch model should provide
information about which parameter sweeps are to be executed. Of course, GROWLab simulators
tailored to either visual or batch runs will only be able to run the corresponding model. This
structure makes sure that the behavior of the model – regardless of the desired way of output –
remains the same.

Visualizing Model Structure

Model structure is displayed both as a graphical representation of model structures, like
agents in a space, and a textual output with a detailed list of information about agents. The latter
resembles the “probes” introduced by Swarm and still present in many other toolkits. For each of
the three core concepts layer, topology and configuration introduced above, GROWLab has a set
of predefined dynamic graphical visualizations for the inspection of the model. Layers can be
portrayed by a list of agents and their attributes. Neighborhood relationships of a topology can be
displayed graphically as a network structure, and textually as a paired list of connected partners.
The structure of a configuration can be examined as a tree table. A set of two-dimensional
graphical displays takes care of visualizing spatial layers and the agents contained in them.

Collecting Statistics from the Model

The way to extract statistics from a GROWLab model is done with the help of so-called
“collector” classes. This mechanism is very flexible and can be used both for visual and batch
models. Collectors are standardized data collection facilities storing the data in the format
required for the analysis. For example, in a batch run one will typically use file-based collectors
which simply output the assembled data to a file. For visual simulations, GROWLab offers
collectors which prepare the data for display in a chart. Similarly, we provide a collector
outputting a sequence of image files which can then be assembled to an animation of the
simulation. Collectors are registered in the simulator executing the simulation. It takes care of
activating the collector after each tick or at the end of a run.

Collectors get their data from variables within the model. However, as for the parameters
introduced above, variables are implemented using the wrapper classes offered by GROWLab.
Beyond the storage of a value these classes add meta-information about the variables such as
their name and description. Additionally, variables can also be computed on the fly.

129

The GROWLab User Interface

During the development of GROWLab, special emphasis was put on the design of the
graphical user interface. Our general approach is to have a GUI where multiple views on
different aspects of the simulation are closely linked together. At the present stage, the
GROWLab GUI features a set of interconnected views on the simulation, such as spatial views
which display the simulation space, configuration views which allow for agent hierarchies to be
displayed, and process views tracing the actions performed and the results produced in the model
over time. Figure 2 illustrates the GROWLab user interface with the different views. The views
are interconnected in such a way that selecting an agent in one view causes this agent to be
displayed in another view.

Figure 2: The different elements of the GROWLab user
interface: The spatial view (top right), the configuration view
(top left), and the process view (bottom). There can be more
than one view per type.

USING GEOGRAPHIC DATA IN GROWLAB MODELS

Using GIS Data for Agent-based Modeling

We can distinguish two ways of how GIS data can be used in modeling applications. The
first category of models takes the geographical input as a realistic landscape where the model
dynamics is then run on. The crucial feature of this approach is that typically the geographic data
remain constant throughout the model run. Examples include the creation of a realistic road
network to run traffic simulations. The second category of simulations is more complex. Here,
the geographic data is not kept constant but rather endogenous to the model. For example, in all
Geosim-like models state borders vary over time. In order to be able to represent these changes,
we need a data format which is able to accommodate time-variance in geographic features.

130

The models GROWLab is designed for typically belong to the second category. Whereas

in GIS vector data the degrees of freedom for changes are unlimited, in a raster-based
representation this complexity is significantly reduced. For example, a country represented as a
polygon can be modified by moving the polygon’s corners, or by adding or removing existing
corners. Obviously, the possible alterations are infinite which makes a vector format less well
applicable for simulations with an endogenous geography. On the other hand, we could represent
a country as a (mostly contiguous) set of raster cells. The tradeoff we incur is the lower
resolution and precision, but since the atomic spatial unit – the grid cell – is fixed, changes to the
shape of the country can be represented as a re-assignment of the spatial units to other states.

GIS and GROWLab data structures

GROWLab is able to read GIS data and to create its own data structures from it. The
development of a model with geographic reference typically starts with the definition of a
geographic space – a raster space with geographic reference. All spatial data added to the model
uses this space as a reference.

Raster data to be included in the model has to be provided at the same resolution as
defined in the underlying space. It is then up to the user to tell GROWLab which kind of data
structure it should create from a raster input file. For example, a raster of countries (where cell
values indicate the country a cell belongs to) is best represented as a one-to-many mapping of a
country object to locations in the space, in other words, an assignment of country objects to
locations where each country occupies more than one location. To give another example: When
representing ethnic groups and their location, we use a many-to-many mapping of groups to
locations. Obviously, a group can occupy many locations, but one location can also be shared
among different groups.

The data structures briefly described here enable the researcher to craft an agent-based
model with geographic reference according to one’s needs. However, if only some standard GIS
datasets are required, one can also rely on a readily implemented template model.

GeoModel: A Geopolitical Template Model

Based on the template model GeoModel, geo-coded real-world data can be integrated in

the modeling process. This template can be extended by inheriting the built-in functionality and
by adding some custom behaviors and mechanisms or complement it with additional layers of
data.

GeoModel’s default space is a rasterized representation of the entire globe, using the
WGS84 projection. The raster can be used in two different resolutions: 15 arc-minutes (~30km),
and 30 arc-minutes (~60km). All the geographic data is based on this space.

131

Figure 3: Geographic data contained in the GeoModel template: borders, ethnic groups,
population, spatial GDP, elevation and vegetation (left to right panel).

Figure 3 shows some of the information contained in the GeoModel template including
(1) country border and administrative divisions, (2) ethnic groups across countries, (3)
population density, (4) spatial GDP figures, (5) elevation data, and (6) vegetation type. For each
country, we provide their borders as of 1964 and 1994, and also try to reconcile their ISO, FIPS
and COW codes through customized mapping. To check adjacency of countries, the Minimum
Distance data from Gleditsch and Ward (2001) is also included to query for neighboring
countries that are separated by water. At this point, all ethnic groups are directly based on the
GREG definitions. For each ethnic group in a country, there is also information about the “ethnic
group in power” (EGIP) coding by Cederman and Girardin (2007).

In addition, we provide disaggregated data for every cell in the system for population
(downsampled from the Gridded Population of the World v. 3 provided by CIESIN (2005)) and
elevation (downsampled from GTOPO30 (2007)), as well as local GDP estimates, compiled by
the G-Econ project (at a 1-degree resolution) from Nordhaus (2006). They relieve the modeler
from the tedious task of having to collect and merge complicated datasets and thus provide a
prototyping environment for geographic agent-based models.

132

EXAMPLES IMPLEMENTED IN GROWLAB

GROWLab comes with some twenty models that serve as example that can be used as
template for developing new models, as test cases to verify the inner working of the simulator, as
well as stereotype models to evaluate the effectiveness of GROWLab architecture.

To give few examples, we use the iterated prisoner’s dilemma model (Cohen et al. 1998)
as an example for teaching purpose and to test GROWLab basic spaces (torus, grid, soup) and
neighborhood functions. Schelling’s segregation model (Schelling 1978) is used to showcase and
test moving agents. For more elaborated agent structures, we mainly rely on the Geosim model
(Cederman 1997) , which features hierarchical agents and moving state borders. To showcase the
GeoModel template model, we provide some statistical and exploratory models at the forefront
of research.

CONCLUSION

In this paper we presented our GROWLab simulation toolkit. With GROWLab, we tried
to improve the computational infrastructure for geopolitical models, especially with regard to the
use of geographic data. We feel that our approach of using native GROWLab data structures to
represent GIS data is promising, as it does not require the use of special GIS classes in the
model. This way, one can for example switch back and forth between an artificial space and a
space with geographic reference in the same model.

An issue which we have not yet taken into account is the incorporation of real time in the

model. Many GIS datasets are available with explicit temporal coordinates, as for example
ACLED (Raleigh and Hegre 2005). Further development of GROWLab will also focus on a
better support for different agent activation regimes: In our models, synchronous updating is
mostly the desired scheme, but in many cases it brings with it a lot of computational problems. A
toolkit could provide implementations of agent prototypes with built-in data structures for
synchronous activation.

ACKNOWLEDGEMENTS

The authors are grateful to Lucas Serpa Silva for research assistance. Nils Weidmann’s
work is supported by ETH (Research grant TH –4/05-3).

REFERENCES

Cederman, Lars-Erik. 1997. Emergent Actors in World Politics: How States and Nations
Develop and Dissolve. Princeton, NJ: Princeton University Press.

Cederman, Lars-Erik, and Luc Girardin. 2007. "Beyond Fractionalization: Mapping Ethnicity
onto Nationalist Insurgencies." American Political Science Review 101 (01):173-85.

Center for International Earth Science Information Network CIESIN, Columbia University; and
Centro Internacional de Agricultura Tropical CIAT. 2005. "Gridded Population of the
World v3 (GPWv3)." Available at http://sedac.ciesin.columbia.edu/gpw.

133

http://sedac.ciesin.columbia.edu/gpw

Cohen, Michael D, Rick L Riolo, and Robert Axelrod. 1998. "The Emergence of Social
Organization in the Prisoner's Dilemma: How Context-Preservation and Other Factors
Promote Cooperation." SFI Working Papers.

Gleditsch, Kristian Skrede, and Michael D Ward. 2001. "Measuring Space: A Minimum-
Distance Database and Applications to International Studies." Journal of Peace Research
38 (6).

Luke, Sean, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. 2004. MASON: A New
Multi-Agent Simulation Toolkit. Paper prepared for the SwarmFest Workshop.

Minar, N., C. Burkhart, C. Langton, and M. Askenazi. 1996. "The Swarm simulation system: a
toolkit for building multi-agent simulations." Santa Fe. SFI Working paper 96-06-042.

Nordhaus, William D. 2006. "Geography and macroeconomics: New data and new findings."
Proceedings of the National Academy of Sciences USA 103 (10):3510-7.

North, M. J., N. T. Collier, and J. R. Vos. 2006. "Experiences Creating Three Implementations of
the Repast Agent Modeling Toolkit." ACM Transactions on Modeling and Computer
Simulation 16 (1):1-25.

Parker, Miles T. 2001. "What is Ascape and Why Should You Care?" Journal of Artificial
Societies and Social Simulation 4 (1).

Raleigh, Clionadh, and Havard Hegre. 2005. Introducing ACLED: An Armed Conflict Location
and Event Dataset. Paper prepared for the Disaggregating the Study of Civil War and
Transnational Violence Conference, San Diego, CA.

Schelling, Thomas C. 1978. Micromotives and Macrobehavior. New York: Norton.
US Geological Survey. 2007. "GTOPO30 Digital Elevation Model." Available at

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html.

134

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

IDEAS - INTERACTIVE DEVELOPMENT ENVIRONMENT FOR AGENT-BASED

SIMULATION
A. PERRONE ,∗ University of Venice, Venice, IT
A. PELLIZZON,+ University of Padua, Padua, IT

ABSTRACT

Recent discussions in the agent-based modelling community have

showed disparate opinions about the level of programming skills to be
expected from modelers. Everybody seems to agree that the more skill
candidates have, the better. However, most of today’s students lack these
capabilities and developing them requires substantial efforts from the
adventurous entrepreneur. Therefore, lowering the requirements would help
agent-based modeling becoming a more widely accepted methodology.

Some suggest that with the spread of general computer literacy, the
problem outlined above will eventually go away, sooner than we would
imagine. Others argue that the problem is inherently social: mastering
mathematics or statistics is not in the least easier than learning to program,
still no aspiring scientist can afford to avoid it.

It would be hard to deny any of these arguments. Nonetheless, we argue
that today’s requirements can be lowered. This statement is not very
surprising either. Various model building tools (such as NetLogo or
AgentSheet) demonstrate that by limiting the ’space’ of possible models,
the task of modeling can be efficiently assisted. The real challenge is to
bridge the gap between the potential open-ended nature of Swarm-alike
modeling environments (e.g., Swarm, RePast, Ascape) and the ease of use
provided by the former frameworks.

Graphical model building interfaces for general ABM platforms, such as
SimBuilder (for RePast) and the IDEAS are attempts to achieve exactly
this. Still, they impose certain limitations on the modeler and require a
certain level of programming.

This contribution describes the IDEAS, an interactive IDE for Agent
based simulations.

 Keywords: Agent Based Modelling, IDE, RePast, Swarm Simulation Toolkit, Java

INTRODUCTION

Agent-based economic simulations are becoming part of the professionХs toolkit. Two recent
special issues of the Journal of Economic Dynamics and Control and Computation collect

∗ Corresponding author address: Alessandro Perrone, University “Ca’ Foscari” Venice Italy,

e-mail: alex@unive.it
+ Corresponding author address: Andrea Pellizzon, Department of Mathematical Methods and Models for

Scientific Applications, University of Padova, Italy e-mail: andreap@dmsa.unipd.it

135

several contributions of agent-based economics. They are the best evidence of the increased
interest expressed by the profession.

As stressed by Testfatsion in her introduction to the JEDC special issue, agent-based
simulations address at least four issues. First, heterogenous agents and interactions among them
can be explicitly modeled in agent based simulations. Second, agents behaviour can change due
to the interaction with the environment and other actors. Third, evolutionary processes can be
implemented at the agent level, rather than dictated by population-level laws of motion. Finally,
these models can lead to genuine emergence phenomena and provide a way out of the clockwork
dynamics usually given by more traditional models.

Unfortunately, however, the spreading of this new tool is slowed down by the absence of a
common language as underlined in Luna and Stefansson (2000) and Luna and Perrone (2002).
This limitation prevents a cumulative learning process and finally the emergence of an agent-
based school of thought.
This contribution describes the IDEAS, an interactive IDE for Agent based simulations

MOTIVATION
Initially we posed ourselves the questions:

• Why develop yet another IDE when good systems already exist (e.g., Eclipse1 , Bluej2 ,
Jbuilder3 , NetBeans4 , Jcreator5)?

• Is there the need on the community of a new IDE? Will someone use this IDE?

Why another IDE?
This project started 3 years ago, when the use of IDE was not so "popular" as nowadays.

What’s an IDE? Upon a standard definition "IDE, integrated development environment is a
system for supporting the process of writing software. Such a system may include a syntax-
directed editor, graphical tools for program entry, and integrated support for compiling and
running the program and relating compilation errors back to the source.

Such systems are typically both interactive and integrated, hence the ambiguous acronym.
They are interactive in that the developer can view and alter the execution of the program at the
level of statements and variables. They are integrated in that, partly to support the above
interaction, the source code editor and the execution environment are tightly coupled, e.g.
allowing the developer to see which line of source code is about to be executed and the current
values of any variables it refers to." We have tried, over the course of the last few years, just
about every Interactive Development Environment out there to build the simulation. In my
opinion they all share two things.

1. They try to do too much, which makes them all large, slow and painfully hard to use.
2. They force the user to change the way he works. He wants an easy to use development

system that works without any particular programming skill and “visually” easy to use.
That’s why we have developed this IDE. With this package anyone, with or without specifics

skills on Agent based Modelling, can create models using

1http:/www.eclipse.org
2http://www.bluej.org
3http://www.borland.com
4http://www.netbeans.org
5http://www.jcreator.com

136

• objective-c swarm
• javaswarm
• RePast
Most important reasons we choose to program an IDE for agent based modelling can be

summerize into following points:
• First of all, there’s not an unique IDE which permits to build models in 3 ABM

environments (Javaswarm, Objective-C Swarm and Repast).
• The Size of the program.

environment Size in Kb Support

Objc-swarm
Support

Javaswarm
Support
RePAst

Support
other ABM

Eclipse
Classic

137 Mb NO YES YES YES

Jbuilder 506.8MB NO YES YES YES
NetBeans 83.8 MB NO YES YES YES
IDEAS 588Kb YES YES YES YES

Table 1: Comparison among different Java IDE

According to table 16 the dimension of this package is very small and so it does not
require computer with high performance.

• It is very easy to insert other ABM environment in this IDE, since it is all coded in java,
the code is well documented. All the project of this IDE is Open Source.

• This tools permits in an easy way, to create tutorial for each language, without writing a
lot of lines, but using only commands in menus.

• Each model is composed by a project, and it has multiwindow visibility of the code of the
simulation.

Was there the need on the community of a new IDE? Will someone use this IDE?

In our opinion, there was the need of such tools, due to the fact, that it encapsule all three ABM
environments in "less than 1 Megabyte" program. Anyone can generate its model (even if it has
no experience of either computer programming and ABM philosophy) using all three libraries
and then, seeing the code, can choose, among them, which one he could use.

With single clicks of mouse he can create the skeletron of a large functional model, and then
he can spend all the time to modify the working skeleton upon its wishes.

The package is totally written in Java, and so it virtually runs on every operating systems
which has java virtual machine installed7 .

6All datas of this table has been taken from the official web page of the developer of each IDE
7The IDE has been written on a Macintosh powerbook using Tiger as Operating system, and on a
Intel notebook with Linux Fedora

137

IDEAS PACKAGE

The figure 1 shows a snapshot of the IDE.

Figure 1: A screenshot of main IDEAS window

IDEAS Overview
To run the program, simply double click on IDEAS icon and a window like that in figure 1,
appears. The Workbench window displays one or more perspective. The worbench window is
divided into four different windows:

1. A project Window that contains the collection of items that make up the particular
simulation. The project window displays a list of these elements to give easy access to
them. In a standard simulation project, for example, according to swarm paradygm, there’s
the main, the ModelSwarm, and the ObserverSwarm objects, while, in RePast Model, it
contains the Model, ModelGUI and standard Agent Classes. It provides window access to
project resources through the logical view.

2. A Navigation Window. it displays the members classes as well as the Inheritance view of
class methods and variables of the currently open class.

138

3. A Code Editor Window. The IDE’s built-in source editor enables to view, create and edit
the source code. It assist the programmer while coding with features like sintiax
highlighting, code completation8 , and editor hints.

4. A console Window. It displays compiler messages while building and running the
project, and it is an interface to the Operating System.

IDEAS’s feautures
Some of the features of this package are

• Intuitive Interface This package has been coded and thought with the GUI of standard
IDEs.

• Project manager . All simulations are encapsulated into projects
• A language sensitive editor. All java and C language reserved words are highlighted.
• Graphical display of the class structure9
• Compilation facilities. Anyone can write particular flags that they will be used during the

compilation of the project.
• Code Generation Design your application visually. IDEAS generates all the Agent based
toolkit code10 ,so no developer time is wasted coding a user interface. . Multiplatform.
It’s been intentionally written totally in Java, so it runs anywhere where Java runs Code
Editor, It generates 100% Pure editable code.

This paper gives an overview ofК the environments showing how is simple to write simulation
using different Agent based environments, even if there’s a little knowledge of the "agent based
paradygm".

Working with IDEAS
In this section provides a quick tutorial which takes the user along the steps required to create a
couple of simulation with simple clicks of mouse. In this paper we do not describe all menus of
the package, since the package comes with a well-written manual which cover all aspects of the
IDE.

Our first experiment - hello world
In this paragraph there’ll be explained all steps to follow to obtain a simulation whose output is
showed into the figure 2

8In this version this features runs only on ABM in java, but in near future it will be extented to
other ABM toolkits.
9only for the java ABM
10It generates, depends on the kind of the running project

• java code for javaswarm and RePast environment,
• objective-c code for objective-c swarm toolkit

139

Figure 2: Output of the first experiment

Here are the steps to follow:
1. Create a new project by double click Project Menu -> New Project Item. A window like

that in figure 3 appear

Figure 3: The dialog box displayed when you start a new project, or want to alter a
projects properties.

When starting a new project the first thing you will be asked for some information about
the model you want to program such as

o Project type. It it the type of ABM the user wants to program. This item accepts,
in this version, only three kind of ABM projects

140

 JAVASWARM to use javaswarm paradygm toolkit;
 OBJCSWARM for objective-c swarm toolkit;
 REPAST to use Repast environment;

o Project Name. This project name will then be displayed in the project window.
o Main Class. It is the name of the simulation.
o Other properties as particular classpath, buildpath.
o BuildScript. It is useful for objective-c to run the program.

2. Once filled the items of figure 3, click the Ok button11 and the framework will be
presented as the picture of figure 4

Figure 4: The IDEAS framework of the first experiment
3. Save each file of the project, using "save as" item of Menu FIle, or choosing each file on

Code Editor, pressing right button of the mouse, and choose the save item.
4. Save the project using the "save project" item under the Project Menu.

11It is important to fill the classpath item, because it tells the compiler the PATH to find the
RePast library, for this simulation, the swarm.jar file, if the simulation is based on javaswarm
toolkit

141

5. Compile the project using F9 shortcuts, or using compile item under Execute Menu12
6. Run the project using the "run app" item

The output of this first experiment is showed on the figure 2
It is important to note that, without writing a single line of code we have written a simple

running simulation which can be used as skeleton for our real model.

An quite-complete experiment
In this section we describe a simple experiment, in which we can see some GUI features of the
package13 It produce, as output, the same as last paragraph, but with two more windows, one
with a barchart and the other with a graph of the variable X versus time. Here are the steps to
follow:

• Create a new project, fill the item of window like figure 3 and name the project as
"SecondExperiment"

• Insert a linechart using the "Line X" item of Insert Menu
• Insert a barchart using the "Bar Chart" item of Insert Menu
• Save each file of the project, using "save as" item of Menu FIle, or choosing each file on

Code Editor, pressing right button of the mouse, and choose the save item.
• Save the project using the "save project" item under the Project Menu.
• Compile the project using F9 shortcuts, or using compile item under Execute Menu14
• Run the project using the "run app" item

The output of this experiment is showed in the figure 5

Figure 5: The output of the second experiment

12In the same menu, the Execute, there’s also the "Build All" command which compile all files
of the project
13We are still, as example, using the RePast toolkit
14In the same menu, the Execute, there’s also the "Build All" command which compile all files
of the project

142

Other experiments
In this example we have chosen to write a simulation using RePast, but, in the same way, we
could write the same model using javaswarm, 15 of the objective-c swarm16

In these examples, we have intentionally chosen to write simple simulations without writing
any lines of code, so the reader can duplicate the experiment using different ABM toolkit without
problems.

The packages is provided with several projects of different toolkit which come from Internet
world17 .

It is important to note, that in this paper is described some of all features of the package.
Using project manager it is possible to edit all ABM files, create new classes, edit classes, insert
code, etc. etc.

IDEAS is an Interactive Development Environment customized for Agent based modelling.

CONCLUSIONS AND FUTURE WORK
In this paper we have described the implementation of IDEAS, an IDE written specifically for
Agent based modelling using tools as Swarm (either in objective-c and java language) and
RePast frameworks.

IDEAS provides the user with a wide range of functionality such as : Project management,
project templates, code-completion, debugger interface, editor with syntax highlighting, wizards
and a fully customizable user interface.

We believe that IDEAS has tremendous potential in solving many of the problems faced by
researchers regarding lack of computer programming experience.

Therefore, we view the work described in this paper as only the beginning of a large project.
We intend to develop a complete implementation of all different aspects of the ABM
programming along with the implementation of other ABM environments.

We note that the IDEAS interface defined in this paper may change as our implementations
and studies reveal the need for providing additional/different functionality.

As the project progresses we intend to consider the use of sourceforge.net as a software
repository, since we would like IDEAS to be open source

As a future work we are going to implement some new fautures of the program such as:
• better integration with repast and swarm toolkit;
• better colour syntaxing for reserved words in Java, C, objective-c Language;
• Color coding that can differentiate between objects and methods
• integration of gdb debugger for c/objective-c models
• easy to save single projects and single classes
• better facility to load /save/run models
• integration of "jarfile Manager" for java models and "zip manager" for other ABM

languages

15Just write into field "ProjectType" of the figure 3 the word "JAVASWARM"
16Just write into field "ProjectType" of the figure 3 the word "OBJECTIVEC"
17Examples in RePast can be found into RePast official web site http://repast.sourceforge.net,
while swarm models can be found into Swarm Web site www.swarm.org.

143

• support for backmapping for objective-c language, which means that if you click on the
error message in the Output Window, IDEAS will highlight the line of code that generated
the error

• better documentation
• more examples in different ABM environments

The package is a very dynamic work in progress. For an update on the environment
development, to download the latest release or for updated information about the VSB, including
sample code, errata and preview of further versions, forums visit my site
http://www.planetagents.org in IDEAS section.

REFERENCES

Apple Computer Inc. Inside Macintosh, 1985 Addison Wesley
Axtell, R Epstein, Growing Artificial Societies
IBM - The NetBeansЄ Tools Platform: A Technical Overview. 2001.

http://wwws.sun.com/software/sundev/whitepapers/netbeanstp.pdf]
IBM, Visual Age for Java, version 2.0, 1995
Luna, F and Perrone A: 2001 Agent Based methods in Economics and Finance: Simulation in

Swarm, Kluwer Accademic Press
Luna, F and Stefansson: 2000, Economic Simulations in Swarm, Kluwer Accademic Press.
Minar, N, Burkhart, R., Langton, C. and Askenazi, M. (1996). The Swarm Simulation System: A

Toolkit for Building Multi-Agent Simulations. Santa Fe Institute Working Paper 96-04-2.
Perrone A.. Agent Based design modelling using the Visual Swarm Builder presented on "Agents

in Design 2002" MIT Cambridge MA 29-31 August 2002
Perrone, A. SwarmJournal - 2001
Pinson, Wiener, 1991 “Objectice-C, Object-Oriented Programming Techniques”, Addison

Wesley Publishing company
RePast. A software framework for creating agent based simulations using the java language.

http://repast.sourceforge.net
Stefansson, B. (1997). Swarm: An Object Oriented Simulation Platform Applied to Markets and

Organizations
Terna, P. (1998). Simulation Tools for Social Scientists: Building Agent Based Models with

SWARM. In Journal of Artificial Societies and Social Simulation.Vol 1 No. 2, available at
http://www.soc.surrey.ac.uk/JASSS/1/2/4.htm l

Tesfatsion, L. (2001). “Introduction to the special issue on agent-based computational
economics”. In ХХ Journal of Economic Dynamic and Control, Vol. 25, Issue 3-4, pp.281-
293.

Visaj - The Visual Application Builder for Java. Imperial Software Technology

144

NetLogo Toolkit Developments

TURTLE HISTORIES AND ALTERNATE UNIVERSES:
EXPLORATORY MODELING WITH NETLOGO AND MATHEMATICA

 E. BAKSHY*, Northwestern University, Evanston, IL & University of Michigan, Ann Arbor, MI
 U. WILENSKY, Northwestern University, Evanston, IL

ABSTRACT

This paper presents the design of a development platform integrating NetLogo, a multi-
agent programmable modeling environment with the Mathematica scientific computing
environment. We will discuss the affordances of such environments, which can simplify
and enrich the research process for agent-based modelers. More specifically, we will
demonstrate the advantages of having real-time exchange of complex data structures
between agent-based modeling environments and symbolic mathematical software such
as Mathematica. Together, such tools can provide researchers with a highly interactive,
self-documenting workflow that neither tool can provide alone. This paper will give an
overview of how the integrated environment can be used for common tasks in agent-
based modeling, the construction of interfaces for exploring simulation dynamics, and the
effective design patterns for representing simulation results.

 Keywords: Agent-based modeling, exploratory analysis, NetLogo, Mathematica

INTRODUCTION

 The behavioral dynamics of agent-based models contain vast quantities of information
for which analysis can often be daunting to researchers. Nevertheless, for the purposes of model
verification, validation and replication, it is essential for researchers to carefully and extensively
study their models and analyze the behavior at several different levels (Wilensky & Rand, 2007).
This paper presents a framework for representing, measuring, and visualizing the behavior of
agent-based models. We will discuss some limitations of software systems used in the
development and analysis of agent-based models, and demonstrate the ways in which our
framework attempts to address these issues. We propose that many of these tasks can be
resolved through the integration of agent-based modeling environments and scientific computing
environments, such as NetLogo (Wilensky, 1999) and Mathematica (Wolfram, 2003). Our
approach is, in some respects, similar to that of Macal & Howe (2005), which provides an

*Corresponding author address: Eytan Bakshy, School of Information, University of Michigan, 1075 Beal Ave., Ann
Arbor, MI 48109; e-mail: ebakshy@umich.edu

147

mailto:ebakshy@umich.edu
mailto:ebakshy@umich.edu

extensive engine-level integration between Repast (2007) and Mathematica. We will further
elaborate upon the affordances of such environments in the context of current issues faced by
agent-based modelers.
 Mathematica is an interactive programming environment which can support many of the
tasks common to agent-based modelers. These tasks include pre-processing and analysis of
external data used to motivate or calibrate models, model prototyping, interactive model
exploration, data collection, storage, analysis, and documentation among other tasks. In contrast
to using several special purpose or compiled programming languages for each of these tasks, the
integration of such tools with high-level agent-based modeling environments like NetLogo can
bridge the gap between model development, inquiry, and analysis.
 Mathematica essentially consists of two processes, the kernel and the front-end. The
kernel stores and executes all program code and data, which are represented in a uniform fashion
as expressions. The front-end allows users to manipulate, retrieve, and graphically represent
expressions stored in the kernel. Users interact with a notebook, which can contain text, program
code, data output, and graphics. Typically, users enter commands into the notebook, which are
executed by the kernel, and its output is displayed below, giving a line-by-line documentation of
a user’s session. In Mathematica 6 (2007), notebooks can contain dynamic elements, which can
display the state of expressions in the kernel in realtime, as well as relay information from
interface objects back to the kernel.

FIGURE 1 The NetLogo-Mathematica Modeling environment

148

 The integrated NetLogo-Mathematica environment, depicted in Figure 1, includes many
aspects that make it particularly well suited for conducting research with agent-based
models. Mathematica's data connectivity supports automatic format recognition and type
conversion of files, as well as support for SQL database connectivity. In conjunction with pattern
matching and rule-based programming functionality, such routines can reduce the amount of
time spent preparing and organizing data for use with NetLogo. This integration makes
accessible, for use with NetLogo models, Mathematica's functions for statistics, non-linear
optimization, linear algebra, graph theory, and a number of other functions suited for the
execution and analysis of agent-based models. These methods can be combined with high-level
graphical interface constructs to rapidly create custom tools for exploratory analysis of
models. The environment's document-centered interface lets users combine comments, code,
visualizations, and annotations in a single working notebook that can be viewed side by side with
the NetLogo graphical interface. Finally, because all definitions, data, and graphics are
serializable, the storage and retrieval of complex data structures representing model data (e.g.,
simulation histories) can be accomplished with minimal effort. These technical aspects of
Mathematica, combined with the NetLogo-Mathematica interface, provide a flexible foundation
upon which agent-based research frameworks can be built.

OVERVIEW OF THE NETLOGO-MATHEMATICA INTERFACE

 The NetLogo-Mathematica toolkit provides a high-level interface to NetLogo from the
Mathematica kernel via the J/Link Java interface. Once installed, one can load the package and
launch NetLogo with no additional configuration.† At its core, the interface comprises of two
simple functions: NLCommand[], which executes a NetLogo command, and NLReport[],
which returns data from NetLogo. Other high-level primitives for repetitive tasks and acquiring
structured interaction topologies, such as patches or grids (via NLGetPatches[]), and links or
networks (via NLGetGraph[]) are included in the toolkit as well.
	
 NLCommand[] is often used to programmatically initialize a model and execute the main
loop. The function performs automatic type conversion, expression splicing, and concatenation,
which allows users to easily access or modify NetLogo data using any combination of numerical,
string, boolean, color, and list expressions. Additionally, numbers, strings, and lists are
automatically converted back to native Mathematica types when requested from NetLogo using
NLReport[]. For example, NLCommand[“set foo”, {{True, 12, 8.4}, {False,

† requires NetLogo 4.0 or greater and licensed version of Mathematica 6.0

149

13, 8.9}}] will set the NetLogo global variable, foo, to the NetLogo list expression, [[true
12 8.4] [false 13 8.9]]. Similarly, NLReport[“foo”] will return a Mathematica
expression containing the original nested list of boolean, integer, and floating-point types. These
two basic functions are often sufficient to collect data and create plots on the fly that might
otherwise require the use of file I/O or complex graphical interface programming.
 We present the NetLogo-Mathematica environment in the context of several modeling
tasks. First, we will discuss the validation in a suite of statistical mechanics models with
traditional analytical descriptions. Second, we will show how the interactive visualization
features of Mathematica 6 can be used to replay model dynamics in an agent-based model of
cultural dissemination. Finally, we will present effective design patterns for representing
simulation results, and show how they may be used to perform an exploratory analysis of the
parameter space of a forest fire model.

COMPARING AGENT-BASED MODELS WITH ANALYTICAL MODELS

 The NetLogo-Mathematica kit was first used to solve the following problem: are the
agent interaction rules in GasLab suite of NetLogo models (Wilensky, 1997a) sufficient to
generate velocity distributions found via traditional analytical treatments of ideal gases? In this
example, the model’s initial conditions are set using NLCommand[]. We define the function
Resample[] to execute the NetLogo model for 50 “ticks,” and return a list of speeds back to
Mathematica

Resample[]:= Module[{},
 NLCommand[“repeat 50 [go]”];
 NLReport[“[speed] of particles”]
];

To collect a sufficient number of moments of velocities, the distributions are resampled forty
times using the list constructor, Table[Resample[],{40}], which will generate a list of 40
elements, each element being the a consecutive resampling of the simulation.

150

FIGURE 2 Comparing simulated results with analytical distributions

 To compare the observed distribution with the analytic description of the speed
distribution, we must find the mean energy of the system, which can be sampled directly from
NetLogo: NLReport[“mean [energy] of particles”]. With this data, we compare the
observed distribution with the Maxwell-Boltzmann distribution. The two distributions are in
close agreement with one another, as illustrated in Figure 2. This first example is a fairly
straightforward example of data collection and visualization. We now turn to a more complex
example involving multi-dimensional, time-varying data.

VISUALIZATION AND INTERFACE CONSTRUCTION

 Programmable agent-based modeling environments like NetLogo allow developers to
rapidly construct realtime visualizations of their model. However, an ABM environment
typically supports a single modality of visual representation viewed forwards in time. This can
make the analysis of complex systems, whose components evolve in a parallel fashion at
multiple levels, quite difficult. The NetLogo-Mathematica environment provides a convenient

151

way to store the complete simulation “history” in memory, and rapidly prototype interactive,
multi-modal visualizations for understanding this data.
 The following example shows how NLGetPatches[], the NetLogo-Mathematica
function for retrieving patch-based data, can be combined with interactive visualization
procedures in the analysis of patch-based models. The time-varying patch data will be
represented in several ways over time using Manipulate[]. In this example, we use a
modified version of a NetLogo implementation (Centola, 2007) of Axelrod’s model of cultural
dissemination (Axelrod, 1997). In NetLogo, each patch agent owns a variable called
culturalFeatures, which is an array of k features. At every time step, we execute the model
and retrieve the matrix of patches, with each entry of the matrix being a list of cultural features,
using NLGetPatches[“culturalFeatures”].

FIGURE 3 An interactive interface for exploring model dynamics

The interface in Figure 3 is generated by a single call to Manipulate[]:
Manipulate[CulturePlot[patchTimeSeries[[time]], feature],
 {time, 1, 200,1}, {feature, {1, 2, 3, 4}}]

152

 The code specifies an interface which lets the user to view any of the four features at time
steps 1 through 200, which may be animated both forwards and backwards. Dynamic
visualization constructs such as Manipulate[] are just one example of a host of other high-
level tools for constructing interfaces. These functions can also be used to display the progress
of a parameter-space exploration in realtime, or compare aggregate “between realization”
visualizations with individual simulation time-series. Such interfaces are particularly useful for
collaborative analysis of models, since they allow a team of scientists, including those with less
programming experience, to readily find patterns and test hypotheses in a model.

DESIGN PATTERNS FOR EXPLORATORY ANALYSIS OF AGENT-BASED MODELS

 The traditional cycle of rigorous analysis of NetLogo models commonly involves writing
software to specify a region of parameter space to explore in an automated fashion, either
through the use of shell scripts, or specialized tools such as BehaviorSpace (Wilensky, 2003).
Users must specify ahead of time the ranges and increments of parameters they would like to
vary, and how many times each model run is repeated. Other structured data, such as lists or
graphs can be difficult to format and read in by most tools for analysis, so most data written to
disk is in the form of pre-aggregated scalar data. In this section we will propose a method for
effectively executing and storing structured simulation data on a call-by-need basis. This
approach is similar to memoization in dynamic programming, where “subproblems” (measures
on a parameterization of a model) are stored in memory to speed up the execution of larger
problems, such as finding critical points in a model’s behavior or developing visualizations
involving potentially thousands of runs.
 A model realization can be thought of as a collection of data representing the execution of
a deterministic program, or model. Agent-based models typically exhibit some degree of
stochasticity. That is, the execution of the model involves psuedorandom processes, which may
result in models that have identical initial conditions but produce a variety of possible outcomes.
Thus, it is often important that there is a way to encode multiple realizations of the same
parameterization of the model, but with different random seeds. With this method, any particular
realization can be reproduced, given that the random seed is properly initialized and stored.
These model realizations can be parameterized by their configuration settings and a labeling of
their realization. A realization can be represented in Mathematica using some form, such as:

Realization[{p1, ..., pn}, repetitionNumber] = <model data>

153

In Mathematica, we will take advantage of the fact that the system can “remember” its value
using the idiom:

f[x_] := f[x] = function to be evaluated at x

 Each time the function f[] is evaluated at some x, its value is calculated and stored as
part of the definition of the function. This is a convenient mechanism for storing the results of
often computationally intensive realizations of models for later use. Below the typical structure
of a NetLogo-Mathematica Realization object is specified:

Realization[{var1_, ..., varN_}, repetition_] :=
 Realization[{var1, ..., varN}, repetition] =
 Module[{intermediate data structures},
 (a) setup model using parameters;
 (b) execute model and store intermediate results;
 (c) return result structure
];

(a) NetLogo variables are initialized according to the model’s parameters using NLCommand[].
Side effects of the initialization, such as NetLogo-generated random seeds, or initial placement
of agents may be recorded in intermediate data structures
(b) The main NetLogo loop is executed, and agent variables or aggregate measures are recorded
to intermediate data structures. At this point, we may process NetLogo data using Mathematica
and insert new values into agents. This is typical for models in which agents utilize Mathematica
functionality to carry out their rules.
(c) The intermediate structures are combined into a single expression representing the simulation.

In addition, users may define several functions that operate on the Realization data. These
operators come in three common varieties:

•Directly accessing an element of the resultant expression, such as a time-series array of
some measure, or the distribution of agents’ variables
•Aggregating agent data, such as calculating the Gini index of the stored population or the
clustering coefficient of a network
•Visualization, such as plotting the time dynamics or network structure of a realization

Together, these functions and structures can provide a flexible framework for dealing with
modeling tasks ranging from exploratory analysis, sensitivity analysis (Miller, 1998), to
validation and docking (Axtell et. al., 1996, Wilensky & Rand, 2007).

154

EXPLORATORY ANALYSIS WITH REALIZATION OBJECTS

Here we will consider an instance of this Realization object prototype. This function executes
the NetLogo forest fire model (Wilensky, 1997b) with a particular density and reports back the
fraction of trees burned.

PctBurned[density_, rep_] := PctBurned[density, rep] = Module[{},
 NLCommand["set density ", density, "setup"];
 NLCommand["while [any? turtles] [go]"];
 NLReport["(burned-trees / initial-trees)"]
];

We may attempt to find the phase transition by plotting the result of this function with the entire
range of densities, from zero percent to one hundred percent in increments of ten:

ListPlot[Table[PctBurned[density,1],{density,0,100,10}]]

Finding that a phase transition occurs approximately between forty and eighty percent density,
we can execute the model over this range in increments of five percent, and observe its variance
over ten additional repetitions using a box and whisker plot:

BoxWhiskeryPlot[Transpose[Table[Table[PctBurned[density,rep],{rep,10}],
 {density,30,60,5}]]]

Finally, we can plot the transition averaged over twenty runs at a higher resolution in increments
of one:

ListPlot[Table[Mean[Table[PctBurned[density,rep],{rep,20}]],
 {density,30,60,1}]]

CONCLUSION

 The environment and techniques presented in this paper can provide researchers with a
rich environment in which they can rigorously debug, analyze, and make inferences from agent-
based models. It provides an integrated workflow which enables users to focus on
experimentation rather than the implementation. We hope that the methods proposed here can be
of use to the agent-based modeling community and promote a more intimate understanding of
phenomena observed in our models and a more robust treatment of our results. We have used
these tools in several of our research projects at the CCL. In the context of an NSF-funded
research project on modeling educational policy, we have profitably applied the NetLogo-
Mathematica interface tools to explore a large-scale model of school choice calibrated with
empirical data. The integrated environment has enabled the iterative construction of the model,
including the model calibration, analysis of runs, and even model documentation. In addition,

155

the environment has aided in the collaboration with members outside of our immediate research
group by enabling us to rapidly examine new hypotheses and analyze the data in multiple ways.
In this respect, the NetLogo-Mathematica integrated environment provides a powerful addition
to the model builder’s toolkit.

ACKNOWLEDGMENTS

The preparation of this paper was supported by the National Science Foundation DHB grant
#0624318. We would like to thank Spiro Maroulis, Bill Rand, Seth Tisue, and Lada Adamic for
their feedback on this work.

REFERENCES

Axelrod, R. The Dissemination of Culture: A Model with Local Convergence and Global
Polarization The Journal of Conflict Resolution, Vol. 41, No. 2 (Apr., 1997), pp. 203-226

Axtell, R., Axelrod, R, Epstein, J. M, & Cohen, M. D. (1996), "Aligning Simulation Models: A
Case of Study and Results", Computational Mathematical Organization Theory, 1(2), pp.
123-141

Macal, C.M. & Howe, T.R. (2005). Linking Repast and Computational Mathematics Systems:
Mathematica and MATLAB. Proceedings of the Agent 2005 Conference on Generative
Social Processes, Models, and Mechanisms, Gleacher Center. Chicago, IL, USA. 13-15
October 2005. Argonne National Laboratory and the University of Chicago. Pp. 5-23.

Miller, J. H. (1998) Active Nonlinear Tests (ANTs) of Complex Simulation Models Management
Science, Vol. 44, No. 6 pp. 820-830

Tisue, S., & Wilensky, U. (2004). NetLogo: Design and implementation of a multi-agent
modeling environment. Paper presented at the Agent 2004 conference, Chicago, IL,
October 2004.

Wilensky, U. (2001). Modeling nature's emergent patterns with multi-agent languages. Paper
presented at the Eurologo 2001 conference, Linz, Austria.

Wilensky, U. & Rand, W. (2007). Making Models Match: Replicating an Agent-Based Model"
Journal of Artificial Societies and Social Simulation, 2007, 10(4). http://
jasss.soc.surrey.ac.uk/10/4/2.html .

Wolfram, S., (2003). The Mathematica Book: 5th Edition, Wolfram Media, Champaign, IL.

Models and Software
Centola, D. (2007). Axelrod Culture Model. http://hsd.soc.cornell.edu/curricular/Axelrod/

AxelrodModel.html. Networks and Social Dynamics Group, Cornell University, Ithaca,
NY

Wilensky, U. (1997a). NetLogo GasLab Gasinabox model.http://ccl.northwestern.edu/netlogo/
models/GasLabgasinabox. Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

156

http://jasss.soc.surrey.ac.uk/10/4/2.html
http://jasss.soc.surrey.ac.uk/10/4/2.html
http://jasss.soc.surrey.ac.uk/10/4/2.html
http://jasss.soc.surrey.ac.uk/10/4/2.html
http://hsd.soc.cornell.edu/curricular/Axelrod/AxelrodModel.html
http://hsd.soc.cornell.edu/curricular/Axelrod/AxelrodModel.html
http://hsd.soc.cornell.edu/curricular/Axelrod/AxelrodModel.html
http://hsd.soc.cornell.edu/curricular/Axelrod/AxelrodModel.html

Wilensky, U. (1997b). NetLogo Fire model. http://ccl.northwestern.edu/netlogo/models/Fire.
Center for Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

Wilensky, U. (1999). NetLogo [Computer software] (Version 4.0). Evanston, IL: Center for
Connected Learning and Computer-Based Modeling. http://ccl.northwestern.edu/netlogo.

Repast, 2007, [Computer software] Repast home page; available at http://repast.sourceforge.net/
Mathematica, 2007, [Computer software] Mathematica documentation (Version 6.0);

Champaign, IL: Wolfram Research Inc. http://reference.wolfram.com/mathematica/.

Wilensky, U. (1999a). NetLogo [Computer software] (Version 4.0). Evanston, IL: Center for
Connected Learning and Computer-Based Modeling. http://ccl.northwestern.edu/netlogo.

Wilensky, U. (2003). Behavior Space [Computer Software] (Version 3.0). Evanston, IL: Center
for Connected Learning and Computer Based Modeling, Northwestern University. http://
ccl.northwestern.edu/netlogo/behaviorspace.

157

http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/models/Fire
http://repast.sourceforge.net
http://repast.sourceforge.net
http://reference.wolfram.com/mathematica/
http://reference.wolfram.com/mathematica/
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo/behaviorspace
http://ccl.northwestern.edu/netlogo/behaviorspace
http://ccl.northwestern.edu/netlogo/behaviorspace
http://ccl.northwestern.edu/netlogo/behaviorspace

158

EXAMINING GROUP BEHAVIOR AND COLLABORATION
USING ABM AND ROBOTS

PAULO BLIKSTEIN∗, Northwestern University, Evanston, IL

WILLIAM RAND, Northwestern University, Evanston, IL
URI WILENSKY, Northwestern University, Evanston, IL

ABSTRACT

Agent-based modeling has been extensively used by scientists to study complex systems.
Participatory simulations are similar to agent-based models except that humans play the
role of the virtual agents. The Bifocal modeling approach uses sensors to gather data
about the real-world phenomena being modeled and uses that information to affect the
model. In this work, we are interested in automatically extracting, analyzing and
modeling group behaviors in problem solving. Combining these three systems into one
unified platform would be useful for those purposes, since it would facilitate a synthesis
of their main affordances: understanding the role of locality, mapping human action to
emergent behaviors, and controlling embedded physical objects in noisy environments
while receiving sensory feedback. We will demonstrate a technological platform based on
the NetLogo/HubNet architecture that supports simulated agents, participatory agents and
physical agents. We place this platform within a more general framework that we call
Human, Embedded and Virtual agents in Mediation (HEV-M). We have run several
studies using an instantiation of this platform that consists of a robot-car with four users
who navigate a maze. We believe that this tool has potential for three main reasons (1) it
facilitates logging of participant’s actions, so as to identify patterns, (2) it offers
researchers in the field of computer-supported collaborative learning an easy-to-use tool
to design engaging collaborative learning activities and, (3) it foregrounds the role of
individual actions within the accomplishment of a collective goal, highlighting the
connections between simple individual actions and the resultant macroscopic behaviors
of the system.

 Keywords: group behavior, agent-based modeling, collaboration, robots

INTRODUCTION

Agent-based modeling has been used by scientists to study phenomena such as the
interactions of species in an ecosystem, the collisions of molecules in a chemical reaction, and
the food-gathering behavior of insects (Bonabeau, 1999; Troisi, Wong & Ratner, 2005; Wilensky
& Reisman, 2006). Typical of agent-based models is that the aggregate patterns or behaviors at
the macro level are not premeditated or directly actuated by any of the micro-elements.
Participatory simulations are similar to multi-agent simulations except that humans play the role
of the virtual agents (Wilensky & Stroup, 2002). As yet another extension to ABM methods,
Blikstein & Wilensky (2006) have been exploring the use of physical devices in agent-based
modeling, using sensors to gather data about the real-world phenomena under scrutiny (bifocal
modeling).

∗ Corresponding author address: Paulo Blikstein, Center for Connected Learning and Computer-Based Modeling,

222 Annenberg Hall, 2120 Campus Dr., Evanston, IL 60208; e-mail: paulo@northwestern.edu.

159

The three aforementioned areas (agent-based modeling, participatory simulations, and
bifocal modeling) are concerned with the creation, manipulation, and development of agents in
one form or another. In this work, we are particularly interested in automatically extracting,
analyzing and modeling group behaviors and collective strategies for problem solving.
Combining these three systems into one unified platform would be useful for those purposes,
since it would facilitate a synthesis of their main affordances: understanding of the role of
locality, mapping human action to emergent collective behaviors, and controlling embedded
physical objects in noisy environments while receiving sensory feedback. We will demonstrate a
technological platform based on the NetLogo/HubNet architecture (Wilensky, 1999; Wilensky
and Stroup, 1999) that supports simulated agents, participatory agents and physical agents (Rand,
Blikstein, & Wilensky, 2006). Within this platform, designers can create participatory
simulations in which each participant controls one micro-element within a physical system (a
car, a mini-factory, etc.), while at the same time interacting with virtual agents. We place this
technological platform within a more general framework that we call Human, Embedded and
Virtual agents in Mediation (HEV-M). This framework facilitates general discussion about the
components of the overall system and their interaction across particular technologies and
instantiations.

We have run four studies using an instantiation that consists of a robot-car with four

motors, each connected to a robotics interface, the GoGo Board (Sipitakiat, Blikstein & Cavallo,
2004), which communicates with the server. Each user is assigned a motor to control, and
turning the car is achieved by activating, deactivating, or reversing the correct wheels.
Participants were given the task of moving the robot from a start area to a goal area while
avoiding obstacles along the way.

Initial results were intriguing. In our first studies, with university professors and

researchers (Blikstein, Rand & Wilensky., 2006; Rand, Blikstein & Wilensky, 2006), before the
start of the activity, participants were confident that they could easily accomplish the task.
However, as soon as the first turn was necessary, participants started to report increasing
frustration1 with their ability to solve the problem, and we observed the emergence of strategies
for optimizing the process, such as delegating leadership to one participant, or formation of two
groups acting fairly independently. Also, at the beginning, many participants seemed unaware
that an error from any of the participants could ruin the group’s goal, no matter how well other
participants were doing. However, in the present study, with computer science students as
subjects, resulted in a diverse set of strategies for managing the task, as we will explain in this
paper.

We present the current study as one example of how collaboration with embedded objects

can be observed, but the potential of this framework and technology goes beyond this instance.
As an example, almost any agent-based model could be recreated using physical agents and
human agents interacting with those agents. For instance, traffic simulations in which
participants controlled remote control cars, could offer insight into human behavior in traffic
systems. The virtual agents in the current study are fairly passive, serving as conduits from the
participants to the robot. However, these agents could be given a greater level of interaction,
allowing them to interpret and respond to data from both the participants and the robot, and make

1 It should be noted that the participants found this frustration humorous, since they were amazed that they could not
solve such a simple problem.

160

their own autonomous decisions. This would add another level of complexity to the overall
system.

We believe that the framework instantiation presented in this paper has significant

potential for three main reasons (1) it facilitates logging of participant’s actions, so as to identify
patterns and match them to observations, (2) it offers researchers in the field of computer-
supported collaborative learning an easy-to-use tool to design engaging collaborative learning
activities and, (3) it foregrounds the role of individual actions within the accomplishment of a
collective goal, highlighting the connections between simple individual actions and the resultant
macroscopic behaviors of the system.

THE HEV-M FRAMEWORK

On a certain abstraction level, human, robotic (also called embedded) and virtual agents

can be viewed as equivalent: all of these agents have properties (i.e., descriptions of themselves,
and knowledge about the world) and methods (i.e., actions that they can take to achieve goals).
In all three cases, the agents, regardless of being human, embedded or virtual, will examine the
world around them and their own internal state and decide what action to take on the basis of this
input.

Each of these systems, virtual, robotic, and human, present their own challenges. In the

case of human agents, the logic that connects the input to the output may not be well known by
outside observers, and thus the actions taken may be quite unpredictable. But confusion about the
relationship between inputs and outputs is not limited to the human case. Robots can have noisy
sensors that affect their perception of the world, and their actuators, also subject to a noisy
environment, may not always work perfectly. In addition, there are many challenges to designing
virtual agents correctly. Often low-level rules do not result in anticipated emergent patterns.
Nonetheless, there are many reasons to motivate the combination of these systems into one
integrated platform.

Robotic agents and virtual agents working within a shared model can be complementary.

Robotic agents could use virtual agents to plan out routes and to simulate their movements ahead
of time, which would assist in the development of some robotic agents, like planetary rovers.
However, this is not a simple task. Robotic agents operate within the physical world (which
often interferes with the task) and they have noisy sensors and fallible actuators. As mentioned,
the integration of virtual systems with robotic systems can present researchers with many
difficulties. How does one model the noisiness and inefficiency of the physical world within a
virtual system, so that virtual and robotic agents can remain in step with each other? How should
virtual agents interpret data from a robotic agent?

In much the same way that robotic agents are different from virtual agents, so are human

agents different from virtual agents. The integration of human agents into a unified system also
presents many of the same issues that challenge the integration of robotic agents, since they also
have noisy sensors and inefficient actuators. Moreover, they present additional problems from a
virtual agents’ standpoint – human agents can adapt to their surroundings in new and surprising
ways, which means that they are less predictable, and can be deliberately obstinate or malicious,
attempting to confuse and take advantage of virtual agents. Notwithstanding these challenges, the
integration of human and virtual agents within a shared system has a lot of potential. For
instance, a model developer can have humans play the role of agents, subsequently capturing and

161

embedding the decisions made by humans into virtual agents, enabling a richer and more
elaborate examination of the behaviors employed by the humans (for more information on work
on virtual and humans agents using the HubNet platform, see Abrahamson & Wilensky, 2004;
Berland & Wilensky, 2006; Wilensky & Stroup, 2002). Alternatively, human agents could work
together with virtual agents to accomplish some mutual goal. For instance, in a war simulation,
humans could place emphasis on different targets while allowing the virtual agents to take care
of the low-level planning. However, all of this requires the development of new protocols – for
example, how does one automatically capture human decisions and embed them in agent-based
rules? How can human agents express new beliefs, desires and intentions to a virtual agent?

We have been discussing these relationships between human and virtual agents, and

robotic and virtual agents as separate entities, but these relationships can also be combined
within a unified framework. In this paper, we will explore the combination of all these agents
within one integrated platform (Blikstein, Rand & Wilensky., 2006; Rand, Blikstein &
Wilensky., 2006). Our unified conceptual framework is the HEV-M framework, which stands for
the integration of Human agents, Embedded sensory-enabled robotic agents, and autonomous
Virtual agents, which communicate via a central Mediator (see Figure 3). The three different
agent groups may have different goals and even different tasks. The mediator takes messages
from any of the three groups of agents, transforms the messages, and relays the information to
the other groups within a well-established protocol.

We have previously speculated (Rand, Blikstein & Wilensky, 2006) how this framework

might be useful through the use of three hypothetical examples: Widget Factory, Planetary
Rover, and Demon Soccer. In Widget Factory humans and virtual agents control simple
machines that create parts of widgets. This environment can show, for example, that minor
errors in the creation of the parts can dramatically alter the resultant outcome. In Planetary Rover
humans cooperate with virtual agents to control a robotic agent. The virtual agents utilize
sensory data about their environment to make independent decisions. This environment can
enable the exploration of collaborative human-robot protocols. In Demon Soccer, human agents
interact with virtual agents to control a soccer ball. The human agents play on opposing teams
and attempt to steer the soccer ball in to their opponent’s goal. Four different agents control the
four wheels. Two of the agents are humans, and two of the agents are demon agents that either
malignantly or randomly alter the speed and direction of the wheels. This environment enables
the exploration of mediation between hostile agents, and could offer insight into how humans
adapt to new and challenging situations.

162

Figure 1: HEV-M Framework.

TECHNOLOGICAL PLATFORM

In this paper, we describe one technological platform that implements the components of the
HEV-M framework. This platform is based on the NetLogo/HubNet modeling environment, and
on the GoGo Board, an open-source piece of hardware for interfacing the computer with sensors
and actuators. The system has three components:

1. Robot-car: the car has four motors, each connected to a wheel and controlled

independently. The wheels cannot be steered, thus turning the car is achieved by
selectively engaging different wheels in different directions. For example, a slow turn to
the left can be accomplished by turning on both of the right wheels, and a faster turn can
be accomplished by also turning the left wheels on, but in reverse. The motors have three
power levels (high, medium and low), and are connected by long wires to the robotics
interface. The interface, in turn, is connected to the server.

2. Client computers: each of the four client laptops have a simple interface for wheel
control, enabling the user to turn his/her own wheel on and off, set the power level, and
toggle the direction of rotation of the wheel.

3. Server: the server receives information from the four client computers and controls the
robot-car accordingly. It also keeps a log of all the actions performed by the users.

163

Figure 2 Diagram of the system, with its three components:

the client computers, the robot-car, and the server.

EXPERIMENTS

This framework for agent integration is not just hypothetical– we have implemented it in
several projects. (Blikstein, Rand & Wilensky, 2006; Rand, Blikstein & Wilensky, 2006). These
preliminary prototypes had human and virtual agents working together to guide a robotic agent
through a maze.

To extend those preliminary studies, we defined a methodological framework to conduct
experiments. First, we standardized the size of the track and generated three fixed mazes. We
also implemented a logging feature to capture keystrokes and mouse clicks from the participants.
Finally, we defined a sequence of four activities to propose to participants:

Act. 1. Maze with one obstacle, with communication – we tell participants that they
can talk to each other.

Act. 2. Maze with two obstacles, without communication – we tell participants that

they should conduct the activity in silence, although they can observe at each
other.

Act. 3. Maze with three obstacles, with leader. We randomly pick one of the

participants and ask them to lead the other ones.

164

Act. 4. Maze with three obstacles, randomized. All wheels are randomized at the

beginning, so users don’t know beforehand which wheel they control. They have
to figure it out during the activity.

Two main sources of data were used: video data and log files of students’ interactions.

For the video data collection, two cameras were utilized, one fixed, facing the participants, and
one mobile, mainly facing the whiteboard and the robot-car. The log files recorded all of
participants’ interactions with the system.

Figure 3 Clockwise from the left: The experimental setup for Act. 1, the four participants, and
the experimental setup for Act. 2.

DATA ANALYSIS AND DISCUSSION

In previous work (Rand, Blikstein & Wilensky, 2006), we reported on a group of four
university professors and researchers that had great difficulties in successfully completing the
maze. We observed that inter-subject communications were confusing and out-of-sync with the
required speed of action, and users could not establish clear leadership. The group of professors
apparently underestimated the difficulty of the task and over-engineered their own strategies,
resulting in poor performance. For that study, however, the logging mechanism was not yet in
place, so our understanding of participants’ reaction was partial, based on their own utterances
and our observations of the robot-car. For the following study, with the logging mechanism in
place, a group of four computer science students was selected. We began the study with the
hypothesis that, being young students, they would be more spontaneous and communicate
extensively; being experts in computer science, they would try to engineer elaborate strategies to
control the car. Both of these hypotheses were proved wrong, and other results became apparent
from our data analysis, which we will explain below

165

Fading inter-personal communication patterns

Participants started out communicating extensively during the first activity. The second

activity was supposed to be in silence, but even after communication was permitted again, on the
third activity, participants did not resume verbal communication: they were paying attention
exclusively to the car. Below is the transcript of the dialogue during the first activity, showing
that participants were able to devise a successful strategy and orally coordinate their activities:

John: I have a plan: Jim and I don’t do anything, you do it all. You guys are the front.
[after a few second, the car stalls]
Marcia: Uh Oh. More power.
John: Do you think you need us?
John: We need some back…
Marcia: Nice
John: You guys got it, you don’t need us.
Marcia: Great success, guys.

However, from the third activity on, there was barely any verbal communication. This

was in contradistinction to our initial hypotheses. Somehow the participants developed a
personal heuristic as to how to control their wheel which did not require communication. One
explanation is that they “read” other participants’ states and intentions through the state of the
car, with no need of explicitly asking questions. As we will show below, this explanation is
supported by both the post-interviews that we conducted with the participants and an
examination of the log files.

Diversity of personal strategies

Participants’ post interviews further corroborate the hypotheses of decreased oral

communication, since their self-reported strategies and heuristics did not include talking or
asking question of the other participants:

Edward: I was not paying attention to anyone; I was paying attention to the car. I was
just paying attention to my wheel. If I did something and it went bad, because another
person did something else, I would just go back to my previous state.

Jim: I did very little. I figured that if everyone was hitting buttons and moving forward,
the car wouldn’t go anywhere, so I waited for opportunities in which I was pretty sure I
would make a difference.

John: I was back-left, when I was on, the car would go to the right. When my thing is
going forward, the car would go right. If my thing is going backwards, the car is going
left.
Interviewer: But if the other guy is doing the opposite…
John: Then the car wouldn’t go anywhere. [long pause] That’s ok.

For John, looking at the car (which was exhibiting behavior that resulted from

aggregating each group member’s directives) and reacting to it on-the-fly was more efficient
than explicitly discussing strategies (which we observed in our previous study with the university
professors and researchers). Despite the car’s behavior being a collective construction, John was

166

reacting to the resulting emergent behavior of the group, and not discussing every single
individual action. Jim had a very different strategy: he realized that, by simply doing nothing, the
car would probably achieve the same goal, since there was redundancy in the system – by
staying out, he thought he could help the group achieve the goal faster. Edward, conversely, was
very active, and devised a strategy of trial-and-error – if his move resulted in undesired behavior,
he would just undo the movement, without negotiating every move. In all three of these cases
the individual decision criteria is focused on the aggregate behavior of the car, and completely
excludes any involvement of the other participants.

Use of the different motor control commands

Additionally, the log files show that, notwithstanding the symmetry of the car, each user

had a different approach to their use of the six different commands. One commonality between
participants was observed: power-high, medium and low were used very infrequently. Two users
(back-right and front-right) realized that just leaving the motor on and using ‘reverse-direction’
during the activity was the most effective strategy. As the log files show, as time went on, these
participants employed this strategy with increasing frequency. John, who was controlling the
‘back-right’ wheel, used ‘reverse-direction’, or ‘rd’, almost exclusively toward the end of the
study (Activity 3). Comparing the log files and the verbal data, we observed that this learning
process took place tacitly, without any oral communication between users. However, John was
conscious that he had learned an important technique, since when he was asked to lead the group,
on activity 3, he asked everyone to “turn on and just use reverse-direction”. Another surprising
observation was that, even after John asked all users to exclusively use ‘rd’, only those users who
had had a significant increase in ‘rd’ from activity 1 to activity 2 followed his advice. This can
be seen in the ‘rd’ lines on the plots in Figure 4. Compare the ‘rd’ lines of ‘back-right’ [John
himself] and ‘front-right’, as opposed to ‘back-left’ and ‘front-left.’ One explanation is that two
of the participants employed their own personal theory on how to control the car and were
resistant to follow the directions of the leader. This hypothesis is further supported by the
aforementioned transcriptions of users’ self-reported techniques for car control.

167

Figure 4 The use of each command over the four activities for each user (first four plots), the

overall percent of use per command for all users (bottom left, note the clear increase in the use
of reverse-direction), and the percent of actions per user (bottom right), showing an almost

uniform distribution, with the exception of user ‘back-left’.

CONCLUSION

The HEV-M framework and the implementation described in this paper proved to be a

useful tool in exploring the interactions and interoperability among human, virtual and physical
agents. We developed data collection tools and techniques that reveal tacit individual and
collective strategies for problem solving and communication. The approach of pairing verbal
data and log files described in this paper could enable other researchers to unveil unexpected

168

communication and behavior patterns that would otherwise go unnoticed. For example, one
behavioral pattern that we observed was that users’ final strategy resulted in a focus on the car’s
actions and movements, instead of observing or communicating with the participants – despite
being in the same room. Surprisingly, a simple robot-car ended up mediating interpersonal
communication more effectively than oral discourse. Seeing as how the humans involved did not
actually communicate and seemed to settle on final strategies quickly, it might have been
possible to replace them with virtual agents able to observe the robot-car and make decisions
similar to the humans. As we have observed there would need to be different types of virtual
agents to represent the different human behavioral styles, but that is a simple task. These results
suggest that the nature of the agent controlling the device – human or virtual – could be of less
importance than is commonly thought. If this result is confirmed by further research, this could
be an important contribution to the study of human-computer interaction within the field of
agent-based modeling.

AKNOWLEDGEMENTS

The preparation of this paper was supported by the National Science Foundation
(Information & Intelligent Systems Division grant #0713619, “Advancing the Science of Agent-
Based Modeling Through Frameworks, Tools, and Pedagogies”, PI: Uri Wilensky).

REFERENCES

Abrahamson, D., & Wilensky, U. (2004). SAMPLER: Collaborative interactive computer-based
statistics learning environment. Paper presented at the 10th International Congress on
Mathematical Education, Copenhagen, July 4 - 11, 2004.

Berland, M., & Wilensky, U. (2006). Constructionist collaborative engineering: Results from an

implementation of PVBOT. Paper presented at the annual meeting of the American Educational
Research Association, San Francisco, CA.

Blikstein, P., & Wilensky, U. (2006). The Missing Link: A Case Study of Sensing-and-Modeling

Toolkits for Constructionist Scientific Investigation. In Proceedings of the 6th IEEE
International Conference on Advanced Learning Technologies (ICALT 2006), Kerkrade,
The Netherlands, 980-982.

Blikstein, P., Rand, W., & Wilensky, U. (2006). Participatory, Embodied, Multi-Agent

Simulation. Paper presented at the AAMAS-06 Conference, 2006.

Bonabeau, E., Dorigo, M., Théraulaz, G. (1999). Swarm intelligence: From natural to artificial

systems. London: Oxford University Press.

Rand, W., Blikstein, P., & Wilensky, U. (2006). Widgets, Planets, and Demons: the Case for the

Integration of Human, Embedded, and Virtual Agents via Mediation. Paper presented at the
Swarmfest 2006.

Sipitakiat, A., Blikstein, P., & Cavallo, D. P. (2004). GoGo Board: Augmenting Programmable

Bricks for Economically Challenged Audiences. Proceedings of the International
Conference of the Learning Sciences, Los Angeles, USA.

Troisi, A., Wong, V., & Ratner, M. (2005). An agent-based approach for modeling molecular self-

169

organization. Proceedings of the National Academy of Sciences, 102(2), 255-260.

Wilensky, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-

Based Modeling. http://ccl.northwestern.edu/netlogo.

Wilensky, U., & Blikstein, P. (2005). NetLogoLab curriculum. Evanston, IL: Center for Connected

Learning and Computer Based Modeling, Northwestern University.

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology

through constructing and testing computational theories -- an embodied modeling
approach. Cognition & Instruction, 24(2), 171-209.

Wilensky, U., & Stroup, W. (2002). Participatory Simulations: Envisioning the networked

classroom as a way to support systems learning for all. Paper presented at the Presented at
the Annual meeting of the American Research Education Association, New Orleans, LA,
April 2002.

170

Repast Toolkit Developments

VISUAL AGENT-BASED MODEL DEVELOPMENT
WITH REPAST SIMPHONY

M.J. NORTH,* Argonne National Laboratory, Argonne, IL,

and The University of Chicago, Chicago, IL
ERIC TATARA, Argonne National Laboratory, Argonne, IL
N.T. COLLIER, Argonne National Laboratory, Argonne, IL,

and PantaRei Corp., Cambridge, MA
J. OZIK, Argonne National Laboratory, Argonne, IL

ABSTRACT

Repast is a widely used, free, and open-source agent-based modeling and simulation
toolkit. Three Repast platforms are currently available, each of which has the same core
features but a different environment for these features. Repast Simphony (Repast S)
extends the Repast portfolio by offering a new approach to simulation development and
execution. This paper presents a model of physical infrastructure network
interdependency as an introductory tutorial and illustration of the visual modeling
capabilities of Repast S.

Keywords: Agent-based modeling and simulation, Repast, toolkits, and development
environments

INTRODUCTION

Repast (ROAD 2005; North et al. 2006) is a widely used, free, and open source agent-
based modeling and simulation toolkit with three released platforms, namely Repast for Java,
Repast for the Microsoft .NET framework, and Repast for Python Scripting. Repast Simphony
(Repast S) extends the Repast portfolio by offering a new approach to simulation development
and execution, including a set of advanced computing technologies for applications such as
social simulation. North et al. (2005a and 2005b), Howe et al. (2006), and Parker et al. (2006)
provide an overview of the Repast S runtime and development environments.

We use a model of networked physical infrastructure to demonstrate the visual design
capabilities of the Repast S toolkit and as an introductory tutorial. While the example is not
intended to model real phenomena, the model’s complexity is high enough to illustrate how the
user may develop multi-agent models.

It is important to note that Repast S and its related tools are still under development. This
paper presents the most current information at the time it was written. However, changes may
occur before the planned final release.

* Corresponding author address: Michael J. North, Argonne National Laboratory, 9700 South Cass Avenue,

Argonne, IL 60439; email: north@anl.gov.

173

THE REPAST S MODEL IMPLEMENTATION BUSINESS PROCESS

As discussed in North et al. (2005a and 2005b), the Repast S model implementation
business process is as follows:

• The modeler creates model pieces, as needed, in the form of plain old Java
objects (POJOs), often using automated tools or scripting languages such as
Groovy.

• The modeler uses declarative configuration settings to pass the model pieces

and legacy software connections to the Repast S runtime system.

• The modeler uses the Repast S runtime system to declaratively tell Repast S
how to instantiate and connect model components.

• Repast S automatically manages the model pieces based on (1) interactive

user input and (2) declarative or imperative requests from the components
themselves.

The POJO model components can represent anything but are most commonly used to

represent the agents in the model. While the POJOs can be created by using any method, this
paper discusses one powerful way to create POJOs for Repast S: the Repast S development
environment. However, modelers can use any method—from hand coding to wrapping binary
legacy models to connecting into enterprise information systems—to create the Repast S POJO
model components.

Regardless of the source of the POJOs, the Repast S runtime system is used to configure
and execute Repast S models. North et al. (2005b) detail the Repast S runtime system, the design
of which includes:

• Point-and-click model configuration and operation;

• Integrated two-dimensional, three-dimensional, and other views;

• Automated connections to enterprise data sources; and

• Automated connections to powerful external programs for conducting
statistical analysis and visualizing model results.

SIMPLE PHYSICAL INFRASTRUCTURE NETWORK MODEL

A model of interconnected physical infrastructure networks is presented as an
introductory tutorial and illustration of the visual modeling capabilities of Repast S. The model
consists of a natural gas transmission and DC electric power network (Tatara et al. 2007b). The
natural gas transmission model consists of a network of interconnected links and nodes, where
the nodes function as delivery, receipt, and/or pipeline termination points, and the links function
as gas pipelines that transport natural gas between nodes. The DC electric network model
considers a balance of demand and generation given the transmission topology. The nodes in the

174

electric network represent generators and load points, while the links function as electrical
transmission lines. The two networks are connected via links between the natural gas network
and gas-fired electric power plants (generators) in the electrical network. The simple networks
presented here will model propagation of pressure and power along the gas and electrical
networks.

VISUAL PROJECT CREATION AND AGENT DESIGN

While previous versions of Repast required the user to set up and configure an

appropriate integrated development environment (IDE), Repast S provides a preconfigured
Eclipse-based IDE such that no a priori programming experience is required to build a model.
Although the Repast IDE is aimed at novice developers, the full Repast S Java application
programming interface (API) and advanced IDE configuration options are available at any time.
Previously, Tatara et al. (2006) discussed using Repast S to create a model of wolf-sheep
predation through the Java API.

After the Repast S IDE is started, the user may choose to continue working with an

existing project or create a new project. The project creation wizard prompts the user for the type
of project to create (Figure 1). The user is prompted for basic project information such as the
project name (Figure 2). Additional project options are available to the advanced user, although
these options may simply be left as the default.

When the Repast project is created in the workspace, a set of project components is

visible in the package explorer, shown on the left side of Figure 3. These components include
things such as directories for storing user data and the project source code. Also visible in
Figure 3 is the Score editor, which specifies the hierarchical structure of the model contexts,
agents, and projections. Model elements are represented graphically in a tree, and components
may be added on a point-and-click basis. Once model elements have been placed in the Score
editor, their properties may be edited in the Properties window shown at the bottom of Figure 3.

After the model Score has been completed, the user may start creating the agent objects.

At this point, the advanced user may choose to create the agent classes using the Java API, while
those users not familiar with Java may chose to use the Repast agent editor. The agent creation
wizard is accessed via the package explorer and allows the user to create a number of Repast
objects (Figure 4). When a new agent is created (Figure 5), the IDE view switches to the agent
editor view as shown in Figure 6.

As discussed in detail in Ozik et al. (2007), the visual agent behavior editor, the new

project wizard and the new agent wizard are modified forms of Alexander Greif’s free and open
source Flow4J-Eclipse components (Greif 2006) that have been adapted specifically for agent-
based modeling. Greif (2006) has made the Flow4J-Eclipse system available under a BSD-style
free and open source license. The Repast project team has built on Greif’s contribution to create
the above-mentioned Repast S components. From the Flow4J home page, Greif (2006) states:

Flow4J is an Eclipse Plug-in for modeling process flows in a drag and drop manner. A
process flow can contain process steps (I call them flowlets), which can be linked
together [in]to a complex flow.

175

Ozik et al. (2007) provides the details on what Repast has both inherited and
modified/adapted from Greif’s (2006) Flow4J-Eclipse system.

Like the Flow4J-Eclipse visual editor, the Repast agent editor itself consists of an
editable icon panel and a palette of behavior icons, which may be dragged into the edit panel and
modified. As discussed in Ozik et al. (2007), the icons are analogous to blocks in a flowchart that
may be connected in flexible ways to create the agent behavior logic. Figure 6 shows the creation
of an agent property “pressure” for the GasNode agent class. The property parameters may be
edited in the bottommost panel in Figure 6. The user is asked to specify a number of required
elements such as the property name, data type, and initial values, while several optional data,
such as a long description of the property, may also be defined.

Behaviors are defined by creating a behavior element in the workspace as shown in
Figure 7. The behavior element may be either a scheduled behavior or one that is event-driven.
The desired behavior for the nodes in the natural gas network is to react to changes in pressure
upstream. Therefore, the behavior at the gas nodes will be event-driven and caused by changes in
pressure from connected gas nodes.

The behavior block defines how and when the behavior occurs and not what actually

happens next. A Task block is used to define the active part of the behavior to which it is
associated (Figure 8). The Task block specifies what the agent does when the behavior is
triggered. Continuing with the gas network node behavior, the task should adjust the node’s
pressure based on the pressure of the upstream node. Finally, the behavior logic is terminated
with an End block as shown in Figure 8.

When the user saves the diagram, the Repast IDE automatically compiles the diagram

into usable code that may be immediately loaded into the Repast runtime without the user ever
needing to write Java code. The agent behavior editing step is repeated in this example (not
shown) for the electric network nodes, using power rather than pressure as the propagated
variable.

176

FIGURE 1 New project display wizard with Repast Simphony Project selected

177

FIGURE 2 Repast Simphony Project new project basic options

178

FIGURE 3 Repast Simphony project workspace showing Score editor view

179

FIGURE 4 New agent creation wizard

180

FIGURE 5 New agent creation wizard name option

181

FIGURE 6 Repast agent editor showing creation of an agent property

182

FIGURE 7 Repast agent editor showing creation of an agent behavior

183

FIGURE 8 Repast agent editor showing creation of an agent task and its linkage with
behavior

184

RUNTIME AGENT CREATION AND DISPLAY DESIGN

After the agents have been created in the Repast agent editor, the runtime may be started
from the Repast IDE. Creation of user-specified data collection, output, and display may be
performed through wizards in the Repast S runtime. The runtime window contains a scenario
tree with contexts that branch from the main model context. The user may access each of the
underlying wizards by selecting any component in the tree. Generally, one would create the
components in the order of dependency: displays first, followed by data collection and data
output components. The runtime graphical user interface (GUI) elements have been discussed in
detail by Tatara et al. (2007a), and only the visualization elements will be discussed here.

Displays for two and three-dimensional spatial projections are created by selecting the

Displays branch in the scenario tree. The user must specify at least one spatial projection and
optionally one or more network projections or value layers. This demo uses a single two-
dimensional (2D) grid projection on which the physical network elements are placed. The
appearance of the agents is fully customizable and may be specified by the Agent Style wizard in
a display item as shown in Figure 9.

The network style editor (Figure 10) allows the user to specify how the network links are
visualized, including the line style, color, and width. Additionally, the line width and color may
be optionally specified by the agent properties. For example, a high-pressure node may be dark
blue in color and a low-pressure node may be light blue.

Additionally, the agent style may be defined by the agent style editor shown in Figure 11.

The agent style editor provides options in addition to color and size, such as 2D shape, label data,
and label font properties. The agent icon size may also be scaled according to a user-selected
agent property. Options for 3D styles include the ability to set the 3D shape, wrap texture maps
around the 3D shape, and load third-party 3D model files.

At this point, although the agent display styles have been created, no agent instances exist
yet in the runtime, and thus there is nothing to visualize. The user has several options in creating
agent instances, including loading from delimited or database files or by using the runtime
Repast agent editor shown in Figure 12. The Repast agent editor provides the flexibility and
power to create agents and arrange agents in the projections defined by the model. Agents may
be created, cloned, and deleted, and agents in the projection may be freely arranged in space. The
agent editor uses the styles defined for the display so that each agent type may be easily
distinguished from one another.

If the model contains network projection, as with this demo, the agent editor may be used

to connect the agents in the network by dragging connections between agents (Figure 13).
Multiple network types are supported, and the network being edited is selected from a drop-
down box. The network connections are styled on the basis of the specified styles for the display.
In the case where a 3D display is to be edited, the agent editor tool will re-project the 3D display
onto multiple 2D displays for editing. Figure 14 shows the connected infrastructure networks in
2D and 3D projections in the Repast runtime display.

185

FIGURE 9 Runtime display creation wizard

FIGURE 10 Network display style editor tool

186

FIGURE 11 Agent display style editor tool

187

FIGURE 12 Runtime agent instance editor

188

FIGURE 13 Runtime agent instance editor with network links

189

FIGURE 14 Runtime displays showing 2D and 3D visualization of networks

190

CONCLUSIONS

The Repast S runtime is a pure Java extension of the existing Repast portfolio. Repast S

extends the Repast portfolio by offering a new approach to simulation development and
execution. The Repast S development environment is expected to include advanced features for
agent behavioral specification and dynamic model self-assembly. Any plain old Java object can
be a Repast S model component. This paper presents an introductory tutorial and illustration of
the visual modeling capabilities of Repast S by using a simple model of interconnected physical
infrastructure networks.

ACKNOWLEDGMENT

 The authors wish to thank David L. Sallach for his visionary leadership in founding the
Repast project and Charles M. Macal for his sustaining involvement in the project. Also, the
authors wish to thank Alexander Greif for contributing Flow4J-Eclipse to the software
development community. This work is supported by the U.S. Department of Energy, Office of
Science, under contract number DE-AC02-06CH11357.

REFERENCES

Greif, A., 2006, Flow4J-Eclipse Home Page; available at http://flow4jeclipse.sourceforge.net/.

Howe, T.R., N.T. Collier, M.J. North, M.T. Parker, and J.R. Vos, 2006, “Containing Agents:

Contexts, Projections, and Agents” in D. Sallach, C.M. Macal, and M.J. North (eds.),
Proceedings of the Agent 2006 Conference on Social Agents: Results and Prospects,
ANL/DIS-06-7, co-sponsored by Argonne National Laboratory and The University of
Chicago, September 21–23.

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005a, “The Repast Simphony Development

Environment,” in C.M. Macal, M.J. North, and D. Sallach (eds.), Proceedings of the Agent
2005 Conference on Generative Social Processes, Models, and Mechanisms,
ANL/DIS-06-1, co-sponsored by Argonne National Laboratory and The University of
Chicago, Oct. 13–15.

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005b, “Repast Simphony Runtime

System,” in C.M. Macal, M.J. North, and D. Sallach (eds.), Proceedings of the Agent 2005
Conference on Generative Social Processes, Models, and Mechanisms, ANL/DIS-06-1, co-
sponsored by Argonne National Laboratory and The University of Chicago, Oct. 13 –15.

North, M.J., N.T. Collier, and J.R. Vos, 2006, “Experiences Creating Three Implementations of

the Repast Agent Modeling Toolkit,” ACM Transactions on Modeling and Computer
Simulation 16(1):125, ACM (January): New York, NY.

191

Ozik, J., M.J. North, D.L. Sallach, and J.W. Panici, 2007, “ROAD Map: Transforming and
Extending Repast with Groovy,” Proceedings of the Agent 2007 Conference on Complex
Interaction and Social Emergence, co-sponsored by Argonne National Laboratory and
Northwestern University, Nov. 15–17.

Parker, M.T., T.R. Howe, M.J. North, N.T. Collier, and J.R. Vos, 2006, “Agent-Based Meta-

Models,” in D. Sallach, C.M. Macal, and M.J. North (eds.), Proceedings of the Agent 2006
Conference on Social Agents: Results and Prospects, ANL/DIS-06-7, co-sponsored by
Argonne National Laboratory and The University of Chicago, September 21–23.

ROAD (Repast Organization for Architecture and Design), 2005, Repast Home Page, Chicago,

IL; available at http://repast.sourceforge.net.

Tatara, E., M.J. North, T.R. Howe, N.T. Collier, and J.R. Vos, 2006, “An Introduction to Repast

Simphony Modeling Using A Simple Predator-Prey Example,” in D. Sallach, C.M. Macal,
and M.J. North (eds.), Proceedings of the Agent 2006 Conference on Social Agents: Results
and Prospects, ANL/DIS-06-7, co-sponsored by Argonne National Laboratory and The
University of Chicago, September 21–23.

Tatara, E., M.J. North, T.R. Howe, N.T. Collier, and M.T. Parker, 2007a, “Building Models in

Repast Simphony: A Predator-Prey Example,” Proceedings of the North American
Association for Computational Social and Organizational Sciences 2007 Conference,
June 7–9, 2007, Emory University, Atlanta, Georgia.

Tatara, E., M.J. North, J. Dolph, J. Kavicky, and E. Portante, 2007b, “The Simphony Integrated

Simulation Framework for Infrastructure Interdependency Modeling,” AIChE Annual
Meeting, Salt Lake City, UT, November 4–9, 2007.

192

ROAD MAP: TRANSFORMING AND EXTENDING REPAST WITH GROOVY

J. OZIK,∗ Argonne National Laboratory, Argonne, IL
and The University of Chicago, Chicago, IL

M.J. NORTH, Argonne National Laboratory, Argonne, IL
and The University of Chicago, Chicago, IL

D.L. SALLACH, Argonne National Laboratory, Argonne, IL
and The University of Chicago, Chicago, IL

J.W. PANICI, Northern Illinois University, DeKalb, IL

ABSTRACT

This paper discusses the integration of the dynamic object-oriented programming
language Groovy into the Repast Simphony platform. It shows how the integration of
Groovy benefits agent-based modeling in a number of ways, including its ability to
simplify agent behavior specifications, create expressive and human-readable code,
generate complex and adaptive agent behavior, and move between agent-modeling
environments.

Keywords: Repast Simphony, Groovy, agent-based modeling, dynamic languages

INTRODUCTION

Dynamic languages have gained popularity in recent years. Groovy (König et al. 2007) is
such a dynamic language with the added benefit of tight integration with Java and, hence, the
ability to integrate into the Repast (ROAD 2005) agent-modeling platform. Repast Simphony
(Repast S) is the latest extension to the Repast portfolio, a widely used, free, and open-source
agent-based modeling and simulation (ABMS) toolkit (North et al. 2005a,b). Repast S offers a
variety of approaches for developing and executing simulations, and it includes many advanced
features for agent storage, display, and behavioral activation and new facilities for data analysis
and presentation. This paper explores a few aspects of Groovy integration in Repast S.

A dynamic language such as Groovy is vital for implementing the next generation of

ABMS models, such as interpretive agent (IA) models. Although in most agent models, meaning
is stipulated by the model designer, interpretive agents are designed to discern and attribute
meaning from within the model and shape their communications and actions accordingly.

Groovy capabilities can help achieve such a design goal in multiple ways. Tasks can be

defined as closures and passed among agents as needed. Examples of such uses are commands or
directives, skills acquired through training, and the imitation of rituals. Each of these can convey
a closure to achieve its effect, and furthermore, the closure can be customized by context,
arguments, agent state, composition with other closures, or additional embedded closures. In
whatever way the customization is achieved, the effect is to calibrate the way in which the

∗ Corresponding author address: Jonathan Ozik, Argonne National Laboratory, Bldg. 900/DIS, 9700 S. Cass Ave.,

Argonne, IL 60437; e-mail: jozik@anl.gov.

193

directive, specialty, or ritual is carried out in a particular situation. Similarly, the creative use of
iterators allows diverse agents to receive closures customized to their history and/or
circumstances.

The existence of metaobjects allows routine activities to proceed as expected while

possible changes in circumstances that would require the construction of a more innovative
response are monitored. The metaobjects allow agents to have unique or path-specific
capabilities or action orientations.

As such implementations of these dynamic capabilities are incorporated into Repast S,

the toolkit will be able, through Groovy, to provide systematic support for IA models. An IA
reference application (Interpretive Heatbugs) has been ported to Groovy, to both explore such
capabilities and illustrate their use. All such innovations contribute to the forward potential of
social agent simulation and the tools necessary to its realization.

As an added example of Groovy/Repast S integration, we introduce ReLogo, a pathway

from the NetLogo (Wilensky 1999) “multi-agent programmable modeling environment” to
Repast S via Groovy. NetLogo promises easy entry into agent-based modeling for anyone: from
elementary school children, for whom it was originally designed, to advanced researchers.

ReLogo involves the creation of a NetLogo lexer and parser in ANTLR (Parr 1989) and

the emission of Groovy translations of NetLogo code. The interpreted nature of the NetLogo
language makes it especially useful to use a dynamic language such as Groovy as the target
language. The expressiveness of Groovy results in easily readable code that retains a lot of the
structure of the original agent code. As a consequence, the code can be easily extended and
modified within the Repast S environment.

This paper is structured as follows. Section 2 gives a brief introduction to the Groovy

dynamic programming language, focusing on the dynamic features that are most relevant to
agent modeling. Section 3 presents Groovy integration with Repast S, specifically focusing on
some aspects of the Repast S Agent wizard and the visual agent behavior editor, as well as the
use of Groovy categories to carry out a variety of mathematical operations, including automatic
unit conversions and matrix and calculus operations. The Groovy/Repast S port of Interpretive
Heatbugs is discussed in Section 4, which highlights some of the dynamic Groovy capabilities.
Finally, ReLogo is briefly presented in Section 5, and conclusions are given in Section 6.

It is important to note that Repast S and its related tools are still under development. This

paper presents the most current information at the time it was written. However, changes may
occur before the planned final release.

GROOVY

Dynamic languages (e.g., Ruby, Python, JavaScript, or Groovy) have gained popularity
in recent years. Features such as dynamic typing enable individuals and small teams of
programmers to rapidly develop applications and engage in prototype exploration, while test-
driven development mitigates the loss of type checking when moving away from a statically
typed environment (e.g., Java, C, or C++). Although it is not a characteristic of every dynamic

194

language, there is usually a great reduction of boilerplate code, making the code much more
expressive and readable by humans.

An important point to note, though, is that a lot of the ongoing debate that pits dynamic

languages against static languages ignores the reality that some tasks are better done in a
dynamic environment and others in a static one. Moreover, when two languages share object
orientation, integration issues are more easily localized. Groovy steps into this “sweet spot,”
bringing advanced dynamic language features, such as closures, dynamic typing, and the
metaobject protocol, to one of the most widely used, robust, and well-supported (statically typed)
language, Java, via seamless integration. In fact, since JSR-241 (Java Specification Request),
Groovy is the second standard language for the Java platform (the first one being Java).

According to the Groovy Web site (http://groovy.codehaus.org/), Groovy:

• “is an agile and dynamic language for the Java Virtual Machine”

• “builds upon the strengths of Java but has additional power features inspired by
languages like Python, Ruby and Smalltalk”

• “makes modern programming features available to Java developers with almost-zero
learning curve”

• “supports Domain Specific Languages and other compact syntax so your code
becomes easy to read and maintain”

• “makes writing shell and build scripts easy with its powerful processing primitives,
object-oriented structure and an Ant DSL”

• “increases developer productivity by reducing scaffolding code when developing
web, GUI, database or console applications”

• “simplifies testing by supporting unit testing “

• “seamlessly integrates with all existing Java objects and libraries”

• “compiles straight to Java bytecode so you can use it anywhere you can use Java”

There are a number of capabilities that Groovy brings to the realm of agent-based

modeling. First of all, closures allow agent behaviors to be specified as first-class Closure
objects. As taken from the Groovy Web site:

A closure in Groovy is an anonymous chunk of code that may take arguments,
return a value, and reference and use variables declared in its surrounding scope.
In many ways it resembles anonymous inner classes in Java, and closures are
often used in Groovy in the same way that Java developers use anonymous inner
classes.

The closures can be customized by context, arguments, agent state, composition with

other closures, or additional embedded closures. In whatever way the customization is achieved,
the effect is to calibrate the way in which the agent behavior is carried out in a particular
situation. In addition, closures can be passed around between agents, enabling agents to acquire
capabilities or learn from each other.

195

The metaobject protocol in Groovy allows for the specification of agent metaclasses.
Metaclasses can be used to interrupt routine agent activities when changes of agent
circumstances require the agents to construct more innovative responses. Furthermore, with
Expando Metaclasses, agent classes can be modified as necessary at run time. These capabilities
allow agents to have unique or path-specific capabilities or action orientations.

Finally, Groovy’s tight integration with Java provides the ability to (a) seamlessly

incorporate Groovy into the sophisticated agent-based modeling platform Repast S and (b) take
advantage of the vast amounts of existing Java libraries that support agent-based modeling.

GROOVY INTEGRATION IN REPAST S

Visual Agent Behavior Editor

Repast S includes a point-and-click agent editor. The visual agent behavior editor, the

new project wizard, the new agent wizard, and related components are modified forms of
Alexander Greif’s free and open-source Flow4J-Eclipse components (Greif 2006) that have been
adapted specifically for agent-based modeling. Greif (2006) has made the Flow4J-Eclipse system
available under a BSD-style free and open-source license. The Repast project team has built on
Greif’s contribution to create the above-mentioned Repast S components. According to the
Flow4J home page (Greif 2006):

Flow4J-Eclipse is an Eclipse Plug-in for modeling process flows in a drag and
drop manner. A process flow can contain process steps (I call them flowlets),
which can be linked together [in]to a complex flow.

Flow4J-Eclipse used two types of “flowlets” (Greif 2006) — namely “Control Flowlets

like Start-, Decision- and Jump- Flowlets which are configurable in Eclipse” — that “tell ‘how’
the process should flow” and “Task Flowlets [that] accomplish a specific task that is wrapped in
a Java class,” which can come from many sources, including Java itself or “scripting languages
like Jython, Groovy, JavaScript, etc.” Grief (2006) notes the following:

After designing the flows in the Eclipse Plug-in, the flow’s Java source code is
automatically created, and is immediately ready for compilation and deployment
in a Java web/application. The flow’s generated Java source code is highly
optimized and lightning fast…. Web/applications can execute flows in two ways:
(1) from inside any Java code [and] (2) triggered by a HTTP request if the flow is
deployed in a web application.

The Flow4J-Eclipse editor works by presenting users with a flowchart-drawing interface

that is used to create a process diagram (Grief 2006). The process diagram is saved in a platform-
independent XML file. Following the Eclipse development model, the Flow4J-Eclipse system
registers a builder with Eclipse that is notified whenever a Flow4J-Eclipse XML file changes
(Grief 2006). This builder creates a Java source file from the freshly saved XML file. Eclipse
itself then automatically generates a Java binary class file from the new Java source code file.
The Flow4J-Eclipse system also includes an Eclipse wizard for creating new Flow4J-Eclipse
projects, an Eclipse wizard for creating new flowchart XML files, and supporting tools such as a

196

project menu option to add the Flow4J-Eclipse nature to a standard project (i.e., activate the
Flow4J-Eclipse builder for the project).

Repast agent editor adapts Greif’s Flow4J-Eclipse to agent-based modeling in multiple

ways:

1. The Repast agent editor’s builder generates Groovy source code rather than

Java source code to take advantage of a number of Groovy features.
2. The Repast agent editor has enhanced the Flow4J-Eclipse property views with

step-by-step form-style inputs.
3. The Repast agent editor redefines the Flow4J-Eclipse flowlets to correspond

to agent behavior primitives and properties rather than “process flows”
(Greif 2006):

a. Flow4J-Eclipse “Flows” have been redesigned to support Repast agent class
definitions,including user input for super classes and implemented
interfaces.

b. Flow4J-Eclipse “Template Flowlets” have been redesigned as “Property
Components” to support agent attributes.

c. Flow4J-Eclipse “Start Flowlets” have been redesigned as “Behavior
Components” to support Repast scheduling and watchers (Howe et al. 2006;
Parker et al. 2006).

d. Flow4J-Eclipse “Task Flowlets” have been redesigned as “Task
Components” to support Repast agent activities.

e. Flow4J-Eclipse “Decision Flowlets” have been redesigned to use Groovy
logical conditions instead of Flow4J-Eclipse predicate lookup tables.

f. Flow4J-Eclipse “Call Flowlets” have been redesigned as “Loop
Components” to loops instead of method calls.

g. Flow4J-Eclipse “Jump Flowlets” have been removed.
4. The Repast agent editor includes the ability to embed user-specified

comments into the generated Groovy source code.
5. The Repast agent editor’s XML storage schema has been modified versus

Flow4J-Eclipse to reflect the above-cited differences in the agent behavior
primitives and properties (Greif 2006). Furthermore, to differentiate the
contents, the Repast agent editor uses a different file extension for its XML
files than the Flow4J-Eclipse system.

6. The Repast agent editor automatically generates a set of supporting
components within each agent. For example, each generated Repast agent
class includes an attribute and method for automatically assigning the agent a
human-readable run time identifier.

7. The Repast system has expanded the functionality of the Flow4J-Eclipse
wizard for creating new projects by adding a variety of features, such as the
following:

a. Repast Score file input specification and generation has been added.
b. A large number of Repast-specific supporting files and directories are now

generated for tasks such as defining batch runs, defining legacy model
descriptors, and building model installations.

197

c. Eclipse launch scripts are added for executing interactive model runs,
executing batch model runs, and starting Repast in default mode.

d. Repast library dependencies are included in the generated project.
8. The wizard for creating new flowchart XML files now creates Repast-specific

files.
9. The Flow4J-Eclipse nature has been modified to include Repast library

dependencies.

Figure 1 shows an example flowchart in the agent editor, while Figure 2 shows the

corresponding Groovy code. Please see North et al. (2007) for more details on how to use the
agent editing system.

Figure 1 Example flow chart and Properties pane in the Repast S visual agent behavior editor

198

 ...
/**

 *
 * This is an agent property.
 * @field happiness
 *
 */
 @Parameter (displayName = "Happiness", usageName = "happiness")
 public def getHappiness() {
 return this.happiness;
 }
 public void setHappiness(def newValue) {
 this.happiness = newValue;
 }
 public def happiness = 0;

/**

 *
 * This is the step behavior.
 * @method step
 *
 */

@ScheduledMethod(
start = 1d,
interval = 1d

)
 public void step() {
 // Define the return value variable.
 def returnValue
 // Note the simulation time.
 def time = GetTickCountInTimeUnits();
 // Use the Repast Simphony Groovy math tools.
 use (MathOperations.mathCategories()) {
 // Make a decision.
 if (happiness > 0.5) {
 // This is a list task.
 println "I’m happy!";
 } else {

 }
 // Exit this scope.
 return;
 }
 }
...

Figure 2 Condensed parts of the automatically generated Groovy code corresponding to the
Repast S visual agent behavior editor flowchart in Figure 1

199

JScience and Groovy Categories

JScience is a Java library developed to “provide the most comprehensive Java library for

the scientific community” (JScience 2005). Users developing a Repast S model could reference
the JScience library like they would any other Java library, but, as will be demonstrated below,
our intention was to make this process more user-friendly and create more human-readable code.
To do this, we employed Groovy Categories and simplified the use of a subset of the JScience
capabilities: the scientific unit and unit conversion modules and linear algebra modules.

Categories are useful for situations in which one would like to define additional methods

on classes that are not under one’s control. Specifically, a Groovy category is a class that
contains a set of static methods (called category methods). Each of these methods is made
available on the class of the method’s first argument. The following example helps to clarify
these concepts.

Figure 3 shows an example of the Java code needed to define Amount class objects x and

y with the values 2 kilometers and 5,000 feet, respectively, along with the calculation of their
sum, z, which properly accounts for the unit conversions by setting z to 3.524 kilometers.

Amount x = Amount.valueOf(2.0, SI.KILO(SI.METER));
Amount y = Amount.valueOf(5000.0, SI.FEET);
Amount z = UnitsOperations.addition(x,y);

Figure 3 Java code utilizing the Amount JScience class

Figure 4 shows the Groovy version of Figure 3 using categories.

def x = 2.kilometers
def y = 5000.feet
def z = x + y

Figure 4 Groovy code corresponding to Java code in Figure 3 (at end z = 3.524 km)

This simplification is possible for two main reasons. The first is that Groovy (unlike
Java) allows one to override operators. Hence, in the example above, we were able to override
the “+” and the “.” operators, resulting in intuitive and human-readable code. The second reason
we can simplify is because we can enclose any lines of code within a closure and, by using the
use keyword and referencing the appropriate Groovy category, [for example,
use(UnitsCategory) {lines of code}], we can force the operators (or methods) within those
lines of code to be overridden by the category’s [in this case, UnitsCategory’s] static methods.
The lines of code in Figure 4 are located within such a closure.

In an analogous way, by using the MatrixCategory, which references the JScience linear

algebra classes, matrix operations (e.g., matrix addition, subtraction, multiplication, and
exponentiation) can be written in the simple syntax shown in Figure 5.

200

def c = a + b
def d = a – b
def e = a * b
def f = a ** 2

Figure 5 Matrix operations using Groovy categories (a and b are matrices)

In addition, we have also included a CalculusCategory, which allows for calculating
derivatives and integrals of closures.

Such capabilities are built into Repast S, enabling the model developer to tap into these

powerful functionalities and, at the same time, create human-readable and thereby more
maintainable code.

INTERPRETIVE HEATBUGS

The purpose of the IA research program is to incorporate endogenous meaning attribution
as a means of orienting agent communication and action selection into agent-based modeling
(Sallach 2003). Interpretive Heatbugs (IHB) is an IA reference application in which interpretive
mechanisms (prototype reasoning, situation definition, and orientation accounting) are
developed, illustrated, and made available to other researchers (see Sallach and Mellarkod 2005;
Mellarkod and Sallach 2005; Sallach and Ozik 2007). Similar to its widely known generic
heatbug predecessor (Swarm Development Group 1997), it is designed to provide a simple
introduction to the IA paradigm.

IHB uses the familiar heatbugs environment, in which heat-emitting bugs require

temperate zones and flee from settings that are uncomfortably hot or cold. Because each bug
emits a small amount of heat, congregations of bugs initially create the needed warmth, while
overcrowding creates excessive heat. These competing influences give rise to the often-observed
complex, churning patterns. To this dynamic of temperature fluctuations driving the bug
movements, IHB adds the capability of bugs to ignore, engage in voluntary exchange with, or
undercut each other, and it also adds ethnic and religious identities that mediate the decisions to
help or hinder.

The IHB application explores the role of interpretation: in the use of force as a means of

improving bug circumstances; in the bugs’ decisions to request gifts of energy (a placeholder for
health and/or wealth); and in the decisions to convey all, part, or none of the energy requested.
These decisions draw on the projection of a bug’s comfort levels on others, as well as the
prototype categorization of all the bugs accessible for interaction. Of particular interest is the
emergence of endogenous evaluative classification in bug orientation and action.

Consistent with the concept of a reference application, the interpretive mechanisms that

support the acts of aggression, requests, and voluntary contributions are designed to support
comparable decisions in a variety of complex social applications (e.g., models of cultural
conflicts, such as genocide and ethnic cleansing, as well as diversifying markets and a range of
extended cultural processes). The IHB application, which was initially implemented in the

201

J programming language (Iverson and Hui 1990), has been ported to the Repast S platform (see
Figure 6) by using Groovy’s dynamic capabilities and making these mechanisms available for
the development of increasingly socially “thick” and interactive agent models. What follows is
an illustrative set of examples of Groovy-isms used within IHB.

Figure 6 Screenshot of the 3D grid projection from the Groovy/Repast S port of IHB

The bugs make assessments of the bugs that they come into contact with. This involves

creating prototype clusters that group a bug’s known bugs into categories on the basis of each
bug’s idiosyncratic history and observations. The current implementation of IHB employs a
hierarchical agglomerative clustering algorithm for these groupings and uses the standard
Euclidean metric. However, it also includes the flexibility to introduce any user-defined metric
via closures, as is shown in the Groovy code snippet in Figure 7.

protected def cluster(int maxClusters, def ptsToCluster, Closure metric) {
…

}

Figure 7 Groovy code illustrating the cluster method taking a Closure object as a parameter

202

Depending on the type of bug and its situated context, a bug will adopt a particular set of
behaviors for shoving, asking, and giving. As the bugs’ shove, ask, and give rules are all
implemented as closures, the bugs’ behaviors can be assigned and modified easily by using rule
dispatchers, which pass bug behaviors, specified as closures, to each bug as necessary. This
allows for not only a flexible way in which to determine bug behavior but also an intuitive and
straightforward way to encapsulate bug behavior, in a first-class Closure object, instead of
requiring a lot of scaffolding code (for example, in a method within a first-class object).

One of the most powerful uses of closures in IHB has to do with a bug’s more and all
methods. In many situations, a bug’s action is contingent on whether most or all of the bugs
under consideration fit some set of criteria, where these criteria are implemented as closures.
Instead of having to create different implementations of more and all corresponding to each
combination of the many criteria that a bug can employ, the set of criteria are passed to the more
and all methods as closures. Then Groovy’s handy iterating mechanisms interate the bugs
under consideration. This is a good example of using combinations of basic closures to
implement complex agent behaviors. The closures can be composed, combined, and reordered to
provide flexibility in creating new and adaptive agent behaviors.

RELOGO

ReLogo is a pathway from the NetLogo (Wilensky 1999) “multi-agent programmable
modeling environment” to Repast S that uses Groovy. As previously mentioned, NetLogo
promises an easy entryway into agent-based modeling (Wilensky 1999). Repast S is a very
sophisticated agent-based modeling platform, offering many advanced features for agent storage,
display, and behavioral activation and new facilities for data analysis and presentation, while
also allowing for the integration of external (legacy) models. Thus, ReLogo offers the ability to
go from an exceedingly user-friendly and intuitive environment for model development and
exploration in NetLogo all the way to the enterprise-level models developed in Repast S.

ReLogo involves the creation of a NetLogo lexical analyzer or “lexer” and parser in

ANTLR and the emission of Groovy translations of NetLogo code. The interpreted nature of the
NetLogo language makes it especially useful to employ a dynamic language like Groovy as the
translation target language. The expressiveness of Groovy results in easily readable code that
retains a lot of the structure of the original agent code. As a consequence, the code can be easily
extended and modified within the Repast S environment.

Although ReLogo is still under development, it is nonetheless possible to present a

simple example to illustrate some of the benefits of using Groovy. One of the most common
patterns observed in NetLogo models is that of sending a block of code to a set of agents. In the
following NetLogo code (Figure 8), rabbit agents are created, and a block of code specifying the
created rabbit’s color, position, and energy is sent to each created rabbit. (Note that the block of
code is interpreted by each rabbit individually; thus, each rabbit sets its own random position and
energy.) Implementing this type of behavior in the static Java language would result in
convoluted code that would be difficult to maintain or even read. Even if the resulting code was
brought over to the Repast S environment, editing, modifying, or debugging it would become an
unenviable task.

203

create-rabbits number [
 set color white
 setxy random-xcor random-ycor
 set energy random 10
]

Figure 8 Sample NetLogo code with code block (Rabbits Grass Weeds model)
(Wilensky 1999)

On the other hand, Figure 9 shows how this agent behavior can be implemented with

Groovy. The createRabbits method can take as parameters the number variable as well as the
code block (as a closure). As one can see, the resulting code closely mirrors the original code in
structure and in the function of the resulting code units, allowing the modeler to carry over many
of the mental constructs that may have developed during model development in the NetLogo
environment.

createRabbits(number){
 setColor(Color.white)
 setXY(randomXcor(),randomYcor())
 setEnergy(nextIntFromTo(1,10))
}

Figure 9 Groovy implementation of code example in Figure 8

CONCLUSIONS

This paper demonstrates the many benefits Groovy brings to the agent-based modeling
realm. Groovy integration in Repast S simplified the use of the visual agent behavior editor as
well as the incorporation of physical unit conversions, matrices and calculus operations into
agent-based models. The Groovy and Repast S implemented Interpretive Heatbugs reference
application demonstrated some of the flexibility and clarity achieved by the use of closures.
Finally, this papers shows how having Groovy as the target language greatly improves the ability
to move from the NetLogo to the Repast S environment via ReLogo. The authors believe that all
such innovations will contribute to the forward potential of social agent simulation and the tools
necessary for its realization.

ACKNOWLEDGMENTS

The authors wish to thank Alexander Greif for contributing Flow4J-Eclipse to the
software development community. They also wish to thank Uri Wilensky, Seth Tissue, and
Bill Rand for the helpful discussions and support received on the ReLogo project. In addition,
they want to thank Eric Tatara for his helpful contributions. This work is supported by the
U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357.

204

REFERENCES

Greif, A., 2006, Flow4J-Eclipse Home Page; available at http://flow4jeclipse.sourceforge.net/

Howe, T.R., N.T. Collier, M.J. North, M.T. Parker, and J.R. Vos, 2006, “Containing Agents:

Contexts, Projections, and Agents,” in Proceedings of the Agent 2006 Conference on Social
Agents: Results and Prospects, ANL/DIS-06-7, co-sponsored by Argonne National
Laboratory and The University of Chicago, Sept. 21–23.

Iverson, K., and R. Hui, 1990, J Software Home Page; available at http://www.jsoftware.com .

JScience, 2005, JScience, home page; available at http://jscience.org .

König, D., A. Glover, P. King, G. Laforge, and J. Skeet, 2007, Groovy in Action, Manning

Publications.

Mellarkod, V.S., and D.L. Sallach, 2005, “Interpretive Heatbugs: Design and Implementation,”

in Proceedings of the Agent 2005 Conference on Generative Social Processes, Models, and
Mechanisms, ANL/DIS-06-5, co-sponsored by Argonne National Laboratory and The
University of Chicago, Oct. 13–15.

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005a, “The Repast Simphony Development

Environment,” in Proceedings of the Agent 2005 Conference on Generative Social
Processes, Models, and Mechanisms, ANL/DIS-06-5, co-sponsored by Argonne National
Laboratory and The University of Chicago, Oct. 13–15.

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005b, “Repast Simphony Runtime

System,” in Proceedings of the Agent 2005 Conference on Generative Social Processes,
Models, and Mechanisms, ANL/DIS-06-5, co-sponsored by Argonne National Laboratory
and The University of Chicago, Oct. 13–15.

North, M.J., E. Tatara, N.T. Collier, and J. Ozik, 2007, “Visual Agent-Based Model

Development with Repast Simphony,” in Proceedings of the Agent 2007 Conference on
Complex Interaction and Social Emergence, ANL/DIS-07-2, co-sponsored by Argonne
National Laboratory and Northwestern University, Nov. 15–17.

Parker, M.T., T.R. Howe, M.J. North, N.T. Collier, and J.R. Vos, 2006, “Agent-Based Meta-

Models,” in Proceedings of the Agent 2006 Conference on Social Agents: Results and
Prospects, ANL/DIS-06-7, co-sponsored by Argonne National Laboratory and The
University of Chicago, Sept. 21–23.

Parr, T., 1989, ANTLR, home page; available at http://www.anltr.org.

ROAD (Repast Organization for Architecture and Design), 2005, Repast, News, Chicago, IL;

available at http://repast.sourceforge.net.

205

Sallach, D.L., 2003, “Interpretive Agents: Identifying Principles, Designing Mechanisms,” in
Agent 2003, Conference on Challenges in Social Simulation, Proceedings of the
Conference, co-sponsored by Argonne National Laboratory and The University of Chicago,
Oct. 2–4.

Sallach, D.L., and V.S. Mellarkod, 2005, “Interpretive Agents: A Heatbug Reference

Simulation,” in Proceedings of the Agent 2005 Conference on Generative Social Processes,
Models, and Mechanisms, ANL/DIS-06-5, co-sponsored by Argonne National Laboratory
and The University of Chicago, Oct. 13–15.

Sallach, D.L., and J. Ozik, 2007, “Interpretive Heatbugs,” Argonne National Laboratory,

Argonne, IL, in preparation.

Swarm Development Group, 1997, Swarm, Albuquerque, N.M.; available at http://www.swarm.

org/examples-heatbugs.html . Albuquerque, NM.

Wilensky, U., 1999, NetLogo, Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL; available at http://ccl.northwestern.edu/netlogo/.

206

MODEL EXPLORATION MODULE

1M.D. IVÁNYI, ELTE-IKKK Simulation Center, Budapest, Hungary
L. GULYÁS, AITIA International, Inc., Budapest, Hungary

R. BOCSI, AITIA International, Inc., Budapest, Hungary
G. SZEMES, ELTE-IKKK Simulation Center, Budapest, Hungary

R. MÉSZÁROS, AITIA International, Inc., Budapest, Hungary

INTRODUCTION

MEME stands for the Model Exploration Module of the Multi-Agent Simulation Suite
developed at AITIA International, Inc. MEME is an agent-based simulation tool enabling
modelers to design experiments, run models on clusters and grids of computers, and to
manage, analyze and visualize the data produced. Development of the tool begun in mid
2006 after the realization that there was hardly any software available being able to run a
large number of simulations, collect, organize and visualize their data for modelers with
limited programming skills. This paper gives an insight into the motivations of the
development and introduces the reader to the tasks and functions MEME is capable of.

Keywords: Agent-Based Modeling, Modeling Tools, Simulation, Experiment Design

MOTIVATIONS

 Agent-based modeling and simulation based computational science demonstrates great
promise, but as Bankes and Lampert (2004) argues, so far it has lacked the rigor that is needed in
the scientific field and the robustness required in policy making. Models of complex social
systems typically depend on a number of assumptions, quantified in the form of specific values
to certain model parameters. Ideally, any such model should be tested with any meaningful
combination of these parameters, in order to determine the validity of the model or ensembles of
models. This process is often called the parameter space search or parameter sweep.
Additionally the task of establishing the results’ statistical validity also involves running the
simulation with various random number generator seeds and analyzing the collected results.

* Corresponding author address: Marton D. Ivanyi, ELTE-IKKK Simulation Center, Pazmany Peter Setany 1/C,
Budapest, Hungary, H-1117; e-mail: mivanyi@aitia.ai

207

FIGURE 1 MEME is just an element of the Multi-Agent Simulation Suite (structure
diagram above).

Running simulations at this scale and complexity is from a computational point of view a
particularly intensive task. It is understood that it is essentially impossible to achieve complete
parameter space exploration. This creates a special emphasis on the design and sequencing of the
experiments, so that they allow for branching depending on earlier results and also for revisiting
previously explored areas with greater ‘resolution’. Even in case of carefully designed
experiment plans, these tasks may exceed the abilities of today’s PCs or workstations. Therefore
it would be desirable to distribute simulations among several computers on the network, on a
local cluster or a grid.

AVAILABLE APPLICATIONS
Standard ABM modeling packages like Swarm, Repast or NetLogo, all offer some

support for collecting results in ‘batch mode’, as opposed to the primary, ‘GUI mode’ running of
simulations. Swarm and Repast require (and support) modelers to create a distinct, ‘batch mode’
version of their models, offer a ‘parameter language’ to describe the regions of the parameter
space the user wishes to explore, and collect the results in a specially formatted text file. The
expressiveness of the offered parameter languages, however, limits the search strategies mostly
to regular hyper-parallelepipeds. In particular, no dynamic branching of the exploration is
possible, except by hand (i.e. processing the results of one batch and writing the next parameter
file appropriately). Furthermore Swarm doesn’t have a graphical user interface for designing

208

parameter files, while the latest version of Repast has a simple GUI for parameter space
explorations.

NetLogo, on the other hand, provides a GUI for model exploration, but no parameter file.
None the less, the functionality of the tool is about the same as with Swarm and Repast. A
significant difference is that NetLogo does not require the user the create a dedicated batch
version of the model – at the price that by default NetLogo animates all displays and graphs
during parameter space exploration, thus slowing down its execution. Lately turning off displays
and graphs during batch runs has been introduced in NetLogo.

General-purpose, modeling package independent parameter space exploration toolkits
also exist, like Drone and SweepOver. However, they also share most of the problems discussed
above: they are typically highly technical, providing no easy-to-use user interface, but requiring
a kind of programming. Moreover, they are suitable for exploring the regular regions of the
parameter space (i.e. hyper-cubes and parallelepipeds), but not for adaptive branching, etc.

MODEL EXPLORATION MODULE
With the Model Exploration Module we want to provide a tool that makes the parameter

space exploration experience as smooth and trouble-free, in other words user-friendly, as
possible. In particular, modelers should be users and not programmers of this tool, who focus on
the modeling problem and not on the technicalities. The goal with the MEME development is to
provide easy means for the common parameter sweep tasks, while supporting model specific,
complex task in addition. MEME offers easy-to-use graphical user interfaces for all its basic
functions. The modeler can set up and run experiments from regular ABM models, execute batch
runs on clusters of computers, collect, organize, import, visualize and do basic statistics from
data through the GUI without having to write a line of code.

On the other hand the software offers advanced users optional scripting when setting up
the parameter sweeps or importing and organizing results for example. Scripting requires more
technical expertise from the user of course, as mentioned before it is optional, and was
introduced for modelers whose needs exceed MEME’s rich functionality.

The design and development of the tool is done in a modular way, with the components
communicating through well defined APIs, allowing for the seamless integration of new or
improved functionality. We have just recently started the Beta testing of a processing plug-in that
will allow the user to run simulations on local clusters of computers and a number of existing
grid solutions. We hope that this development will further reduce execution times, hence speed
modeling work up without requiring the modeler to develop any special grid knowledge or skills.

Experiment Design
Agent based simulation is usually related to studying the behavior of certain real

phenomena. In order to do scientific experiments various factors of long and large number of

209

unattended simulations have to be observed. The simulation runs are executed on parameter
spaces that are pre-defined or better yet, as discussed latter on, intelligently identified during the
runs.

MEME currently offers solutions for designing experiments from models written in the
popular 1Repast environment and FABLES – a simple modeling language and its integrated
modeling environment also by AITIA, see Gulyas and Bartha (2005) – without any additional
programming. MEME offers a graphical user interface that fully assists the modeler in the
process of setting up the experiments in a user-friendly way.

FIGURE 2 The parameter sweep wizard: selecting the model and required
packages, setting up the parameter space and the data recording attributes.

Regular (i.e. not explicitly batch version) Repast and FABLES models can be imported
into the application through a wizard that automatically identifies whether and which additional
classes and jars that are needed to run the simulations. The same wizard explores the model for
input and output parameters, lets the user create additional parameters if desired and provides the
interface for declaring a parameter space for the experiment. The interface also offers capabilities
to pick/add the variables whose values will be recorded and allows the user to define other data
recording attributes. Measurements can be done at the end of simulations or at any desired tick
count and in all cases measurements can record the actual value of the given variable, or the
result of simple statistic operations. For advanced users MEME also offers scripting for declaring

1 The tool is also developed to be able to deal with other Java-based modeling languages in the future.

210

entirely new variables that are results of various operations done on one or more of the original
measurements.

Upon completing these tasks a new model and the corresponding parameter file are
automatically generated from the original model with all the additional code necessary for
running the simulation with the desired settings either on a local machine or to be distributed set
as a set of simulation runs on a pool of available hosting computers.

Experiment Execution
The models and parameter files resulting from execution are forwarded to the respective

engines for running Repast and Fables models in batch mode. In this phase of development, only
‘brute-force’ exploration of regular subspaces of the parameter space is supported. The engines
are capable to run in a detachable, ‘head-less’ fashion. That is, after the GUI wizards have set up
the exploration schemes, the engines require no user interactions and are capable to run in the
background as separate applications, while providing means for the user to observe the incoming
results and oversee the general state of the experiment while executing a high number of
simulations.

Depending on the projected processing time of the batch runs the user has the option of
launching the simulations on a single computer, a local or a remote cluster of computers. The
module that distributes the simulation runs on the available computers was developed with
extreme care in regard to collecting and storing the results of distributed runs. The module is
prepared to re-instantiate runs to different computer once a host becomes unavailable or
corrupted results are returned. As various systems with similar (albeit not simulation tailored)
capabilities are already available, we did not intend to develop our own grid solution. To the
contrary, we have and are developing a grid module that is capable of running simulations on an
extendable list of distributed environments.

MEME currently is able to set up and run simulations with Inria’s open source ProActive
solution (Caromel et al. 2006) and the market leading Platform LSF family. These solutions
enable the modeler to execute sets of simulation runs on clusters of computers running on
2Windows or Linux/Unix operating systems, using both shared and separated storage.

Storing, Organizing and Visualizing Simulation Data
The MEME stores simulation results in a database, that includes all fix (constant) and

changing parameters, and various additional information about the model (i.e. name, version,
description, etc.). The software has a built-in Java-based database engine that can manage
databases up to 8 GB in size, but the system is built in a way that it is independent of the

2 Note, that ProActive is an SSH-based grid and as Windows platforms do not have a general SSH solution,
preparing a Windows cluster for MEME carries some additional challenges.

211

particular SQL engine used, it supports professional database engines through the JDBC
protocol. The program organizes raw data in a 3-level hierarchy (model, version and batch), the
database-structure is created to be able to handle repeated exploratory runs, iterative, gradual
import of results (i.e. new parameters being introduced and old ones deleted between versions of
the same model).

MEME can obtain simulation results in two general forms. Results from batches of
simulations designed and ran through MEME are automatically acquired. The other option is
running simulations separately and then importing Repast result files or CSV files into the
database. The program supports multiple file import, organizing data into different versions or
batches under the same model. MEME distinguishes between input (i.e. values that do not
change in during a run) and output parameters in result files. Various import settings can be
saved if needed for later use, when importing data from a high number of simulations.

An important feature of model exploration is the processing of the available results. From
the results obtained and stored in the database, subsets can be created. These computed tables,
that we call ‘views’, can be described as tables, where variables (including parameters and
measured variables) are in the columns and particular value-combinations are in the individual
rows. Creating basic views for visualization and/or to be imported into other applications for
more sophisticated analysis includes selection of the variables to be included from the results,
plus specifying what model version(s) the variables be originated from.

FIGURE 3 Creating a subset (views) of the original result data is done through a
wizard. The modeler is presented with various filtering and computational
options.

212

MEME provides the modeler with advanced functionality in creating subsets of the
results database though. Conditional filtering, splitting (a generalized form of cross tabulation),
aggregating and reorganizing data are supported, as well as the creation of derived statistics and
custom computations typical of agent-based simulation, without any or with minimal coding.
View creation settings can be saved as xml files for later use.

Once the data is organized into the desired form it can be exported for analysis in
advanced statistical software of the user’s choice, or it can be visualized through MEME’s built-
in Charting Wizard. The Charting Wizard is built on the Visualizations Package that is an ABM
specific visualization tool developed by AITIA. It enables modelers to create visualizations for
their simulations quickly and conveniently without any coding. The program offers
visualizations3 such as diagrams, grids and charts with both a vivid and rich design for
presentation and a basic, black and white mode that suites scientific publication better.

Future Developments
MEME is not intended to be a sophisticated statistical tool. Although MEME already

enables the user to export simulation results at any stage thus provide input as CSV files, further
plans of development include implementing interoperation with such software.

Currently MEME is only capable to run parameter space explorations on a standard
hyper-cube, thus allowing for interactive and incremental experiment design and execution. That
is, a first set of runs is processed and their results are evaluated, which allows the user to
determine the next set of runs. Ongoing developments include the introduction of intelligent
parameter space exploration, where the explored sample of parameter space is irregular and is
changing dynamically and adaptively.

The intellisweep capability is based on the meta-language we are currently working on,
that describes what parameter combinations to explore next. The key to the workings of the
intelligent parameter space exploration is the evaluation of results. Since this is always
application dependent, general solutions are very limited. Therefore the advanced user is going
to be provided with an integrated editor for developing call-back functions performing such
evaluations in MEME.

Also general exploration routines are planned to be developed. The idea here is that the
user defines a ‘statement’ about her results (i.e. the measured value converges/is always close to
X, or depends linearly on Y, etc.). This is then converted into an evaluator that scores the
measured value according its correspondence to the statement. The general exploration routines
of MEME will then minimize this correspondence (maximize the error in the statement) using
various and an extendable list of techniques (i.e. genetic algorithms, artificial neural networks,
ant colony optimization, etc.) .

3 List of currently available visualizations: Various 2D grids, bar charts, histograms, network and sub-graph
visualizations, area-based chards, scatter plots, sequence visualizations and time series.

213

The Model Exploration Module is a modular system; all major components are
decomposable and interchangeable. Hence in the future we would first like to extend MEME’s
import capabilities to reading result files from the MASON and JAS systems, then should
demand arise we will also introduce parameter sweeps for the above mentioned, or any other
Java-based modeling systems.

Acknowledgements
The work reported in this paper benefited from the partial support of the following grants:

• The GVOP-3.2.2-2004.07-005/3.0 (ELTE Informatics Cooperative Research and
Education Center) by the Hungarian Government;

• The STREP project QosCosGrid (contract number 033883) by the European
Commission;

• The AN FP6 Project Emergence in the Loop (EMIL) by the Information Society
Technologies.

References
Axelrod, R. and Tesfatsion, L., 2006, "A Guide for Newcomers to Agent-Based Modeling in the

Social Sciences", Appendix A in Leigh Tesfatsion and Kenneth L. Judd (Eds.), Handbook
of Computational Economics, Vol. 2: Agent-Based Computational Economics,
Handbooks in Economics Series, Elsevier/North-Holland, Amsterdam, the Netherlands.

Bankes, S. C. and Lempert, R., 2004, “Robust Reasoning With Agent-Based Modeling”,
Nonlinear Dynamics, Psychology, and Life Sciences, Vol. 8., Iss. 2, April, 2004, pp. 259-
278.

Caromel, D., Delbé, C., di Costanzo, A. Ad Leyton, M., 2006, ProActive: an Integrated platform
for programming and running applications on Grids and P”P systems, in Computational
Methods in Science and Technology, Vol. 12., Iss 1, Polish Academy of Sciences,
Poznan, Poland.

Gulyás, L., 2002, „On the Transition to Agent-Based Modeling: Implementation Strategies From
Variables To Agents”, Social Science Computer Review, Vol. 20, No. 4, Winter 2002, pp.
389-399.

Gulyás, L. and Bartha S., 2003, “How Much Is Too Much? -- What Programming Skills Are
Really Needed to do ABM?” In Proceedings of Seventh Annual Swarm
Users/Researchers Conference, Notre Dame, Indiana: Swarmfest 2003.

214

Gulyás, L. and Bartha S., 2005, “FABLES: A Functional Agent-Based Language for
Simulations”, In Proceedings of the Agent 2005 Conference on: Generative Social
Processes, Models and Mechanisms, Argonne National Laboratory, Chichago, IL, USA,
October 2005.

Samuelson, D. and Macal, C., 2006, "Agent-based Simulation Comes of Age," OR/MS Today,
Vol. 33, Number 4, pp. 34-38, Lionheart Publishing, Marietta, GA, USA.

Tatai, G., Gulyás, L., Laufer, L. and Iványi, M., 2005, “vBroker: Artificial Agents Helping to
Stock Up on Knowledge”, In Pechoucek, M., Petta, P. and Varga, L.Zs. (eds.). Multi-
Agent Systems and Applications IV. Proceedings of the 4th International Central and
Eastern European Conference on Multi-Agent Systems (CEEMAS 2005), pp. 336-345,
Springer-Verlag.

Drone, http://drone.sourceforge.net/

NetLogo, http://ccl.northwestern.edu/netlogo/

Repast, http://repast.sourceforge.net/

Platform LSF, http://www.platform.com/Products/Platform.LSF.Family/Platform.LSF/

Swarm, http://www.swarm.org/wiki/Main_Page

SweepOver, http://www2.maths.ox.ac.uk/~challet/sweepover/sweepover.html

215

216

Friday, November 16, 2007

Computational Social Theory

Orientation and Action

MODELING COLLECTIVE COGNITIVE CONVERGENCE

H.V. PARUNAK,* T.C. BELDING, R. HILSCHER, S. BRUECKNER
NewVectors Division of TechTeam Government Solutions, Inc.

ABSTRACT

When the same set of people interact frequently with one another, they tend to think more
and more along the same lines, a phenomenon we call “collective cognitive convergence”
(C3). In this paper, we discuss instances of this phenomenon and why it is advantageous
or disadvantageous; review previous work in computational social science and
evolutionary biology that sheds light on C3; define a computational model for the
convergence process and a quantitative metric that can be used to study it; report on
experiments with this model and metric; and suggest how the insights from this model
can inspire techniques for managing C3.

 Keywords: Groupthink, cognitive convergence, social simulation

INTRODUCTION

When the same set of people interact frequently with one another, they tend to think more
and more along the same lines. We call this phenomenon “collective cognitive convergence”
(C3), since the dynamics of the collective lead to a convergence in cognitive orientation.

C3 is seen in many different contexts, including research subdisciplines, political and

religious associations, and even persistent adversarial configurations such as the cold war. Tools
that support collaboration, such as blogging, wikis, and communal tagging, make it easier for
people to find and interact with others who share their views, and thus may accelerate C3. This
efficiency is sometimes desirable, since it enables a group to reach consensus more quickly. For
instance, in the academy, it enables coordinated research efforts that accelerate the growth of
knowledge.

But convergence can go too far, and lead to collapse. It reduces the diversity of concepts

to which the group is exposed and thus leaves the group vulnerable to unexpected changes in the
environment. Here are two examples.

In academia, specialized tracks at conferences sometimes become unintelligible to those

who are not specialists in the subject of a particular track, and papers that do not fit neatly into
one or another subdiscipline face difficulty being accepted. The subdiscipline is increasingly
sustained more by its own interests than by the contributions it can make to the broader
community or to society at large.

* Corresponding author address: H. Van Dyke Parunak, NewVectors, 3520 Green Court, Suite 250, Ann Arbor, MI

48105; e-mail: van.parunak@newvectors.net.

221

In military operations, the force-on-force orientation developed during the Cold War left
both the former Soviet Union and the United States ill-prepared to deal with insurgencies and
asymmetric warfare.

Groups that have undergone cognitive collapse will only produce output conforming to

their converged set of ideas, and will be unable to conceive or explore new ideas. In the worst
case, collapse may lead a group to focus its attention on a cognitive construct with little or no
relation to the real world. For example, highly specialized academic disciplines become
increasingly irrelevant to people outside of their own circle.

We became interested in this phenomenon by observing the increasing balkanization of
the research field of multi-agent systems.1 Since we work in the area of multi-agent simulation, it
occurred to us that some light might be shed on the phenomenon, and on how it can be managed,
with a multi-agent model. This paper presents some preliminary results.

Section 2 discusses previous work related to our effort. Section 3 describes our model,
and a metric that we use to quantify C3. Section 4 outlines a series of experiments that exhibit the
phenomenon and explore possible techniques for managing it. Section 5 suggests directions for
further research, and Section 6 concludes.

PREVIOUS WORK

Our research on C3 builds on and extends two previous bodies of work, in computational
social science and evolutionary biology.

In computational social science, our work merits comparison with Axelrod’s adaptive
culture model (Axelrod 1997) and its antecedents. What he calls “culture” corresponds to our
notion of an agent’s cognitive interests. Axelrod studied the transmission of cultural traits,
represented as the elements of a numerical vector, between neighboring agents distributed on a
2-D lattice. Agents had a chance, proportional to their cultural similarity, of copying a trait from
a neighbor. He found that a small number of large and stable homogeneous regions, or
“cultures”, would form. His work exhibits the emergence of disjoint regions of cultural
(cognitive) homogeneity as agents interact with those who are adjacent to them spatially. Our
model differs from his in several ways.

• His agents always interact with the same neighbors. Our agents can change their
interaction partners as a result of the system’s dynamics.

• His agents interact on the basis of spatial contiguity. Our model offers a much wider
range of drivers for interaction.

• The nature of the interaction in his model is the same at every round. Our model
modulates the strength of the interaction by the size and convergence of the emerging
group.

1 We are grateful to Simon Thompson for initial discussions that led to this project.

222

C3 can be considered a cultural analog of biological speciation, and so we look for
insight to research in this field as well (see (Futuyma 1998) for a review). The most commonly
proposed speciation mechanisms are allopatric speciation, sympatric speciation, and parapatric
speciation. In allopatric speciation, genetic barriers gradually evolve between two or more
geographically isolated species. This might happen for instance between organisms living on
separate islands. These barriers could evolve either through natural selection or through other
means such as the founder effect (i.e., differences in genes between populations due to the small
sample sizes of the founding populations). This is analogous to different specialized
communities developing in isolation from each other in C3. One specific type of natural
selection that can cause speciation is sexual selection (Fisher 1930; Andersson 1994), a social
process by which female mate choice influences the evolution of male traits. In extreme cases,
this can become a runaway process that leads to extravagant features that are detrimental to
survival (thus leading to a shorter lifetime and fewer opportunities to mate). Similarly, in C3 a
social process can lead to the development of academic specializations with little practical
relevance.

In parapatric speciation, there is no discrete barrier between populations; individuals are
distributed along a geographic continuum and are separated by distance. Finally, sympatric
speciation refers to instances where a single population with no gene flow barriers divides into
separate species. While the relative importance and frequency of these speciation mechanisms in
nature are still heavily debated, the mathematical prerequisites for each mechanism have been
extensively studied; this work could be adapted to predict when and how C3 will develop, and
how it can be prevented.

There has also been much theoretical work done to study the amount of gene flow or
migration that is necessary to prevent isolated populations of organisms from diverging or losing
diversity due to genetic drift, or sampling error (Hartl and Clark 1989). Sewall Wright argued in
his Shifting Balance Theory that a subdivided population with intermittent migration could
exhibit more rapid evolutionary change than a single cohesive breeding population (Provine
1986). The mathematical frameworks for studying migration could be applied to modeling the
exchange of ideas or individuals between groups in C3, and the amount of exchange that is
necessary to prevent intellectual isolation.

A MODEL AND METRIC

We have constructed a simple multi-agent model of C3 to study this phenomenon. Our
model represents each participant’s interests as a binary vector. Each position in the vector
corresponds to an atomic interest. A ‘1’ at a position means that the participant is interested in
that topic, while a ‘0’ indicates a lack of interest. At each step, each participant

• identifies a neighborhood of other participants based on some criteria (which may include
proximity between their interest vectors, geographical proximity, or proximity in a social
network),

• learns from this neighborhood (by changing an interest j currently at 0 to 1 with
probability pinterest = proportion of neighbors having interest j set to 1), and

• forgets (by turning off an interest j currently at 1 to 0 with probability 1 – pinterest).

223

One boundary condition
requires attention. If an agent has
no neighbors, what should pinterest
be? We take the view that interests
are fundamentally social constructs,
persisting only when maintained.
Thus an isolated agent will
eventually lose interest in
everything, and in our model, a null
community leads to pinterest = 0 for
all interests. Alternative
assumptions are certainly possible,
and would lead to a different model.

We need a quantitative

measure of agent convergence to
study C3 systematically. To derive
our measure, we cluster the
population hierarchically based on
cognitive distance between agents
(in our case, the Jaccard distance
between their interest vectors).
Each node of the resulting
cladogram forms at a specific
distance (the “diameter” of the
cluster represented by that node).
The root has the highest diameter.
In a random population of agents,
the distances at which lower-level
nodes join the tree is not much less
than the diameter of the root
(Figure 1), while in highly
converged populations, the
diameters of lower-level nodes are
much less than the diameter at the
root (Figure 2, where agents
grouped at diameter 0 have
identical interest vectors). Thus we
compute the ratio of node diameter
to root diameter (the “min-max
ratio”) for each node, and use the
median of this ratio as a measure of
overall system convergence. A
ratio of 0 (as in Figure 1) means
that more than half of the agents
belong to groups within which all
interest vectors are identical.

74 77 91 85 93 84 87 88 78 80 92 89 76 83 86 75 82 81 79 90
0.0

0.2

0.4

0.6

0.8

1.0

D
is

si
m

ila
ri

ty

Figure 1 Cladogram of random interest vectors. The
median ratio of the dissimilarity at which a node joins the
tree to the dissimilarity of the root is 0.583.

74 86 81 93 92 91 89 85 84 83 78 75 88 82 80 76 77 90 87 79
0.0

0.2

0.4

0.6

0.8

1.0

D
is

si
m

ila
ri

ty

Figure 2 A highly converged population, whose median
min-max ratio is 0

20 40 60 80 100 120 140
0.0

0.1

0.2

0.3

0.4

0.5

Generation

M
in

M
ax

R
at

io

Figure 3 Evolution of 20 agents with length-10 interest
vectors, neighborhoods defined by similarity > 0.5

224

Figure 3 shows the behavior of this measure over a sample run of the system with 20
agents and interest vectors of length 10, where the probability of learning and forgetting is equal,
and where agents are considered to be in the same group if the similarity between their interest
vectors (the similarity threshold) is greater than 0.5. It takes only about 80 generations for the
median min-max ratio to reach 0. (A generation consists of selecting one agent, choosing its
neighbors, choosing with equal probability whether it shall attempt to learn or forget, selecting a
bit in its interest string at random, then if it is learning and the bit is 0, flipping the bit with
probability plearn * pinterest, or if it is forgetting and the bit is on, flipping the bit with probability
pforget * (1 pinterest.)) Figure 2 shows the state of this system at generation 300. By generation 370
it has collapsed into two groups of completely homogeneous agents of sizes 3 and 17
respectively.

SOME EXPERIMENTS

Armed with this model
and metric, we can explore the
dynamics of C3 under a variety
of circumstances. As we might
expect, forming neighborhoods
based on similarity of interest
leads to rapid cognitive
convergence. But surprisingly,
other sorts of neighborhoods also
lead to convergence.

Things that Don’t Work

We might think that

highly tolerant agents, those that
consider all agents their
neighbors, might be more robust
to convergence. Figure 4 shows
the evolution of the same
population of agents when two
agents consider one another
neighbors if their similarity is
greater than 0 (that is, they have at
least one bit position in common).
This configuration might be a
model for a conference that has
only plenary sessions. The
population still collapses.

Perhaps the problem is that

as agents converge, their
neighborhoods increase in size.
Figure 5 shows the effect of

50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

M
in

M
ax

R
at

io

Figure 4 Evolution with similarity threshold = 0

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Generation

M
in

M
ax

R
at

io

Figure 5 Fixed-size agent neighborhoods (four closest
agents)

225

defining an agent’s neighborhood
at each turn as the group of four
other agents that are closest to it.
This configuration models a
conference with separate tracks.
Though agents base their
adaptation at each turn on only
20% of the other agents, the
population still collapses.

Figure 6 shows an even

more radical approach. Here an
agent’s neighbors at each step are
four randomly chosen agents.
Imagine a conference at which
papers are assigned to tracks, not
by topic, but randomly. In spite of
the mixing that this random selection provides, the population again collapses.

These figures differ in how long it takes the system to converge to a min-max ratio of 0.

The time to convergence is highly variable, even within a single configuration. Repeated runs
show that we should not assume that because (say) Figure 5 converges faster than Figure 4, small
groups will always lead to faster convergence than highly tolerant agents. The one constant
across all runs is that the system does converge, in fewer than 500 generations (often far fewer).

Introducing Variation

The collapse of agent interests is due to the lack of any mechanism for introducing
variation. Once the population loses the variation among agents, it cannot regain it. We have
explored three mechanisms for adding variation to the population: random mutation,
curmudgeons, and interacting subpopulations.

The simplest approach is

mutation. At each generation, with
some small probability pmutate,
after learning or forgetting, the
active agent selects a bit at
random and flips it. This
mechanism models spontaneous
curiosity on the part of agents.
Figure 7 shows an extended run
with parameters the same as in
Figure 3 (neighborhoods defined
by a similarity threshold of 0.5),
but with pmutate = 0.03. Mutation is
certainly able to reintroduce
variation, but the level is critical.
If mutation is too low (say, 1%), it

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation
M

in
M

ax
R

at
io

Figure 6 Neighborhoods of four randomly-chosen agents

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Generation

M
in

M
ax

R
at

io

Figure 7 Adding 3% mutation

226

is unable to keep up with the
pressure to convergence, while if
it is too high (10%), the
community does not exhibit any
convergence at all (and in effect
ceases to be a community). The
nature of its contribution follows a
clear pattern. When it is in the
critical range, the system
occasionally collapses to a min-
max ratio of 0, but then discovers
new ideas that reinvigorate it.

A curmudgeon is a non-

conformist, someone who
regularly questions the group’s
norms and assumptions. Recall
that ordinarily agents learn by flipping a 0 bit to 1 with probability pinterest, the proportion of
neighbors that have the bit on, and forget by flipping a 1 bit with probability equal to 1 – pinterest.
To model curmudgeons, when an agent decides to learn or forget, with probability pcur,, it
reverses these probabilities. That is, its probability of forgetting when it is curmudgeonsly is
pinterest (instead of 1 - pinterest in the non-curmudgeonly state), and its probability of learning is 1 –
pinterest.

Figure 8 shows the effect of 10% curmudgeons, again with the baseline configuration of
Figure 3. The system clearly converges, but seldom reaches a min-max ratio of 0. Furthermore,
pcur can achieve this balancing effect over a much wider range than pmutate. As much as
researchers may resent reviewers and discussants who “just don’t get it,” curmudgeons are an
effective and robust way of keeping a community from collapsing.

The third source of

variation is even more robust. So
far, our agents have chosen a new
set of neighbors at every step,
based on their current set of
interests. What would happen if
we assign each agent to a fixed
group at the outset, using a fixed
similarity threshold that allows
groups of various sizes to form?

If the threshold is very

high, each agent will initially be a
group unto itself. With no
neighbors to reinforce its interests,
it will begin to forget them, and
the agents will independently
approach the fixed point of an all-
zero interest string.

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

Generation
M

in
M

ax
R

at
io

Figure 8 10% curmudgeons

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

16 17 18

19

20

Figure 9 Neighborhood relations for threshold of 0.5

227

If the threshold is very

low, all agents will form one large
group, and converge as in Figure
4.

For intermediate
thresholds, the agents form a
number of neighborhoods.
Importantly, some agents
(“bridging agents”) belong to
more than one neighborhood.
Figure 9 is a graph of the agents,
with an edge between two agents
if those agents are neighbors of
one another. Because
neighborhoods are fixed over the
run, each neighborhood can converge relatively independently of the others, but the bridging
agents (in this case, notably agent 20) repeatedly displace each neighborhood’s equilibrium with
the emerging equilibrium of another group, a phenomenon noted by Page (Page 2007). As a
result, the system shows convergence without collapse (Figure 10). This mechanism, like
curmudgeons and unlike mutation, provides robustness against intermittent collapse. This system
reflects a community with subdisciplines, but subdisciplines that recognize the value of members
who bridge with other subdisciplines and exchange ideas between them. Such members are
likely to be tolerated better by subgroups than would curmudgeons, because the source of the
variation introduced by the bridging individuals is perceived as resulting from their
multidisciplinary orientation rather than their orneriness

NEXT STEPS

Our simple model has shown a surprisingly rich space of behaviors. A number of
directions for further work suggest themselves. For example:

• How can convergence be monitored in practice? Our metric, while effective for
simulation, is impractical for monitoring actual groups of people. One might monitor the
amount of jargon that a group uses, or lack of innovation, as indicators of convergence.

• We have suggested that convergence is a two-edged sword. What is the ideal degree of
convergence, to allow the production of specialist knowledge without compromising the
ability to escape collapse?

• How does convergence vary with group size? Recent work (Palla, Barabási et al. 2006)
suggests that convergence in small groups requires specialized knowledge, while
convergence in large groups requires a general knowledge base.

• We have assumed homogeneous tendencies to learn, forget, mutate, or behave
curmudgeonly over all agents. How does the system respond if agents vary on these

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Generation
M

in
M

ax
R

at
io

Figure 10 Fixed neighborhoods induced by threshold 0.5

228

parameters? In particular, what is the impact of these parameters for bridging individuals
in comparison with non-bridging individuals?

CONCLUSION

It is natural for groups of people to converge cognitively. This convergence facilitates
mutual understanding and coordination, but if left unchecked can lead the group to collapse
cognitively, becoming blind to viewpoints other than their own. Experiments with a simple
agent-based model of this phenomenon show that seemingly obvious mechanisms do not check
this tendency. In the domain of academic conferences, these well-intended mechanisms include
plenary sessions, special tracks, or even random mixing. A source of variation must be
introduced to counteract the natural tendency to converge. Mutation is effective if just the right
amount is applied, but tends to let the system intermittently collapse. Curmudgeons are more
robust, but socially distasteful. Perhaps the most desirable mechanism consists of bridge
individuals who provide interaction between individually converging subpopulations.

Further understanding of C3 could give important guidance in monitoring and managing
collaboration. For example, consider a team of analysts searching for information.

• If a group’s searches are sparsely distributed in search space, guide more analysts to join

this group to cover more areas in this search space.

• If a group’s searches are not specific enough, artificially promote the splitting of groups
to create smaller, specialist groups (for example, by introducing specialists).

• If a certain convergence threshold is reached (perhaps because the search space has been
exhausted), artificially introduce a curmudgeon to guide the group into a new area of the
search space.

• If in a group only a few individuals drive convergence, artificially encourage less active
individuals to participate more.

• If in a group the majority of people prevent the exploration of novel areas in search
space, artificially encourage these people to be more adventurous.

REFERENCES

Andersson, M., 1994, Sexual Selection. Princeton, NJ, Princeton University Press.

Axelrod, R., 1997, "The Dissemination of Culture: A Model with Local Convergence and Global
Polarization." Journal of Conflict Resolution 41(2 (April)): 203-226. http://www-
personal.umich.edu/~axe/research/Dissemination.pdf.

Fisher, R. A., 1930, The Genetical Theory of Natural Selection. Oxford, UK, Clarendon Press.

Futuyma, D. J., 1998, Evolutionary Biology. Sundarlund, MA, Sinauer.

229

Hartl, D. L. and A. G. Clark, 1989, Principles of Population Genetics. Sunderland, MA, Sinauer.

Page, S. E., 2007, The Difference: How the Power of Diversity Creates Better Groups, Firms,
Schools, and Societies. Princeton, NJ, Princeton University Press.

Palla, G., A.-L. Barabási, et al., 2006, "Quantifying social group evolution." Nature 446: 664-
667. http://arxiv.org/abs/0704.0744.

Provine, W. B., 1986, Sewall Wright and Evolutionary Biology. Chicago, University of Chicago
Press.

230

MODELING SITUATED ABSTRACTION:
ACTION COALESCENCE VIA MULTIDIMENSIONAL COHERENCE

D.L. SALLACH, Argonne National Laboratory and the University of Chicago

ABSTRACT

Situated social agents weigh dozens of priorities, each with its own complexities.
Domains of interest are intertwined, and progress in one area either complements
or conflicts with other priorities. Interpretive agents address these complexities
through: (1) integrating cognitive complexities through the use of radial concepts,
(2) recognizing the role of emotion in prioritizing alternatives and urgencies,
(3) using Miller-range constraints to avoid oversimplified notions omniscience,
and (4) constraining actions to ‘moves’ in multiple prototype games.

Situated agent orientations are dynamically grounded in pragmatic considerations
as well as intertwined with internal and external priorities. HokiPoki is a situated
abstraction designed to shape and focus strategic agent orientations. The design
integrates four pragmatic pairs: (1) problem and solution, (2) dependence and
power, (3) constraint and affordance, and (4) (agent) intent and effect. In this way,
agents are empowered to address multiple facets of a situation in an exploratory,
or even arbitrary, order. HokiPoki is open to the internal orientation of the agent
as it evolves, but also to the communications and actions of other agents.

Keywords: Situated agents, pragmatic hermeneutics, ontology

INTRODUCTION

When domains lend themselves to formal representation, the clarity and
inferential power that becomes available is rewarding, even seductive. Unfortunately, the
social domain manifests complexities that conventional formalism has been unable to
capture successfully. Both natural language and situated action are heavily dependent
upon context and based upon interactive interpretation by multiple participants. This may
pose the greatest challenge confronting the development of effective (as opposed to
suggestive or reconstructive) social models.

 In part, the problem could be viewed as an issue of semantics, except that it
concerns not only communication but action as well. Thus, the domain is one of semiosis
(Hoffmeyer 1993), broadly conceived. That said, the issues that confront social action are
very similar to those recognized as semantic. Some of the key issues are summarized in
Table 1.

231

TABLE 1 Semiotic complexities

Issue Description
Ambiguity
(Empson 1966
[1930])

Words and actions have a range of meanings and implications, and their sense
may differ from person to person, setting to setting, and time to time.

Vocality Multiple actors bring multiple interpretations, intentions, and actions to a
setting.

Fluidity Comprehending and responding coherently to a multivocal state means that both
situation and actor orientation are in dynamic flux.

Emergence In discourse, whether interpersonal or collective, meanings and purposes evolve
over time. Terms of the discourse are not fixed and, therefore, not definitive.

Thin
coherence
(Sewell 2005)

Complex and dynamic processes require that, while coherence is necessary for
effective communication and action, it is a situated, provisional achievement
that must be maintained.

 The major premise of the present paper is that, in interpretive settings,
formalization and abstraction may not succeed if they are overly general. On the contrary,
in order for them to play the same clarifying roles that they do in natural domains, it may
be necessary to identify abstractions that are strongly and inherently situated; their
application may vary from case to case. They need to take forms that can be applied
‘from the inside out.’ That is, the situatedness of such abstractions can be utilized to
refine and apply the insights that they carry. The paper discusses situated abstractions and
then introduces a new structure that may be useful in social modeling.

ABSTRACTION

 The efficacy of abstractions depends on their ability to be mapped to domains of
interest in a regular way.1 However, if a social domain is erratically dynamic, volatile,
and/or self-organizing, it is difficult to identify a formalism that can exogenously
represent its emergent patterns. Indeed, such a domain may require the use of endogenous
abstractions, abstractions that evolve via the interaction of multiple self-organizing
processes.

 This insight is not new in sociology. Weber (1978) articulated formal organization
(bureaucracy) as an ideal type that can be conceptualized but does not exist empirically.
Subsequent generations of researchers found that the formalities of organization are
immersed in a milieu of informal interactions that shape the results of organizational
processes. Stinchcombe (2001) documents the role of interleaved informality in a wide
range of domains, including: (1) construction blueprints, (2) civil law and procedures,
(3) the commodification and liquidification of residential mortgage pools, (4) the

1 This is not, of course, to deny that abstractions hold inherent interest, or that domains that are steeped in
abstraction, such as mathematics, do not discover abstractions, the utility of which are not obvious and may
not be known for some time.

232

classification of aliens at border crossings, and (5) the stratification of scientific
knowledge.

In each domain, the informal and unscripted interaction determines how and in
what ways the relevant formalism is to be applied. Rules can be defined formally, but
decisions must still be made about when and under what circumstances it is appropriate
to apply them.

FRAMING INDEXICALITY

 The Interpretive Agent initiative addresses such complexities in multiple ways
(Sallach 2003), including through: (1) integrating cognitive complexities through the use
of radial concepts, (2) recognizing the role of emotion in prioritizing alternatives and
registering urgencies, (3) incorporating Miller-range constraints in order to avoid
oversimplified notions of agent omniscience, and (4) constraining actions to ‘moves’ in
one of several prototype games.

Each of these mechanisms can be regarded as a facet of bounded rationality.
However, it is also necessary to define how situated agent orientations are framed and
refined such that they are dynamically grounded in pragmatic considerations and, at the
same time, linked to internal and external priorities.

PRAGMATIC DECISIONS

Humans can be conceived of as boundedly rational agents acting within a

complex world. While many models of cognition, intelligence, and/or action selection
focus on a single task, situated social agents weigh dozens of priorities, each of which has
its own complexities, urgencies, and timetable, with the latter sometimes being recurrent
or recursive. Further, actors frequently find that the domains of interest are (or can be)
intertwined, and that progress in one area either complements objectives from another
area or, alternatively, conflicts with other priorities.

 From within the web of complexities, decisions must necessarily be made on a
pragmatic basis. This insight is not a new one. Graham (1989; see also Sallach 2007)
indicates that ancient Chinese ethical thought follows an ethical form that approximates
to [a] syllogism, applicable directly to concrete situations.

In awareness from all viewpoints, spatial, temporal, [social], and personal, of everything
relevant to the issue, I find myself moved toward X; overlooking something relevant, I
find myself moved toward Y.

In which direction shall I let myself be moved?
Be aware of everything relevant to the issue.
Therefore, let yourself be moved toward X.

233

The quasi-syllogism is suggestive, but how might the web of complexities be
modeled? Historically, pragmatist philosophy has derived its orientation amidst situated
complexities (Joas 1993; Mead 1934; Peirce 1992 [1898]). One of major considerations
is the context that frames the relevant communication and/or action. In his overview of
semiotic relations, Peirce (1955 [1897]) describes context as follows:

A sign, or representamen, is something which stands to somebody for something
in some respect or capacity. It addresses somebody, that is, creates in the mind of
that person an equivalent sign, or perhaps a more developed sign. That sign
which it creates I call the interpretant of the first sign. The sign stands for
something, its object. It stands for that object, not in all respects, but in reference
to a sort of idea, which I have sometimes called the ground of the
representamen, …

In this formulation, the ground defines the context of a semiotic process. Peirce

continues (1955), stating that the task of the ground is “to ascertain what must be true of
representamen… in order that they may embody any meaning.” Drawing upon
Wittgenstein (1958), Sheriff (1989) describes the ground as the ‘language game’ that the
actor is playing.

Peirce and Wittgenstein have each made important contributions to the ‘linguistic

turn’ of the twentieth century, and these have been brought into sharper focus by lines of
research they have inspired. In a formulation that draws upon both of their contributions,
and also follows the lead of Silverstein (2003), Blommaert (2005) introduces the concept
of “orders of indexicality.” This concept combines the idea that linguistic concepts and
signs are ordered and that they occur in stratified complexes. The model construction of
situated abstractions assumes a context defined by orders of indexicality.

Peirce’s other semiotic elements (representamen, object, and interpretant) have

also been deepened by subsequent work. In particular, the hermeneutic tradition
(Gadamer 1989; Palmer 1969), which emphasizes the reciprocal dependency between the
whole and the part has provided a new approach to the interpretive process. Shalin (2007)
has developed an embodied semiotics that incorporates symbolic discursive, somatic-
affective, and behavioral-component components, each with a particular relationship
between signs and their objects. The resulting rich hermeneutic process has the potential
to provide an effective focus for computational models of interpretation.

Now consider a social actor immersed in a wide range of relationships,

opportunities, persistent and situated purposes, etc. Suppose that these salient social
objects are represented using a Miller range of situated games (Sallach 2006b). Each
game provides a means of expressing problems and possible solutions, sources of power
and dependence, constraints and affordances, and possible actions and likely
consequences. Since these pairs (which may not be exhaustive) (1) are intrinsically
complex, (2) must be mapped by the actor to the relevant domain and the situated
particulars of that domain, and (3) have the potential to dynamically change each other’s
state, there is clearly a need for an endogenous coherence-seeking process so that such

234

games can be played with greater or lesser effectiveness. Designing a formalism to
support such dynamics is a challenge, and it is to this task that we now turn.

HOKIPOKI

HokiPoki is a self-organizing model of situated abstraction designed to shape and

focus agent orientations. The design integrates four pragmatic pairs: (1) problem and
solution, (2) dependence and power, (3) constraint and affordance, and (4) intent and
effect (agent action, as coalesced, lies between intent and effect) (see Figure 1). For each
couplet, the first pair member tends to indicate current effect, while the second can often
be seen in terms of prospective effects. As in the homophonous children’s song, each of
the four pairs can independently flip in and out of agent focus. In this way, the agent is
empowered to address multiple facets of a situation in an exploratory, or even arbitrary,
order.

FIGURE 1 HokiPoki as a model of situated abstraction

Parenthetically, the designated pairs should not be viewed as definitive or
exhaustive. On the contrary, the basic HokiPoki mechanism is designed to support
exploration of diverse situated constructs, components that may be substituted
exogenously by the designer or endogenously by agents within the model.

 Notwithstanding the flexibility and expressiveness of the HokiPoki mechanism, a
question remains as to how the multiple foci and priorities are to be integrated. The
HokiPoki framework is guided by a dual internal/external coherence-calculation service

235

that operates on lower-level ‘parts’ (cf., Sallach 2002; 2006a). The accomplishment of
both internal and external coherence allows a Miller range of priorities to be addressed by
toggling multiple current/prospective pragmatic pairs.

 In application, each pragmatic pair will be defined relative to a particular problem
domain. Each paired term is treated as a prototype concept (Sallach 2003) and grounded
in a particular pragmatic domain. In interaction, agents are able to suggest (propose, etc.)
alternate priorities, emotional valences, and/or conceptual structuring. The implication is
that HokiPoki is open to the internal orientation of the agent as it evolves but also to the
communications and actions of other agents. The agents engaged in such interaction are
themselves represented within the orientation of each focal agent and, thus, their inputs
will be integrated accordingly.

Implementations of the HokiPoki mechanism seem likely to benefit from the
emergence of dynamic object-oriented programming languages such as Ruby and/or
Groovy. Implementation considerations will be considered in greater depth during the
presentation of this paper.

ARCHITECTURE AND MODELING ASSUMPTIONS

The HokiPoki architecture has two defining principles: (1) heterarchical,
pragmatically focused self-organization and (2) openness to both internal and external
interactions. The purpose of its framework is to allow these principles to be implemented
in a flexible, responsive, and dynamic way.

The application of the HokiPoki model to a particular domain requires the

structured coupling of components. Each of the pairs in the HokiPoki model is integral,
where each component (problem and solution, power and dependencies, constraint and
affordance, and intent/action and effect, respectively) is defined relative to its reciprocal.
For most domains, pairs are likely to require stochastic components.

In addition, there are domain-specific relations between pairs. An affordance, if

and when it appears, for example, may be part of a problem or a solution and will be
situated and need to be specified. Depending on the domain, more detailed structural
and/or data characterization may be necessary as well.

 The integration of variegated dimensionality within a model has been described
previously (Sallach 2007) and so will not be described here. Pair-wise operations and
sequencing, however, will be described. On each turn, a pair examines both modes and
determines which of the two will contribute to the greatest increase of coherence, a step
which is then executed. Coherence-calculation is a service invoked by the activated pair.
Exogenous changes may have modified overall coherence since the previous pair focus.

The progression from one pair to another may employ different rules, ranging
from sequential to random order, to make-it/take-it, depending on the domain. Since
HokiPoki has a problem-driven architecture, when the necessary solution(s) have been

236

achieved (or the specified number of iterations have been completed), the process
terminates.

DISCUSSION

 The development of the HokiPoki model is an attempt to align social and
computational realities in a different way. Social actors are immersed in complexities that
bear directly or indirectly upon our condition. We must coherently organize
communications and actions that improve, maintain, or (if nothing else) manage the
deterioration of our circumstances. Our vantage point is from the midst of this field of
propensities, and this field is flux. As a result, our orientation field must be immersed in
complexity, and in flux, as well.

 All of this is quite unwieldy from the perspective of most formal models.
HokiPoki is an embryonic mechanism that supports the dynamic self-organization of
agent orientation within complex and continually changing environments. It can be
applied to many domains, which points to the work that lies ahead. The experience
derived therefrom will provide the basis for further evolution of the mechanism.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy, Office of Science,
under contract number DE-AC02-06CH11357.

REFERENCES

Blommaert, Jan, 2005, Discourse: A Critical Introduction, New York: Cambridge

University Press.

Empson, William, 1966 [1930], Seven Types of Ambiguity, New York: New Directions.

Gadamer, Hans-Georg, 1989, Truth and Method, New York: Continuum International

Publishing Group.

Graham, A.C., 1989, Disputers of the Tao: Philosophical Argument in Ancient China,

La Salle, IL: Open Court Press.

Hoffmeyer, Jesper, 1993, Signs of Meaning in the Universe, Translated by B.J. Haveland,

Bloomington, IN: Indiana University Press.

Joas, Hans, 1993, Pragmatism and Social Theory, Chicago: University of Chicago Press.

237

Mead, George Herbert, 1934, Mind, Self and Society, Chicago: University of Chicago
Press.

Palmer, Richard E., 1969, Hermeneutics, Evanston, IL: Northwestern University Press.

Peirce, Charles Sanders, 1955 [1897], "What is a sign? Three divisions of logic," pp. 98–

101 in Philosophical Writings of Peirce, edited by J. Buchler, New York: Dover
Publications.

—, 1992 [1898], Reasoning and the Logic of Things, Cambridge, MA: Harvard

University Press.

Sallach, David L, 2002, "Situated social ecology: An integrated design hermeneutic," in

Agent 2002: Ecology, Exchange and Evolution, edited by C. Macal and
D. Sallach, Chicago: Argonne National Laboratory.

—, 2003, "Interpretive agents: Identifying principles, designing mechanisms," pp. 345–

353 in Agent 2003: Challenges in Social Simulation, edited by C. Macal,
M. North, and D. Sallach, Argonne: Argonne National Laboratory.

—, 2006a, "Coherence and interpretive agency: Mechanism design," in North American

Association for Computational Social and Organizational Science, South Bend.

—, 2006b, "Complex multigames: Toward an ecology of information artifacts," pp. 185–

190 in Proceedings of the Agent 2006 Conference on Social Agents: Results and
Prospects, edited by D.L. Sallach, C.M. Macal, and M.J. North, Chicago:
Argonne National Laboratory.

—, 2007, "Logic for situated action," pp. 13–23 in Advancing Social Simulation: The

First World Congress on Social Simulation, edited by S. Takahashi, D. Sallach,
and J. Rouchier, Tokyo: Springer.

Sewell, William H., Jr., 2005, Logics of History: Social Theory and Social

Transformation, Chicago: University of Chicago Press.

Shalin, Dmitri N., 2007, "Signing in the flesh: Notes on pragmatist hermeneutics,"

Sociological Theory 25:193–224.

Sheriff, John K., 1989, The Fate of Meaning: Charles Peirce, Structuralism and

Literature, Princeton, NJ: Princeton University Press.

Silverstein, Michael, 2003, "Indexical order and the dialectics of sociolinguistic life,"

Language and Communication 23:193–229.

Stinchcombe, Arthur L., 2001, When Formality Works: Authority and Abstraction in

Law and Organizations, Chicago: University of Chicago Press.

238

Weber, Max, 1978, Economy and Society: An Outline of Interpretive Sociology, Berkeley,

CA: University of California Press.

Wittgenstein, Ludwig, 1958, Philosophical Investigations, translated by

G.E.M. Anscombe, Upper Saddle River, NJ: Prentice-Hall.

239

240

NEXUS: AN INTELLIGENT AGENT MODEL OF SUPPORT BETWEEN SOCIAL
GROUPS

D. DUONG, ∗ US Office of the Secretary of Defense

R. MARLING, Marine Corps Combat Development Command
 L. MURPHY, US Office of the Secretary of Defense
 J. JOHNSON, US Office of the Secretary of Defense

M. OTTENBERG, US Office of the Secretary of Defense
B SHELDON, Marine Corps Combat Development Command
 S STEPHENS, Marine Corps Combat Development Command

ABSTRACT

Nexus is an intelligent agent model focused on the support of social groups and
organizations for each other and blame for departure from a social contract as
evidenced by actions. It is a model of the attribution of blame for events based on
trustworthiness. Agents representing leaders of groups look for breech of contract
and keep track of a network of supporters. They choose whom to support
depending on interpretations of past events. They perceive events depending on
trust, reinterpreting past events in light of the present and visa versa. Nexus uses
a model of the Boltzmann machine neural network, for the mind of each agent. It
is based on interpretive social science, and the narrative paradigm in particular.
Results are presented on a study of an insurgency using data collected from
subject matter experts. This data includes support levels of ten relevant segments
of population for each other, ideological similarity between groups, relevant
historical events, and how groups might react towards the government if the US
comes in to help during a natural disaster. The point of the simulation is to
predict how disruptive the US aid would be if military personnel took an active
role. The output data is the level of support for every group for every other group.
It was found that, given historical events, a direct action by the US government
only cause one group to like the insurgency a little more than they would have
had the US government chosen an indirect approach to disaster relief..

 Keywords: Interpretive Social Science, Narrative Paradigm, Boltzmann Machine,

Constraint Satisfaction, Social Simulation, Neural Network, Irregular Warfare,
Insurgency

∗ Corresponding author address: Deborah Duong, OSD/PA&E SAC1401 Wilson Blvd., Suite 300, Arlington,

VA22209. email: Debbie.duong.ctr@osd.mil

241

INTRODUCTION

Nexus is an agent based model designed to simulate scenarios of irregular warfare. It is based on
the narrative paradigm (Fisher), as agents look to relevant historical actions, current support
networks, and ideological closeness to create a coherent view which calculates support levels for
other agents. Agents try to make a story that is coherent with their historical context, and in
doing so, may minimize apparent facts that don’t make sense with the rest of the story, in
accordance with cognitive dissonance theory (Festinger). Nexus is used for irregular warfare
because the emphasis on contract keeping can be used for divisive strategies of nonviolent
conflict. It takes into account higher orders of support, so that present enemies that are potential
supporters, or present supporters that are potential enemies, may be identified.

THE MIND OF AGENTS

The Boltzmann Machine

The Boltzmann machine, a variety of the Constraint Satisfaction genre of neural networks, is
used to represent the agent’s minds, one for each agent. The Boltzmann machine is good at
representing interpretations and reinterpretations of evidence. For example, the Boltzmann
machine can model the interpretation of a Necker cube with a face as either in the front of the
cube, or in the back of the cube, but as not both at the same time. It does this by making the
belief that one vertice is in front evidence for believing or disbelieving that another vertice is in
front (Simon). In Nexus, the Boltzmann machine is used to represent an evolving interpretation
of evidence and blame, and its effect on levels of support. The paradigm shift, whether it be the
shift that occurs when seeing a Necker cube in a different way, or the shift that occurs when facts
are reinterpreted so that different parties are seen as responsible, is the same consonance seeking
process. Constraint satisfaction networks have been used successfully to model how people see
social situations (Duong and Reilly; Sallach; Thagard).

The basic agent of the Nexus model is the social group, which is a group of persons (whether
they are organizations or not). Each social group has one Boltzmann machine that it uses to take
all factors into account in its decision of whether it supports another social group.

The neurons in the minds of agents are of three types, as illustrated in figure 1.

242

FIGURE 1 The Nexus GUI, of the neural mind of a single agent.
The nodes along the top layer have been put into an arch so that
their connections maybe seen. Connections are red for inhibitory,
and blue for excitatory. The columns represent the social groups.
The top layer contains the support nodes. The second layer
(which does not have connections between nodes) contains the
trust worthiness nodes. Each layer below that is for a single
historical event, and contains blame nodes corresponding to the
amount of blame a group is given for an event. To the left is an
input node, that holds objective evidence for the blame of each
group for events before the “spin” the mind will place on it.

The Nodes of the Network

1. Support : An node for the level of support for each other social group.
2. Trustworthiness: A node for how much each social group is perceived as a keeper of social
contracts.
3. Blame: A node for the belief that this social group performed a particular event, for every
(social group X event).

The Architecture of the Network

1. Support nodes. These nodes output whether the social group owning the net supports another
social group or not. These nodes have mutual excitation with the nodes of groups that publicly
support each other and mutual inhibition with the nodes of groups that publicly lack support for
each other. The weights change in the network depending on changing public declarations of
level of support between groups. The support nodes ensure that the groups that a group is
supporting are taken into account in its decision of who to support (for example, the friend of my

243

friend is my friend, the enemy of my enemy is my friend), and enables agents to perceive
accountability as something that is shared with their network of support.

2. Trustworthiness nodes. The trustworthiness node for a social group has a mutual inhibition
with all of the blame nodes for that particular social group. That means, if a group performs an
adverse action, it is not generally perceived as trustworthy, and if it is trustworthy, it does not
tend to be perceived as performing adverse actions. Trustworthiness nodes have a mutual
excitation with support node of the social group, meaning that if a social group is trusted it tends
to be supported, and if it is supported it tends to be trusted. There is also an input node to the
trustworthiness nodes that corresponds to ideological similarity, so that having a set of beliefs
and agreed upon practices is taken into account into the estimation of whether a group is a
contract keeper.

3. Blame nodes. There are (social group X event) blame nodes, with sets of blame nodes for
individual events appearing in rows and for individual social groups appearing in columns.
There is a constant excitation applied to each of the blame nodes through an input node. The
blame nodes are lit in proportion to the degree of hard evidence for the fault of each social group,
before the spin that the mind puts on it. The total energy the blame nodes for an event are lit is
in proportion to the severity of the event. The constraint that an action tends to be performed
primarily by one entity is expressed by negative inhibition between the blame nodes within a row
that represents a single event. Because of this constraint, if an event is blamed on one party, it
tends to let another party off the hook. The Boltzmann machine can measure cognitive
dissonance, or the spin that the mind places on an event, pulling it away from where contrary
evidence, through the calculation of “goodness” or consonance of the net. That is, even though
hard evidence supports blaming one group for an event, relations of support and trust may cause
another group to be blamed.

Blame for one event is connected to blame for another event only indirectly, through the
trustworthiness node. If a new event is determined to be a group’s fault, and the group’s
trustworthiness falls, then evidence in the past for events can be reinterpreted and blamed on that
group even if they were blamed on another group before.

Running the Simulation

When an action happens, it has some blame attached to it that represents objective evidence that
an event was caused by a group, in a magnitude that reflects how much the event hurt or helped
the group doing the thinking. The leader thinks, taking into account the whole picture of all the
groups behaviors, their affinities towards other groups, and then makes a new public declaration
of support. This declaration increments the support level mappings in each leader’s mind,
preparing the leader for the next action when it will think and declare new support levels.

EMERGENT SOCIAL PHENOMENA

Nexus is a simulation based on first principles, and from which many types of tactics of irregular
warfare may be modeled, including those discussed in Ackerman and Duvall’s book, A Force
More Powerful. For example, Nexus can model the fact that a group has to worry about the
upholding of an ideology with its peers. Gandhi’s revolution from India worked because Britain
had to pay attention to its trustworthiness in keeping its ideology with international players.
They had to worry about appearing hypocritical. Countries with ideologies that rationalize

244

violence, whose allies support the same ideas, such as Nazi Germany, may not be so afraid of
their reputation, and crackdown on a protest. A group could think that its peers would not
support it if it did not uphold the binding ideology as a social contract between itself and other
players. In the case of India, knowledge of the ideological break with an innocent, non enemy
power, would affect the reputation of the British in the model, forcing it to keep an ideologically
correct social contract with India as well. In Nexus, every agent has a model of its perceptions of
the support networks of other agents, and making knowledge of ideological breaks public
through a non violent warfare campaign, affects support levels as agents worry about the keeping
the trust of their allies.

As in irregular warfare tactics, the network may be manipulated to separate a regime from its
supporters. For example, if the analyst inputs into Nexus an IO campaign of adverse events to be
blamed on the police (such as “Rodney King” style videos) , then the regime may break their
support of the police, to keep the support of the citizens, but at the same time causing services to
not be delivered. To input this into the model, the blame nodes would be lit against a police
group for the event. This may cause the regime to cut ties with the police, creating another
adverse event that the police would blame the government for.

The support for groups of similar ideology and ethnicity would tend to affect trustworthiness of a
group when they break contract with particular groups and ethnicities. It may affect those with
similar ideology more than those less similar, as in social theories which stress the importance of
empathy in the success of irregular warfare. If groups tend to judge other groups by the same
standards, and have the same opinions, it causes them to have similar friends and enemies and
tend towards mutual support. “Cognitive Liberation” may be simulated by a change in the
ideology by which one judges how adverse an event is. For example, to simulate nationalism in
a majority ethnic group for securities sake in the face of a possible civil war with a minority
ethnic group, the collateral damage caused by a violent insurrection would be seen as an
adverse event, but the minority ethnic groups might not blame the insurgent group that caused
the action directly, as much as the government, on the basis of similar support networks as well
as an accumulation of blame for the government on adverse events in the past. However, if the
government was kinder to the majority ethnic group in the past, they may put a spin on the
interpretation of events against the insurgents.

EXAMPLE RUN

Nexus has been run on classified scenarios to study questions of irregular warfare at the Office of
the Secretary of Defense. It has also been run on unclassified but sensitive scenarios at the
Marine Corps Combat Development Command. The object of the Marine Corps scenario is to
predict the effect that the greater presence of the United States would have on the support for the
government and the insurgents in a country, in case it had to help that country during a natural
disaster. The US could take a direct approach to assistance, or an indirect approach. The groups
include displaced persons, the urban poor, the urban middle class, old money, illicit
organizations, the police, the army, the church, the government, and the insurgency. Data was
obtained through two subject matter experts (SMEs) that knew the details of the culture and the
particular group’s history in a single province. SMEs estimated support levels, what those levels
might be in both direct and indirect cases, and ideological similarities of the groups. The SMEs
also described 22 historical events that were important to the groups in determining their present
feelings for each other. These historical events are from different time periods, as cultures can

245

consider something that happened thousands of years ago important. Historical events made up
the cultural narrative and identity of the social groups. When Nexus was run, it was found that
even though all groups except displaced persons were for the government and against the
insurgents, the structure of their support for each other combined with historical events made the
government somewhat vulnerable. All groups except the old money and the displaced persons
changed their attitudes slightly more towards the insurgency when the US helped. It did not
matter very much which kind of help. None of the groups, except for the urban middle class, had
any different support levels for the government or the insurgents when direct and indirect action
was compared. Only the urban middle class liked the insurgents a little bit more when the US
action was direct than when it was indirect.

CONCLUSION

Nexus has been applied to real world scenarios of information operations and irregular warfare.
It is one of the only tools that takes into account the historical consciousness of a people when
explaining their actions. It is also unique in that it shows how new actions can influence a group
to change their interpretations of the causes of their fortunes and misfortunes, and how these
interpretations affect their alliances. Furthermore, it can reveal hidden vulnerabilities to changes
in alliances due to higher orders of support levels and the entire historical picture of all parties.
It has been suggested that Nexus will, in the future, be combined with Pythagoras for studies in
stability operations.

REFERENCES

Ackerman P., and J. Duvall, 2001, A Force More Powerful: A Century of Nonviolent Conflict,
 New York: Macmillan.

Duong, D., and K. Reilly, 1995, “A System of IAC Neural Networks as the Basis for Self-

Organization in a Sociological Dynamical System Simulation,” Behavioral Science Vol.
40, number 4, pp. 275-303.

Festinger, L., 1957, A Theory of Cognitive Dissonance, Stanford, CA: Stanford University
 Press.

Fisher, W., 1984, "Narration as Human Communication Paradigm: The Case of Public Moral
 Argument," Communication Monographs 51, pp. 1-22.

Sallach, D., 1988, “A Comparison of Parallel Architectures: Neural and Social Models of the

Mind,” Proceedings of the Second ACM Symposium on Artificial Intelligence, Norman,
OK.

Simon, Dennis. “The Boltzmann Machine Necker Cube Example,”
 http://www.cs.cf.ac.uk/Dave/JAVA/boltzman/Necker.html.

Thagard , P., 1999, Coherence in Thought and Action, Cambridge, MA: MIT Press.

246

HIGH-FIDELITY MATHEMATICAL MODELS OF SOCIAL SYSTEMS

Joe Jeffrey1, Northern Illinois University, DeKalb, IL

ABSTRACT

We present a mathematical formalism, Entity Specifications, with sufficient rigor and
expressive power to formalize a wide range of models of social systems. Entity
Specifications are a combination of a rigorous formulation of the intuition of a frame and
formal representation of relationships among constituents, as in mathematical logic.
Entity Specifications are then used to formalize a particular conceptual framework that
has been used as the basis for a number of computer systems, Communities and
Intentional Action. This model articulates a broad range of social system phenomena,
from individual actions to actions of groups at all levels, encompassing all types of
phenomena actually encountered in human systems: biological, psychological, economic,
sociological, political, and cultural. The formalism is then used to develop new
mathematical formulations of concepts with broad applicability in the social sciences:
complexity, similarity, and rate of change and rate of complexity change in social
systems. The similarity measure is illustrated with an example in which the similarity
between two pairs of intuitively similar families is calculated.

This paper presents a mathematical formalism for building high-fidelity models of the

structure and dynamics of social systems. By “high-fidelity” we mean accurate representation of
the entire range of the situations, processes, and events in the system, at every level of detail. The
central intuition of the formalism is that a “thing” – an object, process, or state of affairs – is
specified by giving a formal name, the logically necessary immediate constituents, and the
relations between the constituents, all constituents and relationships also specified by formal
name, as in mathematical logic. Constituents themselves may be further elaborated in the same
way. The formalism is designed to handle incomplete knowledge and does not require reduction
to atomic elements.

ENTITY SPECIFICATIONS

We need to be able to formally describe three kinds of “thing”: objects (structures),
processes (mechanisms), and states of affairs. Entities have parts – immediate constituents – that
may be objects, processes, or states of affairs. An entity is described by giving its name and a
description; the description consists of the names of the constituents and their type (object,
process, or state of affairs), and their relationships.

Definition An entity specification (ES) consists of an ordered pair (N, D), where:

• N is the (formal) name of the entity including, optionally, a list of alternate names and/or a
numerical ID.

• D is the set of paradigms, the major varieties or descriptions of the entity. In social
systems, these are often structures or processes with little in common other than being

1 H. Joel Jeffrey, Dept. of Computer Science, Northern Illinois University, DeKalb, IL 60115. Email:
jeffrey@cs.niu.edu.

247

recognizable as varieties of the same thing. For example, in Western society celebrating a
wedding anniversary has several paradigms: dining out, taking a cruise, buying a gift, etc.

Each paradigm of D is an ordered triple (C, R, E), where:

• C = {(Ci, Ti)}, in which Ci is the constituent and Ti is the constituent’s classification, an
element of the set {P, O, S}, representing “process,”“object,” or “state of affairs.”

• R is the set of n-ary relationships that must hold between the named constituents. Any
relationship may be named, not only those definable in terms of physical, mathematical, or
computable quantities. (Equations are formal names.)

• The constituents and their relationships specify the structure of the entity. Additional
information specifies particular instances of the entity. Identifying an actual instance
requires the specification of which actual “things” (processes, objects, and states of affairs)
that fill the roles named by the constituents. This information we term the eligibilities E for
the entity: a set of ordered triples (c, i, r), in which

• c is the name of the constituent;
• i is the name of the individual;
• r is the rule, or condition, under which i takes the role of c in this object.

ESs are a formalization and unification of the representation formats developed by P. G Ossorio2,
as a means of specifying objects, states of affairs, and processes at any level of detail.

A state of affairs’ constituents may be any set of objects, processes, and other, smaller, states of
affairs, in various relationships, i.e., any set C = {(Ci, Ti)} and any set R, as defined above.

Processes

Processes are multi-step changes in objects and their relationships. Processes may occur
in many ways, i.e., combinations of the steps. Therefore the {(Ci, Ti)} for a process include:

1. Two constituents, the before-state and after-state.
2. A subset identifying stages, i.e., in which Ti = P. Some stages may be accomplished via

two or more alternatives; these alternatives are included in this subset.
3. A subset identifying the objects, i.e., Tj = O.
4. A subset identifying the versions of the process. Each of these constituents Ck is a state of

affairs, i.e., Tk = S, and the constituents of Ck are stages.

Relationships between stages specify the time relationships between them: sequential, parallel,
overlapping, interspersed, etc.

Objects

Objects have only object constituents, and in that sense are simpler than entities in
general or processes; each constituent of an object of Type O.

2 P. G. Ossorio, “What ActuallyHappens”, University of South Carolina Press, Columbia, SC, 1978. Republished
by Descriptive Psychology Press (www.descriptivepsychologypress.com), Ann Arbor, MI, 48104, in 2005.

248

Relationship to Frames

ESs are similar to frames, but differ in two important ways. First, ESs are considerably

more rigorously defined. The constituents of an ES must be logically necessary for the thing
being described to be what it is. By contrast, a frame simply represents “things commonly found
together3.” No distinction is made between things that are necessary to the definition of thing
and those that are merely commonly present.

Second, frames do not include specification of the R1...Rm between constituents, although

some frame-based systems allow specification of relationships. (Interestingly, while clearly a
refinement of frames, Ossorio’s work predates the introduction of frames by several years4.)

“Incomplete” Descriptions

Most real social systems are too complex to be specified completely, i.e., at the level of

actions by individual persons. ESs are designed for handling incomplete specifications: a
description and its elaborations are used in analysis or simulation by modeling the named entities
and their interactions at that level. An ES set is not like a computer program, which is
incomplete and not executable until all functions have been written in executable primitive
statements.

For example, the state of affairs identified by the English sentence, “The rise of inflation

in 1920’s Germany led to the rise of National Socialism,” identifies an entity (a state of affairs)
with two constituents: “the rise of inflation in 1920’s Germany,” “National Socialism,” and the
relationship “led to the rise of.” Each of these constituents has further Descriptions in terms of
constituents and relationships, and a set of descriptions down to the level of the famous image of
a woman with a wheelbarrow of Deutsche marks to buy a loaf of bread would be enormous. It is
not, however, necessary for simulation or analytical treatment.

DESCRIBING SOCIAL SYSTEMS

Social systems, distinguished by having human “components,” require a

conceptualization encompassing the specifically human aspects of action in a social context. The
most comprehensive and systematic conceptualizations of this subject matter of which we are
aware are the Community formulation, due to Putman5 and Intentional Action, due to Ossorio6.
They have been successfully used to build formal models of a number of social systems, and

3 Minsky M (1975), “A Framework for Representing Knowledge”, in Winston P, ed., The Psychology of Computer
Vision. New York: McGraw-Hill, NY.
4 P. G. Ossorio, State of Affairs Systems: Theory and Technique for Automatic Fact Analysis, RADC-TR-71-102,
Rome Air Development Center, 1971.
5 A. O. Putman, “Communities,” in Advances in Descriptive Psychology, V. I, K. E. Davis ed., JAI Press,
Greenwich, CT, 1981.
6 P. G. Ossorio, The Behavior of Persons, Descriptive Psychology Press, Ann Arbor, MI, 48104, 2006.

249

software based on the models7,8. We illustrate using ESs to formalize social systems by
formalizing Communities and Intentional Action. However, entity specifications are not
particular to this conceptualization; formalizations of any model, no matter how abstract,
physicalistic, or even fanciful, may be given.

A Community description is a 4-tuple <M, P, Cp, S>, where

• M (members) denotes all actual individuals in the community.
• P (Practices) denotes the set of social practices of the community. Practices encompass

everything that a member of that community can do, as a member of that community.
• Cp (Choice principles) denotes the set of values or priorities specific to the community.

The principles govern which practice is carried out and how, playing a large role in
determining what actually occurs and how it occurs in the social system.

• S (Statuses) denotes the recognizable positions in the Community, whether formal and
explicit or informal and implicit. “President,” “Senator,” “husband,” “child,” suicide
bomber,” “respected leader,” “doctor,” “farmer,” etc., are examples. Each position has
associated with it one or more intrinsic practices, practices a member engages in simply
because they are in that position.

A practice is specified by giving a social practice description, a quintuple <W, K, Kh, P, PC>,
where

• W (want) denotes the goal.
• K (know) denotes the facts and concepts necessary for this action.
• Kh (know-how) denotes the skills needed to carry out the practice effectively.
• P (process) denotes the procedural aspect of the practice.
• PC (personal characteristics) denotes any relevant attitudes, traits, or abilities.

Finally, to specify the details of what happens in the system, the process parameter itself must be
expanded with process entity description: the stages, constraints, eligibilities, and versions of the
process.

What actually occurs is an instantiated version of the practice: a particular set of stages,
with specific individuals filling the logical roles E, much as an actual production of Hamlet
consists of the sequence of Act of the play, with actual persons and objects filling the roles of the
characters and props.

To engage in an action is to engage in the practice of a community. The operation of the

social system consists of members engaging in practices, in accordance with the choice
principles of the community.

7 “MENTOR: Replicating the Functioning of an Organization", in Advances in Descriptive Psychology, Vol. III, pp.
243-270, K. E. Davis, ed., JAI Press, Greenwich, Connecticut, 1983.
8 Jeffrey, H. J., Schmid, T, Zeiger, H.P, and Putman, A. O., 1989, "LDS/UCC: Intelligent Control of the Loan
Documentation Process" Proceedings of the Second International Conference on Industrial & Engineering
Applications of Artificial Intelligence and Expert Systems, University of Tennessee Space Institute, Tullahoma,
Tennessee, June, 1989, ACM Press, pp. 573-591.

250

ENTITY DESCRIPTIONS OF COMMUNITIES AND PRACTICES

Combining entity specifications with community descriptions gives a formal model of a

social system. A community is an entity, with object, process, or event constituents: Members,
a set of object names; Practices, a set of entity specications; Choice principles, a set of state of
affairs entities; Statuses, a set of states of affairs entities.

Communities and intentional action, stated in Entity Specification form, provide a

mathematical representation of human behavior in the human context, at any level of detail. A
social system is a formal entity consisting of (formal) immediate constituents, with n-ary
relationships between them, and elaboration of constituent entities, at any level, via entity
specifications.

As noted above, the ES formalism may be used to formalize any model of human

behavior; the community and practice model formulations are but one, albeit the most
comprehensive and systematic we know of.

MEASURING SIMILARITY AND COMPLEXITY

Having a formalization of social systems allows us to give new mathematical

formulations of the concepts of complexity of a social system and similarity of two social
systems.

We first define the structural complexity of a social system A, with with N constituents

A1, ..., AN and K relationships, as:

 NA
 SC(A) = N2 + K 2 + ε ● ∑ SC(Ai)

2
 i=1

ε is an experimentally-determined multiplier modulating the impact of complexity of
constituents, sub-constituents, etc. (Preliminary work indicates a value of approximately
0.7 for ε.)

We can now mathematically define the degree of similarity between any two entities

based on their constituents and relationships. The definition is designed to correspond to the
following intuitions:

1. The measure should take into account differences in attributes of the entities
themselves.

2. The measure should take into account similarity of structure. Structure is formalized
by relationships among constituents, in two ways: a) differences in the attributes of
the constituents of A and B; b) if A and B have the same relationships among their
respective constituents, but to different degrees, similarity should reflect the
difference in degree; c) if A and B have different relationships, they should be less
similar.

251

3. When the constituents of A and B themselves have ESs, the measure should
recursively include the structural similarity of the constituents.

Accordingly, the distance between two entities is defined as follows:

1. Let A and B be any two entities, the properties of A and B be p1, ..., pM, and entity
specifications comprised of constituents A1, ..., ANA and relationships r1, ..., rK, and B1, ...,
BNB with the L relationships rK+1, ..., rK+L.

The constituents A1, ..., Am with relationship rj are ordered m-tuples. Denote the number
of A-tuples by NAT, and the number of B-tuples by NBT.

2. Let the value of property i of a constituent be represented by pi(), and ri(t) denote the
value of the ordered tuple t of A- or B-constituents satisfying relationship rk. For
example, a strong love relationship between family members A1 and A2 is represented by
loves(A1, A2) = 0.9 (on a 0 to 1 scale).

Let P denote the matrix with M columns and NA+NB rows, whose values are the values
of each property pi.

 p1 ... pM
A1
...
ANA
B1
...
BNB

The property distance between Ai and Bj is given by

 M

 PD(A, B) = ∑ (pk(Ai) – pk(Bj))
2

 i=1

Let R be the matrix with K+L columns and NAT+NBT rows whose entries are the values
rk(t). If a constituent does not have property pi, or a tuple does not have relationship rk,
leave the corresponding entry of the matrix blank.

P:

252

 r1 ... rK rK+1 ... rK+L
A-tuple1
...
A-tupleNAT

B-tuple1
...
B-tupleNBT

3. If any column of P or R contains a value < 0, re-scale the values of the column by adding

the absolute value of the minimum value of the column to each value in it.

4. Normalize the values of P to the range 1 to 10, by setting

pi(Aj) = 10 * (pi(Aj) + 1) / pmaxi), where pmaxi is the maximum value of column i.

5. Set each empty entry of P to 0.

The values of the property matrix P are now between 0 and 10, 0 indicating the
component does not have the property of that column.

6. Similarly, normalize the values of R, the matrix with K+L columns representing
relationship values for constituents of A and B, to the range 0 to 10.

7. When A and B have constituents, the similarity between A and B must include similarity
of their constituents. That calculation is affected by the order of the constituents. For
example, suppose A and B are organizations, and A has a large and complex marketing
department and a small, simple shipping department, while B has a large and complex
shipping department and small, simple marketing department. The calculated similarity
between A and B will be quite different, depending on whether the two marketing
departments and two shipping departments are compared, or whether A’s marketing
department is compared to B’s shipping department. The constituents of each must be re-
ordered so that the distance comparison has a consistent basis.

Therefore, re-order the constituents of A and of B, from maximum SC (as defined above)
to minimum.

8. The distance between two entities A and B is comprised of two components, the

property distance and the structural distance:

 d(A, B) = √ PD(A, B)2 + SD(A, B)2

The structural distance SD(A, B) is defined recursively as follows:

Let MC = max(NA, NB) and MT = max(NAT, NBT).

R:

253

Then if both A and B have Descriptions, i.e., specified constituents and relationships, we
define the structural distance SD as

 MC MT L MC

SD(A, B) = (NA–NB)2 + ∑ PD(Ai, Bκ(i))
2 + ∑ ∑ (ri(taj) – ri(tbκ(j)))

 2 + δ ● ∑ SD(Ai, Bi)
2

 i=1 j=1 i=1 i=1

where Bκ(i) denotes the B-constituent closest to Ai, using Euclidean distance, and

tbκ(j) denotes the B-tuple closest to taj, using Euclidean distance between tuples.

If A NAT > NBT, ri(tbj) = 0 for NBT < j <= NAT, and similarly if NBT > NAT.

If NA > NB, then d(Ai, Bi) = SC(Ai,), for NB < i <= NA, and similarly if NB > NA.

If either A or B have no Description, SD(A, B) = 0.

δ is an experimentally-determined discount factor reflecting the relative importance of the
distance between constituents of A and B. (As with ε, preliminary work indicates a value
of approximately 0.7 for δ.)

PD(Ai, Bi) measures similarity of properties of each pair of constituents;

∑ (ri(taj) – ri(tbj))

 2 measures how much the constituents of A and B differ on relationship
 MT L
ri; and the sum ∑ ∑ (ri(taj) – ri(tbκ(j)))

 2 measures the total difference in structure between
 j=1 i=1

A and B, as articulated by the relationships ri, 1 ≤ i ≤ L.

The distance measure d(A, B) has the following properties:
• d(A, B) = 0 if A and B are the same except for differing only in names of

constituents and relationships (mathematically, are isomorphic).
• The distance increases as the properties of A and B, the number of their

constituents, the properties of the constituents, the structure of A and B, and the
substructures of A and B diverge.

As with any mathematical definition intended to capture an intuition, this formulation

must validated experimentally. This work is in progress.

Example: Structural Similarity of Two Families

Family A consists of a mother, father, and two children. The mother and father are
married, and love each other. Both parents love both children; the children love each other.
However, the children also compete with each other for success in school.

Family B consists of a mother, father, and three children. The mother and father are

married. Both parents love all the children. The two younger children love each other, but both

254

resent the eldest and compete with her for each parent’s affection. The eldest child also has a
significant responsibility in caring for the younger children

We suppose that the member attributes of interest in this case are age and health of the

family members.

 Age Health

MA 40 0.8
FA 42 0.7

AC1 12 1.0
AC2 10 1.0
MB 35 0.9
FB 36 0.8

BC1 8 1.0
BC2 6 1.0
BC3 14 1.0

 Table 1: P matrix for Families A and B

Rom..
Love

Par.
love

Sib.
love

Aca.
comp.

Resent Affec.
comp.

Care-
taker

(MA, FA) 1.0
(FA, MA) 1.0
(MA, AC1) 1.0
(MA, AC2) 1.0
(FA, AC1) 1.0
(FA, AC2) 1.0
(AC1 AC2) 1.0 1.0
(AC2, AC1) 1.0 1.0
(MB, FB) 1.0
(FB, MB) 1.0
(MB, BC1) 1.0
(MB, BC2) 1.0
(MB, BC3) 1.0
(FB, BC1) 1.0
(FB, BC2) 1.0
(FB, BC3) 1.0
(BC1, BC2) 1.0
(BC2, BC1) 1.0
(BC1, BC3) 1.0
(BC2, BC3) 1.0
(BC1, BC3) 1.0
(BC2, BC3) 1.0
(BC3, BC1) 1.0
(BC3, BC2) 1.0

Table 2: R matrix for Families A and B

255

The normalized values of the properties of the families A and B are (8.2, 10, 10) and

(10, 10, 10), so PD(A, B) = √1.82 + (10-10)2 + (10-10)2 = 1.8.

(NA–NB)2 = (5-3)2 = 4.

The normalized property matrix P, with rows re-ordered so that the pairs Ai, Bκ(i) are
adjacent, is

 Age Health
MA 9.5 8
FB 8.6 8
FA 10.0 7
MB 8.3 9
AC1 2.9 10
BC3 3.3 10
AC2 2.4 10
BC1 1.9 10
BC2 1.4 10

Table 3: Normalized P for Families A and B

 5

and the constituent property distance ∑ PD(Ai, Bκ(i))
2 = 0.81+2.89+0.16+0.25+1.96

 i=1

 = 6.07

The normalized relationship matrix R, with rows re-ordered so that the pairs taj and
the nearest tuple tbκ(j) are adjacent, is

256

 Rom..

Love
Par.
love

Sib.
love

Aca.
comp.

Resent
Affec.
comp.

Care-
taker

(MA, FA) 10 0 0 0 0 0 0
(MB, FB) 10 0 0 0 0 0 0
(FA, MA) 10 0 0 0 0 0 0
(FB, MB) 10 0 0 0 0 0 0

(MA, AC1) 0 10 0 0 0 0 0
(MB, BC1) 0 10 0 0 0 0 0
(MA, AC2) 0 10 0 0 0 0 0
(MB, BC2) 0 10 0 0 0 0 0
(FA, AC1) 0 10 0 0 0 0 0
(MB, BC3) 0 10 0 0 0 0 0
(FA, AC2) 0 10 0 0 0 0 0
(FB, BC1) 0 10 0 0 0 0 0
(AC1 AC2) 0 0 10 10 0 0 0
(BC1, BC2) 0 0 10 0 0 0 0
(AC2, AC1) 0 0 10 10 0 0 0
(BC2, BC1) 0 0 10 0 0 0 0
(FB, BC2) 0 10 0 0 0 0 0

(BC1, BC3) 0 0 0 0 10 0 0
(FB, BC3) 0 10 0 0 0 0 0

(BC2, BC3) 0 0 0 0 10 0 0
(BC1, BC3) 0 0 0 0 0 10 0
(BC2, BC3) 0 0 0 0 0 10 0
(BC3, BC1) 0 0 0 0 0 0 10
(BC3, BC2) 0 0 0 0 0 0 10

Table 4: Normalized R for Families A and B

 MT L

The structural-difference sum ∑ ∑ (ri(taj) – ri(tbκ(j)))
 2 = √6●02 + 2●102+8●102 = 31.6

 j=1 i=1

In this example, the immediate constituents are individual persons. Customarily one
considers persons to be indivisible, so in this case SD(Ai, Bi) = 0. (In a case in which it is
considered appropriate to model parts of a person, such as aspects of personality, SD(Ai, Bi) may
be non-zero.)

Thus SD(A, B) = √ 4 + 6.07 + 31.6 and d(A, B) = √ 1.82 + 4 + 6.07 + 31.6
 = 6.7

Consider now the distance between A and B', a family identical to B except that B'C1 and

B'C2 did not resent and compete for affection with B'C3. The rows of R representing those
relationships are now missing, so the structural-difference sum is 24.5, and d(A, B') = 6.1.

257

Rate of Social Change

Thus, we can now define rates of change in a social system:

The rate of social change, as a system goes from S1 to S2, in time ∆t, is

and the rate of social complexity change of S is .

REFERENCES

Jeffrey, H. J., 1983, “MENTOR: Replicating the Functioning of an Organization", in Advances
in Descriptive Psychology, Vol. III, pp. 243-270, K. E. Davis, ed., JAI Press, Greenwich,
Connecticut.

Jeffrey, H. J., Schmid, T, Zeiger, H.P, and Putman, A. O., 1989, "LDS/UCC: Intelligent Control

of the Loan Documentation Process," Proceedings of the Second International
Conference on Industrial & Engineering Applications of Artificial Intelligence and
Expert Systems, University of Tennessee Space Institute, Tullahoma, Tennessee, June,
1989, ACM Press, pp. 573-591.

Minsky, M, 1975, “A Framework for Representing Knowledge”, in Winston P, ed., The

Psychology of Computer Vision. New York: McGraw-Hill, NY.

Ossorio, P. G., 2006, The Behavior of Persons, Descriptive Psychology Press, Ann Arbor, MI

48104 (www.descriptivepsychologypress.com).

Ossorio, P. G., 1971, State of Affairs Systems: Theory and Technique for Automatic Fact

Analysis, RADC-TR-71-102, Rome Air Development Center.

Ossorio, P. G., 2005, “What Actually Happens”, University of South Carolina Press, Columbia,

SC, 1978. Republished in by Descriptive Psychology Press, Ann Arbor, MI 48104.
(www.descriptivepsychologypress.com).

Putman, A. O., 1981, “Communities,” in Advances in Descriptive Psychology, V. I, K. E. Davis

ed., JAI Press, Greenwich, CT.

d(S1) – d(S2)
 ∆t

SC(S1) – SC(S2)
 ∆t

258

Network Dynamics

THE DYNAMICS OF NETWORK-EFFECTS IN TWO-SIDED AND
MULTI-SIDED MARKETS: AN AGENT-BASED APPROACH

W. GRANIGG,∗
Martin-Luther-University Halle-Wittenberg, Germany

ABSTRACT

Two-sided and multi-sided markets and the dynamics of their network-effects have

become an active research area in recent years. In this paper a general formulation of an
agent-based duopoly-model of a two-sided market is presented that seems very promising

to study and to analyze under which starting conditions two-sided markets tend (just
because of the dynamics of the involved network-effects) to a winner-takes-all-situation
and under which starting conditions both platforms can survive within the market. The

results of the simulations of this model can be used for analysing real existing two-sided
(and multi-sided) markets.

Keywords: Two-sided markets, multi-sided markets, network-effects, agent-based model

 INTRODUCTION

Many modern markets try to tie together two or more distinct groups of individuals
(users) in a network whereas the individuals of each group are interested in interacting with the
individuals of the other group. These markets are called ‘two-sided’ or ‘multi-sided markets’
(depending on the number of different groups) and can roughly be defined as “markets in which
one or several platforms enable interaction between end-users, and try to get the two (or
multiple) sides ‘on board’ by appropriately charging each side” (Rochet/Tirole 2005).

If someone thinks about that definition, a lot of markets rapidly come into one’s mind:
Newspapers for example have to attract readers and advertisers, videogame platforms have to
attract consumers and software developers, TV networks have to attract viewers and advertisers,
credit cards have to attract cardholders and merchants and so on (Rochet/Tirole 2005; Evans
2003). The actual importance of markets like these is quite enormous, since these markets have
redefined and changed the global business landscape rapidly and fundamentally in the last few
decades (Eisenmann/Parker/Van Alstyne 2006).

One interesting thing of two-sided and multi-sided markets is that frequently they cannot

be analyzed by means of the traditional and well-known economic rules. Many of them are not
working correctly in these markets any more and so the use of these traditional rules can
sometimes lead to severe mistakes (and losses) (Wright 2004).

The key issues to understand the way how two-sided and multi-sided markets work seem
to be the so-called ‘same-side’ and ‘cross-side’ network effects. Simply spoken, network effects

∗ Corresponding author address: Wolfgang Granigg, Institute of Economics, Department for Microeconomics and

Public Economics, Martin-Luther-University Halle-Wittenberg, Universitätsring 3, 06108 Halle an der Saale,
Germany; e-mail: wolfgang.granigg@wiwi.uni-halle.de.

261

in general describe the possibility that the derived utility for a user by the consumption of a
certain good increases with the number of other users consuming the good as well (Katz/Shapiro
1985; Katz/Shapiro 1986; Tirole 2002). Since in two-sided and multi-sided markets (where in a
simple model the ‘good’ is just to join or stay at a platform) two or more distinct groups of users
are involved, two kinds of network effects can be distinguished: While same-side network-
effects describe the network effects within each group of users, cross-side network effects
describe the network effects between the two or more groups of users (respectively between the
individuals of the two or more market sides).

RELATED WORK

Since two-sided and multi-sided markets frequently cannot be analyzed by means of the
well-known economic rules, the implication for academic research seems to be quite clear: It is
necessary to find adapted models to understand the nature of two-sided and multi-sided markets
and to understand how the mechanisms of these markets work. In order to do so, especially in the
last few years a lot of research has been done in this field in various directions. In the next
paragraphs two major research directions are briefly introduced.

In a first important research field the new mechanisms of adding value are explored:
While in traditional markets value moves from the left to the right side (where to the left side is
cost and to the right side is revenue), in two-sided and multi-sided markets, cost and revenue are
both to the left and the right, because the platform has to incur costs while serving both groups,
but can also collect revenue from each side (Eisenmann/Parker/Van Alstyne 2006). As a result,
the traditional model of the linear value-added chain is not very suitable for two-sided and multi-
sided markets and has to give way for models with value-added helices, which are more qualified
for describing the feedback effects and dependencies between the market sides
(Dietl/Frank/Royer 2006).

A second research direction deals with the analysis of the optimal price setting in two-
sided and multi-sided markets: In traditional (one-sided) markets firms have to choose the price
level by which the sold quantity normally can be influenced (assuming a typically sloped
demand function). Opposed to that, in two-sided or multi-sided markets firms (respectively
platforms) must choose a price structure, which means that they have to find a price level for
each market side and not just a general price level (Rochet/Tirole 2003). That fact and the mutual
dependence of the different prices on each market side yield to the problem that setting prices in
two-sided and multi-sided markets is a highly complex issue. The same holds for the analysis of
the (dynamic) price competition between platforms and their pricing behaviour in different
model environments (e.g. in models with product differentiation). General models of two-sided
and multi-sided markets dealing with price competition and pricing behaviour can be found in
Armstrong (2005) and in Rochet/Tirole (2005). Further (and sometimes more specific) models
can be found (for example) in Armstrong/Wright (2007), Caillaud/Jullien (2001),
Caillaud/Jullien (2003), Parker/Van Alstyne (2005), Rochet/Tirole (2002), Rochet/Tirole (2003)
and Yoo/Choudhary/Mukhopadhyay (2002). Some empirical results concerning pricing
behaviour (among other areas) in two-sided and multi-sided markets can be seen in Evans
(2003).

262

RESEARCH QUESTION

Although a lot of efforts have been made to understand the way how two-sided and
multi-sided markets work and although this research topic is being processed intensively at the
moment, there is still a lot to do in order to understand the dynamics of the involved network
effects. While analytical approaches in the field of two-sided and multi-sided markets very often
have to face the general problem of an exploding complexity of the models, an agent-based
approach seems to be an ideal method in this research area. It has to be mentioned that some
authors have already used the agent-based approach in the field of two-sided and multi-sided
markets, but with a different focus (e.g. Chen/Mäikö 2006 and Kabadjova/Tsang/Krause 2006).
However, it seems that the use of the agent-based method can make it especially possible to
understand this described key issue, namely the dynamics of the network effects, more
accurately and more generally.

To be more precise, the agent-based approach allows to answer the research question,
under which starting conditions (for example the number of individuals/agents at each platform
on each side, the size of the weighting-factors for the size of the same-side and cross-side-
effects, the dullness of the decisions etc.) two-sided and multi-sided markets tend (just because
of the dynamics of the network-effects) to a winner-takes-all-situation (where just one platform
survives) and under which starting conditions two or more platforms can survive within the
market. After simulating this model the results can probably be used to analyse real existing two-
sided (and multi-sided) markets.

To simplify things, only two-sided markets are considered in the model that is introduced
in this progress report. The more complex multi-sided markets are likely to be considered in
future research projects. However, the presented model can easily be expanded to incorporate
more than two market-sides and therefore to consider these multi-sided markets as well.

AGENT-BASED MODEL

In the following subsections a simple but general agent-based model of a two-sided
market is introduced, where all agents (respectively individuals) on each market side are
confronted with a duopoly (meaning two platforms). Though these agents cannot change their
market side (respectively their group), these agents have to decide in each period, which of the
two platforms they should choose on their market side (whereas just one platform can be chosen
at any time). In this model, the mentioned agents’ decisions are made according to the agents’
derived net-utility of each platform (a concept which is for example also used by Rochet/Tirole
(2005)) which depends on the demanded prices set by the platforms, on the path-depending size
of the number of other agents at the same market side (at a specific platform) and the number of
other agents at the other market side (also at that specific platform), each weighted with factors
that determine the size of the same-side and cross-side network effects.

Individuals, Groups and Platforms

Let’s assume there exists a two-sided market with two groups of individuals (two market
sides) denoted by Γ∈ML, (whereas ML ≠). The individuals Ll ∈ of any of these two groups

Γ∈L are interested in interacting with the individuals Mm∈ of the other group Γ∈M , ML ≠ .

263

Let’s assume further on that there exist two platforms Pji ∈, . Each platform can help to bring
together individuals of the two groups at certain points of time if individuals of both groups
decide to join this platform or remain at this platform at exactly those points of time.

It is assumed that an individual stays exactly at one of the two platforms at a certain point
of time, but that he or she is in general able to change the chosen platform at any of those points
of time without switching costs (Varian 2003). Therefore let i

t

i

t Ll ∈ denote an individual Ll ∈ ,
Γ∈L that stays at platform Pi ∈ at time Tt ∈ . Because each individual stays exactly at one of the

two platforms at any point of time Tt ∈ , because no individual is able to change his or her group
and because neither existing individuals can disappear nor new individuals can appear in the
model, it follows that (whereas Pji ∈, , ji ≠ , Γ∈L and Tt ∈):1

(1) LLLLL t

j

t

i

t ===+ 0 .

Let further denote)(i

tLN as the number of individuals of a group Γ∈L that stay at
platform i at time t , which means that)(i

tLN is defined as (whereas Pi ∈ , Γ∈L , Tt ∈):

 (2) i

t

i

t LLN =)(.

Net-utility functions

First of all it is necessary to mention that all individuals in the model have static
expectations, which means that they expect all observable variables at Tt ∈ to stay the same in
the next period Tt ∈+1 .

Let Ml ,
α denote a utility-weighting-factor for a certain individual Ll ∈ , Γ∈L that

determines how much utility a certain group of individuals Γ∈M creates for this individual l .
Let further Li

tp
, denote the price (set by platform Pi ∈) that individuals of the group Γ∈L have

to pay at time Tt ∈ if they want to join the platform Pi ∈ or remain at this platform at time Tt ∈ .

The net-utility of platform Pj ∈ for an individual Ll ∈ , Γ∈L that stays at platform Pi ∈
at time Tt ∈ is denoted by)(ju

i
tl and depends on the price set by the platform Pj ∈ that

individuals of the group Γ∈L have to pay at Tt ∈ . Further on, this net-utility depends on the
gross-utility that individuals of group Γ∈M (whereas ML ≠) generate for this individual at time

Tt ∈ (‘cross-side effect’) and the gross-utility that individuals of group Γ∈L generate for this
individual at time Tt ∈ (‘same-side effect’).

More specifically spoken, each individual Ll ∈ , Γ∈L that stays at platform Pi ∈ at time

Tt ∈ calculates two net-utilities: one for platform Pi ∈ (where the individual stays at time Tt ∈)
and one for the other platform Pj ∈ (whereas ji ≠). Concretely that means that for individual

Ll ∈ , Γ∈L that stays at platform Pi ∈ at time Tt ∈ the net-utility of this platform Pi ∈ is then
given by (whereas Γ∈ML, and ML ≠):

1 Mathematical remark: If A is a set, A denotes the number of elements that are contained in A .

264

(3)
�
price

Li

t

effectsidecross

Mgroupby

generatedutilitygross

i

t

Ml

effectsidesame

Lgroupby

generatedutilitygross

i

t

Ll
i
tl pMNLNiu

,

)(

,

)(

,)()1)(()(−+−=

−−

������� ��� ��
αα .

In a similar way for the same individual at time Tt ∈ the net-utility of the other platform

Pj ∈ is then given by (whereas ji ≠ , Γ∈ML, and ML ≠):

(4)
�
price

Lj

t

effectsidecross

Mgroupby

generatedutilitygross

j

t

Ml

effectsidesame

Lgroupby

generatedutilitygross

j

t

Ll
i
tl pMNLNju

,

)(

,

)(

,)()()(−+=

−−

������������
αα .

According to the static expectations of all individuals these two derived utilities are used

to determine the behaviour of the individuals at the beginning of the next period Tt ∈+1 . The
concrete behaviour of the individuals is explained in a later subsection.

Behaviour of the platforms

To simplify the model, it is assumed that both platforms Pji ∈, (whereas ji ≠) set
identical price structures over time. That means that at all periods of time Tt ∈ both platforms
charge the same price p on the same market side Γ∈L . Mathematically this means that

(5) Lj

t

Li

t ppTt
,,: ≡∈∀

or equivalently

(5a) 0: ,,
=−∈∀

Lj

t

Li

t ppTt .

Although this assumption can be identified as being drastic in some respects, there are at

least two reasons why this assumption makes sense in that model: Firstly, this assumption allows
to concentrate on the pure dynamic effects that are caused by the same-side and cross-side
effects (see next subsection) and secondly, in many two-sided markets price competition and
elastic prices don’t allow platforms to charge any price from the individuals – which means that
they have to finance their business by means of different ways (e.g. by advertising for other
companies).2 Mathematically this means that

(5b) 0: ,,
==∈∀

Lj

t

Li

t ppTt .

This is completely compatible to the assumption made in equation (5). Nevertheless it has

to be mentioned that this assumption is very radical, since there is no possibility for platforms to
act and react in the model. They are in some sense completely passive, which can be criticised as
being unrealistic. However in later research projects it is planned to weaken this assumption to
face these claims.

2 Of course, if a two-sided market finances this platform by means of advertising for other companies, this

platform can in fact also be seen as a three-sided (respectively multi-sided) market.

265

Behaviour of the individuals

Let’s assume)(yxh − to be a classical Heaviside step function (whereas x and y are real
numbers):

(6)
�
�
�

>−

≤−

=−

0)(1

0)(0
)(

yxif

yxif
yxh .

Let’s assume further that z is a monotonically increasing function whose image set is

assumed to be bounded such that 10 ≤≤ z . The probability that an individual Ll ∈ , Γ∈L (that
stays at platform Pi ∈ at time Tt ∈) changes to the other platform Pj ∈ (whereas ji ≠) at the
beginning of time Tt ∈+1 is then assumed to be

(7)))()(())()(())()((1111 ���������������������
differenceutility

i
tl

t

i
tl

t

i
tl

t

differenceutility

i
tl

t

i
tl

t

i
tl

t

differenceutility

i
tl

t

i
tl

t

i
tl

t

i
tl

t iujuziujuhiujuww −⋅−=−=
++++

.

In this equation the term)(1 differenceutilityh

i
tl

t +
 secures the rationality of the individuals

(‘rationality term’): If the utility difference3 is negative (which means that there is no incentive
for an individual to change the platform) this term)(1 differenceutilityh

i
tl

t +
 becomes 0 . As a result the

whole probability that an individual changes to the other platform)(1 differenceutilityw
i
tl

t +
 becomes

0 as well. If however the utility difference is positive (which means that there is an incentive for
an individual to change to the other platform) then the term)(1 differenceutilityh

i
tl

t +
 becomes 1 and

the probability that an individual changes to the other platform is just depending on the term
)(1 differenceutilityz

i
tl

t +
.)(1 differenceutilityz

i
tl

t +
 is kind of a ‘dullness term’ (respectively ‘dullness

function’) which ensures that if the utility difference is (although positive) only relatively small,
the probability that an individual switches to the other platform)(1 differenceutilityw

i
tl

t +
 is also

relatively small. If however the utility difference is relatively high, the term)(1 differenceutilityz
i
tl

t +

ensures that the probability that an individual changes to the other platform)(1 differenceutilityw
i
tl

t +
 is

relatively high as well.

In this general model z is not specified exactly. In concrete agent-based simulations
several specifications of the term (or function) z are possible, as long as z is monotonically
increasing and the image set of this term (or function) is bounded such that 10 ≤≤ z (as
mentioned earlier).

Let’s assume
i
tl

t 1+
Ψ to be a random number drawn from a continuous uniform distribution

out of the interval between 0 and 1 for individual Ll ∈ , Γ∈L (that is at platform Pi ∈ at time
Tt ∈) at time Tt ∈+1 . The switching function W for this individual is then defined as (whereas

h is again a classical Heaviside step function):

(8))(1111

i
tl

t

i
tl

t

i
tl

t

i
tl

t whW
++++

Ψ−= .

This switching function allows transferring the probability that an individual switches to

the other platform into a clear choice of switching: If
i
tl

t

i
tl

tw 11 ++
Ψ− is greater then 0 (which is more

3 Because of the assumption made in equation (3), the utility difference is independent of the prices set by the

firms in this model.

266

likely if
i
tl

tw 1+
 is relatively big) then

i
tl

tW 1+
 becomes 1, which means that the individual is switching

at the beginning of time Tt ∈+1 . If however
i
tl

t

i
tl

tw 11 ++
Ψ− is smaller then 0 (which is more likely if

i
tl

tw 1+
 is relatively small) then

i
tl

tW 1+
 becomes 0 , which means that the individual remains at his or

her platform at the beginning of time Tt ∈+1 .

Number of individuals

As defined in equation (2),
i
t

L
N 1+ denotes the number of individuals Ll ∈ of a group Γ∈L

that stay at platform Pi ∈ at time Tt ∈+1 . However, because of the introduction of the switching
function W ,

i
t

L
N 1+ can also be defined as a recursive function (whereas i

t

i

t Ll ∈ , j

t

j

t Ll ∈ , Γ∈L ,
Pji ∈, , ji ≠ , Ttt ∈+1,):

(9) �� ++++
−+==

i
tl

i
tl

t

j
tl

j
tl

t

i

t

i

t

i

t WWLNLLN 1111)()(.

With this equation the model is closed: Each individual Ll ∈ , Γ∈L that is at platform

Pi ∈ at time Tt ∈ calculates two net-utilities for the two platforms at time Tt ∈ according to
equations (3) and (4). Further on, at the beginning of time Tt ∈+1 each individual calculates a
probability of switching to the other platform according to equation (7). Equation (8) helps to
transfer this probability into a clear choice of switching. Finally equation (9) gives the new
values of

i
t

L
N 1+ at the beginning of time Tt ∈+1 (in a recursive way) so that individuals can

calculate their two net-utilities again at time Tt ∈+1 and so on. The platforms are passive in this
model according to equation (5).

PARAMETERS AND PLANNED SIMULATIONS

The general agent-based model presented above seems to be a promising model to
answer the question under which starting conditions two-sided markets tend to a winner-takes-
all-situation and under which starting conditions both platforms can stay within the market in the
long run. It is planned to transfer this general agent-based model into the NetLogo environment
(Wilensky 1999), where the outcomes of the model should be received through computerised
simulations, given different starting conditions (respectively parameters).

Starting conditions (or parameters) that have to be defined (and that can be varied) can be
divided into four groups: Firstly, the initial number of individuals on each side (L , M whereas

Γ∈ML, and ML ≠) have to be defined (and can be varied) as well as the absolute fractions of
individuals on both sides that stay at each of the two platforms initially (i

L0 , j
L0 , i

M 0 , j
M0

whereas LLL
ji

=+ 00 , MMM
ji

=+ 00 , Γ∈ML, , ML ≠ , Pji ∈, and ji ≠).

Secondly, the ‘dullness term’ (respectively the ‘dullness function’))(differenceutilityz has
to be defined. As mentioned earlier, a lot of curve progressions of that function are possible, as
long as)(differenceutilityz is defined as a monotonically increasing function with an image set that
is bounded such that 10 ≤≤ z . One meaningful possibility (among many others) would be
defining)()(uzdifferenceutilityz Δ= as a convex function capped by 1 (whereas e is Euler’s
number and y has to be defined reasonably):

267

(10)
�
�

�
�

�

≤Δ<

<Δ<

≤Δ

=Δ

−Δ

−Δ−Δ

)(

)()(

101

10

00

)(
yu

yuyu

eanduif

eanduife

uif

uz .

Thirdly, the utility-weighting-factors for all individuals Ml ,

α (whereas Ll ∈ , Γ∈ML,)
have to be defined and should be varied. The systematic variation of these utility-weighting-
factors for the individuals is the key to answer the research question, when – just because of the
dynamics of the network-effects – two-sided markets tend to a winner-takes-all-situation and
when both platforms can survive within the market. Basically, it seems reasonable (among other
possibilities) to assign real numbers out of the range between 1− and 1 to all same-side utility-
weighting-factors for all individuals Ll ,

α (whereas Ll ∈ , Γ∈L) and to assign real numbers out of
the range between 0 and 1 to all cross-side utility-weighting-factors for all individuals Ml ,

α
(whereas Ll ∈ , Γ∈ML, , ML ≠). The reason why only positive values are assigned to cross-side
utility-weighting-factors is that negative values would in some sense contradict the definition of
a two-sided (and multi-sided) market, which says that two-sided or multi-sided markets tie
together two or more distinct groups of users in a network, whereas the individuals of each group
are interested in interacting with the individuals of the other group.4 Therefore if negative
numbers were assigned to the cross-side utility-weighting-factors, the individuals of each group
wouldn’t be interested in interacting with the individuals of the other group.

To be more specific, it seems meaningful (among many other reasonable possibilities) to
draw the same-side utility-weighting-factors for all individuals Ll ,

α for a distinct group Γ∈L
(whereas Ll ∈) from a defined continuous uniform distribution out of several, for example out of
five defined sub-ranges (out of five possibilities), e.g. out of the ranges]6.0,0.1[−− ,]2.0,6.0[−− ,

]2.0,2.0[− ,]6.0,2.0[and]0.1,6.0[.

In the same way, it seems reasonable to draw the cross-side utility-weighting-factors for
all individuals Ml ,

α for a distinct group Γ∈L (whereas Ll ∈ , Γ∈ML, , ML ≠) from a defined
continuous uniform distribution out of several, for example out of two defined sub-ranges
(respectively possibilities), e.g. out of the ranges]6.0,2.0[and]0.1,6.0[.

Given the two groups (respectively market sides) Γ∈ML, (whereas ML ≠) and given
that the same-side and cross-side utility-weighting-factors are assigned to the individuals of each
group according to the defined possibilities above, to answer the described research question this
setting would yield 1005522 =××× possible utility-weighting-factors-combinations for each
combination of the other starting conditions (respectively parameters) that have to be varied in
the simulations.

Finally, the number of time periods T , the numerous simulations with the different
configurations of the parameters will run until they stop, has to be defined. Since the research
question refers to the outcomes of the model in the long run, it seems meaningful to define T
such that 1000≥T .

4 It has to be mentioned that this is not generally true for every two-sided or multi-sided market one could think of.

For example, imagine a media platform (e.g. a television program) where the platform brings together viewers
and advertisers. In such a case cross-side network effects and therefore cross-side utility-weighting factors may
be positive in just one direction and zero or negative in the other direction and yet it is a two-sided market
(Peitz/Valletti 2005; Reisinger 2004).

268

CONCLUSION AND OUTLOOK

Although no computerised simulations have been done so far in a simulation-
environment like NetLogo, the presented general formulation of an agent-based model of a two-
sided market seems very promising to study and analyze under which starting conditions (given a
duopoly) two-sided and multi-sided markets tend (just because of the dynamics of the network-
effects) to a winner-takes-all-situation and under which starting conditions both platforms can
survive within the market. The use of an agent-based approach seems to be an appropriate and
useful method in this field, since traditional approaches often have to face the problem of an
exploding complexity of the created models.

Nevertheless, the model presented in this paper is relatively simple: Firstly, only two-
sided markets are considered. Secondly, platforms have to be more or less passive in the model
and thirdly, just one platform can be chosen from each agent at any time – which means that
‘multi-homing’ is not possible. In future versions of the model it is planned to weaken these
limitations, especially the passivity of the platforms.

REFERENCES

Armstrong, M., 2005, “Competition in two-sided markets,” RAND Journal of Economics, Vol.

37, No. 3, pp. 668–691.

Armstrong, M., J. Wright, 2007, “Two-sided markets, competitive bottlenecks and exclusive

contracts,” Economic Theory, Vol. 32, No.2, pp. 353–380.

Caillaud, B., B. Jullien, 2001, “Competing Cybermediaries,” European Economic Review, Vol.

45, No. 4-6, pp. 797–808.

Caillaud, B., B. Jullien, 2003, “Chicken and Egg: competition among intermediation service

providers,” RAND Journal of Economics, Vol. 34, No. 2, pp. 309–328.

Chen, X., J. Mäkiö, 2006, “A Simulation Approach for Analyzing the Competition among e-

Auction Marketplaces,” Proceedings of IEEE International Conference on e-Business
Engineering, Shanghai, China, pp. 17-24.

Dietl, H., E. Frank, S. Royer, 2006, “Strategische Wettbewerbsvorteile und Wertschöpfung-

sorganisation – Konzeptionelle Überlegungen und Gestaltungsüberlegungen für zwei- und
mehrseitige Dienstleistungsmärkte,” Working Paper, Institute for Strategy and Business
Economics, University of Zurich; available at http://ideas.repec.org.

Eisenmann, T., G. Parker, M. W. Van Alstyne, 2006, “Strategies for Two-Sided-Markets,”

Harvard Business Review, October 2006.

Evans, D. S., 2003, “Some Empirical Aspects of Multi-sided Platform Industries,” Review of

Network Economics, Vol. 2, No. 3, pp. 191–209.

269

Kabadjova, B. A., E. Tsang, A. Krause, 2006, “Competition among Payment Cards: An Agent-
Based Approach,” Working Paper, Centre for Computational Finance and Economic
Agents, University of Essex.

Katz, M. L., C. Shapiro, 1985, “Network Externalities, Competition, and Compatibility,” The

American Economic Review, Vol. 75, No. 3, pp. 424–440.

Katz, M. L., C. Shapiro, 1986, “Technology Adoption in the Presence of Network Externalities,”

Journal of Political Economy, Vol. 94, No. 4, pp. 822–841.

Parker, G. G., M. W. Van Alstyne, 2005, “Two-sided Network Effects: A Theory of Information

Product Design,” Management Science, Vol. 51, No. 10, pp. 1494–1504.

Peitz, M., T. M. Valletti, 2005, “Content and advertising in the media: pay-tv versus free-to-air,”

CEPR Discussion Paper, No. 4771; available at http://ssrn.com/abstract=666825.

Reisinger, M., 2004, “Two-Sided Markets with Negative Externalities,” Discussion Paper,

University of Munich; available at http://epub.ub.uni-muenchen.de.

Rochet, J.-C., J. Tirole, 2002, “Cooperation among competitors: some economics of payment

cards associations,” RAND Journal of Economics, Vol. 33, No. 4, pp. 549–570.

Rochet, J.-C., J. Tirole, 2003, “Platform Competition in Two-Sided Markets,” Journal of

European Economic Association, Vol. 1, No. 4, pp. 990–1029.

Rochet, J.-C., J. Tirole, 2005, “Two-sided Markets. A Progress Report,” IDEI Working Paper;

available at http://idei.fr/doc/wp/2005/2sided_markets.pdf.

Tirole, J., 2002, “The Theory of Industrial Organization,” The MIT Press, 13th edition.

Varian, H. R., 2003, “Intermediate Microeconomics,” W. W. Norton & Company, 6th edition.

Wilensky, U., 1999, “NetLogo,” Center for Connected Learning and Computer-Based Modeling.

Northwestern University; available at http://ccl.northwestern.edu/netlogo.

Wright, J., 2004, “One-Sided Logic in Two-Sided Markets,” Review of Network Economics,

Vol. 3, No. 1, pp. 44–64.

Yoo, B., V. Choudhary, T. Mukhopadhyay, 2002, “Pricing Strategies of Electronic B2B

Marketplaces with Two-Sided Network Externalities,” Proceedings of the 35th Hawaii
International Conference on System Sciences, Vol. 7.

270

AXELROD’S METANORM GAMES ON COMPLEX NETWORKS

J. GALAN, University of Burgos
M. LATEK1, George Mason University

M. TSVETOVAT, George Mason University
S. RIZI, George Mason University

ABSTRACT

In this paper we adapt Axelrod’s metanorms model to run on arbitrary
interaction structures. We propose a hybrid analytical methodology combining
computer simulations with a novel mathematical approach that abstracts some
details of evolutionary dynamics while retaining explicit and exact
representation of underlying network topology. We construct simple network
statistics based on the clustering coefficient and first order degree distribution
of the interaction network as strong predictors of the emergence of cooperative
norms.

Keywords: Metanorms, evolutionary processes, multi-person games on networks,
agent-based social simulation

INTRODUCTION

Axelrod’s metanorms model, (Axelrod 1986), is an n-person game that captures
the essence of several social dilemmas, stemming from the fact that any one individual
is better off defecting irrespective of the other players’ decisions, but universal
cooperation is preferred to universal defection. Axelrod’s model illustrates mechanisms
that explain the emergence or collapse of cooperative social norms when punishing
norm deviants is costly. The model assumes that agents face potential punishment not
only when they deviate from the norm, but also when they fail to punish norm deviants.
A simple evolutionary principle drives the model: the more successful a strategy has
been so far, the more likely agents are to adopt it in the future. While it provides
insights into the process of emergence, the model adopts the generally false assumption
that each player interacts with all other players. This assumption leads to an extreme
payoff structure and an exponential growth in the number of interactions that quickly
exceed any reasonable cognitive constraints as number of players grows.

To highlight this weakness of Axelrod’s model, consider the following n-person
prisoner’s dilemma: imagine some students taking a test in a large lecture hall with a
proctor who fails to exercise strict vigilance. Each student has some incentive to cheat;
however, a student’s cheating imposes two costs on the rest of the students taking the

1 Corresponding author: Maciej M. Latek, Center for Social Complexity, Krasnow Institute for Advanced
Study, George Mason University, Fairfax, VA 22030; e-mail: mlatek@gmu.edu.

271

exam. First, given how much they have studied for the test, the rest of the students will
not obtain as good a grade as the cheater; second, if cheating diffuses among the
students in the class and possibly among various classes, the prestige of the institution
will fall; students will have paid for studies without much real value. Suppose a student
(S), who may or may not cheat himself, notices that another student (Cheater) is cheating. S
can punish Cheater by informing the proctor, but punishing Cheater is costly for S: usually
no one wants to be seen as a “snitch”. If S refuses to punish Cheater because of the
punishment cost involved, another student (S*) who has observed the situation between
Cheater and S can either punish Cheater by informing the proctor that he has cheated or
punish S by informing the proctor that S has refused to punish Cheater. Punishing S is also
costly for S*. When this simple example is played repeatedly, it captures the essence of
Axelrod’s metanorms game.

In some social contexts the idea of complete interaction among individuals on a
fully connected graph is realistic; in many other cases, it is not. For instance in the above
example of cheating during the test, the probabilities of detecting a cheater depend on the
size and topology of the lecture hall that can be reasonably approximated by a lattice-based
topology. In other social contexts a lattice model is not empirically relevant. Recent
work on social network analysis (Newman 2003) has shown that social interaction
structures may differ markedly from the stylized regular grids or fully connected graphs
used in the extant versions of Axelrod’s model. In this paper we extend the metanorms
model to arbitrary interaction topologies. By doing so we hope to contribute to a better
understanding of the metanorm mechanism as a norm inducer and further the literature
on evolutionary game theory and social dilemmas in networks (Santos et al.2006; Szabo
and Fath 2006).

The structure of the paper is as follows: in the next section we give some

background to Axelrod's metanorms model and describe how it is adapted to be played
in networks; we then proceed to the analytical abstraction used to understand the
dynamics of the metanorms model. Next, we provide simulation results and discuss
them. Finally, we present the conclusions.

METANORMS MODEL IN NETWORKS

Axelrod’s metanorms model in networks begins with a setup phase. Initially 50
agents are embedded in a network structure developed by a predetermined network
generation algorithm.2 We have analyzed the effect of two different algorithms: the
Barabasi-Albert algorithm that generates networks with power law degree distributions
(Barabasi and Albert 1999) and the Watts algorithm (Watts 1999) with different values
of rewiring probability (β) that smoothly interpolates between two extreme cases of a
regular lattice and a random network, traversing the small world networks category
(Watts and Strogatz 1998). A link between two agents represents an opportunity for
direct interaction between them. A set of all links for an agent is called neighborhood of
the agent.

Once agents and the underlying network structures are created, agents play a
repeated game that consists of three decisions or stages:

2 We used 50 instead of 20 agents used in Axelrod’s default setting to make high-order statistics more

interpretable.

272

1. Agents decide whether to cooperate or defect. A defecting agent obtains
Temptation payoff (T = 3) and inflicts on each of the remaining agents in the
population Hurt payoff (H = -1). If agents cooperate, no one's payoff is altered.
Here we assume that the spillover cost of defection is global.

2. Agents observe other agents in their neighborhood who defected in stage 1
with a certain probability. For each observed defection, agents decide whether
to punish the defector or not. Punishment is costly: one must pay Enforcement
cost (E = -2) to impose Punishment cost (P = -9) on the defector. Notice that
the opportunity to observe defection; hence the possibility to punish it, is
conditional on the existence of a link connecting both agents.

3. The third step includes the concept of metanorm. The metanorm here is that
agents who fail to punish observed defection should be punished. Similar to
the previous step, an agent who fails to punish an observed defection may not
be caught. The probability of being seen not punishing a defection given that
the defection has been seen is the same as the probability of observing such
defection. Network topology plays a critical role in this step: it determines
who can see unpunished defection (See Figure 1). Observing a defection
requires links among the defector, un-punishing agent and metapunisher. As
for payoffs, a metapunisher pays Meta-enforcement cost (ME = -2) every time
it Meta-punishes (MP = -9).

Defector
Not Punisher. She observes
the defection but does not

punish it

Metapunisher. He has to be
linked to both to metapunish

the not punisher

FIGURE 1 Links needed in the network to have a chance of meta-punishment. Links
are undirected; the arrows simply clarify the logic of the dynamic.

The strategy of an agent depends on two of its characteristics: boldness and
vengefulness. Boldness is the probability that an agent defects in the first stage;
vengefulness is its propensity to punish agents that have been observed defecting in the
second and third stages. Following Axelrod’s implementation, we implement each of
these probabilities as a 3-bit string denoting eight evenly-distributed values from 0 to 1
(0/7, 1/7, ..., 7/7). Initial values for each agent's strategy are determined randomly at the
beginning of each simulation run and updated through an evolutionary mechanism.

Once agent payoffs are determined at the end of a generation, agents can change
their strategies according to two evolutionary forces of selection and mutation. We have
implemented four selection mechanisms where the most successful agents at a particular

273

time have the highest probability of having their strategy copied, but with different
variance (De Jong 2006), adapting them for local use within a network structure:

1. Best neighbor. Select the strategy used by the most successful agent in the
neighborhood. Break ties randomly.

2. Average selection. Select agents in the neighborhood whose payoff are higher
than the average plus a standard deviation of neighborhood payoffs. Select one
strategy in this set randomly as new strategy. If the set is empty, continue with
current strategy.

3. Random tournament. Compare a randomly selected strategy from the
neighborhood with the current strategy. Select the strategy with higher payoff.

4. Roulette wheel. Assign an adoption probability to each neighborhood strategy
proportional to the payoff other agent obtained using it minus the minimum
payoff obtained in the neighborhood.

Whenever a bitstring-coded strategy is replicated, that is, when agents invoke a
selection mechanism, every bit has a certain probability of being flipped called mutation
rate. We have studied the effect of different selection mechanisms as well as different
mutation rates.

RESULTS

We combined mathematical modeling and agent-based simulation to analyze the
model. These two approaches have been shown to complement one another in obtaining
a better understanding of complex systems (Galan and Izquierdo 2005; Izquierdo and
Izquierdo 2006; Izquierdo et al. 2007).

Mathematical modeling results

Mathematical analysis of the original metanorms game is a challenging task;
including realistic interaction structures makes it even more cumbersome. Therefore, we
use simplifying strategies to arrive at closed form solutions amenable to mathematical
analysis and graphical representation. We present a summary of the abstraction process
of the model following the logic presented in Galan and Izquierdo (2005), with a number
of substantial changes introduced. Given an undirected network Г = (N, L) defined by a
set of agents N and set of links, the payoff of an agent i playing the metanorms game is
defined by:

274

(1)

(1)

i

i i i j

i i j

i i j ij
j j
j i

ji k jk ij
j j k k

k ik ji
j k k

Payoff Def T Def H Pun E

Pun P ME Def Pun Pun

MP Def Pun Pun

∈Ν ∈Ν
≠

∈Ν ∈Ν ∈Ν ∈Ν

∈Ν ∈Ν ∈Ν

= ⋅ + ⋅ + ⋅ +

⋅ + ⋅ ⋅ − ⋅ +

⋅ ⋅ − ⋅

∑ ∑

∑ ∑ ∑

∑ ∑

I

I

Where following notation is used:

1. T, H, E, P, ME, MP are the payoffs of the metanorms game and are set
exogenously;

2. n is the number of agents;
3. { }:iN j N ij L≡ ∈ ∈ is the set of nodes connected to any given i N∈ . This

set defines the neighborhood of agent i. i iz N≡ denotes the degree of the
agent i.

In addition, indicator functions Def and Pun have been defined as follows:

⎩
⎨
⎧

=
cooperates agent If0
defects agent If1

i
i

Defi

 ii

ii

bDef
bDef
−=≡

=≡
1)0(Prob

)1(Prob

⎩
⎨
⎧

=
ji

ji
Punij agent punish not does agent If0

agent punishes agent If1

()
() ijjij

ijjij

vbbPun
vbbPun
⋅⋅−=≡

⋅⋅=≡
21)0(Prob

2)1(Prob

We define the clustering coefficient of agent i with at least two neighbors as:

{ }:
(1)

2

i
i i

jk L ij L ik L
C

z z
∈ ∈ ∧ ∈

≡
−

Lastly, we define clustering coefficient for a degree in a given network as

{ }
1

()
:

i

n
i

i
z k

i

C

C k
i N z k

=
==

∈ =

∑

Assuming continuity and homogeneity of population and abstracting the details
of the network by selected network statistics, the expected payoff of an agent i in one
round can be calculated as:

275

2

2 1
3

1

1
3

1

() (1)
2

(1) () () (1)
2 4

1 () () (1)
4

i
i i

n
i i

i
d

n
i

i
d

vExp Payoff b T H n B E B k

b vP V k ME B V p k d C d d d

vMP B V p k d C d d d

−

=

−

=

= ⋅ + − + ⋅ +

⋅ + − = ⋅ ⋅ ⋅ − +

−
= ⋅ ⋅ ⋅ −

∑

∑

In order to evaluate the dynamics and discover the evolutionary stable states of
the system (Galan and Izquierdo 2005), we compute the differences between the payoff
obtained by a mutant m and the payoffs obtained by a representative agent i of the
incumbent population when the mutant changes its strategy. This difference may
contribute to shifting the system by means of selection pressure. The results depend on
the topological properties of the network, in particular on the clustering coefficient and
first order degree distribution of the network. For random networks where the degree
distribution can be modeled by a Poisson distribution, it is easy to prove that the
clustering coefficient is independent of the node degree. So we can study the system
mathematically in a clean and stylized fashion. In more complex networks we estimate
the required statistics of the network (degree, degree-clustering) numerically so they can
be plugged back into equations. Lastly, we will define Interconnectivity factor as
follows:

p 1

Specifically if we examine the last equation, we observe that from a network
point of view the different addends only depend on the number of agents, the average
degree and interconnectivity factor influenced by the clustering degree distribution. The
resulting gradient vector field of the system under different parameters topologies of
networks consisting of 50 agents is presented in Figure 2. Arrows represent the
expected movement of the system (tangent to the trajectories) and colors correspond to
the module of the gradient (the speed of the trajectories), the more red the faster. The x-
axis represents average boldness of population, y-axis average vengefulness.

In the first row we fix the average degree of the network to 4. Columns

correspond to values of 2, 10 and 20 of the interconnectivity factor. The red dashed line
is the boundary that separates the region of left-pointing arrows and the region of right-
pointing arrows. The white line separates the area of top-pointing arrow and down-
pointing arrows. In the first figure we observe a single evolutionary stable state, marked
with a red dot, in the zone of norm collapse at the bottom-right area corresponding to
high average boldness and low average vengefulness. Increasing the interconnectivity
factor, that is, increasing clustering coefficient for a constant average degree shifts the
white dashed line toward the left in the second and third figures. When the
interconnectivity factor is large enough, dashed lines cross: a second evolutionary stable
state emerges, this time in the zone of norm establishment at the top-left area
corresponding to high average vengefulness and low average boldness. The purple line
separates basins of attraction for both states.

276

In the second row we fix the interconnectivity factor while increasing the
average degree of the network from 4 to 8 and 16. We observe that the second
evolutionary stable state disappears. This result is mainly due to the fact that for fixed
population sizes, average degree and the interconnectivity factors are not independent
values. Regardless of that, as both lines were pushed to the right, the escape corridor
from the zone of norm establishment toward the evolutionary stable state in the zone of
norm collapse is very narrow indicating that with a high level of noise the system may
spend a lot of time in the zone of norm establishment.

AvDegree=4.0

IntFact=2

AvDegree=4.0

IntFact=10

AvDegree=4.0

IntFact=20

AvDegree=4.0

IntFact=20

AvDegree=8.0

IntFact=20

AvDegree=16.0

IntFact=20

FIGURE 2. Expected dynamics of the metanorms model on networks. We use
Axelrod's original parameter values and assume continuity of boldness and
vengefulness. We also assume relative homogeneity of agents' strategies. The x-axis
represents average boldness; y-axis represents average vengefulness. The meaning of
the colors and lines are explained in the text.

Simulation results

We implemented the model in Java 2 using RePast 3 (North et al. 2006) and
JUNG libraries3. We conducted several experiments, focusing on the role of the
interconnectivity factor in the dynamics of the metanorms model. Bear in mind that the
results presented in the previous section about the influence of the interconnectivity
factor on the game and indirectly on the influence of the clustering coefficient and
average degree of the network were derived from an abstraction of the game. To
confirm these analytical results, we simulated the game for 10000 runs. Each run was
initialized with different interaction topologies and produced time series of the

3 http://jung.sourceforge.net/

277

proportion of time that the system, in the long run, is in the zones of norm collapse and
norm establishment. We used networks generated by the Barabasi-Albert and Watts
algorithms, randomizing the parameters of network generation and varying evolutionary
details of the network. Figure 3 shows the percentage of time the system spends in the
zone of norm establishment as a function of the interconnectivity factor and clustering
coefficient of the network for networks with average degrees between 4 and 7.

FIGURE 3. Percentage of time the system spends in the zone of norm establishment
(EMRG) depending on the interconnectivity factor (INTERCONN), on the left panel,
and clustering coefficient (CCB), the right panel, of the network.

In the left diagram of Figure 3 we observe that the average amount of time spent
in the zone of norm establishment increases monotonically with the interconnectivity
factor. It also illustrates that there is an important variance and some outliers in the
graph. This may be due to the influence of the evolutionary details of the game for each
specific simulation, but more work is needed to confirm this hypothesis. The right
diagram represents the same percentage of time but as a function of the clustering
coefficient of the network: the higher the clustering coefficient of the network the more
time spent in the zone of norm establishment. Also note that the variance of the average
time for norm establishment clearly increases with its size. However, as the
mathematical model suggests, the interconnectivity factor seems a better predictor.

CONCLUSIONS

We combined mathematical simulation approaches to analyze evolutionary
games played on networks. We investigated the influence of the average degree and the
interconnectivity factor of an interaction network on the process of norms emergence in
the metanorms model by analytical and simulation techniques. Simulation results
obtained confirmed the positive influence of interconnectivity factor on reinforcing the
meta-punishment mechanisms.

278

ACKNOWLEDGEMENTS

This work was supported in part by the NSF Human and Social Dynamics
Program, grant no. 0527471. and by the Spanish Ministry of Education and Science
through Projects DPI2004-06590 and DPI2005-05676.

REFERENCES

Axelrod, R.M. (1986) An Evolutionary Approach to Norms. American Political Science
Review, 80, 1095-1111.

Barabasi, A.L. and Albert, R. (1999) Emergence of scaling in random networks. Science, 286,
509-512.

De Jong, K.A. (2006) Evolutionary computation. A unified approach. MIT Press, Cambridge,
Mass.

Galan, J.M. and Izquierdo, L.R. (2005) Appearances Can Be Deceiving: Lessons Learned Re-
Implementing Axelrod's 'Evolutionary Approach to Norms'. Journal of Artificial
Societies and Social Simulation, 8, 2.

Izquierdo, L.R., Izquierdo, S.S., Gotts, N.M., and Polhill, J.G. (2007) Transient and Asymptotic
Dynamics of Reinforcement Learning in Games. Games and Economic Behavior,
In press.

Izquierdo, S.S. and Izquierdo, L.R. (2006) On the Structural Robustness of Evolutionary
Models of Cooperation. In: Intelligent Data Engineering and Automated
Learning - IDEAL 2006. Lecture Notes in Computer Science 4224 (Eds. E.
Corchado, H. Yin, V.J. Botti, and C. Fyfe), pp. 172-182. Springer, Berlin
Heidelberg.

Newman, M.E.J. (2003) The structure and function of complex networks. SIAM Review, 45,
167-256.

North, M.J., Collier, N.T., and Vos, J.R. (2006) Experiences Creating Three Implementations of
the Repast Agent Modeling Toolkit. ACM Transactions on Modeling and
Computer Simulation, 16, 1-25.

Santos, F.C., Pacheco, J.M., and Lenaerts, T. (2006) Evolutionary dynamics of social dilemmas
in structured heterogeneous populations. Proceedings of the National Academy of
Sciences of the United States of America, 103, 3490-3494.

Szabo, G. and Fath, G. Evolutionary games on graphs.
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0607344 . 2006.
Ref Type: Electronic Citation

Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. Nature,
393, 440-442.

Watts, D.J. (1999) Small worlds: the dynamics of networks between order and randomness.
Princeton University Press, Princeton, N.J.

279

280

NETWORK FRACTURE:
HOW CONFLICT CASCADES REGULATE

NETWORK DENSITY

E. M. O’GRADY, George Mason University, Fairfax, VA
M. ROULEAU, George Mason University, Fairfax, VA

M. TSVETOVAT, George Mason University, Fairfax, VA ∗†

October 1, 2007

Abstract

The complexity of human social structures often masks the simplicity involved in
their development. Social networks are a product of dynamic processes and feedback.
In other words, the ties that people make affect the topology of a network and the form
of a network affects the ties that people make. Therefore, social network structure
evolves in a path-dependent manner. In this paper, we begin to sift through the
complexity of social network ties in an effort to unearth the fundamental rules of social
interaction and their impact on network formation and evolution.

Keywords: social networks, evolution, conflict propagation, avalanche, power law

1 Introduction

The complexity of human social structures often masks the simplicity involved in their devel-
opment. Social networks are a product of dynamic processes and feedback. In other words,
the ties that people make affect the topology of a network and the form of a network affects
the ties that people make. Therefore, social network structure evolves in a path-dependent
manner. In this paper, we begin to sift through the complexity of social network ties in an
effort to unearth the fundamental rules of social interaction and their impact on network
formation and evolution.

We have all witnessed social turmoil in our midst – or even have been involved in its
very middle. A long-married couple decides on a divorce – and suddenly their friends are
faced with difficult decisions. They may feel pressured to side with one partner or the other,

∗Corresponding author: M. Tsvetovat mtsvetov@gmu.edu
†Authors appear in alphabetical order

1

281

potentially splitting long-standing friendships and dividing a formerly cohesive network into
”his side” and ”her side”. As the wounds of the split-up heal, the space is opened up for
creation of new friendships and romantic relationships, and the cycle starts again.

The example above illustrates several concepts. The first is the ability of change in
network structure – particularly change of a destructive nature –

to propagate through a network, potentially affecting a large number of people. Second,
the network reacts to addition and deletion of edges in qualitatively different fashions, de-
pending on its density, undergoing a phase transition [8]. Finally, it has been observed [6]
that networks in the real world settle to a certain density, suggesting the presence of a dy-
namic equilibrium [7]. We hypothesize that conflicts play a regulatory role in social networks
and help establish and maintain this dynamic equilibrium.

Considerable research [10, 4, 9] has centered on the generative processes of network
creation. Such processes range from purely random models [3] to generation of small-world
networks [11]and scale-free networks [1]. While methods of network generation and results
vary widely, these methods have one common property: they consider only processes that
add or change edges of the network. Although the generative processes that create giant
component networks are theoretically valid, in real-world networks the forces responsible for
this formation are mitigated by an unknown resistance. As the generative and resistance
forces attempt to balance, the system enters and oscillates around a dynamic equilibrium.
We consider this counter-force to be node or edge deletion, which we describe as conflict. In
this paper, we would like to consider the role of destructive processes, such as tie extinction
and outright conflict, as an equally important influence upon network topology.

We implement a simple agent-based model to explore the complexities of network struc-
tures and the consequences of conflict upon these structures. We are interested in the
micro-level mechanisms that produce the macro-level patterns observed in real-world net-
works. To achieve this, we employ a simple set of agent rules. These rules were selected
for two reasons: 1) they address the micro-level or social aspect of network formation using
structural balance theory; 2) they produce the macro patterns that are commonly observed
in social networks. To show how these two simple rules function dynamically, the rest of the
paper will develop these ideas in three stages. First, we describe the qualitative logic behind
network formation. We then attempt to support these qualitative claims through a process of
agent-based experimentation. Finally, we conclude with a synthesis of the above-mentioned
qualitative and experimental undertakings.

We use structural balance theory [2], derived from Heider’s balance theory [CITE], to
model agent behavior. This notion is represented as a triadic structure where the triad repre-
sents an individual’s attitude toward both physical and social objects. The links between the
objects represents the affect the primary object has towards the other two. Balance theory
suggests that people, from the perspective of the individual, have a preference for balance.
Unbalanced structures occur when the primary individual perceives a difference between
their affect and that of other objects. This difference results in a sense of discomfort for
the primary individual, which they may address through a change in affect, thus, changing
the structure. We use structural balance theory to examine social structure and measure

2

282

the level of ”discomfort” present in a network. In our model, ”discomfort” is represented as
conflict (or an enemy link) and is caused by opposing relationships among agents.

A simple triadic rule set can form the basis of a complex social network whose structure
is dependent on the stability of the linkages: newly added actors or linkages act as generative
processes (i.e. a couple’s friends becoming friends) that percolate throughout the network.
Similarly, conflict, which acts as a resistance process, may cause a relationship to reverse
and can trigger a chain reaction, restructuring a network. The complexity of the network
structure plays a considerable role in the consequences of these changes. The rate that
change percolates throughout a social network is highly dependent upon the density of the
network. Returning to the example of our couple, the number of peripheral actors drawn
into a given linkage change is dependent upon how well the remaining actors are connected
throughout the system. Thus, as the generative and resistance forces attempt to balance,
the system enters and oscillates around a dynamic equilibrium.

2 Simulation Model

To study the effect of conflict on the topology and density of networks, we propose a simple
computational model: an agent-based version of a highly simplified social network. The
model serves as an experimental environment using four ’social rules’ previously described.
In its initial state, no social connections exist amongst agents. Subsequent stochastic agent
interaction evolves the social network and serves as a starting point to examine network
conflict. As conflict is introduced into the network, agents utilize the social rules to achieve
or maintain balanced relationships.

The Poisson scheduler is responsible for agent activation. It ensures that, throughout
the simulation, all agents are active on average but not necessarily active the same num-
ber of times in each round. This enabled the model to replicate the heterogeneous social
environment faced by social agents within the real world.

The base model consists of a static set of 100 agents. The social environment changes
for later simulations which adds new agents to the system at a fixed rate per round. When
activated, an agent randomly chooses from the remaining strangers in the simulation and
attempts to establish a new friend connection. If the active agent already possesses ties from a
previous round, this agent will attempt to meet the friends of its current friends. Probabilities
of making new friends among strangers or friends-of-friends have been parameterized for
further study.

Agents react to changes to their friendships and conflicts with a set of simple rules of
triadic interaction:

Rule 1 A friend of my friend is my friend (Simmelian tie[5])

Rule 2A An enemy of my friend is my enemy (social balance[2])

Rule 2B A friend of my enemy is my enemy

3

283

A

E

B D

C

A

E

B D

C

Conflict

Unbalanced Triad

A

E

B D

C

Conflict

Disbalance resolved
by choosing
sides in conflict

Unbalanced Triad

A

E

B D

C

Conflict

Conflict propagation
stopped by isolating the "troublemaker" node

Figure 1: Propagation of Conflicts in a Dense Network

Rule 2C A enemy of my enemy is my friend1

Rules 2A, 2B, and 2C represent the same balanced triad containing two conflict links
and one friendship link the only difference is the viewpoint taken by each rule. To maintain
simplicity, Rules 2A, 2B, and 2C, referred to as Rule 2, is stated as follows:

Each node shall seek to be embedded in balanced triads that are either fully
connected Symmelian triads or conflict-balanced triads.

Conflict is introduced in the network at a constant probability, by changing a single
friendship tie into an enemy tie. What happens then is illustrated on figure 1. In this simple
example, a network consisting of 4 closed triads is struck by a conflict on a single edge. Triad
A−B−C becomes unbalanced due to a conflict between B and C; thus A is forced to take
sides in the conflict by choosing to remain friends with either B or C, at random. Adding
conflict to the A − C edge forces another triad, A − C − D to become unbalanced, thus
drawing agent D into the conflict. If agent D then chooses to isolate C from the rest of the
network, the propagation of the conflict can be stopped. However, if instead it separates
from A, this will cause the conflict to propagate further and destroy more links.

Despite the simplicity of the micro-processes involved in our simulation, our agent-based
model is able to replicate well-known macro patterns. This is largely due to the heterogeneity
of social tie interpretation involved in the model. In other words, due to the stochastic nature
of agent interaction, no two agents possess the same picture of the developing social network.
Not all agents share a tie with all other agents in the network and this inequality in social
ties provides the necessary condition for percolation.

Having more ties increases an agents probability of forming even more ties, but also
increases the probability that a conflict between two agents spread throughout the network.
Thus, percolation of both friendship and conflict is dependent upon the density and timing
of agent connections.

1Attributed to: the Bible (Exodus 23:22 and Matthew 22), ancient Chinese and Arab proverbs. Most
likely, as old as the world.

4

284

3 Simulation Experiments

The four simple agent decision-making rules of our model are able to mimic common char-
acteristics of structural network growth and evolution. We first illustrate phase transition,
specifically focusing on the growth of network friendship ties. Next we introduce conflict,
highlighting the importance of conflict percolation and the inherent self-sustainability of the
network. Finally, we end with a discussion of the sensitivity of the models parameters in
relation to the realism of the models results.

3.1 Phase transition from linear to exponential growth

The model was run without conflict to assess its ability to create friendship ties. Initially,
the network grows linearly with addition of ties. After a given threshold is passed, friend-
of-friend triads begin to connect into balanced triads and the growth of network density
accelerates dramatically. In absence of conflict, our model produces a sigmoid curve of
network density growth (see Figure 1). This result is largely dependent upon the probability
of an agent making friends with its friends friends. The more connections made in prior
rounds increase the chances of producing exponentially more friendship ties in future rounds
until most potential friendship ties have been exhausted. Beyond this exhaustion point, a
decreasing probability of making new ties will then occur.

Although feedback is present in the first simulation result in terms of timing and friend-
ship connections, we do understand that a network consisting of only growth produces results
that are neither very realistic nor interesting in terms of network evolution, namely fully con-
nected graphs. Nevertheless, ensuring that network growth occurs realistically within our
simulation, we are then able to take the next step and begin to introduce conflict into our
growing network.

Our model allows us to experiment with a number of conflict- and friendship-based prob-
ability parameters: 1) the probability of making a new friend, 2) the probability of meeting
your friends friends, 3) the probability of conflict occurring between yourself and one of
your friends, and 4) the probability of assessing your current friendships to check for conflict
amongst your friends.

However, as one may assume, we find through our experimentation with these probabil-
ities that not all of the possible values for each of the parameters produce realistic network
structures this is something we highlight in more detail in the final subsection of this section.
Therefore, in an effort to focus our attention upon the critical parameter values, our goal
was to investigate which parameter settings produce realistic network structures and then
determine the degree of sensitivity these parameters have in terms of their range and ability
to maintain structural realism. The first step in this process was to search for fundamental
characteristics of network structure, such as the Power Law distribution of network ties,
which are often found within empirically observed networks. We use this characteristic node
degree distribution as a guiding point for our attention and then looked to see if something in
particular about this structural form helped to produce realistic network structures through
the rules provided to our agents.

5

285

Experiment
Parameter A B C
Probability of making new friends 0.90 0.33 0.50
Probability of meeting friends friends 0.90 0.33 0.50
Probability of assessing a friendship 0.90 0.10 0.10
Probability of conflict 0.01 0.01 0.01
Probability of conflict decay 1.00 0.75 0.50
Probability of friendship decay 0.00 0.75 0.50

Table 1: Network Density Parameter Settings

The Power Law distribution of degrees marks a phase transition process within social
networks because, with this critical characteristic intact, we are able to observe key percola-
tion consequences in terms of structural realism. We find that a transition from a Power Law
node degree distribution to a Normal or even a Log Normal distribution of friendship ties
alters the percolation consequences of conflict within a network that also serve as realistic
network evolution features.

The above result is found by observing the node degree distribution at the point just
before the onset of conflict. We see in figure 2 that, with conflict probability set quite low to
allow the network to develop ties before conflict onset, a Normal or Log Normal node degree
distribution before the onset of conflict results in a much greater drop in friendship ties and
thus a larger percolation of conflict amongst the network. However, with the network in
a Power Law distribution of network ties, the conflict is able to diffuse in most cases with
infrequent but very large crashes occurring. Furthermore, if a network begins to develop
friendship ties in a Power Law fashion, we also see that, through the help of minor conflicts,
a network is able to develop a Normal or Log Normal distribution of friends, which is then
followed by a crash and a return to a Power Law distribution of friendship ties. In other
words, we begin to see a form of network self-sustainability in terms of node degree distribu-
tion and a fluctuation of network density around a critical point that is highlighted by the
structural phase transitions.

3.2 Conflict Propagation

Now that idea of conflict percolation and phase transition has been introduced, we can now
turn to experimenting with the conditions needed to produce realistic conflict percolation
and realistic network structures as a result of this conflict percolation. In the results from
figures 2 and 3 above, we see two important and realistic features of network evolution
present within this run. Network First, we see the appropriate node degree distribution of
friendship links, this being a Power Law distribution, on average throughout the simulation
except for periods just before the spread of larger-scale conflicts. Second, we see a prominent
critical density point. Upon reaching this point, the network settles in a dynamic equilibrium
balancing introduction of new friendships and ongoing conflicts.

6

286

(a) Node degree distribution before minor
conflict percolation

(b) Node degree distribution before medium
to high conflict percolation

(c) Resulting network density. The largest
friendship peaks represent point at which
node distribution is either Log Normal or
Normal

(d) Node degree distribution following large
percolation of conflict

Figure 2: Propagation of Conflict in Networks - Effect on density and distribution of degrees

However, although our simulation value results, from figure 2 above, with a critical point
hovering around a network density of roughly 0.10 is quite realistic, it is important to note
here that these results come from a model with a very extreme and possibly somewhat
unrealistic, in terms of most social networks, parameter probabilities (see Table 1, A).

It may not be so interesting that we were able to find realistic conflict percolation given
a highly idealized friendship network. However, further runs of the model show us that
this result is maintained under certain model conditions; some of which could arguably be
considered empirically relevant. In figure 3.2a, we see that a critical point around 0.10 can be
observed given quite different parameter settings (see Table 1, B). Figure 3.2b shows a similar
result with even more moderate friendship fluctuation and higher friendship probabilities and
lower decay probabilities (see Table 1, C). Therefore, these two results show that realistic
conflict percolation can certainly develop within our model under conditions that would also
be empirically plausible. However, through our experimentation we were able to find that
not all parameter settings produce results that are quite as reasonable.

7

287

Figure 3: Typical Network Shape in low-conflict phase

3.3 Parameter Sweep

The models parameter sweep gives us a good understanding of the conditions needed to
produce realistic network evolution behaviors and characteristics. For the most part, we
found that a large number of network settings tended to produce network densities which
either crashed all together or hovered around a critical point ≈ 0.02. The network crashes
were typically found when either conflict probability was too high, conflict decay was too
low, friendship decay was too high, or nodes were added to the system at a rate that was
too frequent. A typical result of network crash is displayed in figure 5a. On the other hand,
we found the network to survive crashes but to remain self-sustainable only at relatively low
levels of network density. This result typically occurred when friendship creation probabilities
were too low or when friendship assessment occurred too frequently. An example of low
network criticality is displayed in figure 5b below.

In conclusion, we found that the key to producing realistic network evolution behaviours
was not so much the value of the parameters themselves but the appropriate mixture of
parameter value proportions in a given simulation. That is, realism could be found with
either high conflict decay coupled with low conflict onset or with high tie decay in general
along with low friendship assessment. Subsequently, we also found that conflict onset typi-
cally could not rise above 0.10 without disrupting the realism of the results. Furthermore,
as described in the first subsection of this section, we found that the probability of making
new friends from ones friends friends largely affected the overall volatility of the network
density. Finally, for the range of successful or realistic simulation runs, realism was typically
produced within a window of about only 10% change (5% above and below the values given
above) in the aforementioned successful probability parameters.

8

288

(a) (b)

Figure 4: Sustainable network density at realistic parameter levels

4 Conclusion

In this paper, we demonstrate a simple agent-based simulation methodology that integrates
destructive processes – conflicts – into the fabric of network evolution.

We also demonstrate two phase transitions in development of networks. The first phase
transition occurs as network moves from linear growth and normally distributed degree (a-la
Erdos) to exponential growth and power-law distributed degree of scale-free networks. This
phase transition is percipitated by a single rule, and occurs at a critical density indepenent
of network size or rate at which nodes are added.

At the same time as nodes are added, a conflict may strike a random pair of nodes with
a constant probability. These conflicts propage through the network by agents seeking to be
embedded in balanced triads. Thus in dense network structures a single conflict can possibly
produce a large-scale avalanche of propagating conflict ties. Alternate periods of rapid growth
and destruction signal a new phase transition - from a growing network to one that oscillates
around a dynamic equilibrium while maintaining a relatively stable density. The densities
achieved through our simulation strongly mimic these found in empirical networks.

We demonstrate that the resulting network has strong core-periphery features and a
power-law distribution of degrees, yet is derived from a socially justifiable process. We also
demonstrate that conflict is strongly localized and the scope of its propagation is Power Law
distributed.

References

[1] Reka Albert and Albert-László Barabási. Statistical mechanics of complex networks.
Review of Modern Physics, 74(1):47–97, 2002.

9

289

(a) Network crash - network cannot be sustained (b) Network sustained at high levels of conflict and
very low density

Figure 5: Extreme conflicts in networks - is this the World at War that Hobbes predicted?

[2] P. Doreian, R. Kapuscinski, D. Krackhardt, and J. Szczypula. A brief history of balance
through time. Journal of Mathematical Sociology, 21(1-2):113–131, 1996.

[3] Erdös and Rényi. On the evolution of random graphs. Publication of Mathematics
Institute of Hungian Academy of Sciences, 5:1761, 1960.

[4] Terrill Frantz and Kathleen M. Carley. A formal characterization of cellular networks.
Technical Report CMU-ISRI-05-109, Carnegie Mellon University School of Computer
Science Institute for Software Research International, 2005.

[5] David Krackhardt. The ties that torture: Simmelian tie analysis in organizations.
Research in the Sociology of Organizations, 16:183–210, 1999.

[6] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online
social networks. In Proceedings of KDD-2006, 2006.

[7] J. Leskovec and J. K. C. Faloutsos. Graphs over time: Densification laws, shrinking
diameters, and possible explanations. In 11th KDD, pages 177–187, 2005.

[8] Mark Newman, Albert-László Barabási, and Duncan J. Watts. The Structure and
Dynamics of Networks. Princeton University Press., Princeton, NJ, 2006.

[9] Camille Roth. Generalized preferential attachment: Towards realistic socio-semantic
network models. In ISWC 4th Intl Semantic Web Conference, Workshop on Semantic
Network Analysis, volume 171 of CEUR-WS Series (ISSN 1613-0073), pages 29–42,
Galway, Ireland, November 2005.

[10] M. Tsvetovat and K.M. Carley. Generation of realistic social network datasets for testing
of analysis and simulation tools. Technical Report Technical Report CMU-ISRI-05-130,

10

290

Carnegie Mellon University, School of Computer Science, Institute for Software Research
International, 2005.

[11] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
(393):440–442, 1998.

11

291

292

Organizational Theory
and Practice

AGENT-BASED SIMULATION OF PRODUCT INNOVATION: MODULARITY,
COMPLEXITY AND DIVERSITY

S.H. CHEN,� National Chengchi University, Taiwan
B.T. CHIE, National Chengchi University, Taiwan

ABSTRACT

The importance of modularity in product innovation is analyzed in this paper. Through
simulations with an agent-based modular economic model, we examine the significance
of the use of a modular structure in new product designs in terms of its impacts upon
customer satisfaction and firms' competitiveness. To achieve the above purpose, the
automatically defined terminal is proposed and is used to modify the simple genetic
programming.

Keywords: agent-based computational economics, genetic programming, automatic
defined terminals, modularity, hierarchy

MOTIVATION AND INTRODUCTION

This work is a continuation of [2, 3], which provide an agent-based model to simulate the
evolution of product innovation by growing it from bottom up. The earlier work is not just to
provide an agent-based approach, but to introduce a new representation of commodities,
production, and preference, via the use of genetic programming (GP). However, [2, 3] only
consider the simple genetic programming [5]. The end result is that in many of their early
simulations, only primitive desires are satisfied, and the economy can rarely advance to a mature
state where consumers’ desires can be met to a sophisticated degree. One cause of this problem
is that simple GP is not an appropriate tool to work with the idea of functional modularity (to be
detailed in Section 3). This limitation has been long realized by GP researchers, e.g., [6]. In this
paper, we remedy this problem by replacing the simple GP with automatically defined terminals
(ADTs), which are very similar in spirit to automatically defined functions (ADFs), invented by
John Koza [6]. As Koza pointed out, devices of this kind can provide some hierarchical
mechanism to exploit modularities inherent in problem environments.

With this modified version of GP, two experiments are carried out. The first experiment
examines the contribution of functional modularity to consumers’ satisfaction. The second series
of experiment then examines the importance of modularity in competition among firms. We
simulate an agent-based economy to allow the firm who design new products using modular
structure competing with the firm who do not. In a sense, this is equivalent to replicate the well-
known story regarding the competition between Hora and Tempus, two imaginary watchmakers
offered by Herbert Simon in his celebrated work on the architecture of complexity [8].

� Corresponding author address: Shu-Heng Chen, AI-Econ Research Center, Department of Economics, National
Chengchi University, 64 Zhi-Nan Road, Sec. 2., Taipei, Taiwan; e-mail: chchen@nccu.edu.tw.

295

FIGURE 1 The Agent-Based Modular Economy Market

The rest of the paper is organized as follows. Section 2 provides a brief review of the agent-
based modular economy introduced in [2, 3]. Section 3 proposes the automatically defined
terminal and motivates this idea with its connection to hierarchical modularity. The two
experiments are conducted in Sections 4 and 5. Section 6 gives the concluding remarks.

THE AGENT-BASED MODULAR ECONOMY

The economic model on which our simulation of product innovation is based is largely
the same as [2, 3], which we shall briefly review here. Chen and Chie [2, 3] considered an
economy composing of a number of firms and consumers with the usual objectives. To
maximize profits, firms have the incentive to search for the products which can satisfy
consumers to a highest degree. In the meantime, consumers allocate their limited budget to
commodities which provide them largest degree of enjoyment (measured in terms of consumer
surplus). The interaction between consumers and producers drives the evolution of a series of
new products (innovation process), as shown in Figure 1.

The commodity of this economy is represented by a parse tree as shown in the first row
of Figure 2. Each parse tree corresponds to a LISP program. The very bottom of tree, i.e., leaves,
correspond to the raw inputs (materials) X1, X2,..., whereas the root and all intermediate nodes
represent the processors, F1, F2,..., applied to these raw materials in a bottom-up order, as the
usual behavior of a LISP program. The whole parse tree can, therefore, be interpreted as a
production process associated with the commodity. The unit cost of the commodity is a positive

296

function of the number of the processors and the number of raw inputs, i.e., a positive function of
the (node) complexity of the commodity. In a simple way, we assume that the unit cost is a linear
function of the node complexity.

FIGURE 2 An Illustration of a Process of Product Innovation

In each market period, the firm has to decide how to allocate her limited working capital
(budget) to R&D (designs of new products), production of existing commodities with different

297

quantities, and reserves. R&D is the sole source of new products and is implemented by genetic
programming with or without automatically defined terminals (to be detailed in Section 3), as
shown in Figure 3.

FIGURE 3 Genetic Programming as an Engine for R&D

The preference of the consumers in the economy is also represented by a parse tree. To
make the preference tree be economically meaningful, three assumptions have been made [3],
namely, the monotone, synergy, and consistency condition. The utility from consuming a
commodity is based on the module-matching algorithm proposed in [3]. The idea is to match
each possible module (subtree) of the commodity to each possible module of the preference with
a descending order in the depth of the tree. So, the big modules matches first; if it success, we
stop, and if it fails, we move to the next biggest one. To satisfy the synergy condition and hence
the idea of added-value, [3] assumes a power utility function for the preference tree as shown in
Figure 4. As a result, the utility is increasing at a faster rate when higher and higher levels of
modular preferences are satisfied.

MODULARITY AND AUTOMATICALLY DEFINED TERMINALS

Simple genetic programming is designed to find the solution to a problem, which is
represented by a parse tree. In our case, a solution is analogous to a product, and whose
corresponding problem is the ideal product which can bring the highest enjoyment to a target
consumer (Figure 2). The parse tree, from the bottom to the top, can be read as how the solution
(product) can be constructed parallelly, incrementally and progressively. What is accomplished
at each incremental and parallel step is a minimum or marginal effort to combine what have been
established in the previous steps.

298

As an illustration, Figure 2 traces an artificial history of product innovation. Consider a
target consumer whose preference is depicted in the first row of Figure 2, which can be regarded
as the solution to the problem. Firms do not know this design, and have to figure out the best
design by themselves. The five products listed below are the designs discovered in generations 2,
10, 14, 20, and 25. These products match the consumer’s needs to a high and higher level. For
example, the product PID 2889, i.e., the 2889th new product designed by the firm, has
completely answered the target’s need to the entire first half at level four. Nonetheless, this
product does not come out all of a sudden; all it has done is to combine two commodities which
were already known before, namely, commodities ADT 18 and ADT 19, both of which were
already known to the firm before generation 25. The “marginal” effort here is to assemble them
in a right way, i.e., using processor F2.1

FIGURE 4 The Power Utility Function of a Preference Tree

The results obtained in each step then becomes the bases or the building blocks for the
subsequent steps. For example, as shown in Figure 2, ADT 18 and ADT 19 serves as building
blocks for all designs after generation 20. The entire process can then be viewed as a growing but
convergent process from leaves to small trees, then to bigger and bigger trees, and finally to the
target tree (the solution).

1 Of course, from an ex ante view, knowing what to combine and in which way is not trivial. In fact, in this example,
it took the firm five generations to learn this. In this sense, the contribution is not entirely marginal. However,
from an ex post view, it is just a combination of what we already knew.

299

The description above enables us to see how genetic programming can be related to
Simonian notion of complexity [8], i.e., hierarchy. Herbert Simon viewed hierarchy as a general
principle of complex structures. Hierarchy, he argued, emerges almost inevitably through a wide
variety of evolutionary processes, for the simple reason that hierarchical structures are stable. To
demonstrate the importance of hierarchical structure or modular structure in production, Simon
offered his well-known story about a competition between Hora and Tempus, two imaginary
watchmakers. In this story, Hora prospered because he used the modular structure in his design
of watches, whereas Tempus failed to prosper because his one is not modular. Therefore, the
story is mainly about a lesson: the advantage of using modular structure in production.

While using parse tree as the representation, simple genetic programming is not good at
using modular structure. The standard crossover and mutation can easily destroy the already
established structure, which may cause the whole discovery or learning process non-incremental
and non-progressive, and hence very inefficient. This problem is well-known in the GP literature,
and has been extensively studied with various treatments [1, 6, 7, 4]. Motivated by these earlier
studies, we propose automatically defined terminals (ADT) as a way to enhance GP to find
structured solutions.

FIGURE 5 Automatically Defined Terminals

ADT, as shown in Figure 5, is very similar to the automatically defined function (ADF)
[6]. Itself has a fixed structure, in this case, a tree with a depth of two. The root of ADT can be
any function from the primitives (function set), while its leaf can be either a terminal from
primitives (terminal set) or can be any existing ADTs. In this way, it shares the same spirit of
ADF, namely, simplification, reuse, and encapsulation. The last part is particular important
because it means whatever inside an ADT will not be further interrupted by crossover and
mutation. In this way, ADTs can be considered as the part of learning in which we have great
confidence, and leaves no room for doubt. Through ADTs we distinguish what is considered as
knowledge from what is still in a trial-and-error process. Only the former can then be taken as
the building blocks (modules), but not the latter. Without ADTs or equivalents, simple genetic
programming essentially is not designed to develop building blocks; therefore, it is not very good
at finding modular structure inherent in the problem.

300

MODULARITY AND CONSUMER SATISFACTION

Simple genetic programming can also detect modular structure, but it does it only by
chance, and hence may be very difficult to detect complex modules.2 To see this, in this section,
we simulate how well consumers are served when the firm designs new products with modular
GP (standard GP plus ADTs), and compare the result with that of standard GP.

In this simulation, there are 100 consumers in the market. Each consumer has a
preference tree with a depth of six. Viewed from the most top level (the root level), the
preference tree is composed of two modules. The one on the left, having a depth of five as shown
in the first row of Figure 2, is identical among all consumers, whereas the one on the right,
having a depth of five or less is heterogeneous, and is randomly generated by the ramped half-
and-half method, an initialization method frequently used in GP. In this way, consumers’
preferences have a common part as well as an idiosyncratic part. For the idiosyncratic part, the
complexity is also different.

FIGURE 6 Market Days and Learning Cycles

A profit-maximizing monopoly firm will try to serve the needs of this group of
consumers by producing different products with different quantities and also with different
degrees of specialization or diversification (customization). 3 The firm has to learn the
consumers’ preferences and hence, through R&D (driven by GP), design better products. The
entire market process is summarized in Figure 6. The learning cycle (GP cycle) is run with a
number of generations (in our case, 5000). Each generation is composed of a number of trading
days (in our case, five). After each learning cycle, the firm has to decide what to produce,
including some new products developed via production innovation, how many to produce, and

2 To define and measure complexity, Simon [8] advocated the use of a hierarchical measure – the number of
successive levels of hierarchical structuring in a system or, in our case, the depth of the parse tree.

3 See [3] for details.

301

how much to charge. The decision of production and R&D is based on the sales and profits
statistics collected in the previous market days. The firm then supply what have been produced,
including those new items, in the next few market days.

For further analysis, in each generation, statistics regarding consumer satisfaction are
reported. Consumer satisfaction is measure by the actual utility the consumer received from
consumption divided by the maximum potential utility the consumer can possible gain given his
preference. The ratio is then multiplied by 1,000, and the measure lies in [0, 1000]. By averaging
the consumer satisfaction over all 100 consumers, we then derive the aggregate consumer
satisfaction, which also lies in the same interval. The result is shown in Figure 7.What Figure 7
shows is not the result based on a single run, but fifty runs. Accordingly, what is shown in the
left panel of Figure 7 is the average of the 50 runs, whereas what is shown in the right panel is
the maximum of the 50 runs. It can be seen quite easily, the firm whose product design uses
modular structure can satisfy the consumers to a higher degree than the firm whose product
design uses non-modular structure.

FIGURE 7 Modularity and Consumer Satisfaction

MODULAR STRUCTURE AND COMPETITIVENESS

In the previous section, under the assumption of a monopoly firm, we have seen the
positive impact of using modular structure on consumer satisfaction. In this section, we shall
pursue further by inquiring the implication of modular structure to the competitiveness of firms.
In a sense, we attempt to re-examine the story given by Herbert Simon on the competition
between two watchmakers: one using modular structure and one not. For that purpose, we
consider a duopolistic competition in which one firm uses modular structure in her R&D (new
product designs) and the other firm does not.

The two duopolistic firms compete with other in a market composing of 100 consumers
whose preferences are partial identical and partial idiosyncratic (see Section 4). We then watch
their market share, i.e., the total sales of each firm divided by the total sales of the market, and

302

the result is displayed in Figure 8.4 The result presented here is not based on a single run, but
one hundred runs. The one shown in left panel of Figure 8 is the mean of the 100 runs, whereas
the one shown in the right panel is the median of the 100 runs. Below the separation line is the
market share owned by the non-modular firm, and above the line is the market share owned by
the modular firm. Clearly, their sum equals 100%.

FIGURE 8 Modularity and Competitiveness

Due to the existence of outliers, the time series behavior of the mean and that of the
median is not quite the same, but the eventual dominance of the modular firm is evident. In the
first few hundreds of generations, non-modular firm, however, did have some competitive
advantage over the modular firm. This is because establishing modules is costly. The idea of
encapsulation associated with ADTs implies a fixed cost and hence a less degree of mobility,
depending on the degree of encapsulation or the complexity of ADTs.5 Hence, the modular
products will generally be more expensive. Unless these products can fit the consumers’ needs to
a higher degree, these high-price products will exert adverse influence on marketing. Therefore,
there is no guarantee (a probability of one) that the modular firm will always beat the non-
modular firm. In fact, in 39 out of our 100 runs, the non-modular firm took up a higher market
share than the modular firm in the last generation (the 5000th generation).

Finally, as one may expect, competition does bring a better quality to consumers.
This is reflected in Figure 9.

CONCLUDING REMARKS

Consumers are not random and their behavior can be studied and patterns can be
extracted. On the other hand, innovation normally is not a random jump, but follows a gradually
changing process. These two together suggests that the economy can be constructed in a modular
way, or the entire economy has a modular structure. In other words, Herbert Simon’s notion of
the architecture of complexity has the potential to be applied to the whole economy. In this paper,
we study the significance of modularity in product innovation. We find that both consumers and

4 Notice that firms generally produce more than one product and can be very different between each other.
Therefore, it is meaningless to measure the market share based on a single product.

5 See footnote (2) for the measure of complexity.

303

producers can benefit from the use of modular structure in product design. However, modularity
may imply a higher cost and less mobility; therefore, its dominance is not certain. Using Simon’s
story, there is a chance that Tempus prospers and Hora fails.

FIGURE 9 Consumer Satisfaction under Competition

ACKNOWLEDGEMENT

The authors are grateful to Herbert Dawid, Christophre Georges, and Massimo Ricottilli
for their helpful discussions. NSC research grant No. 95-2415-H-004-002-MY3 is gratefully
acknowledged.

REFERENCES

1. Angeline, P. and J. Pollack, 1993, “Evolutionary Module Acquisition,” in Proceedings of the
2nd Annual Conference on Evolutionary Programming, MIT Press, pp. 154-163.

2. Chen, S.-H. and B.-T. Chie, 2004, “Agent-Based Economic Modeling of the Evolution of
Technology: The Relevance of Functional Modularity and Genetic Programming,”
International Journal of Modern Physics B, Vol. 18, No. 17-19, pp. 2376-2386.

3. Chen, S.-H. and B.-T. Chie, 2005, “A Functional Modularity Approach to Agent-based
Modeling of the Evolution of Technology,” (with B.-T. Chie), in A. Namatame, T.
Kaizouji, and Y. Aruka. (eds.), The Complex Networks of Economic Interactions: Essays

304

in Agent-Based Economics and Econophysics, Lecture Notes in Economics and
Mathematical Systems 567, Springer, pp. 165-178.

4. Hoang, T.-H., E. Daryl, R. McKay, and X. H. Nguyen, 2007, “Developmental Evaluation in
Genetic Programming: The TAG-Based Frame Work,” forthcoming in Knowledge
Engineering Review.

5. Koza, J. R., 1992, Genetic Programming: On the Programming of Computers by the Means of
Natural Selection, Cambridge, MA: The MIT Press.

6. Koza, J., 1994, Genetic programming II–Automatic Discovery of Reusable Programs,
Cambridge, MA: The MIT Press.

7. Rosca, J. and D. Ballard, 1994, “Hierarchical Self-Organization in Genetic Programming,” In
C. Rouveirol and M. Sebag (eds), Proceedings of the Eleventh International Conference on
Machine Learning, Morgan Kaufmann.

8. Simon, H. A., 1965, “The Architecture of Complexity,” General Systems, 10, pp. 63-76.

9. Simon, H. A., 1973, “The Organization of Complex Systems,” in: H. H. Pattee (ed.),
Hierarchy Theory. The Challenge of Complex Systems, New York: George Braziller, 1973,
pp. 1-27.

305

306

THE EVOLUTION AND PERSISTENCE OF DOMINANT ROLES IN
INTERORGANIZATIONAL RELATIONSHIPS

V.A. BARGER, University of Wisconsin–Madison

ABSTRACT

Recent application of role theory to economic behavior (Montgomery 1998) has provided
new insights into interorganizational relationships (Heide and Wathne 2006). In
particular, role theory offers a framework for investigating the source of seemingly
contradictory accounts of economic exchange, including Uzzi’s (1997; 1996) finding that
embeddedness enhances firm survival in the apparel industry and Wathne, et al.’s (2001)
discovery that embeddedness does not insulate a firm from price competition in the
commercial banking industry. The key to understanding these discrepancies lies in the
divergent evolution of dominant relationship roles. This paper investigates the evolution
and persistence of roles in interorganizational relationships from a role-theoretic
perspective using agent-based modeling.

Keywords: interorganizational relationships, role theory, economic behavior, agent-
based modeling

INTRODUCTION

According to the classical and neoclassical schools of thought, economic transactions are
coordinated through the mechanism of price; that is, the totality of information necessary for
exchange is communicated by the price associated with the transaction. Moreover, economic
actors are rational, utility maximizing, and self-interested. Granovetter (1985) criticizes this
view of economics as “undersocialized,” in that it “disallow[s] by hypothesis any impact of
social structure and social relations on production, distribution, or consumption.” He contends
that economic behavior is “embedded” in social relations and that these relations have a
significant impact on how actors behave. This, then, is the “problem of embeddedness”: that
“behavior and institutions to be analyzed are so constrained by ongoing social relations that to
construe them as independent is a grievous misunderstanding” (Granovetter 1985).

Granovetter’s hypothesis is supported by empirical research in the apparel industry. Uzzi
(1997; 1996) found that firms that rely on arm’s length market transactions are more likely to fail
than are firms that leverage social relations. He attributes this outcome to three features of
embedded transactions: trust, information sharing, and joint problem solving. More recently,
however, Wathne, Biong, and Heide (2001) uncovered evidence to the opposite effect: in the
commercial banking industry, social relations are ineffective at protecting firms from price and
product competition. Although social relations can create a barrier to switching, they are
outweighed by firm-level switching costs and competitor superiority in price or product breadth.

 Corresponding author address: Victor Barger, University of Wisconsin–Madison, 975 University Ave, Madison,

WI 53706; e-mail: vbarger@bus.wisc.edu.

307

Montgomery (1998) offers a role-theoretic conception of embeddedness that may help
resolve this apparent contradiction. He attributes discrepancies in economic behavior to the roles
elicited by relationships: (1) the role of “businessperson,” who maximizes profit, and (2) the role
of “friend,” who cooperates out of principle. Which role is invoked in a particular transaction
depends on the history of the relationship. Heide and Wathne (2006) extend this role-theoretic
perspective to the governance of interorganizational relationships, proposing a conceptual
framework that links governance strategies to roles and role activation. They identify two
specific areas for future research: (1) the connection between roles and profitability, and (2) the
sources of “stickiness” of roles.

The purpose of this research is to explore the consequences of embeddedness from a role-
theoretic perspective. In particular, we seek to explain why certain industries exhibit a high level
of embeddedness, whereas others favor arm’s length market transactions. To this end, we
investigate how roles can become dominant in an industry and, once established, influence the
profitability of industry players. Greater understanding of how roles evolve within industries and
the implications of an established, dominant role will help inform the governance decisions for
firms entering or competing in such industries.

In the following section, we expand on our discussion of the role-theoretic perspective of
economic behavior and introduce hypotheses on the evolution and persistence of roles in
interorganizational relationships. We then propose an agent-based model for testing the
hypotheses. Finally, we present our findings and discuss their implications and limitations.

CONCEPTUAL FRAMEWORK

Uzzi (1997) classifies business relationships as either “arm’s length” or “embedded.”
Arm’s length relationships are characterized by non-repeated transactions where the emphasis is
on price. Performance is assured through contracts and monitoring, and problems are solved by
switching suppliers. In contrast, embedded relationships are characterized by repeated
transactions where price is but one consideration. Personal relations play a key role in business
decisions, and relationships are governed by trust and reciprocity. As a result, embedded
relationships benefit from higher levels of information sharing and joint problem solving. In
other words, embedded relationships encourage cooperation, whereas arm’s length relationships
discourage it.

In role-theoretic terms, arm’s length and embedded relationships are the result of firms
assuming the roles of “businessperson” and “friend,” respectively (Montgomery 1998). The
businessperson follows the “logic of consequences” and seeks to maximize utility, while the
friend follows the “logic of appropriateness” and behaves according to rules and norms (March
1994). Thus a friend favors cooperation even if it results in short-term loss, while the
businessperson defects if doing so results in the highest gain. Different roles may be invoked at
different times in different relationships.

Which role an actor assumes in a relationship depends on the disposition of the actor and
the history of interactions between the actor and the other party (Heide and Wathne 2006).
Montgomery (1998) conceptualizes this as a threshold model: for each party an actor interacts
with, the actor maintains a mental record of “degree of friendship” (see Figure 1). When the
actor interacts with another party, his degree of friendship with the other party increases or
decreases depending on the characteristics of the interaction. For example, if the other party

308

goes above and beyond the letter of a contract to help the actor, the degree of friendship will
increase. If, on the other hand, the other party insists on compliance with the terms of a contract
despite unforeseen difficulties, the degree of friendship will decrease. When the degree of
friendship exceeds a certain level, the “friendship threshold,” the actor assumes the role of
friend. If the degree of friendship is beneath the friendship threshold, the actor assumes the role
of businessperson.

The predisposition of an actor to assume the role of businessperson or friend is reflected
in the actor’s friendship threshold. An actor who is quick to befriend others will have a low
friendship threshold, whereas an actor who prefers to stay at arm’s length will have a high
friendship threshold. The initial degree of friendship is determined by the mechanism through
which the actors are first introduced. Consistent with Uzzi’s (1996) findings, if the actors are
introduced by a mutual friend, the initial degree of friendship will be relatively high. If instead
the actors meet through search in an anonymous market, the initial degree of friendship will be
low.

This conceptualization of economic behavior as a series of roles can be extended to an
industry of firms. An embedded market can be viewed as one in which the dominant
relationship role—i.e., the role assumed by the greatest number of firms in the industry—is that
of friend. An anonymous market, in contrast, is one in which the dominant relationship role is
that of businessperson. Moreover, we can speculate as to the type of industry that will arise
given an initial level of embeddedness. Based on Uzzi’s (1996) finding that “embedded ties can
originate from anonymous market ties, but this source of embeddedness is uncommon in [the
apparel] industry,” we hypothesize that:

H1A: The dominant relationship role that will evolve in an industry that is initially
devoid of embeddedness (i.e., an anonymous market) will be that of
businessperson.

FIGURE 1 Threshold model of role determination

time

de
gr

ee
 o

f f
rie

nd
sh

ip

friendship threshold

“friend”

“businessperson”

309

A market may be embedded from the outset when business relationships have been
primed for embeddedness by third-party referrals or personal relationships (Uzzi 1996). As the
initial level of embeddedness in an industry increases, we expect to see a greater number of firms
adopting the role of friend. Moreover, we hypothesize that there is a critical initial level of
embeddedness which, if exceeded, will lead to the evolution of an embedded industry. In other
words:

H1B: The dominant relationship role that will evolve in an industry initially
characterized by a level of embeddedness above a critical point will be that of
friend.

Uzzi (1996) demonstrated that in the apparel industry, firms that preferred embedded
relationships over arm’s length relationships were more likely to survive. Since the apparel
industry most closely resembles an embedded market, we can infer that, in embedded markets,
firms that are predisposed to assume the role of friend will outperform firms that operate as
businesspersons. On the other hand, in an anonymous market it is predicted that firms that are
predisposed to the role of businessperson will outperform firms that prefer to act as friends, since
in such markets friends will not realize gains due to cooperation and, moreover, are likely to be
taken advantage of by businesspersons. Therefore, we predict that:

H2A: In an embedded market, firms that prefer the role of friend will outperform
firms that prefer the role of businessperson.

H2B: In an anonymous market, firms that prefer the role of businessperson will
outperform firms that prefer the role of friend.

METHODOLOGY

Similar to Montgomery (1992), we model firm behavior as a repeated prisoner’s
dilemma. Rather than analyze the game mathematically, however, we employ agent-based
modeling. This enables us to investigate emergent properties of the system (Axelrod and
Tesfatsion 2006), which is essential in a model such as ours, where the behavior of actors is
dependent on past experience and the actors continually adapt based on their interactions.
Moreover, agent-based modeling permits experimentation with a heterogeneous population of
actors (Axtell 2000), in this case a population of firms with different roles, predispositions,
relationships, and histories.

Our model specification is presented below. This is followed by a description of how
core aspects of the model are operationalized. Finally, the findings from simulations of our
agent-based model are reported.

Model Specification

Two types of firms are represented in the model: manufacturers and suppliers.
Manufacturers purchase materials from suppliers to use in the manufacturing process, and
suppliers sell these materials to manufacturers to earn a profit. Interactions between
manufacturers and suppliers take the form of a repeated prisoner’s dilemma (see Figure 2). Each
period, the manufacturers choose the suppliers from whom to purchase materials. A supplier can
either “cooperate” by delivering the product as expected or “defect” by shirking on product

310

quality or quantity. Similarly, a manufacturer can either “cooperate” by paying the full amount
for the product or “defect” by demanding allowances from the supplier. Note that only the
interactions of principal exchange partners are modeled. That is, the supplier selected by a
manufacturer is assumed to be the one that supplies the most product to that manufacturer in that
period. This does not preclude the possibility of a manufacturer obtaining materials from
multiple suppliers; however, including secondary sources in the model could underestimate the
effect of embeddedness (Uzzi 1996).

The interaction history between a manufacturer and a supplier is encapsulated in their
“degree of friendship” (Montgomery 1992). When a manufacturer’s degree of friendship with a
supplier exceeds the manufacturer’s “friendship threshold” (see Figure 1), it will assume the role
of “friend” when interacting with the supplier. If, on the other hand, the manufacturer’s degree
of friendship is less than or equal to its friendship threshold, it will assume the role of
“businessperson.” Likewise, each supplier has a degree of friendship with each manufacturer.
When the supplier’s degree of friendship with a manufacturer exceeds the supplier’s friendship
threshold, it will assume the role of “friend” when interacting with the manufacturer. When the
supplier’s degree of friendship is less than or equal to the supplier’s friendship threshold, it will
assume the role of “businessperson.” After each exchange, the firms update their respective
degrees of friendship to reflect the outcome of the transaction. If the other party cooperated, the
firm increases its degree of friendship with the other party. If instead the other party defected,
the firm decreases its degree of friendship with the other party. Thus firms are capable of role
switching (Heide and Wathne 2006; Montgomery 1992) based on their interaction histories.

 Supplier
 C2

(“delivers as
promised”)

D2
(“shirks on quality

or quantity”)

C1
(“pays in full”)

5, 5

3, 6

Manufacturer
D1

(“demands
allowances”)

6, 3

4, 4

FIGURE 2 Payoff matrix for manufacturer and supplier in two-sided prisoner’s dilemma

How the parties to a transaction behave (i.e., whether they cooperate or defect)
determines the payoffs each receives from the transaction (see Figure 2). The firms’ behavior, in
turn, is a function of the role assumed: a “friend” cooperates out of principle, while a
“businessperson” opts for short-term gain and defects (Montgomery 1992). If both manufacturer
and supplier cooperate, the manufacturer receives the full value of its purchase (U1(C1,C2) = 5)
and the supplier receives full payment (U2(C1,C2) = 5). If the manufacturer cooperates and the
supplier defects, the manufacturer receives less than the full value of the purchase (U1(C1,D2) =
3) due to the supplier’s shirking on quality or quantity, and the supplier receives more than fair

311

compensation (U2(C1,D2) = 6) due to savings on materials and labor. If, instead, the
manufacturer defects and the supplier cooperates, the manufacturer receives more than the full
value of the purchase (U1(D1,C2) = 6) by demanding allowances for defective merchandise when
the product is in fact satisfactory, while the supplier receives less than fair compensation
(U2(D1,C2) = 3). Finally, if both manufacturer and supplier defect, the manufacturer receives less
than the full value of the purchase (U1(D1,D2) = 4) due to the opportunity cost of not having
necessary supplies on hand, and the supplier loses potential revenue (U2(D1,D2) = 4) due to
allowances granted the manufacturer. Note that the payoff matrix satisfies the requirements for a
two-sided prisoner’s dilemma (Axelrod 1984), since U1(D1,C2) > U1(C1,C2) > U1(D1,D2) >
U1(C1,D2), U2(C1,D2) > U2(C1,C2) > U2(D1,D2) > U2(D1,C2), and U1(C1,C2) > (U1(D1,C2) +
U1(C1,D2))/2.

To decide which supplier to purchase materials from, a manufacturer starts by ranking its
suppliers by degree of friendship. If the manufacturer is friends with one or more suppliers (i.e.,
the manufacturer’s degree of friendship with the supplier exceeds the manufacturer’s friendship
threshold), the manufacturer will choose the supplier with which it has the highest degree of
friendship. If several suppliers have equally high degrees of friendship, the manufacturer will
randomly select one. If the manufacturer is not friends with any suppliers (i.e., the
manufacturer’s degree of friendship is below its friendship threshold for all suppliers), the
manufacturer will randomly select a supplier. This corresponds to a businessperson choosing the
supplier with the lowest price.

Operationalization

Three aspects of the model require further elaboration with respect to how they are
operationalized: (1) role activation, (2) role preference, and (3) market embeddedness.

Role activation. The degree of friendship between two firms (see Figure 1) is expressed
as an integer from zero to ten, with zero corresponding to the absence of friendship and ten
representing the highest possible level of friendship. Likewise, the friendship threshold is also
expressed as an integer from zero to ten. When degree of friendship exceeds a firm’s friendship
threshold, the firm assumes the role of “friend.” When degree of friendship is less than or equal
to a firm’s friendship threshold, the firm assumes the role of “businessperson.” Note that
friendship can be asymmetric, in that a manufacturer’s degree of friendship with a supplier may
differ from the supplier’s degree of friendship with the manufacturer; moreover, the two firms
may have different friendship thresholds. Thus a manufacturer may assume the role of friend
with a supplier who assumes the role of businessperson or vice versa.

Role preference. The preference of a firm for the role of friend or businessperson is
indicated by the firm’s friendship threshold. A high friendship threshold indicates a firm that
prefers the role of businessperson, since the firm requires a higher degree of friendship with
another firm before it will assume the role of friend. In contrast, a firm with a low friendship
threshold is characterized as preferring the role of friend, since a lower degree of friendship with
another firm is needed for it to assume the role of friend. Friendship thresholds are presumed to
be normally distributed in the population, and thus are randomly assigned to firms from a normal
distribution with μ = 5 and = 1.

Market embeddedness. The embeddedness of a market refers to the extent to which
economic behavior is influenced by social relations (Uzzi 1996). In an anonymous, arm’s length

312

market, economic behavior is completely unaffected by social relations. In contrast, in a wholly
embedded market, economic behavior is completely determined by social relations. Although
neither of these may be plausible per se, they are valuable from a theoretic standpoint as the
endpoints of a continuum of markets, from the anonymous to the wholly embedded; as the level
of embeddedness increases, so does the influence of social relations on economic behavior
within the market.

In this study, the level of embeddedness of a market is specified on a scale of zero to ten,
where zero represents an anonymous market and ten corresponds to a wholly embedded market.
To simulate an anonymous market, the initial degrees of friendship of all firms are set to zero.
Similarly, to create a wholly embedded market, the initial degrees of friendship are set to ten.
Between the two extremes, the initial degrees of friendship are randomly assigned from a
Weibull distribution, where the parameterization of the distribution depends on the level of
embeddedness (see Figure 3). Thus as the level of embeddedness increases, so does the
probability of a firm being assigned a high initial degree of friendship with another firm. (For
embeddedness greater than five, the mirror image of the distributions shown in Figure 3 are
utilized. For instance, a market with a level of embeddedness equal to seven is generated from
the mirror image of the Weibull distribution for embeddedness level three.) Note that each of the
Weibull distributions has a mean equal to the level of embeddedness. For example, the expected
value of a random variable distributed as Weibull(2.2, 4.52) is four, the same as the level of
embeddedness represented by that distribution.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial Degree of Friendship

P
ro

ba
bi

lit
y

1 ~ Weibull(1,1)
2 ~ Weibull(1.4,2.19)
3 ~ Weibull(1.8,3.37)
4 ~ Weibull(2.2,4.52)
5 ~ Weibull(3.15,5.59)

FIGURE 3 Market embeddedness probability distributions

313

Results

The model was programmed in Java and simulated with REPAST, an open source agent-
based modeling environment (North et al. 2006). Model parameters were determined by the
hypothesis being tested, as discussed below. For each set of parameters, the model was run
twenty times, and results from batches of runs were aggregated for analysis. In each run, a
market comprised of twenty manufacturers and twenty suppliers was simulated for 250 periods.

To test Hypotheses 1A and 1B, markets with initial levels of embeddedness from zero to
ten were simulated. Each period, the number of firms that assumed the role of “friend” in a
transaction was recorded; these data are graphed as percentages in Figure 4 (the numbers in
italics indicate the level of embeddedness of the market at outset). In support of Hypothesis 1A,
firms that start in an anonymous market assume the role of businessperson throughout the
simulation. Similarly, firms that assume the role of businessperson in markets with initial levels
of embeddedness equal to 1, 2, and 3 are consistently in the majority. Averaged over the last
fifty periods, they account for 100%, 94.5%, and 68.5% of the firms participating in transactions,
respectively. In contrast, firms assuming the role of friend in markets with an initial level of
embeddedness greater than or equal to 4 quickly become the majority. Averaged over the last
fifty periods, they account for 72.8%, 93.4%, and 100% of the firms participating in transactions,
respectively. Thus Hypothesis 1B is supported.

Time

P
er

ce
nt

0 50 100 150 200 250

0
10

20
30

40
50

60
70

80
90

10
0

0

1

2

3

4

5

6

7
8

10

FIGURE 4 Percent active firms in friend role

314

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00
60

00

Time

A
ve

ra
ge

 C
um

ul
at

iv
e

P
ay

of
f

Embedded Market
Anonymous Market
Friend
Businessperson

FIGURE 5 Manufacturer payoffs

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00
60

00

Time

A
ve

ra
ge

 C
um

ul
at

iv
e

P
ay

of
f

Embedded Market
Anonymous Market
Friend
Businessperson

FIGURE 6 Supplier payoffs

315

To test Hypotheses 2A and 2B, two types of markets were simulated: an anonymous
market and an embedded market (level of embeddedness = 8). Each period, the cumulative
payoffs for firms with friendship thresholds greater than five (i.e., firms that prefer the role of
“businessperson”) and for firms with friendship thresholds less than five (i.e., firms that prefer
the role of “friend”) were recorded. The data for manufacturers are graphed in Figure 5 and the
data for suppliers are graphed in Figure 6. Surprisingly, firms that assume the role of “friend”
outperform firms that assume the role of “businessperson” in both anonymous and embedded
markets, supporting Hypothesis 2A and disconfirming Hypothesis 2B. In the embedded market,
manufacturer “friends” realize an average final payoff of $6,374, compared to $2,062 for
“businesspersons.” Similarly, in the anonymous market, manufacturer “friends” earn a total of
$5,500, while manufacturer “businesspersons” earn only $1,650. For suppliers, “friends” in the
embedded market receive $6,026, compared to $2,278 for “businesspersons”. In the anonymous
market, “friends” receive $4,921, compared to $1,724 for “businesspersons.”

It is informative to consider the relative increases in profitability that are achieved by
adopting the role of “friend” versus “businessperson” or by functioning in an embedded versus
anonymous market. Manufacturers are over three times as profitable (3.1 in the embedded
market and 3.3 in the anonymous market) when they assume the role of friend instead of the role
of businessperson, while suppliers are between 2.6 and 2.9 times as profitable. With respect to
market type, manufacturer “friends” realize a 16% gain by operating in an embedded market
instead of an anonymous market, and manufacturer “businesspersons” achieve a 25% gain.
Suppliers do even better in embedded markets; they realize a 22% gain when in the role of
“friend” and a 32% gain when in the role of “businessperson.”

DISCUSSION

Our model shows that the conditions surrounding the development of a market have a
powerful influence on the ultimate characteristics of the market. Namely, a market primed for
embedded relations will tend to evolve into a market dominated by “friends,” whereas a market
without such priming will be dominated by “businesspersons.” These dominant relationship
roles in turn determine the form of the market. When the majority of the firms assume the role
of “friend,” the market is highly embedded. When the majority assume the role of
“businessperson,” however, the market is more accurately portrayed as “anonymous” or “arm’s
length.”

Beyond providing insight into why markets differ in embeddedness, our model suggests
that certain relationship roles are superior from a profitability standpoint regardless of the level
of embeddedness. Assuming the role of “friend” not only results in greater profit in embedded
markets, it benefits firms in anonymous markets, too. In fact, firms in anonymous markets
realize a larger increase in profitability by assuming the role of “friend” than do firms in
embedded markets. This runs counter to the popular notion that a business in a cutthroat
industry must itself behave in a cutthroat manner. On the contrary, the business may achieve
superior returns by adopting the role of “friend.”

Our agent-based model offers insights into the evolution and persistence of
interorganizational relationship roles. Empirical verification of the predictions of the model are
important for providing support for the model’s external validity. This may prove difficult,
however, since data on the initial conditions of markets, particularly with respect to
embeddedness, is not easily obtained.

316

Two additional aspects of the model deserve further attention. First, the model focuses
on the impact of initial market characteristics. It is conceivable, though, that shocks to the
system that occur at a later time may also have a significant impact on the dominance of
relationship roles. Second, the model is built on the assumption that embeddedness discourages
opportunism. However, it has been suggested that firms may expose themselves to increased
opportunism if they become overembedded (Granovetter 1985; Uzzi 1997; Uzzi 1996). The
model could be extended to explore the impact of overembeddedness on firm performance.

317

REFERENCES

Axelrod, Robert (1984), The evolution of cooperation. New York: Basic Books.

Axelrod, Robert and Leigh Tesfatsion (2006), "A guide for newcomers to agent-based modeling

in the social sciences," in Handbook of computational economics: Agent-based
computational economics, Leigh Tesfatsion and Kenneth L. Judd, Eds. Vol. 2.
Amsterdam, The Netherlands: North Holland.

Axtell, Robert (2000), "Why agents? On the varied motivations for agent computing in the

social sciences," Center on Social and Economic Dynamics.

Granovetter, Mark S. (1985), "Economic action and social structure: The problem of

embeddedness," American Journal of Sociology, 91 (3), 481-510.

Heide, Jan B. and Kenneth H. Wathne (2006), "Friends, businesspeople, and relationship roles:

A conceptual framework and a research agenda," Journal of Marketing, 70 (3), 90-103.

March, James G. (1994), A primer on decision making. New York: Free Press.

Montgomery, James D. (1992), "Job search and network composition: Implications of the

strength-of-weak-ties hypothesis," American Sociological Review, 57 (5), 586-96.

---- (1998), "Toward a role-theoretic conception of embeddedness," American Journal of

Sociology, 104 (1), 92-125.

North, Michael J., Nicholson T. Collier, and Jerry R. Vos (2006), "Experiences creating three

implementations of the REPAST agent modeling toolkit," ACM Transactions on
Modeling and Computer Simulation, 16 (1), 1-25.

Uzzi, Brian (1997), "Social structure and competition in interfirm networks: The paradox of

embeddedness," Administrative Science Quarterly, 42 (1), 35-67.

---- (1996), "The sources and consequences of embeddedness for the economic performance of

organizations: The network effect," American Sociological Review, 61 (4), 674-98.

Wathne, Kenneth H., Harald Biong, and Jan B. Heide (2001), "Choice of supplier in embedded

markets: Relationship and marketing program effects," Journal of Marketing, 65 (2), 54-
66.

318

THE DYNAMIC ENDOGENOUS EVOLUTION OF VOTER PREFERENCES

Alberto Alexander Perez*, Trinity College Dublin. Dublin, Ireland.

ABSTRACT

Why voters vote the way they do and how their preferences are formed are themes that
have inspired much interdisciplinary research. A point in particular that has stirred debate
is the question of the evolution of voter preferences through time. Are voters’ preferences
fixed or do they evolve? And if they evolve through time, do they evolve significantly to
affect elections? Is this evolution and these changes in voters’ preferences generated by
exogenously determined shocks or can we explain this evolution endogenously?
A model that introduces endogenous dynamic evolution of voters’ preferences is
presented as well as a computer simulation written in Netlogo. Together they serve as
tools to explore the plausibility of a dynamic endogenous evolution of voter preferences
within the context of a spatial model of party competition.

 Keywords: Computational Social Science Voter Preferences Netlogo Electoral Behavior

INTRODUCTION

 As with any other type of model and simulation in the social sciences, election
prediction is difficult. The deterministic nature of laws and environment rules in the natural
sciences does not quite exist, at least in the same easily reproducible manner that facilitates
experimentation in the social sciences and so although we can build extremely sophisticated
models and simulations we can only approximate our models to a degree to reality. In the end it
is only the election result that provides us with a way to calibrate our models and since in many
ways each election is unique, the predictive capabilities of any model and simulation are
confirmed only post facto.

Should we throw up our hands at an exercise that seems so doomed to always lack in its
certainty of results? If our interest is the accuracy of election prediction only, it seems indeed
that our destiny is similar to that of Tantalus, with the objective ever so close to us but
condemned to ever fall short of our goal, however if we wish to study theoretical possibilities an
study trtends, the story is different.

ELECTORAL BEHAVIOR APPROACHES AND ASSUMPTIONS

Many models, reflecting each a particular set of assumptions and a particular
understanding of the world, have been created not necessarily just to predict but also to
understand voter and party behavior. Models that belong to the rational choice camp have been
very prolific models producing data, predictions and establishing relationships among variables
that affect election outcomes (Page, Benjamin I., and Robert Y. Shapiro. 1992). However when it

* Corresponding author address: Alberto Alexander Perez, Political Science. Trinity College Dublin, Dublin 2,

Ireland. e-mail: aperez@tcd.ie

319

comes down to prediction, the results have been unclear, yet their explanatory power is a pillar of
the elections and voter behavior field (Niemi, Richard G., and Herbert F. Weisberg. 1992). There
are other models with different assumptions that deal with the more evident shortcomings
presented by the rational choice camp. Some of the more widely disseminated and influential
models are those of the Michigan school or voter identification theories of party competition
(University of Michigan Survey Research Center and Angus Campbell.1960). Voter
identification models are helpful in understanding relationships between voter choice and party
behavior, election results as well as with the inner social relationship in the electoral
environment.

 Anthony Downs stated in his seminal work; An economic theory of democracy

(Downs, Anthony. 1957), one of the assumptions that has raised discussion as whether being
appropriate is the assumption of endogenous preferences. This is the assumption that states that
voter preferences are fixed through time, only to be affected by external shocks that affect the
system in such a way that the voter preference distribution changes and so parties need to adjust
their stated policies in reaction to these shocks if they wish to capture enough votes to be elected.
Although preference change is recognized by Downs, stating that in the long run voter
preferences do change, he believes that in the short run voter preferences are more likely to be
fixed, and assuming so simplifies his model.

Endogenous voter preferences

The central idea in the discussion of endogenous voters preferences is that voter
preferences are not fixed over time, they do change influenced by the environment and by voters
around them. The reasoning is fairly straightforward; it is impossible for voters to have a ready-
made opinion about all issues at the same time (Zaller, John. 1992). They do not have the time or
perhaps even the interest to inform themselves about all points possible within a policy space.
And so, even if they had an opinion, often they do not know how such a policy would affect
them directly (Saris, Willem E., and Paul M. Sniderman. 2004).

Faced with many of this policies, voters look around them to people they trust for
indications and pointers on many policies, either establishing, re-affirming or changing
preferences and opinions particular issues convinced that the position of those believed to know
better, or at least have a better understanding of the information available, would provide them
with a higher level of utility than the position they had or would have taken by themselves alone
(Summers, David A. 1968).

Preferences, even if we believe that they are fixed, can change if we are presented good

reasons to do so, as the environment and the conditions under which they were formed in the first
place change. This is different from assuming that there is an external shock by stating that these
environmental changes are normal and indigenous of the system (Sniderman, Paul M., Richard
A. Brody, and Philip E. Tetlock. 1991). If preferences were assumed to be fixed, campaigning
would make little sense, as we would assume that voters could not be convinced that the policies
espoused by each candidate are the best. Opinion polls would be unnecessary as people would
maintain their policy positions and would not change their minds. Grass roots organizations
would have no effect in the dissemination of policy, and the concept of convincing the voter
about the usefulness of certain policies would be completely irrelevant.

320

The dynamic endogenous evolution of voter preferences model

The model presented here and the simulation built around it addresses the endogenous
evolution of voter preferences and it incorporates a dynamic analysis of the system. Both parties
and voters make the system evolve continuously by adapting their positions and making the
system dynamic, evolving across the policy space through time.

The model presented here has the following assumptions:

• The model consist of voters and parties only
• The parties and voters move in a two-dimension policy space.
• Parties try to gather the maximum number of votes by positioning themselves as

close as possible to a maximum number of voters
• One voter one vote.
• Parties are free to move along the policy space as they see fit. There is no

restriction on positional movement.
• Parties choose strategies on how to attract voters and they act accordingly to

stated rules of each strategy.
• Voters vote for the party closest to them, regardless of the direction in which this

party lies around them.
• Voters can modify a particular voter’s preferences, i.e. voters may move among

the policy space, attracting other voters.
• Voters do not move randomly across the policy space. The rules for their

movement are based on explicit conditions assumed at the time of building the
voting environment, and they are well specified.

Parties do not directly modify voter’s movement. They only affect affiliation. However,

if a rule of attraction has been assumed, and a voter can attract another after switching to a new
party, by that voter’s decision, a third voter may be instilled to move by this switch.

With this model a simulation of the policy space has been created for the analysis of the
concepts that we have discussed. The first part of the model, the party movement side,
incorporates a dynamic agent-based version of the general spatial model of party competition
Created by Michael Laver (Laver, 2005). This model provides the foundation of the dynamics in
the model and introduces the idea and concept of party strategies, allowing for an adaptive
dynamic behavior of parties in the system. The second part if the system incorporates the
concepts of voter’s endogenous evolutionary preference change. It allows a set of conditions
under which voter’s preferences will be affected and evolves through time adapting to the
conditions of the system.

The dynamic endogenous evolution model of voter preferences (or DEE from here on) is
then constituted of these two parts incorporated into one simulation put together and written in
Netlogo 3.1.4. For the specifics of Michael Lavers’ model and simulation, please refer to Laver,
Michael. 2005. For the purposes of this paper a description of the environment and the
simulation incorporated is here included

321

THE SIMULATION

The simulation is composed of two parts, the party movement and strategy part and the

voter behavior part. The party behavior side assumes that parties can choose strategies according
to their gain or loss of support or how ideologically tied they are with a particular policy.
Supporters, who are agents in the model, use a very simple decision rule: they affiliate to the
closest party. Party leaders use one of a number of decision rules that can be chosen by the
operator in the interface for each party included in the system. In the STICK rule the party leader
never changes the policy position of the party, regardless of the affiliations of supporters. This
models a very ideological party that cares only about its policy position.

In the AGGREGATE rule the party leader sets party policy at the mean position on each
dimension of the policies of the affiliated supporters.
In the i-HUNT rule (Insatiable Hunter) the party leader hunts for support using a simple "win-
stay, lose-shift" Pavlovian hunting algorithm. In the s-HUNT rule (Satiable Hunter) if the
previous move neither increased nor decreased support, stand still. The PREDATOR rule
specifies that the party observes the current size of all parties and move towards the position of
the largest party.

Besides being able to choose these rules the model includes options to choose number of

parties, number of voters and the party switching sensibility in the part of voters. A graph and
monitors show us the evolution in the size of parties, and we have a button that allow us to
“jitter” supporters, i.e. to introduce a random walk in voters to analyze dynamics after a steady
state or to introduce a shock if we think this is appropriate. All these elements come from Laver,
2005.

The voter side is composed of a chooser switch that allows us to set up the voter
environment. The setting named DOWNS makes voters behave as in a rational choice model.
They are fixed. This mode is included for comparison purposes. The setting NEIGHBOR
instructs voters to look at their immediate surroundings and identify the closest ideological
neighbor and take a step towards them. This is to simulate an environment where voters are
acutely aware of the ideological positions of everybody and have the capacity to identify who is
the closest person in their immediate ideological neighborhood. The setting RANDOM ANY
allows the voters to pick a supporter at random, this is to simulate an environment where there is
very little information about who surround us in the preference space and we are attracted to
those who have other properties that affect our decision such as physical closeness, family
friendship etc. The setting RANDOM DIFFERENT is the same as the previous one, but it
exclusively allows for voters to be attracted to voters affiliated to other parties. This is done to
try to catch the effects of non-policy related party dissatisfaction.

The setting CLOSEST ANY simulates an environment in which the voter has a perfect

knowledge of the preference space and is attracted to the closest, ideologically, voter to him.
This is different to neighbor since in this case, if dispersion of voter preferences is very big, the
voter still would be able to identify and be attracted by another voter, and not only by those that
are immediately in their ideological “neighborhood”. The setting CLOSEST DIFFERENT is
similar to the previous one, but the voter is only attracted to voters that do not share his same
party affiliation. Again this is to try to include effects that are non-policy related in his
attachment for a party, such a personal dislike of the leadership of a party (Figure 1).

322

FIGURE 1 Model’s interface and settings. In this case, showing dynamics of party and
voters with their interactions displayed as voters lost or gained and party size.

The interaction of the two parts makes the DEE model complete. Voters react to other voter’s
behavior and parties to voter movement. Indirectly parties affect the movement of voters as well,
in particular in the RANDOM DIFFERENT and CLOSEST DIFFERENT settings. The main
interactions can be tracked in the interface where there are two plots and several reporters. The
first graph keeps track of the party evolution, i.e. how parties grow or become smaller through
the system. The second Graph shows the net change in voters, represented by a negative number
if the party lost voters or a positive number if the party gained voters.

We will see what is the behavior of the model in the following section.

Model Evolution

The model can describe real life situations. In particular it has provided scenarios that
seem to suggest that bandwagon-effects, underdog effects, sandbagging effects and the growth of
extreme parties is an emergent property of a dynamic evolutionary system. We can say that
experiments performed with the model indicate endogenous movement that results in these
phenomena. the analysis of the dynamics seem to be scale and time dependent (Figure 2).

The key to implement the model is to accurately observe the desired party and voter environment
that we want to reproduce, if that is our objective, although theoretical manipulation of the
potential possibilities seems as rich if not more fertile ground for research

From preliminary results, evidently a combination of party dynamics with all using i-
HUNT strategies or and CLOSEST-ANY produce the more interesting dynamics. The system is
in constant movement and the results are surprising. On the other hand, the combination STICK
and DOWNS give no movement to the system whatsoever.

323

Figure 2. The stability of the systems, it seems, depends of the magnitude of the time
interval used to analyze the system, which poses interesting questions on current
theory.

From the combinations in between we can say that the if we set all parties at STICK we

can then observe voter only behavior in the system, and vice-versa, if we set the voter
environment to Downs, it reverts to the original Laver 2005 model. If we want to emulate a
purely Downsian rational choice model, the settings would be PREDATOR for all parties and
DOWNS for voters.

Other results that are interesting are those obtained with any party setting and a voter

setting of RANDOM-ANY or RANDOM-DIFFERENT. In the first instance the system seems
to collapse to the center, but since these are ideal points, even in the center there is movement
and evolution. Hence the result of a party gaining all voters and collapsing into a single spot is
not a trivial one as it is modified by the evolution of the system.

The settings that provided with interesting results to study the behavior of voters at the

borderlines of different parties are those of NEIGHBORS and CLOSEST DIFFERENT. Most of
the evolution and adaptation in these cases is strictly at the edges of all political parties
regardless of their strategies, and has prompted us to consider a study of undecided voters based
in an agent based model in the future.

324

CONCLUSIONS

The development of a model that incorporated endogenous evolutionary voter’s
preferences proved not only to be plausible but also theoretically and experimentally rich. The
evolution of the systems described not only describe familiar systems but also propose the
existence of different plausible scenarios in real life and may help to achieve a theoretical
understanding of such cases. The model has proven reliable in the sense that by using the
appropriate settings we can simulate standard models of electoral competition, yet it is flexible
enough to allow us to modify and adapt it to systemic conditions that we may want to emulate.
Just as with any other model, the transposition and usefulness to test or understand real world
data, if we wished to use it for this purpose, completely relies in the understanding of the system
being emulated and the appropriate conditions that need to be used to choose the settings. An
immediate objective is to use this model to simulate the French, Belgian and Dutch elections to
try to understand their dynamics in regards to the evolution of radical right parties in these
countries, and objective that gave rise to this approach. An interesting approach would be to test
this model and simulation in a two-step process, as in the primaries in the United States with
many candidates, and presidential elections, as second round elections, with only two, A
challenging prospect but a very rich one.

325

REFERENCES

Anderson, Christopher J., and Yuliya V. Tverdova. 2001. Winners, Losers, and Attitudes about

Government in Contemporary Democracies. International Political Science Review / Revue
internationale de science politique 22 (4):321-338.

Axelrod, Robert. 1997. The complexity of cooperation : agent-based models of competition and

collaboration. Princeton, N.J. ; Chichester: Princeton University Press.

Axelrod, Robert, and Richard Dawkins. 1984. The evolution of cooperation. London: Penguin.

Beasley, Ryan K., and Mark R. Joslyn. 2001. Cognitive Dissonance and Post-Decision Attitude

Change in Six Presidential Elections. Political Psychology 22 (3):521-540.

Campbell, Angus. 1964. The American voter : an abridgment: Wiley.

Carter, Richard F. 1959. Bandwagon and Sandbagging Effects: Some Measures of Dissonance

Reduction. The Public Opinion Quarterly 23 (2):279-287.

Clubb, Jerome M., William H. Flanigan, and Nancy H. Zingale. 1981. Analyzing electoral

history : a guide to the study of American voter behavior. Beverly Hills ; London: Sage.

Downs, Anthony. 1957. An economic theory of democracy. New York: Harper & Row.

Gallagher, Michael, Michael Laver, and Peter Mair. 2005. Representative government in modern

Europe. 4th ed. London: McGraw-Hill.

Ginsberg, Benjamin, and Robert Weissberg. 1978. Elections and the Mobilization of Popular

Support. American Journal of Political Science 22 (1):31-55.

Granberg, Donald, and Tim Nanneman. 1986. Attitude Change in an Electoral Context as a

Function of Expectations Not Being Fulfilled. Political Psychology 7 (4):753-765.

Hill, David Lee. 2006. American voter turnout : an institutional perspective. Boulder, Colo. ;

Oxford: Westview.

Kim, Chong Lim, and Donald P. Racheter. 1973. Candidates' Perception of Voter Competence:

A Comparison of Winning and Losing Candidates. The American Political Science Review
67 (3):906-913.

Kirkpatrick, Samuel A. 1970. Political Attitude Structure and Component Change. The Public

Opinion Quarterly 34 (3):403-407.

Laver, Michael. 1981. The politics of private desires. Harmondsworth: Penguin.

Laver, Michael. 2000. Government Formation and Public Policy. PS: Political Science and

Politics 33 (1):21-23.

Laver, Michael. 2001. Estimating the policy position of political actors. London: Routledge.

326

Laver, Michael, and Kenneth Benoit. 2003. The Evolution of Party Systems between Elections.

American Journal of Political Science 47 (2):215-233.

Laver, Michael. 2005. Policy and the dynamics of political competition. American Political

Science Review 99:2 (May) 263-281.

Laver, Michael, and W. Ben Hunt. 1992. Policy and party competition. New York: Routledge.

Laver, Michael, and Norman Schofield. 1990. Multiparty government : the politics of coalition

in Europe, Comparative European politics. Oxford: Oxford University Press.

LeDuc, Lawrence, Richard G. Niemi, and Pippa Norris. 1996. Comparing democracies. London:

SAGE.

LeDuc, Lawrence, Richard G. Niemi, and Pippa Norris. 2002. Comparing democracies 2 : new

challenges in the study of elections and voting. [2nd ed. London: Sage.

Miller, Warren E., and J. Merrill Shanks. 1996. The new American voter. Cambridge, Mass. ;

London: Harvard University Press.

Morwitz, Vicki G., and Carol Pluzinski. 1996. Do Polls Reflect Opinions or Do Opinions Reflect

Polls? The Impact of Political Polling on Voters' Expectations, Preferences, and Behavior.
The Journal of Consumer Research 23 (1):53-67.

Nie, Norman H., Sidney Verba, and John R. Petrocik. 1979. The changing American voter.

Enlarged ed. Cambridge, Mass. ; London: Harvard University Press.

Niemi, Richard G., and Herbert F. Weisberg. 1992. Controversies in voting behavior. 3rd ed.

Washington, D.C.: CQ Press.

Niemi, Richard G., and Herbert F. Weisberg. 1993. Classics in voting behavior. Washington,

D.C.: CQ Press.

Page, Benjamin I., and Robert Y. Shapiro. 1992. The rational public : fifty years of trends in

Americans' policy preferences. Chicago: University of Chicago Press.

Regan, Dennis T., and Martin Kilduff. 1988. Optimism about Elections: Dissonance Reduction

at the Ballot Box. Political Psychology 9 (1):101-107.

Saris, Willem E., and Paul M. Sniderman. 2004. Studies in public opinion : attitudes,

nonattitudes, measurement error, and change. Princeton, N.J. ; Oxford: Princeton
University Press.

Sniderman, Paul M. 1975. Personality and democratic politics. Berkeley [etc.] ; London:

University of California Press.

Sniderman, Paul M., Richard A. Brody, and Philip E. Tetlock. 1991. Reasoning and choice :

explorations in political psychology: Cambridge University Press.

327

Summers, David A. 1968. Conflict, Compromise, and Belief Change in a Decision-Making Task.

Vol. 12, The Journal of Conflict Resolution: Sage Publications, Inc.

Teixeira, Ruy A. 1992. The disappearing American voter. Washington, D.C.

University of Michigan. Survey Research Center., and Angus Campbell. 1960. The American

voter. New York: Wiley.

Zaller, John. 1992. The nature and origins of mass opinion. Cambridge: Cambridge University

Press.

328

SPONTANEOUS COORDINATION
D. DIERMEIER,∗ Northwestern University, Evanston, IL

C. ANDONIE, Northwestern University, Evanston, IL

ABSTRACT

In this paper we study large potential games with global random matching. The
model defines a discrete stationary Markov process, in discrete time. We derive the
limiting distribution for the paradigmatic case of coordination 2x2 games.We show
that spontaneous coordination is possible for substantial noise levels. Whether coor-
dination occurs depends on the product of the incentives (benefit of coordinating, J)
and an incentives responsiveness parameter that captures noise in the system (β). If
the product is below a critical level, players fail to coordinate; if it is above, the dis-
tribution will be bi-modal with the highest peak close to the risk-dominant strategy.

Keywords: Markov process, Limiting distribution, Adaptive model, Coordi-
nation, Noisy best response

INTRODUCTION

Theoretical economics has recently begun to explore the implications of models of
bounded rationality and learning.2 The basic idea is as old as Nash equilibrium. In his
unpublished Ph.D. dissertation, John Nash wrote the following:3

It is unnecessary to assume that the participants have full knowledge of the total
structure of the game, or the ability and inclination to go through any complex
reasoning processes. But the participants are supposed to accumulate empirical
information on the relative advantages of the various pure strategies at their
disposal.
To be more detailed, we assume that there is a population (in the sense of statis-
tics) of participants for each position of the game. Let us also assume that the
’average playing’ of the game involves n participants selected at random from the
n populations, and that there is a stable average frequency with which each pure
strategy is employed by the ’average member’ of the appropriate population (...)
Thus the assumption we made in this ’mass-action’ interpretation leads to the
conclusion that the mixed strategies representing the average behavior in each of
the populations form an equilibrium point.

∗Corresponding author address: Daniel Diermeier, MEDS Department, Kellogg School of Management,
and Northwestern Institute on Complex Systems (NICO), Northwestern University, 2001 Sheridan Road,
Evanston, IL 60208; e-mail: d-diermeier@kellogg.northwestern.edu

2For overviews see e.g. Fudenberg and Levine (1998), Young (1998), Blume (1997).
3Nash, pp. 21-23, quoted in Weibull (1997).

1

329

Most of the work, however, has focused on providing behavioral foundations for ex-
isting solution concepts, most importantly Nash-Equilibrium and its refinements (Foster
and Young (1990), Blume (1993), Blume (1995), Kandori, Mailath, and Rob (1993), Young
(1993)). The general strategy of this approach can be described as follows. For a given
normal form game, the researcher defines some version of perturbed best response that in-
duces a regular Markov process. Since regular Markov processes yield unique stationary
distributions, it is then shown that for vanishing noise in the limit, the unique station-
ary distribution puts positive probability only on a subset of possible action configurations,
the so-called “stochastically stable states” (Foster and Young (1990)). This approach thus
suggests answers to two important questions in classical game theory: the problem of coor-
dination and the problem of selection. Ordered states emerge without a central coordinating
device and are frequently unique even in the case of many strict Nash equilibria.

In this approach the use of behavioral models is largely foundational. Consequently,
issues of robustness, e.g. with respect to distributional assumptions and so forth, are of
central concern (Foster and Young (1990), Bergin and Lipman (1996)). In this paper we
take a different approach. Rather than using the behavioral models in a foundational sense
we use them in an explanatory way. In other words, we will directly explore the properties of
limiting distributions rather than just exploring the limits as the noise term vanishes. The
goal is to explore the properties of a certain behavioral approach directly and assess whether
it can provide additional insights.

The basic model can be described as follows. In each period one agent is randomly
selected to change his behavior.4 That agent then will receive (possibly partial) information
about the current state of play, i.e. the vector of actions currently chosen by each agent.
Based on this information the agent responds by choosing an action, according to some
(noisy) best-response rule. That is, with some probability the agent chooses a best response
against the current configuration of play, but with some probability he chooses some other
action. The realization of that action then determines the next period’s configuration of play;
again an agent is chosen (with replacement) and so forth. The key idea of our model is to
”decompose” the simultaneous choice of classical game-theory (where agents form conjectures
about each others beliefs) into a dynamic adjustment process.

As in classical game-theory, some features of the approach model are mainly technical,
while others are of substantive importance. One of the technical assumptions pertains to
selecting exactly one agent in each period. This does not imply that agents cannot change
their behavior ”quickly”. After all, periods between revisions can be arbitrarily small. The
informational implication of this assumption, however, is substantial. That is, when revising
their actions, agents base their actions on their information about the current state of the
dynamic system. This information may be complete (i.e. agents observe the complete current
state of play), partial (i.e. they may only receive information about some agents, i.e. their
”neighbors” on some network structure), or noisy (i.e. information may come in the form
of polls). How this informational structure is modeled may have important consequences on
the behavior of the system.

Among the substantive assumptions, perhaps the most important pertains to bounded

4We focus here on a discrete time process. Equivalently, we could consider continuous time formulations
where the time between revisions is exponentially distributed.

2

330

rationality. First, agents are assumed to be myopic. They optimize conditional on the current
behavior in the population without anticipating the future strategic consequences of their
actions. Agents are not assumed to believe that other actors reason in the same way as they
do, or even that they have the same payoff function. Indeed, they do not expect that their
action may influence the future decisions of other participants. Agents simply base their
choice on what action maximizes their current payoff.

Second, agents are assumed to respond to incentives, but not perfectly. That is,
agents behavior is characterized by noisy decision making. While the main motivation for
this assumption is technical5, it has a plausible foundation in the random utility model due
to McFadden (1973).6 This approach seems especially appropriate in models of decision
situations where the perceived costs and benefits may vary over time. Finally, we are mainly
interested in applications to mass behavior such as collective action problems or conventions.
We will therfore focus on large-N approximations of the induced Markov process.

In this paper we derive the closed form solution for the paradigmatic case of coor-
dination 2 × 2 games7. We also show that important phenomena are missed if attention is
exclusively focused on the case of vanishing noise. First, spontaneous coordination is possible
for substantial noise levels. Second, whether coordination occurs depends on the product
of the incentives generated by the payoff matrix and an incentive responsiveness parame-
ter that captures the noise in the system. If the product is below a critical level, players
will not coordinate. Rather, the limiting distribution will be unimodal. If this product is
above a critical level, the stationary distribution will be bimodal with both peaks close to
the two Nash-equilibria and the higher peak associated with the risk-dominant equilibrium.
Thus, everything else equal, higher payoff differences would result in higher expected levels
of coordination.

GENERAL MODEL

We consider a large population of players = (with |=| = KN) that is partitioned
into K types. Players interact according to a K-type strategic form game. Players interact
repeatedly with each other according to a model of adaptive play with persistent randomness.
At each point in time each player’s decision gives rise to the population’s configuration of
play. The set of these configurations C then corresponds to a state space of a stochastic
process induced by individual adaptive behavior.

Let Sk be the (finite) number of pure strategies sk
l (l = 1, ..., Sk) for a player of type

k. Further let n(sk
l) be the number of players of type k playing strategy sk

l . Then

n := (n(s1
1), ..., n(s1

S1
), ..., n(sk

l), ..., n(sK
1), ..., n(sK

SK
))

5Together with random selection it ensures that the stochastic process is ergodic.
6Alternatively, agents may be assumed to make a ”mistake” with a fixed probability. See Kandori, Mailath

and Rob (1993) or Young (1993) for details.
7The game is widely used in political science applications, for example in the study of collective action

(e.g. Chong (1991)).

3

331

is a generic configuration of the set C. We allow only for elementary adjustments. That
is, at most one individual of type k can change her behavior at a given time from sk

l to sk
l′ .

Thus from a given state n only states of the form

n′ := (n(s1
1), ..., n(s1

S1
), ..., n(sk

l)− 1, ..., n(sk
l′) + 1, ...n(sK

1), ..., n(sK
SK

))

are accessible.
Transition probabilities P (nn′) are defined by selection and action probabilities. Se-

lection probabilities are defined as follows: in each period t one specific agent out of KN is
randomly chosen with probability 1/(KN).8 The agent then looks at the current configura-
tion n of actions in the population and adjusts his action according to a given behavioral rule.
During the next period, again a player (perhaps the same) is chosen at random, and so on.
Given the current configuration, an actor will then probabilistically adjust his participation
behavior to improve his payoff.

Let pβ(sk
l |n) denote the conditional probability that in the next period an agent will

play strategy sk
l given that the current configuration of play is n. Specifically, we assume

log-logistic response rules for all agents:

pβ(sk
l |n) =

exp[βu(sk
l ;n)]∑

sk
l′

exp[βu(sk
l′ ;n)]

.

This captures the assumption that the pair-wise probability ratios of choosing actions are
proportional to the respective pay-off differences. The log-linear choice model is closely con-
nected to the best-response correspondence. The parameter β formally captures the degree to
which the deterministic component of utility (given by the payoff matrix) determines choice.
A low β corresponds to the case where a decision is not much influenced by the incentives
specified in the model. For β = 0 choice is completely random. That is, for all possible
configurations, the agent will play each action with equal probability. For β →∞, log-linear
choice converges to a distribution that puts positive probability only on best-responses to n.

Action and selection probabilities define a (regular) Markov chain with a unique
limiting distribution π that satisfies the global balance conditions π = πP. In general, global
balance equations cannot be solved in closed form. However, for the case where a k-player
game has a potential F (n) (Monderer and Shapley (1996)), Blume (1997) has shown that
the limiting distribitution satisfies a stronger property, the detailed balance condition.

P (nn′)π(n) = P (n′n)π(n′)

We then immediately have the following result:

Theorem 1 Let {n[1],,n[j}, ...n[m]} be a sequence of configurations of length m. For
log-logistic adjustment rule in games with a potential stationary distributions are of the form

π(n[m]) =
m−1∏
j=1

P (n[j],n[j + 1])

P (n[j + 1],n[j])
π(n[1]).

8For simplicity, we assume that revisions are made each period. All results, however, continue to hold in
continuous time when the time between revisions is exponentially distributed.

4

332

2x2 COORDINATION GAMES WITH RANDOM GLOBAL MATCHING

We now apply this approach to the paradigmatic case of coordination problems: 2×2
coordination game with random global matching. So, consider a symmetric 2×2 games with
payoff matrix

M =

(
u11 u12

u21 u22

)
.

We denote the top/left action by s1, the bottom/right action by s2. Then, for random global
matching, a player i’s total payoff from a configuration n is given as

ui(n) :=
∑

i′∈=\{i}

1

2N − 1
uii′

It can be easily seen that the following matrix F constitutes a potential function for the
game M .

F =

(
3u11+u12−3u21−u22

4
−u11+u12+u21−u22

4
−u11+u12+u21−u22

4
−u11−3u12+u21+3u22

4

)
By defining

J =
u11 − u12 − u21 + u22

2
and h =

u11 + u12 − u21 − u22

4

we can rewrite F as9

F =

(
J
2

+ 2h −J
2

−J
2

J
2
− 2h

)
Further, if F (·) exists and is symmetric for a 2 × 2 game we can easily define a potential
function F (·) for any finite network game (Blume (1997)). Thus, we can apply Theorem 1
to derive the limiting distribution.

Since, n = (n(s1), n(s2)), each configuration is uniquely determined by n(s1)−n(s2)
2

which we abbreviate by n. By a slight abuse of notation, we also refer to each state by n,
and write n + 1 for n′ = (n(s1) + 1, n(s2) − 1) and n − 1 if n′ = (n(s1) − 1, n(s2) + 1). Let
ps(n) denote the (selection) probability of chosing a player using action s = s1, s2 in state n.
Then

ps1(n) =
n(s1)

2N
=

N + n

2N
and ps2(n) =

n(s2)

2N
=

2N − n(s1)

2N
=

N − n

2N

9In coordination games, i.e. u11 > u21, u22 > u12, u11 ≥ u22, these parameters have a natural interpreta-
tion. The parameter +J measures the benefit from coordinating. The parameter h indicates which of the
two equilibria is risk-dominant. Since in coordination games we have J > 0, the argmax set of F (·) depends
on h. If h > 0, then (s1, s1) is risk-dominant. If h < 0, (s2, s2) is risk-dominant

5

333

We will now apply Theorem 1 to explicitly calculate π(n).10. First, using F (.) we have

πn

πn−1

=
P (n− 1, n)

P (n, n− 1)
=

=
ps2(n− 1)

ps1(n)

exp[β(n(s1)−1
2N−1

u11 + 2N−1−(n(s1)−1)
2N−1

u12)]

exp[β(n(s1)−1
2N−1

u21 + 2N−1−(n(s1)−1)
2N−1

u22)]

=
ps2(n− 1)

ps1(n)

exp[β(n(s1)−1
2N−1

(J
2

+ 2h) + n(s2)
2N−1

(−J
2
))]

exp[β(n(s1)−1
2N−1

(−J
2
) + n(s2)

2N−1
(J

2
− 2h))]

=
n(s2) + 1

n(s1)

exp[β(n(s1)−1
2N−1

2h + n(s1)−n(s2)−1
2N−1

J
2
)]

exp[β(n(s1)−n(s2)−1
2N−1

(−J
2
)− n(s2)

2N−1
(2h))]

=
N − n + 1

N + n
exp[β(

n(s1)− n(s2)− 1

2N − 1
J + 2h)]

=
N − n + 1

N + n
exp[β(

2n− 1

2N − 1
J + 2h)]

=
N − n + 1

N + n
exp[β(

n

2N − 1
2J − 1

2N − 1
J + 2h)]

=
N − n + 1

N + n
exp[β(2nJ̃ − J̃ + 2h)]

where J̃ = 1
2N−1

J . Now, using Theorem 1, we can derive πn for each n with 1 ≤ n ≤ N .11

πn = π0

n∏
i=1

N − i + 1

N + i
exp[β(2iJ̃ − J̃ + 2h)] =

= π0
N · (N − 1) · · · (N − (n− 1))

(N + 1) · (N + 2) · · · (N + n)
exp[β(

n∑
i=1

2iJ̃ − nJ̃ + 2hn)]

= π0
N !/(N − n)!

(N + n)!/N !
exp[β((

1

2
n2 +

1

2
n)2J̃ − nJ̃ + 2hn)]

= π0 exp[β(n2J̃ + 2hn) + ln(
(N !)2

(N + n)!(N − n)!
)]

We now have the following result.

Proposition 1 For N sufficiently large, the most likely state is at n∗, with:
- n∗ > 0 if h > 0
- n∗ < 0 if h < 0

Proof.
Consider the function f : [−N + 1, N] → R given by

f (x) =
N − x + 1

N + x
exp

[
β

(
2x− 1

2N − 1
J + 2h

)]
10The case of uniform, global matching corresponds to a two-state model with a homogenous population

which is well-known in the statistical mechanics literature (e.g. Weidlich (1991)).
11The case of −N ≤ n ≤ −1 is completely analogous and thus omittted.

6

334

Note that

df(x)

dx
= exp

[
β

(
2x− 1

2N − 1
J + 2h

)]
1

(N + x)2 (2N − 1)

1

2βJ

(
−x2 + x +

(
1− 2

βJ

)
N2 + N +

1

2βJ

)
To determine the sign of df(x)

dx
, it is sufficient to determine the sign of

−x2 + x +

(
1− 2

βJ

)
N2 + N +

1

2βJ

which we denote by h(x). Also, denote by b :=
1

2
βJ .

We consider 3 cases.
Case 1) b < 1. Observe that h has a maximum at x∗ = 1

2
, which corresponds to

h(
1

2
) =

1

4
+

(
1− 2

βJ

)
N2 + N +

1

2βJ

Since 1− 2
βJ

< 0, it follows that, for large N :

h(x) ≤ h

(
1

2

)
< 0

for all x ∈ [−N + 1, N]. This implies that f decreases from

f(−N + 1) = 2N exp [β (−J + 2h)] > 1

to

f(N) =
1

2N
exp [β (J + 2h)] < 1

We conclude that πn has a unique maximum at n∗, with f(n∗) = 1. Moreover, we have:
a) if h > 0, then n∗ > 0, since f (0) = N+1

N
exp

[
β

(
− 1

2N−1
J + 2h

)]
> 1 for large N .

b) if h < 0, then n∗ < 0, since f (0) = N+1
N

exp
[
β

(
− 1

2N−1
J + 2h

)]
< 1 for large N .

Case 2) b = 1. In this case

h(x) = −x2 + x + N +
1

4

The equation h(x) = 0 has two real and distinct solutions, which we denote by x1 and x2,
given by:

x1 =
1−

√
∆

2
and x2 =

1 +
√

∆

2

where ∆ = 1 + 4
(
N + 1

4

)
. Note that −N + 1 < x1 < 0 < x2 < N . We summarize the

behavior of f in Table 1.
As N →∞, f(x1) → exp (β2h) and f(x2) → exp (β2h).
a) If h > 0, then, for large N , both f(x1) > 1 and f(x2) > 1, which together with

f(−N + 1) > 1 and f(N) < 1 imply that πn has a unique max at n∗, where n∗ > 0.

7

335

Table 1: Behavior of f in Case 2
x −N + 1............x1............x2........N
f(x) f(−N + 1) ↘ f(x1) ↗ f(x2) ↘ f(N)

Table 2: Behavior of f in Case 3
x −N + 1............x1............x2........N
f(x) f(−N + 1) ↘ f(x1) ↗ f(x2) ↘ f(N)

b) If h < 0, then, for large N , both f(x1) < 1 and f(x2) < 1, which together with
f(−N + 1) > 1 and f(N) < 1 imply that πn has a unique max at n∗, where n∗ < 0.
Case 3) b > 1. The equation h(x) = 0 has two real and distinct solutions, which we denote
by x1 and x2 given by:

x1 =
1−

√
∆

2
and x2 =

1 +
√

∆

2
where

∆ = 1 + 4

[(
1− 2

βJ

)
N2 + N +

1

2βJ

]
We summarize the behavior of f in Table 2.

As N →∞,

f (x1) →
1 +

√
1− 2

βJ

1−
√

1− 2
βJ

exp

[
β

(
−

√
1− 2

βJ
J + 2h

)]
and

f (x2) →
1−

√
1− 2

βJ

1 +
√

1− 2
βJ

exp

[
β

(√
1− 2

βJ
J + 2h

)]
Let’s denote by

a0 :=
1

2

βJ

√
1− 2

βJ
− log

1 +
√

1− 2
βJ

1−
√

1− 2
βJ

and by

a := βh

Observe that f (x1) < 1 is equivalent to a < a0, and f (x2) < 1 is equivalent to a < −a0.
Depending on the values of a, we split our analysis into 3 subcases:
Subcase 3A). If |a| < a0 then, for large N , f (x1) < 1 and f (x2) > 1, which together
with f(−N + 1) > 1 and f(N) < 1 imply that πn has two maxima at n∗

1 and n∗
2, with

n∗
1 < x1 < 0 < x2 < n∗

2, and one minimum at n∗
3, with x1 < n∗

3 < x2. To determine the
global maximum, we consider 2 subcases:

1) h > 0. Note that

f (0) =
N + 1

N
exp

[
β

(
−1

2N − 1
J + 2h

)]
→ exp (2βh) > 1

8

336

Table 3: Extrema of πn for different parameter values
b < 1 b = 1 b > 1

|a| < ao 1 maximum 1 maximum 2 maxima, 1 minimum
|a| = ao 1 maximum 1 maximum 2 maxima, 1 minimum
|a| > ao 1 maximum 1 maximum 1 maximum

so the minimum is at n∗
3 < 0. Using this fact, we can write:

πn∗
2
≥ π−n∗

1
= π0

(N !)2

(N + n∗
1)! (N − n∗

1)!
exp

[
β

(
(n∗

1)
2

˜

J − 2hn∗
1

)]
= πn∗

1
exp (−β4hn∗

1) > πn∗
1

so the global max is at n∗
2 > 0.

2) h < 0. Note that

f (0) =
N + 1

N
exp

[
β

(
−1

2N − 1
J + 2h

)]
→ exp (2βh) < 1

so the min is at n∗
3 > 0. Using this fact, we can write:

πn∗
1
≥ π−n∗

2
= π0

(N !)2

(N + n∗
2)! (N − n∗

2)!
exp

[
β

(
(n∗

2)
2

˜

J − 2hn∗
2

)]
= πn∗

2
exp (−β4hn∗

2) > πn∗
2

so the global max is at n∗
1 < 0.

Subcase 3B) If |a| > a0 then, for large N , f(x1) > 1, f(x2) > 1 or f(x1) < 1, f(x2) < 1. In
both cases, πn has a unique max at n∗, with f(n∗) = 1. Note that:

- if a > a0, that is h > 0, the global maximum is at n∗ > 0
- if a < −a0, that is h < 0, the global maximum is at n∗ < 0.

Subcase 3C) Finally |a| = a0. First consider a = a0. Then f(x1) → 1 and f(2) > 1 (for
large N). We can show that f(x1) is increasing in N , and since f(x1) → 1, we necessarily
have f(x1) < 1, for sufficiently large N . These observations, together with f(−N + 1) > 1
and f(N) < 1, imply that πn has two maxima and one minimum.
The second case a = −a0 is similar i.e. πn has two maxima and one minimum.
Moreover, we can prove the following (by analogy with subcase 3A):

- if a = a0, that is h > 0, the global maximum is at n∗ > 0
- if a = −a0, that is h < 0, the global maximum is at n∗ < 0. QED

We summarize the results in Table 3.
Of course, we can also derive the stochastically stable states for coordination games.

Assume first that h > 0. As β → ∞, we have b → ∞ and a < a0 (actually we can show
that (a − a0) → −∞) so we are in case 3A from above. But in this case we know that the
global maximum is at n∗

2, with x2 < n∗
2 < N . Since, as β →∞, f (x2) →∞ and f (N) → 1

from below, it must be that n∗
2 → N . The case h < 0 is similar, i.e. the global maximum

n∗
1 → −N . That is, in the limit, all players are expected to coordinate on the risk-dominant

equilibrium.

9

337

Figure 1: As a increases, the mode shifts towards N = 80

However, by using Table 3 we can also identify the qualitative features of the limiting
distribution for substantial noise. In the case of b = 1

2
βJ < 1, the limiting distribution is

unimodal and coordination on one of the pure Nash-equilibria does not occur. For a = 0 the
mode is at state n = 0, but shifts towards n = N for increasing a i.e. eveybody coordinating
on s1. This is illustrated in Figure 1. We note that for a = 0, the distribution has a peak at
n = 0, but as we increase a (by increasing h) the peak shifts towards n = 80. Also we note
that for high values of a, most of the distribution mass is concentrated around the mode.
That is, most of the players are expected to play the risk-dominant strategy.

At b = 1
2
βJ > 1, on the other hand, the limiting distribution is bimodal with both

modes close to the extremes. The most likely states are those where almost all players play
the same action. We refer to this phenomenon as spontaneous coordination. Note that the
global maximum depends on a (more specifically depends on h) and is close to the risk-
dominant equilibrium. This is illustrated in Figure 2. The plotted distribution is bi-modal,
with the highest peak close to N = 80. We note that for high values of J (benefit from
coordinating), most of the distribution mass is concentrated around the highest peak, so the
players will coordinate on the risk-dominant strategy, which in this example is s1.

Coordination is thus not a limit phenomenon, but may emerge even if individual
choice is characterized by substantial noise. For high noise levels (β close to 0) spontaneous
coordination will emerge for sufficiently high payoff differences between the coordinated and
miscoordinated case captured by parameter J . This can be clearly seen in Figure 3: even
though β is close to 0 (in our example we set β = 1.7), increasing J determines a shift of
the highest peak towards the risk-dominant strategy. The issue of risk dominance captured
by the parameter h is of secondary importance. It only determines which state is more
likely on average. This insight is hidden in the double-limit analyses, since an increase in
β simultaneously changes both parameters. One could imagine to test this model using
experimental data. Then our model would predict that for low levels of J coordination will
not be present, but will suddenly emerge as we increase the benefits from coordinating.

10

338

Figure 2: Highest peak is close to N = 80

Figure 3: Increasing J shifts the mode towards the risk-dominant strategy

11

339

CONCLUSION

In this paper we study large potential games with global random matching. This
approach allows us to analyze coordination even if individual choice behavior exhibits sub-
stantial levels of noise. The usual selection results (e.g. Blume (1993)) are derived as a
corollary. For the case of many actors we derive a simple closed form representation of the
unique stationary distribution. We show that coordination is not a limited phenomenon,
but may occur even for substantial noise levels, depending on the relative benefits from
coordinating as specified by the payoff matrix.

REFERENCES

Bergin, James, and Barton l. Lipman. 1996. “Evolution with State-Dependent Mutations.”
Econometrica 64(4):943-956.

Blume, Lawrence E. 1993. “The Statistical Mechanics of Strategic Interaction”. Games and
Economic Behavior 4:387-424.

Blume, Larry. 1995. “The Statistical Mechanics of Best-Response Strategy Revision.”
Games and Economic Behavior 11: 111-45.

Blume, Lawrence E. 1997. “Population Games”. In W. Brian Arthur, Steven N. Durlauf, and
David A. Lane, eds. The Economy as an Evolving Complex System II. Reading: Addison-
Wesley.

Chong, Dennis. 1991. Collective Action and the Civil Rights Movement. Chicago: Univer-
sity of Chicago Press.

Foster, Dean, and H. Peyton Young. 1990. ”Stochastic Evolutionary Game Dynamics”.
Theoretical Population Biology 38: 219-232.

Fudenberg, Drew, and David K. Levine. 1998. The Theory of Learning in Games. Cam-
bridge, Mass.: MIT Press.

Kandori, Michiro, George Mailath, and Raffael Rob. 1993. ”Learning, Mutation, and Long-
Run Equilibria in Games.” Econometrica 61:29-56.

McFadden, David. 1973. “Conditional Logit Analysis of Qualitative Choice Behavior.” in
P. Zarembka, ed., Frontiers in Econometrics. New York: Academic Press.

12

340

Monderer, Dov, and Lloyd Shapley. 1996. ”Potential Games.” Games and Economic Be-
havior 7:62-91.

Weibull, Jorgen W. 1997. Evolutionary Game Theory. Cambridge: The MIT Press.

Weidlich Wolfgang. 1991. ”Physics and Social Science - The Approach of Synergetics”.
Physics Reports 204(1):1-163.

Young, H. Peyton. 1993. “The Evolution of Conventions”. Econometrica 61:57-84.

Young, H. Peyton. 1998. Individual Strategy and Social Structure. Princeton: Princeton
University Press.

13

341

342

Saturday, November 17, 2007

Social Simulation Applications
Parallel Track I

Social Interaction
and Cognition

LEGAL AGENTS: AGENT-BASED MODELING OF DISPUTE RESOLUTION

M. T. K. KOEHLER,* George Mason University-Center for Social Complexity

ABSTRACT

In 1983 Cover introduced the terms jurisgenerative and jurispathic to the legal
community. These terms describe particular styles of judicial decision-making.
Jurisgenerative judicial decisions closely resemble mediation. When a judge attempts to
create a jurisgenerative result they craft a decision that takes into account both sides and
thus create a novel outcome or legal theory. When a judge follows a jurispathic approach
they will find the plaintiff or defendant to be the entire winner and, in effect, kill a legal
line of reasoning. The author is not aware of any attempt to systematically understand
the utility of one judicial decision-making method over another. Presented in this paper
is an agent-based model that explores the effects of judicial decision-making on a
population of agents trying to extract resources from the environment. When agents have
a dispute about which strategy to use they “sue” each other. The decision method
(jurispathic or jurisgenerative) and the amount of information the judge has about both
the strategies used by the agents as well as the global optimal strategy is varied. Finally,
agents may circumvent the trial altogether and settle the dispute with a wealth transfer.
The likelihood of settlement is a function of local precedent from other suits and the
settling agent’s wealth. In this way very successful agents can maintain their strategy by
paying a “fee” rather than risk a trial. The paper will conclude with a description of next
steps and a brief discussion of the use of agent-based modeling for jurisprudential
research.

INTRODUCTION

Laws pervade all aspects of our lives. They are an integral part of our social system—
they shape our actions as individuals and as groups. Yet the legal system is not above us. The
laws are made and interpreted by us and, therefore, are subject to many of the same dynamics.
The pressures of a static versus a dynamic legal system are perhaps some of the most interesting.
A legal system that does not change cannot continue to be relevant and function well. However,
a legal system that changes too frequently will be impossible to understand and will increase
uncertainty within society to untenable levels. This paper begins to explore the effect of
judicial behavior on these dynamics.

In 1983 Cover introduced the terms jurisgenerative and jurispathic judicial decision-

making and opened an extremely interesting dialogue in the legal community (Cover 1983).
Jurispathic judicial decision-making is the notion that courts “kill” a line of legal reasoning when
a winner and looser are chosen in a case. This can effectively end the line of legal reasoning
presented by the losing side. This is especially true in instances that involve alternative
meanings to a single law (Henderson 1991). At times, this is seen as necessary because “noise”
will tend to build up within a legal system. As laws move through time they have a tendency to
evolve new and different meanings, especially through spatial diffusion into various

* Corresponding author address: Matthew Koehler, 7515 Colshire Dr., MailStop H305, McLean, VA 22102; e-mail:

mkoehler@gmu.edu.

347

communities. These time-generated meanings will create noise, uncertainty, and confusion
within the legal system, it is here the courts feel a need to perform jurispathic pruning (Juarrero-
Roque 1991). This is also important from an economic perspective as increasing the uncertainty
of a system may also increase the transaction costs associated with doing business within it.

Conversely, Jurisgenerative operations generate legal meanings. This can occur with or

without control or direction, potentially creating anarchy (Kahn 1989). A jurisgenerative
outcome synthesizes the legal solutions from the alternative legal perspectives raised before the
court by the interested parties. This solution takes into account the needs, positions,
perspectives, and so on of all parties before the court. Though one party may leave with more of
the “legal pie” than the rest, no legal perspective is completely “killed” in the procedure. In this
way, jurisgenerative decision-making has a very mediation-like feel to it. The problem, of
course, is that the parties cannot necessarily count on an outcome driven by precedence (aspects
of this topic were explored in earlier work by Isaac Dilanni (Dilanni 2006), which explored the
evolution of common (judge made) law). This may tend to increase transaction costs within the
system. However, there are times where both parties do have interests that should be taken into
account during judicial review—custody disputes are perhaps a good example.

To my knowledge these ideas of judicial decision-making have not be examined

systematically to determine their potential effects on the “fitness” of society. The intuition is as
follows: A population of evolving agents should converge on an optimal resources extraction
strategy (in the model this is essentially pattern matching, optimal means an agent has the list of
numbers as the environment) for their local environment at some particular rate. If they are
“told” to use some other resource extraction strategy it may change the evolutionary rate of
convergence. If the new resource extraction strategy is imposed with no knowledge of or regard
to the agent’s initial extraction strategy or the resource availability pattern, then it should have an
effect similar to massive semi-random mutation and increase the time required to converge on
the optimal resource extraction strategy. If the new resource extraction pattern is imposed with
some knowledge of or regard to the fitness of the agent’s initial extraction strategy then it should
have the effect of large scale, pointed selection and reproduction creating more optimal resource
extraction strategies, thus lowering the time required to converge on the optimal resource
extraction strategy.

THE MODEL

The landscape

The model that was used in this examination was created using NetLogo 3.1 (Wilensky
1999). This model utilizes agents living on a torus landscape and extracting resources. Agents
will change their extraction strategy only by judicial edict. In the homogeneous environment,
resources are available to agents in the following pattern: 1, 2, 3, 4, 5. Finally, patches are
instantiated with two variables penalties-here and mean-penalties. These two variables are used
to keep track of local penalties imposed on defendants that lose at trial. As will be discussed
infra this value is used to determine settlement offers before the trial commences.

Initialization of the agents

Agents are created as a heterogeneous population with 1000 members. Initially they are

randomly placed on the torus. Each agent is given a random metabolic rate which is a random

348

number drawn from a normal-distribution that is unique to each agent. The metabolism level is
drawn every time step, in this way agents have a heterogeneous metabolic rate. Agents are also
given a “de minimis” level for damages that they suffer during the model run. Damages that are
less than their de minimis level are not pursued via trial. Each agent also starts with a random
amount of resources drawn from a random uniform distribution from 0 to 99. All agents also
start with an initial feeling that they have a 50% chance of winning at trial as either the plaintiff
or defendant. Finally, each agent is given a resource extraction strategy. This is simply a list of
5 numbers, each number being between 1 and 5 (uniformly distributed).

Model Runtime Procedures

Model runtime procedures are really quite simple. Patches are asked to calculate their

mean penalties if any penalties have been doled out on them. Then the agents that are not
actively engaged in a suit are asked to update their “wealth” based upon their metabolism and
resource extraction strategy, move, and then interact with other agents that are co-located with
them. Finally, data is collected, the clock is iterated, and output is written to a file.

Updating agent wealth

Agent wealth is a function of their resource extraction strategy and their metabolism

(settlement and trials will also affect agent resources, see infra). Equation 1 is the general
income function:

!

wealth
t
= wealth

t"1 + income "metabolism . Eq. 1

Income is a function of the agent’s extraction strategy and is determined in the following
way: Each position in the agent’s extraction strategy is compared to the same position in the
“environmental availability strategy.” If the agent’s strategy number matches that of the
environment they are given that amount of wealth. If the agent’s strategy number is less than the
environment the agent is penalized by 2 * the difference; if, however, the agent’s strategy
number is more than that of the environment the agent is given .5 * the difference. Equation 2
describes this system:

5

1

(0)

2() (0)

0.5() (0)

an en an

n en an en an

n

an en en an

s iff s s

income x s s iff s s

s s iff s s
=

= ! ="
#

= = ! ! ! >$
#= ! ! <%

& , Eq. 2

where san is the strategy of the agent at position n, sen is the strategy of the environment at
position n. In this way agents have an income that will range from positive 15 to -20. As
mentioned supra, agent metabolism is simply a random variable drawn from a normal
distribution with a mean and standard deviation that is unique to the agent.

After an agent has updated its wealth it moves to a new location. The movement

algorithm that the agents use is very simple. Specifically, agents set their heading equal to their
current heading plus a random jitter drawn form a normal distribution with a mean of 0 and a
standard deviation of 10. Finally, the agents move forward one unit. Upon completion of their
movement the agents interact with another agent if there is another agent in their immediate
vicinity. Interaction begins by updating an agent’s feelings of their probability of winning if they

349

go to trial. This is a function of their current feelings on the matter and how those feelings relate
to the probability associated with the area in which they find themselves. First, the agent sets
their internal win probability equal to the number of times they have won divided by the number
of times they went to trial. Then if that value is less than the probability of win in their area they
increase their probability by half the difference between the two numbers.

Once this update is complete the agent looks for a neighbor agent in the immediate

vicinity that is not involved in a suit and establishes them as a partner. Once the agent chooses a
partner there is a 1/3 chance that the partnership will lead to some level of damages. Damages
are a function of the difference in strategy between the two agents—simply the sum of the
absolute value of the difference between the two strategies at each position. If damages occur
the damaged agent compares the size of the damages to their de minimis level. If the damages
are greater than their de minimis level then the agent “files a law suit” against the offending
agent. Once the agent creates a suit the two agents try to settle the suit before it goes to court.
To calculate the settlement and determine if it will end the suit the potential plaintiff and
defendant go through the process outlined in Table 1.

Table 1. The pre-trial process within the model.

Pre-Trial Settlement Steps
1) Calculate the expected value of the damages they will receive if they go to court, this is

determined by multiplying the damages value by the plaintiff’s feeling about their
chances of winning.

2) The defendant agent prepares a settlement value by taking the mean damages value
from the region they are in and multiplying it by 1 - their notions of their chances of
winning at trial. That value then becomes the settlement value.

3) If the settlement value is greater than 25% of the expected value of the damages at trial
and less than the full value of the expected value of the damages at trial that the plaintiff
expects then,

4) The plaintiff checks to determine if their expected damages value minus the settlement
is less than their de minimis value. If it is then the agents settle the lawsuit; if it is not,

5) Then the defendant has the option to double the settlement amount if it has a positive
wealth. The same calculus applies to the plaintiff when trying to determine if they will
accept the second settlement offer.

6) If it does not fall within the 25%-100% range the defendant picks a new value for the
settlement. The new value is drawn from a random uniform ranging from 0 to actual
damages – 1. The same steps as described above hold for the plaintiff’s calculus when
determining whether or not to accept the new offer.

7) Again, if the damages minus the settlement offer is not less than the plaintiff’s de
minimis level then the defendant has the ability to double the offer if they have positive
wealth.

8) If a settlement occurs then the defendant’s wealth is decremented by the settlement
amount and the plaintiff’s wealth is incremented by the settlement amount. No changes
are made to the strategies used by either agent.

If the agents do not settle then they move to trial. What happens at trial depends upon the
judicial decision-making methodology in use and the amount of information that the judge has

350

available to them. As mentioned above, there are two potential methods for judicial decision-
making: jurispathic (where one side wins everything and one side looses everything), and
jurisgenerative (where both sides are seen as having legitimate claims to the outcome of the suit).
There are three levels of information available to the judge: none—meaning the judge makes a
random decision, some—meaning the judge has aggregated information about the strategies
being used by the agents, and total—meaning the judge knows exactly how well the strategies
work at resource extraction in every position. The type of judicial decision-making and the level
of information available are both user defined and not modifiable by the agents.

At trial first a comparison is made of both strategies relative to the ideal strategy (one that

perfectly matches the environmental strategy). This comparison is simply the sum of the
absolute value of the deviation at each position of the strategies from the environmental ideal.
Then a winner is chosen. If the amount of information is none, the winner is chosen at random.
If the decision methodology is jurispathic then the strategy of the winner is given to the loser. If
the methodology is jurisgenerative then the two strategies are blended randomly and given to the
two agents. If some information is known to a jurispathic decision-maker then a winner is
chosen by picking the strategy with the smallest deviation of the environmental optimal. Once
again, the winning strategy is given to the loser. If some information is known to a
jurisgenerative decision-maker then, as before, a winner is chosen based upon the smallest
deviation from environmental optimal; however, this time the strategies are blended. The
winning strategy is used for the 1, 3, 5 positions and the losing strategy is used for the 2 and 4
position. Finally, if a jurispathic or jurisgenerative decision-maker has total information then a
winner is chosen based upon the number of times the strategy has a smaller deviation than the
other with respect to the environmental ideal. If the decision-making process is jurispathic the
winning strategy is then given to the loosing agent. If however, the decision was made
jurisgeneratively, then the strategies are blended based upon each strategy’s deviation from the
environmental ideal by position.

RESULTS

For this initial examination a full factorial design of experiments was used. Testing both

judicial decision-making regimes, all levels of information, and whether or not agents were
allowed to double their initial settlement offer. Each run consisted of 1000 time-steps.
Unfortunately, the same random-seeds were not used for all runs making direct comparisons of
the results among the runs problematic. As discussed supra the environment is relatively harsh
from the perspective of agent wealth accumulation. Figure 1 shows the mean wealth
accumulated by agents over the course of the runs. As can be seen, most agents are unable to
accumulate positive wealth and remain “in debt” over the entire run.

351

FIGURE 1: Mean Agent Accumulated Wealth.

As one would expect, runs that used no judicial decision-making, or judicial decision-
making with no information, produced results with lowest agent wealth accumulation. On the
other hand, runs that used judicial decision-making that included some or complete information
produced runs in which agents were better able to accumulate wealth. Of note in Figure 1, is that
it takes approximately 75 time steps to begin to see the differences. This leads one to
hypothesize that it takes a certain amount of time for the judicial decisions to have an effect,
meaning there needs to be a certain number of decisions so that a certain proportion of agents are
affected before macroscopic effects are seen.

A better view of the relative effect of the judicial decision-making regimes is contained in

Figure 2. This figure depicts the change in the mean agent’s ability to extract resources in a
single time step. Put another way, it is a depiction of how close to the environmental ideal the
average agent is. As can be seen, there appears to be three basic groups: a) Jurisgenerative
decision-making with total or some information, and jurispathic decision-making with some
information; b) Jurispathic decision-making with total information; and c) all other types of
judicial decision-making.

352

FIGURE 2: Mean Accumulation of Wealth per Time Step

As shown in Figure 2, the only regimes that make a difference are those that use some or
total information. When there is a difference it is quite pronounced moving the mean from
approximately zero to more than seven resource units extracted per time step. It is interesting to
note that the best judicial decision-making regime appears to be jurisgenerative with complete
information. However, this is not the case with jurispathic decision-making. Oddly, jurispathic
decision-making with partial information seems to be better than that of jurispathic decision-
making with complete information. Other metrics of interest from the model include total
number of trials and total number of settlements. Figures 3 and 4 show these metrics
respectively.

353

FIGURE 3(a): Mean Trial in Jurisgenerative Regimes

FIGURE 3(b): Mean Trials in Jurispathic Regimes

354

FIGURE 4(a): Jurisgenerative Regime Settlement Rates

FIGURE 4(b): Jurispathic Regime Settlement Rates

355

Figure 3 shows the mean trials for agents under various regimes. As seen in other results
there are three basic groupings. In Figure 3(a) these groups are most obvious, with total
information producing fewer trials than some information. Finally, judicial decision-making that
is random (no information) produces the most trials. Once again it is worthy of note that in the
case of jurispathic decision-making the relative order of total information and some information
is switched, with some information being generally better than total information (see Figure
3(b)).

Figure 4 shows the percentage of settled cases over the course of the runs. Once again

we see three groups divided along the lines of information with the order of partial vs. complete
switched from jurispathic to jurisgenerative decision-making. What is particularly remarkable is
that the settlement rate of the highest performance judicial decision-making (jurisgenerative with
complete information and jurispathic with partial information) begins to converge on realistic
settlement rates. It is estimated that only between 2% and 7% of cases that are filed actually go
to trial (Posner 1998). Both jurisgenerative decision-making with complete information and
jurispathic with partial information begin to reach those values.

CONCLUSION

The current model shows promise as a method to test the utility and effect of judicial

decision-making regimes. Using the system introduced by Axtell and Epstein (Axtell 1994 and
Axtell 2005) to evaluate the empirical substance of the models described in this study, one could
say that it is Level 0, i.e. the code functions properly, and may be beginning to approach Level 1
as it shows some similarity to actual macro-level dynamics, namely settlement dynamics. In
principle it should be possible to move the model firmly to Level 1. Furthermore, there are large
amounts of data available on our legal system, this should make it possible to move, at least parts
of it, to Level 2. It would be a very serious challenge to move into Level 3, however, it may be
possible.

This model represents a first step towards a careful examination of the effects of judicial

decision-making in our legal system. To fully appreciate the effects of jurisgenerative and
jurispathic decisions, and the effects that differing amounts of information will have on these
decisions, the next generation of models must perform much more sophisticated analyses on the
resource extraction strategies of the agents. Transaction costs must be included, as well as the
effects and costs of information and precedence. Only after inclusion of these important features
could an informed study be performed regarding reforms that may be useful to the judicial
decision-making process. Obviously it is impossible to create a decision-making regime with
complete information; therefore, it is particularly intriguing to see results indicating that partial
information in a jurispathic regime is better than complete information in that regime.
Hopefully, this study is a first step in that direction and will help to inform discussions of
jurispathic and jurisgenerative decision-making and to begin to articulate the utility agent-based
modeling could have in jurisprudential study. Given the inroads made by Economics (of
particular interest is Behavioral Law and Economics) and Game Theory, incorporation of agent-
based modeling seems only natural.

356

REFERENCES

Cover, R., 1983, “The Supreme Court, 1982 Term Foreword: Nomos and Narrative,” 97 Harv. L.
Rev. 1, 4.

Henderson, L., 1991, “Authoritarianism and the Rule of Law,” 66 Ind. L. J. 379, 405.

Juarrero-Roque, A., 1991, “Fail-Safe versus Safe-Fail: Suggestions Toward an Evolutionary

Model of Justice,” 69 Tex. L. Rev. 1745, 1771.

Kahn, P., 1989, “Community in Conventional Constitutional Theory,” 99 Yale L. J. 1, 59.

Dilanni, I., 2006, “Evolution and Inefficiency,” Unpublished manuscript obtained from Professor

Axtell, George Mason University—Center for Social Complexity.

Wilensky, U., 1999, NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected

Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

Richard Posner, R., 1998, Economic Analysis of Law, 5th Ed. Aspen Law & Business, New

York, NY.

Axtell, R. and Epstein, J., 1994, “Agent-Based Models: Understanding Our Creations.” Bulletin

of the Santa Fe Institute.

Axtell, R., 2005, “Three Distinct Kinds of Empirically-Relevant Agent-Based Models.” The

Brookings Institution Working Paper.

357

358

AGENT-BASED MODELING OF USABILITY FROM A DISTRIBUTED COGNITIVE
PERSPECTIVE

J. EDEN*, The iSchool, Drexel University

ABSTRACT

Many designers are moving beyond traditional Human Computer Interaction (HCI) views
of design, now viewing design as more than the design of individual products to interact
with in a snapshot of time, and instead designing interactions among people, artifacts, and
information (Saffer, 2006) over dimensions such as time, space, and social structures.
Interaction designs must use some instance of the context of use as the substrate of
evaluation; in many cases, these instances of the context of use are necessarily artificial
(e.g. lab-based usability testing), or without real users (e.g. discount usability evaluation
methods such as Heuristic Evaluation, or the Cognitive Walkthrough). Although much
research and practice has been carried out under the name user-centered design, research
paths that would help close this gulf of consequence for designers may be best called use-
centered design, moving context of use to the front as a more appropriate focus of
analysis (i.e. users are but one subset of actors in the context of use). We propose a path
towards closing this gulf of design consequence by focusing on ways to better foster
reflection-in-action during interaction and user experience design through the use of
computational simulation of both users and contexts of use. This proposed path leverages
and integrates existing research and practice in agent-based modeling and theories of
distributed cognition. An important goal of this paper is to start a dialogue with the
modeling community, and to get feedback on the idea of modeling distributed cognitive
perspectives of contexts of use, as part of the usability engineering process.

Keywords: Distributed Cognition, Usability evaluation, agent-based modeling

INTRODUCTION - GULF OF CONSEQUENCE IN DESIGN

Many designers are moving beyond traditional Human Computer Interaction (HCI) views
of design, now viewing design as more than the design of individual products to interact with in
a snapshot of time, and instead designing interactions among people, artifacts, and information
(Saffer, 2006) over dimensions such as time, space, and social structures. This view of design
goes by many differing names such as Interaction Design, Service Design, and User Experience
Design, but all share the idea that design thinking needs to transcend static (in time, space, and
social dimensions) views of how people, artifacts, and information interact.

A science of design of interactive systems can be seen as differing from many other
(natural) sciences such as physics, chemistry, and mathematics with respect to the substrate of
evaluation; many fields have well understand rules and relations between these rules that can be
used to come to conclusions prior to implementation, whereas interaction designs must use some
instance of the context of use as the substrate of evaluation; in many cases, these instances of the

*Corresponding author email address: Joel Eden, joel.eden@gmail.com

359

context of use are necessarily artificial (e.g. lab-based usability testing), or without real users
(e.g. discount usability evaluation methods such as Heuristic Evaluation, or the Cognitive
Walkthrough).

Making design choices without the ability to evaluate the consequences widens the gulf
between the designer’s model of and the reality of the consequences of these design moves in the
context of use. Although much research and practice has been carried out under the name user-
centered design, research paths that would help close this gulf of consequence for designers may
be best called use-centered design, moving context of use to the front as a more appropriate
focus of analysis (i.e. users are but one subset of actors in the context of use).

We propose a path towards closing this gulf of design consequence by focusing on ways
to better foster reflection-in-action during interaction and user experience design through the use
of computational simulation of both users and contexts of use. This proposed path leverages and
integrates existing research and practice in agent-based modeling and theories of distributed
cognition.

EXTENDING COGNITION BEYOND THE BRAIN

Most design and evaluation methods in the interaction design and usability fields are
grounded in specific theories of cognition. For example, methods may be based on cognitivist
theories, such as the popular Information Processing and Symbol Systems models of cognition,
which place the concept of cognition physically in the human brain. Alternatively, methods may
be grounded in a fundamentally different theoretical perspective, such as post-cognitivist theories
of cognition (e.g. Distributed Cognition, Activity Theory, Situated Cognition), which extend the
view of cognition and the mind beyond the physical boundaries of the human skull.

Although intelligence, cognition, and knowledge are words that are usually associated
with an individual person, and moreover usually that individual’s brain, recent views in the field
of cognitive science (Clark, 1997) are questioning the physical boundary of the human brain as
the boundary for the concept of intelligence, cognition, and knowledge. Knowledge can be
viewed as residing “in the world,” as well as the more commonly held view of knowledge “in the
head.” (Norman, 1993).

Distributed Cognition
Distributed Cognition (Hutchins 1995a; Hollan el al., 2002, Rogers, 1997) is a theory of

cognition that views cognitive functionality as “computation as propagation of representational
state across representation media.” Three main principles of Distributed Cognition as a theory of
cognition which distance it from other cognitive theories are listed below:

• Cognitive processes may be distributed across the members of a social group.

• Cognitive processes may involve coordination between internal and external
(material or environmental) structure.

• Processes may be distributed through time in such a way that the products of
earlier events can transform the nature of later events.

360

(Clark & Chalmers, 1998) makes clear (at least relative to the cognitivist view) why it is
proper to refer to cognition outside of the brain as ‘cognition,’ “If as we confront some task, a
part of the world functions as a process which, were it done in the head, we would have no
hesitation in recognizing as part of the cognitive process, then that part of the world is (so we
claim) part of the cognitive process. Cognitive processes ain’t (all) in the head!” (emphasis
present in original text)

Distributed Cognitive Tasks
Research in Distributed Cognitive Tasks focuses on how differing isomorphic

distributions of information and operations required by an abstract task structure over internal
and external representations effects the resultant usability of a system (Zhang & Norman, 1994;
Zhang, 1997a; Zhang, 1997b). Agent-based modeling can be used to try out many different
‘what if’ scenarios represented by different isomorphs that represent different design alternatives
related to whether or not a human user or a non-human artifact is responsible for accomplishing a
portion of a task.

Distributed Intelligence
Pea discusses ‘Distributed Intelligence’ as the idea that through the use of external

artifacts that have been imbued with intelligence, intelligence is accomplished rather than
possessed (Pea, 1993). Pea ‘problemitizes’ the concept of scaffolding as it has been recently used
to represent too much of a percentage of external learning and activity aids. Pea argues that
‘distributed intelligence’ is a more appropriate term for non-fading scaffolding (humans will
always make use of the external aid) versus fading-scaffolding (learning and activity aids that
will cease to be used once the desired skill or knowledge is learned) (Pea, 2004).

Pea (1993) states, “objects…have become so deeply a part of our consciousness that we
do not notice them. Turned from history into nature, they are invisible, un-‘remarkable’ aspects
of our experiential world.” “These tools literally carry intelligence in them, in that they represent
some individual’s or some community’s decision that the means thus offered should be reified,
made stable, as a quasi-permanent from, for use by others.”

This means that we need to keep questioning our assumptions about what role artifacts

and the environment play in the process of cognition. Pea stresses that educational activities
should focus more on making learners aware of the usefulness of imbuing intelligence into
artifacts; i.e. educating learners in how to notice, construct, and evaluate such intelligent tools,
rather than only focusing on the use of already existing tools. This in a sense is saying that
methods such as the Distributed Cognitive Walkthrough (that aid us in noticing the intelligence,
or lack of it, in the external world) should be used in the educational process of even young
learners.

Distributed Cognition as an Emergentist view of Cognition
Andy Clarks refers to distributed and embodied cognition (Clark, 1997) as an emergentist

view of cognition, in that cognition can be viewed as an emergent phenomena that arises from
the interaction of multiple cognitive resources (i.e. relevant here is the embodied interaction
between external and internal cognitive resources). This emergentist view can be thought of as
contrasting the more Cartesian, or reductionist flavor of cognition typically seen in
characterizations of the cognitivist views of cognitive science; moreover, these reductionist
views are closely related to the foundational views of cognition that underlie existing usability
evaluation techniques such as the Cognitive Walkthrough method. Clark proposes (Clark, 1997)

361

the use of tools and methods from complexity science (i.e. fields related to the study of
emergence) for the study of cognition (when using a distributed and embodied view of
cognition).

PREVIOUS RESEARCH APPLYING RELATED THEORIES TO USABILITY
EVALUATION AND DESIGN

The application of theories of distributed cognition (and related theories) for design and
evaluation of usable systems has primarily been carried out by researchers and practitioners with
much time and education invested in these theories (Hutchins, 1995; Zhang & Norman, 1994;
Zhang, 1997a; Zhang, 1997b). The majority of uses of distributed cognitive principles in system
design and evaluation more closely resemble ethnographic studies (Hutchins, 1995b) than the
type of evaluation typically carried out by interaction design and usability practitioners (e.g.
Cognitive Walkthrough or Heuristic Evaluation) (Rogers, 1997). Moreover, these applications of
distributed cognitive theories therefore require time and education requirements that are cost,
time, and resource prohibitive with typical practitioner resources (Rogers, 1997). The
Information Resources Model (Wright, et al., 1996), a model of HCI related interaction based on
Distributed Cognition “identifies a number of interaction strategies” and discusses how different
“information structures can be used as resources for action.” Although the literature (Wright, et
al., 1996) for this model provides examples of application of Distributed Cognition to design and
evaluation related to HCI, there is no representation of this model as a ‘method’ to be used by
theory-novice or evaluation-novice practitioners; it should be taken as a proof of concept that
Distributed Cognition concepts can be used for the design and evaluation related to HCI (by
researchers educated in Distributed Cognition).

The Distributed Cognitive Walkthrough (DCW) method
The Distributed Cognitive Walkthrough (DCW) method (Eden, 2007) uses concepts from

distributed cognitive theory to view interaction between people and information as transcending
interactions with graphical user interfaces, allowing the DCW method to be useful for evaluation
of design ideas in many areas of interaction design; for example, evaluation of ubiquitous
computing, service design (e.g. Starbucks customer/worker experience), and mathematical
notations (e.g. Newton versus Leibniz Calculus notation).

The DCW is a walkthrough-style usability evaluation method based on theories of
distributed cognition, Distributed Cognition (Hutchins, 1995a; Hollan et al., 2002; Rogers,
1997), Distributed Cognitive Tasks (Zhang & Norman, 1994), Distributed Intelligence (Pea,
1993; Pea 2004), and Embodied Cognition (Clark, 1997). The DCW method is useful for the
identification of potential usability issues related to interaction between people, artifacts, and
information, across dimensions such as time, space, and social structures. The DCW method will
serve two objectives; 1) embodiment of principles of distributed cognitive theory, while also 2)
being practically useful by novices in generating actionable information regarding potential
usability issues.

While methods such as the DCW method guide designers in considering implications of
their design choices from a distributed cognitive perspective, in many cases what it still needed
are tools that allow for “what if” exploration to see non-intuitive implications; this is where
agent-based modeling can be leveraged.

362

ABM FOR THE STUDY OF A DISTRIBUTED COGNITIVE VIEW OF USABILITY

Agent-based modeling to support the study of usability in multi-person and multi-artifact
situations fulfils the need for new types of evaluation that provides timely “talk back” (Schon,
1990) to interaction designers who now realize they are designing for usability in “the wild”
(Hutchins, 1995). There is a large opportunity to leverage tools such as agent based modeling to
try ‘what if’ scenarios to see the results of design changes, without the prohibitive cost of
involving real users (i.e. usability testing).

 What we are modeling - How a Coffee Shop Remembers its Orders
 (Spin off of Hutchins’ How a Cockpit Remembers its Speeds)

Scenarios to be modeled are taken from everyday situations where multiple people
interact with multiple artifacts; for example, the domain of coffee shops, where many different
complicated drink orders must be taken by workers from customers, and these drink orders must
be tracked until the drinks can be made and given to the customer. Figure 1 below shows a
Starbucks coffee cup that has six boxes on the cup where Starbucks workers can write directly on
the cup to represent a specific drink that a customer ordered. The Starbucks workers do in fact
memorize (long term internal memory) the defaults of all of the drinks that can be ordered, but
the interesting point is that the variations on these defaults are marked up in the six boxes on the
cup. Therefore, much of the specific drink information is represented externally, relieving the
Starbucks worker from having to use more error-prone internal cognitive resources; moreover,
the size of the physical cup itself represents the size of the drink ordered, serving as a good
example of how information can be represented in inherent physical constraints of physical
artifacts (i.e. the Starbucks cup does not need a box for drink size, because this information is
inherently represented in the physical size of the cup). Many other popular (i.e. busy) coffee
shops (e.g. Dunkin Donuts and Seattle’s Best Coffee) do not use such externalization of drink
order information, resulting in a higher rate of drink errors, and in many cases requiring
customers to take part in the tracking of whether or not the correct drink is being made as
ordered.

363

Figure 1 Starbucks cup showing boxes that workers mark up to represent different drinks. This
allows the workers to handle more concurrent drink orders than would be possible to keep track
of using only internal cognitive resources.

Figure 2 below shows a ‘cheat sheet’ used by Waffle House restaurant chain grill cooks
that is used in a manner similar to the example of the Starbucks coffee cup. The cheat sheet
shows how grill cooks use different configurations of food condiments to represent large
numbers of complicated, yet similar food orders. These configurations allow the grill cook to be
working on more concurrent orders than would be possible to track using only internal cognitive
resources. The plate itself represents information such as the size or type (e.g. eggs, steak) of the
order, making use of real world inherent physical constraints to represent information, in the
same way that the Starbucks cup itself represents the size of the drink ordered.

364

Figure 2 Waffle House grill cook cheat sheet. Different configurations of condiments placed on
plates represent specific food orders. These configurations allow the grill cook to be working on
more concurrent orders than would be possible to keep track of using only internal cognitive
resources.

365

REFERENCES

Clark, A. (1997) Being There: Putting Brain, Body, and World Together Again, The MIT Press

Clark, A. & Chalmers, D. (1998) The Extended Mind, Analysis, 58.1, 7-19

Eden, J. (2007) The Distributed Cognitive Walkthrough method: A walkthrough-style usability
evaluation method based on theories of distributed cognition, Proceedings of the 2007
Conference on Creativity and Cognition

Hollan, J., Hutchins, E., & Kirsh, D. (2002). Distributed Cognition: Toward a New Foundation
for Human-Computer Interaction Research. In J. M. Carroll (Ed.) Human-Computer
Interaction in the New Millennium. New York: ACM Press Addison Wesley), 2002, pp.
75-94. (Reprinted from ACM Transactions on Computer-Human Interaction 7(2), June
2000.)

Hutchins, E. (1995a): Cognition in the Wild, The MIT Press

Hutchins, E. (1995b). How a cockpit remembers its speed. Cognitive Science, 19, 265288.

Nielsen, J., Mack, R. (editors) (1994) Usability Inspection Methods, John Wiley and Sons

Norman, D. (1990) The Design of Everyday Things, Doubleday

Norman, D. (1993) Things That Make Us Smart, Perseus

Pea, R. D. (1993). Practices of distributed intelligence and designs for education. In G. Salomon
(Ed.). Distributed cognitions. New York: Cambridge University Press, pp. 47-87

Pea, R. D. (2004). The social and technological dimensions of "scaffolding" and related
theoretical concepts for learning, education and human activity, The Journal of the
Learning Sciences, 13 (3)

Pinelle, D., Gutwin, C. (2002) Groupware Walkthrough: Adding context to groupware usability
evaluation, In Proceedings of the SIGCHI conference on Human factors in computing
systems

Polson, P, Lewis, CH, Rieman, J., and Wharton, C. (1992) Cognitive walkthroughs: A method
for theory-based evaluation of user interfaces. In International Journal of Man-Machines
Studies, 36, pp. 741-773.

Rogers, Y. (1997) A brief introduction to Distributed Cognition
Retrieved from http://www.slis.indiana.edu/faculty/yrogers/papers/dcog/dcog-brief-intro.pdf

Saffer, D. (2006) Designing for Interaction, New Riders

Schon, D. (1990). Educating the Reflective Practitioner, Jossey-Bass

366

Wright, P.C., Fields, B. & Harrison, M.D. (1996) Distributed information resources: A new
approach to interaction modeling. In Proceedings of ECCE8: European Conference on
Cognitive Ergonomics, 1996

Zhang, J., Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive
Science, 18, 87-122.

Zhang, J., Norman, D. A. (1995). A representational analysis of numeration systems. Cognition,
57, 271-295.

Zhang, J. (1997a). Distributed representation as a principle for the analysis of cockpit
information displays. International Journal of Aviation Psychology, 7(2), 105-121.

Zhang, J. (1997b). The nature of external representations in problem solving. Cognitive Science,
21(2), 179-217.

367

368

SPY V. SPY: A UTILITY-BASED APPROACH TO AGENT-BASED ADVERSARIAL
REASONING

P. BARRY,* The MITRE Corporation
G. JACYNA, The MITRE Corporation

M. KOEHLER, The MITRE Corporation

ABSTRACT

This paper introduces an agent-based model that utilizes a utility based framework for
agent behavior that represents action propensity based upon the agent’s volatility and the
perception of the current environmental context compared to the agent’s ideal context.
Propensity for an agent to conduct an action is modeled as a logit function. As the
environment changes and events occur around the agent, where they fall on the logit
function will change. If the logit function exceeds a given value the agent will take an
action. Moreover, the threshold that must be exceeded before the agent will take the
aforementioned action is malleable. As events occur the agent may lower the threshold
in an attempt to satisfice (making the best of a bad situation) based upon their perceived
likelihood for success. For example, although a suicide bomber would like to attack a
large crowd, they will attack a small crowd rather than fail completely by being stopped
while looking for a large crowd. We experimented with these dynamics as part of an
agent-based model of a large crowd moving through an entry point. Security personnel
are modeled as are civilians and bombers. As sensors are a critical aspect of the scenario
high resolution sensor simulations were created to determine the appropriate parameter
values to use to create “realistic” sensor performance.

INTRODUCTION

This paper introduces a framework for agent-based behavior that models the propensity

for action based upon the agent’s volatility and the perception of the current environmental
context as compared to the ideal context. The framework is instantiated as an agent-based model
that examines the optimal sensor placement and security-force behaviors to thwart a terrorist
operation. An extensive exploration through a large variety of simulation runs was conducted.
This exploration resulted in avenues for additional simulation as well as the need to explore more
carefully the role of tactics in conjunction with sensor technology in defeating terrorists. As part
of the data analysis, the paper compares the model results to those from a formal equation based
model as described by Kaplan and Kress (Kaplan 2005). Conclusions are drawn as to the
additional value of representing the behavior in the agent-based model.

The construction of the paper is as follows. The concept of activation energy is presented

as a basis for modeling the internal propensity of red agents to attack. Activation energy is then
used as a lens to focus the discussion on satisficing behavior as well as how blue agents might
defeat the red agents. The discussion is actualized in the following section that describes the
simulation framework and presents the results. Implications for additional work and references
close the paper out.

* Corresponding author address: Philip Barry, The MITRE Corporation, 7515 Colshire Drive, Mclean, VA 22102;
e-mail: pbarry@mitre.org

369

Activation Energy

Extending the work done in modeling stability and support operations (Koehler 2004),

we refer to the propensity for an individual to carry out an action as a function of a term called
activation energy. Activation energy is modeled as a logit function, whose general form is
described by Equation 1. If an individual’s activation energy for a given situation exceeds an
endogenous threshold then an action is taken.

 ()
()

()
1

slope k m

Lb Ub Lb
f x

e
! !

+ !
=

+
 (Eq. 1),

where Lb and Ub are the lower and upper bounds of the function respectively. Slope is a
parameter that adjusts the general steepness of the activation energy curve. In this framework,
we suggest that one can view the slope parameter as a proxy for volatility; an agent with a large
slope is considerably more unpredictable than an agent with a smaller slope. The mean of the
function m is used as a proxy to model how close the context must be to the ideal value to
increase activation energy. The values on the x-axis represent k, the average distance of the
actual context parameters from the ideal values as measured in percent. (Negative values of k
indicate that the average of the parameters is “better” than the mean of the activation energy
curve). In this framework distance refers to the geometric distance within this vector space
rather than physical distance in the simulation. It should be noted that we are defining one action
per agent rather than creating a detailed goal hierarchy as other approaches (e.g., Johns 2001).
We assume that a bad actor only has one goal, that of executing some terrorist action.

Figure 1 Illustration of Activation Energy

Activation Energy

0

0.2

0.4

0.6

0.8

1

10
0 80 60 40 20 0

-2
0

-4
0

-6
0

-8
0

-1
00

Percent Away from Ideal

L
ik

e
li

h
o

o
d

 t
o

 A
c

t

Slope = 0.1

Slope = 0.05

Slope = 0.5

Slope = 0.001

Slope = 0.01

370

To illustrate this concept, consider Figure 1. In Figure 1, for all curves, m is set to zero
and the behavior of various values of k are compared at specific slope settings. As the slope
approaches zero, the tendency is for the behavior to linearize (e.g., slope = 0.001 and 0.01). As
the slope increases to 0.05, the volatility of behavior increases and the distinctive “S” shape
shows a consistent increase in activation energy exponentially increasing around 0 and leveling
off as k approaches -100. At slope = 0.5 there is virtually no increase in activation energy until
k = 0 at which time the activation energy approaches 1.

We can also use activation energy as an external indicator of the agent’s tendency for
action. Agents that have sub-threshold but measurable activation energy can be considered to be
“telegraphing” their intention to act. Consider the case of an agent that shows no external
indicators of untoward behavior until the conditions are ripe for action. This agent would be
modeled with a large slope value (e.g., 0.5 in Figure 1). On the other hand, agents with smaller
slope values (e.g., 0.01 in Figure 1) show their intentions and build up to activation much more
slowly.

Representing Satisficing Behavior

Satisficing is a behavior which attempts to achieve at least some minimum level of a

particular variable, but which does not necessarily maximize its value (see generally, Simon
1957). Often satisficing is used within a learning context as an alternative to strict optimization
(Izquierdo 2004). It is reasonable and expected that the agents being modeled would exhibit
satisficing behavior. Consider the example above, where the agent is taking the decision to carry
out the negative action. Only when the agent is directly at the center of a crowded area will the
activation energy be sufficient to trigger an action.

Satisficing is observed where the agent has determined that the optimal combination of

parameters is too restrictive, in other words the allowable distance from the actual context to the
ideal context is too large for activation. This possibility can be shown using figure 1, where the
activation energy is shown to be below the mean until the agent is 100 meters from its target.
When the agent reaches 100 meters from its target the activation energy reaches the mean value
of 0.5. In the case where the activation energy threshold is 1.0, the agent will essentially need to
collocate itself with the target prior to action. However, if the agent satisfices and reduces the
activation energy threshold to 0.8, any distance less than 60 meters would suffice for the agent
(given that the slope of the curve is 0.05).

Satisficing behavior is observed in the model when the agent perceives no other options.

For example, if an agent perceives impending arrest the agent may trigger an explosive device
even if the context is significantly far from optimal. This aspect of behavior is a significant
factor that contributes to the adversarial reasoning. To thwart the undesirable actions of a given
agent, the opposition will attempt to increase the requisite activation energy threshold or increase
the perceived distance between the actual and ideal context variables.

EXPERIMENTAL FRAMEWORK

A simulation was developed to test these concepts using NetLogo 4.0 (Wilensky 1999).
The simulation was designed to model an entrance to a public venue. The entrance is a non-torus
plane 100 pixels high by 500 pixels wide. In the model there are five major regions to the
entrance. Agents are instantiated at the extreme left edge. From here they move to the right into

371

the second region, which is a wide hallway. At the end of the wide hallway the environment
narrows to a region with two “turnstiles.” All agents move through one of the turnstiles and
proceed to the forth area, a narrow hallway. This narrow hallway ends in the final region, the
extreme right side of the environment where all surviving agents are removed from the system.
Figure 2 provides a screen shot that illustrates the model.

Figure 2 General Simulation Setup

The Agents

There are three types of agents in the model: Security, Civilians, and Sensors. Security

agents are generally homogeneous, except that they have different “stations.” Some security
agents are stationed forward, in the middle of the wide hallway; the other security agents are
stationed around the turnstiles. The security agent behaviors are relatively homogenous. If
civilians are within range of the security agent and they have a suspicion level that is greater than
the security threshold then, if there are more than one other security agents around, they will
detain the civilian. All security agents can pursue civilians that fall into that category, save a
small number permanently manning the turnstiles.

Civilian agents are instantiated during runtime. The number created each time-step is

drawn from a random-exponential distribution. Upon instantiation civilians have a 0.005%
chance of becoming either an individual with a gun or a bomb (but not both). If they have a
bomb then they also set a trigger for themselves. This trigger is a value based upon the
activation energy curve (described supra) and if, during the course of the run, their perceptions
of the situation yield a value greater than their trigger they will explode their bomb killing
themselves and some number of people around them. Data are gathered from civilians when
events of interest happen to them. These events include: creation, detainment, first detection and
first detection that increased their suspicion level above the security threshold, suicide bombing,
and anytime they are removed from the simulation.

Passengers and Bad Actors Move Left to
Right Towards Turnstiles

Sensors Sensors Turnstiles Identified Bad Actor

False Alarm

Good Actors

Security Staff

Security Staff

372

The Sensors

Sensors are categorized by one of three types; two types of passive millimeter wave

(MMW), and one type of infrared (IR)1. The sensors are placed in fixed locations about the
environment. The primary purpose of the sensors is the detection and classification of concealed
weapons under a person’s clothing at this public venue. It is often desirable to screen people
from a standoff distance to reduce the chances of long lines or unnecessary crowding. However,
the composition, placement, and tasking of semi-autonomous sensor assets, the extraction and
utilization of actionable information from these systems, and the generation of reasonable
concepts of operations are important problems that have not yet been resolved.

The first stage of this effort involved the development of passive MMW sensor models

that can be used to accurately predict the detection and classification probabilities of concealed
weapons at range. In the MMW band, objects are described by their apparent temperature–a
combination of the actual temperature and the temperature of the reflected background. For a
metallic object, the apparent temperature is basically the background temperature. A passive
MMW imager uses a radiometer (energy detector) to estimate the apparent temperature in a
beam pointed at the object. After accounting for system noise and possible antenna losses, the
effective contrast temperature between an object and its background across each beam can be
determined as a function of the imager aperture size, focal length, detector time-bandwidth
product, weapon size, sky and ground temperatures, and the corresponding weapon emissivities
(the amount an object radiates). The detection probability is determined using the effective
contrast temperature and the number of beams covering the object at a fixed false alarm
probability. A similar procedure is used to determine the classification probabilities for various
weapon sizes and shapes with possibly different material compositions.

The simulation uses these detailed high fidelity models to develop performance curves

that simulate probability of detection (pd) as well as the probability of false alarms (pfa). When
an agent that has a gun or bomb moves through a sensor beam the pd and pfa scaled for distance
from the sensor are provided as evidence. The pd and pfa are considered evidence that
accumulates to increase the suspicion that a given agent is carrying a bomb or a gun. A random
variable modeled possible occlusion from clothes and other travelers; this resulted in situations
where a sensor would not return a “hit” even if a passenger had a bomb or a gun.

EXPERIMENTAL DESIGN

A full factorial design of experiments was used for the initial, exploratory analysis
reported in this paper. As initial testing confirmed that the performance of this system is highly
dependent upon sensor performance and the behavior of the security agents, the experimental
design varied parameters associated with those features. Table 1 presents the specific parameters
and their associated values. Due to the high degree of randomness in the design, each design
point was run 25 times for 5000 time-steps. This gave us a sample size of approximately 70,000
agents per design point, or 3.5 x 108 total agents.

1 Results using IR sensors are not discussed herein.

373

Table 1: Parameter values varied in the initial experiment.

Parameter Name Parameter Values
Sensor Degradation 1, 0.75, 0.5
Security Agent Threshold 0.6, 0.7, 0.8
Civilian-pd 0.012, 0.0125, 0.013

Sensor degradation is a parameter that affects the sensor’s likelihood of detecting an
agent. If the agent is detected then the sensor reports back the appropriate pd to the Bayesian
Updater (BU). As described supra, the BU creates a “suspicion” score for each agent detected
by the sensors. The BU assumes independence of observations to manage the combinatorial
complexity that would result from determining a myriad of conditional probabilities, similar to
an approach taken in a recent technical report from General Electric (Skatter 2005). The security
agent set a suspicion level threshold that sets the trigger when the security agent will attempt to
detain a civilian agent. Finally, the Civilian-pd models the probability of detection that is passed
to the BU as evidence for determining the suspicion level of a civilian (an agent without a bomb
or a gun).

The simulation introduced several modeling constructs. Specifically, sensor degradation

was defined as an abstract concept to scale how well the sensors deal with very noisy
environments and to specifically model phenomena such as sensor occlusion. Varying the
security agent threshold allowed an exploration of the effects of the faith the security agents have
in their sensor information. The higher the threshold the higher the necessary information
required before a suspicious individual will be detained. Finally, varying the civilian-pd provide
a path explore the effects of changes to the sensor fusion algorithm. When civilian-pd values are
greater than 0.01 the suspicion level of a civilian will increase. At values of about 0.02 this
growth is very slight but non-linear. Therefore, if the civilian chooses a path that leads them
through many sensors or causes them to linger in a sensor field they eventually may have a
suspicion score that is greater than the security agents’ threshold for action. The results of this
experiment are presented, infra.

SIMULATION RESULTS

Overall, the sensor suite was able to identify roughly 96% of the bombs and guns that
were being carried into the venue. There was a larger variance for detecting bombs versus guns,
but both performed reasonably well considering that the scalar was dropped to 50%, meaning
that in a given time-step there was only a 50% probability that a sensor would register a hit on an
agent who had a gun or bomb. Table 2 provides a summary of the simulation results.

As part of the experiment we investigated how increasing the likelihood that “innocent”

agents would be incorrectly determined to have a bomb or gun by virtue of being in the sensor’s
range when an actual threat was detected. For a very small increase (<0.5%), the likelihood of
the “innocent” agent being falsely detained rose significantly. This is seen as the probability of
false detainment that has a mean of 0.648, but a large standard deviation of .466 and a range of
values of 0.991.

374

Table 2: Result Summary

Variable Mean StDev Minimum Maximum Range
P(Detect_Bomb) 0.955 0.023 0.906 0.993 0.086
P(Detect_Gun) 0.968 0.013 0.944 0.993 0.049
P(Miss_Gun_Bomb) 0.040 0.013 0.010 0.068 0.058
P(Correct Detainment) 0.960 0.013 0.932 0.990 0.058
P(False Detainment) 0.648 0.466 0.000 0.991 0.991

Although the simulation was highly stylized, some clear areas of optimality were

observed. Consider the probability of correct detainment shown in Figure 3. At low suspicion
levels (meaning more likely to detain) and low scalar (meaning less sensor hits) the probability
of correct detainment falls significantly. This trend is even more pronounced in the diagram
illustrating the probability for correctly detecting a bomb. Interestingly enough, while this area
has non-optimal performance for the probability of detecting a bomb, there are other apparent
areas of even poorer performance. Similarly, the performance of the probability for missing a
gun or a bomb is non-optimal in this area.

By way of comparison, Kaplan (2005) offers an idealized assessment of the operational

effectiveness of sensors. Specifically, he describes the probability of timely detection given
detection of the device on arrival shown as Equation 2 (Idealized Probability of Timely
Detection Given Detection on Arrival):

Figure 3 Surface Plots: Prob(event) vs. Suspicion Threshold and Scalar

0.8

P(CorrectDetain)

0.94

0.7

0.96

0.98

Suspicion_Threshold0.50
0.75 0.6

1.00scalar

P(CorrectDetain) vs Scalar and Suspicion Threshold

0.8

P(MissGunBomb)

0.02

0.7

0.04

0.06

Suspicion_Threshold0.50
0.75 0.6

1.00scalar

P(MissGunBomb) vs Scalar and Suspicion Threshold

0.8

P(DetectBomb)

0.900

0.925

0.7

0.950

0.975

Suspicion_Threshold0.50
0.75 0.6

1.00scalar

P(DetectBomb) vs Scalar and Suspicion Threshold

0.8

P(DetectGun)

0.94

0.96

0.7

0.98

Suspicion_Threshold0.50
0.75 0.6

1.00scalar

P(DetectGun) vs Scalar and Suspicion Threshold

375

 () ()

2

4

)(| Pr

l

E L

timely arrivalP D D L l e

! " #" #
$ % &% &% &' (' (= > = (Eq. 2),

where L is the distance to the target, l is the distance to detection and E(L) is the mean distance
to the target.

In the simulation setup, the distance to detection was 40 meters and the distance to the
target was 268 meters. Entering these parameters into Equation 2 yields an idealized timely
detection of .983, given that the bomber was detected. This corresponds reasonably well to the
summarized results from the simulation, which yielded a probability of .960, indicating that 4
percent of the bombers/gunners were able to either attack or get through the security.

INSIGHTS

The importance of effectively identifying hazardous materials on potential passengers

cannot be overestimated. Los Angeles International Airport is anticipating in excess of 78
million passengers per year by 2015, up from 68 million in 2000. Historically, 65 percent of the
attacks on airports resulted from portable explosives as well as the majority of the 4280 fatalities
resulting from attacks on aircraft (Schell 2003). Cleary, aggressive use of technology and
innovative tactics are critical to attempt to mitigate this very real threat.

Our exploratory research results indicate that by using optimistic sensor models and

stylized agent behaviors, roughly 96% of the guns or bombs would be detected or interdicted.
These estimates are extremely preliminary but compare favorably to the theoretical calculations.
However, the simulation does give cause for concern. While individual sensor performance was
modeled accurately and to published specifications for MMW and IR radars, perfect tracking
was assumed which facilitated the accumulation of evidence. In essence, once an agent was
identified as possessing a gun or a bomb a probability was ascribed to the agent and subsequently
modified as additional evidence was gathered. In practice in a crowded venue such as a stadium
or airport, such perfect tracking is impossible and disambiguating radar hits is non-trivial. The
net result is that it is likely that the numbers presented here are optimistic. Consequently it is
reasonable to infer that a purely technical solution will likely not provide adequate security.

To address this gap there are a number of tactics that the blue agents can employ to

enhance their technical advantage. This is consistent with the current state of the practice that
seeks to increase the security capability of airport personnel with techniques such as behavioral
pattern recognition (Elliott 2006) which train personnel to spot and understand erratic behavior.
Towards this end, additional experimentation is warranted to develop creative blue tactics that
will increase the perceived contextual distance of red agents and reduce the likelihood of
undesirable action.

376

REFERENCES

Elliott, R. (2006) , "Assessing Threats from Passengers", in Security Management, Sep. 2006,

http://www.securitymanagement.com/article/assessing-threats-passengers.

Johns, M. and Silverman, B. (2001). "How Emotion and Personality Effect the Utility of

Alternative Decisions: A Terrorist Target Selection Case Study". In the Proceedings of the
10th Conf. On Computer Generated Forces and Behavioral Representation, SISO, May.
2001:

Kaplan, E.H. and Kress, M. (2005), “Operational Effectiveness of Suicide-Bomber-Detector

Schemes: A Best Case Analysis”, Proceedings of the National Academy of Science,
Vol.102, No. 29, pgs. 10399-10404.

Koehler, M.T.K., Barry, P.S., Widdowson, B.L., and Forsyth, A.J. (2004), “Case Study: Using

Agents to Model Stability and Support Operations”, in the Proceedings of Agents 2004, pp.
667-672.

Izquierdo, L.R., Gotts, N. and Polhill, J.G. (2004) Case-Based Reasoning, Social Dilemmas, and

a New Equilibrium Concept Journal of Artificial Societies and Social Simulation vol. 7, no.
3. http://jasss.soc.surrey.ac.uk/7/3/1.html

Schell, T., Chow, B. and Grammich, C., "Designing Airports for Security: An Analysis of

Proposed Changes at LAX" (2003). RAND Issue Paper

Skatter, S. , "Detection Systems Fusion Protocol (DFSP). Guidelines for DSFP Compliance"

(2005). GE Infrastructure Security technical report document number 961712-1, Feb 2005.

Simon, H. (1957). Models of Man: Social and Rational; Mathematical Essays on Rational

Human Behavior in a Social Setting, John Wiley and Sons, New York.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected

Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

377

378

Banking, Finance, Business,
and Economics

AN AGENT-BASED MODEL FOR CRISIS
SIMULATION IN PAYMENT SYSTEMS

L. ARCIERO, Bank of Italy
C. BIANCOTTI�, Bank of Italy
L. D’AURIZIO, Bank of Italy
C. IMPENNA, Bank of Italy

ABSTRACT

This paper presents an agent-based model of a Real Time Gross Settlement (RTGS)
payment system. Banks are represented as agents who exchange payment requests, and
decide on the timing and the mode of settlement based on a set of simple rules. While
highly stylized, the model features the main elements of a real-life system, including a
central bank acting as lender of last resort, and a simplified money market. Simulations
are run to predict the impact of a disruptive event on the flow of interbank payments.
When one of the banks participating in the system is hit by such an event, resulting in the
impossibility to perform transactions, three distinct phases emerge. The first one is
characterized by inflated liquidity expectations, the second one features a thickening of
the money market and of payment queues, and the third one is marked by an increase in
defaulted obligations. In order to staunch the flow of losses and restore the orderly
functioning of the payment system, central bank intervention must not only be timely, but
also relatively intense in terms of the amount of liquidity funneled to the system.

Keywords: Agent-based modeling, Payment systems, RTGS, Liquidity, Crisis simulation

INTRODUCTION

In modern exchange economies, the reliability and the efficiency of payment systems
represent fundamental pre-conditions for smooth and safe financial transactions of banks, firms,
and households.

The value of payments has increased dramatically in the last decade, as a result of
financial liberalization, innovation processes, and increasing globalization of the real economy.
In the European Union, interbank payments amounted to 57 times annual GDP in 2005, up from
40 times at the end of the Nineties. Given these developments, in the last decade central banks
and market participants have been devoting specific attention to the payments settlement phase,
where financial risks are more likely to produce potential systemic impacts. The need to manage
and mitigate such risks, at the same time facilitating the handling of an increased volume of
transactions, has led to the widespread adoption of Real Time Gross Settlement (RTGS) systems,
where individual transactions are settled in real time and with immediate finality.

� Corresponding author address: Claudia Biancotti, Bank of Italy, Department of Economic and Financial
Statistics, Via Nazionale 91, 00184 Rome, Italy; e-mail: claudia.biancotti@bancaditalia.it.

381

Such systems require each participant to hold adequate liquidity levels on an intraday
basis; should this not be the case, streams of payment operations might go unfulfilled, triggering
undesirable domino effects. A disruptive event, be it physical, technical or financial, may induce
prolonged illiquidity conditions, with potentially severe consequences for economic activity. It is
therefore very important, especially for central banks as promoters of financial stability, to gain
an understanding of how these illiquidity conditions arise, which parts of the system they affect
most, and which strategies are most effective when attempting to counteract them.

This paper presents an agent-based model aimed at discerning how a traumatic event
affecting a single bank at a given time impacts on liquidity levels and expectations of all other
banks participating in the same payment system for the rest of the operational day. While by no
means exhaustive in representing the complexity of actual RTGS systems, the model
incorporates the core behavioral rules of banks under ordinary conditions; emerging post-crisis
behavior appears to be consistent with observations of real-life episodes, if still very simplified.

The paper is structured as follows. Section 2 presents a brief overview of the literature on
the simulation of payment systems. Section 3 describes the operating principles of a stylized
RTGS system. Section 4 provides the detail of our agent-based model. Section 5 discusses the
results. Section 6 concludes and puts forth proposals for future work.

SIMULATION METHODS FOR PAYMENT SYSTEMS

The simulation approach is very suitable for the representation of payment systems: it
enables researchers to build models closely replicating the real operational environment,
unconstrained by the existence of numerous complex interrelations which are typically hard to
represent through traditional econometric tools. Simulations provide information both on the
normal functioning of the system and on extreme, not frequently observed scenarios. Input data
can be of different kinds: time series of payments submitted by banks can be used for “what if”
analyses under different settlement mechanisms, whereas stochastic inputs can be either used for
theoretical studies or for models aimed at extrapolating the consequences of particular behavioral
assumptions on small-scale settings.

These techniques are now a reliable support in designing payment systems that can
control their typical risks, as described by the Bank of England (2000): credit, liquidity,
operational, and legal. The Bank of Finland pioneered the construction of simulation models by
building an ad hoc algorithm (Leinonen, 2005): a deterministic stream of payments is accepted
as input and dealt with according to different sets of rules. Bank behavior is taken as given, or is
made able to evolve in a predetermined manner.1

When considering the largish menu of possible simulation methods currently available,
the agent-based framework (Gilbert and Terna, 2000; Fioretti 2004) appears to the best option
for our task. Payment systems are coherent in a recognizable way, but their elements,
interactions, and dynamics generate structures admitting surprise and novelty which cannot be
defined a priori. They are more of the sum of their parts; also, the time dimension is explicitly
relevant in their functioning, in that different aggregate scenarios may emerge according to the

1 Payment systems can also be represented as a complex network, with banks as nodes and mutual liabilities/claims
defining the arches. This kind of modeling is, however, static: in the sense that the time dimension is not directly
taken into account. Network theory has been exploited to study the main features of real interrelations among banks
(Boss et al., 2004), making it possible to understand the concentration level of the system, i.e. whether few banks are
responsible for the bulk of the links. The consequences of catastrophic events are simply modeled by removing a
specific node and measuring the performances of the rest of the network.

382

payment sequence and rules governing interactions. In other words, they fit the definition of
complex systems as provided by Wolfram (1994).

In a way that lends itself well to agent-based modeling, the behavior of commercial
banks, at least in the short run, can also be represented in terms of a simple and consistent set of
rules, governing a core set of decisions. Given a flow of payments, banks mainly choose in
which order these payments have to be submitted in the system, and how to obtain the liquidity
necessary to meet obligations, subject to known constraints (Markose et al., 2006). The set of
available strategies can be described in the language of game theory (Bech and Garrat, 2003),
and translated into algorithms with ease. Learning mechanisms can also be implemented,
allowing banks to move from a set of rules to another according to the values of an objective
function dynamically updated by simulation results. Predictive learning modules can double as
tests of whether banks’ adaptive behaviors converge to a steady state in terms, for example, of
the liquidity committed in the system (Galbiati and Soramäki, 2007).

SOME RELEVANT FEATURES OF RTGS SYSTEMS

Figure 1 describes the basic functioning of an RTGS environment. In the following, we
give a sketch only of those features that are especially relevant for our simulation, and do not
appear to have been fully considered in any other similar exercise. For a comprehensive
illustration of the underlying system, see Arnold et al. (2006).

Independent of the underlying instrument (bills, checks, electronic transfers, etc.), each
payment operation in an RGTS context generates an integrated process, going from the initial
decision to transfer funds to a counterparty and until the final settlement in central bank money.
In such processes, the main role is played by commercial banks: at some stage, payments
between customers of different banks are likely to be treated as interbank flows of liquidity

Several intraday liquidity sources are available to banks. Within the system itself, each
bank does normally rely on a continuous flow of incoming payments from its counterparties.
Moreover, it can obtain central bank intraday credit, which entails a cost either explicit, if such
credit is subject to a fee, or implicit, whenever the provision of funds is not priced but is
conditional on the availability of collateral. Alternatively, funds can be borrowed from other
banks, in the interbank market.

Since liquidity is costly, banks are however involved in a strategic game, possibly
affecting the time pattern chosen to send payments. More specifically, they face, on a continuous
time basis, a trade-off between liquidity and delay costs. By releasing payments as soon as funds
are available they satisfy customer and counterparty needs and benefit from a sound reputation,
but can incur high liquidity costs, to the extent that they borrow from the money market or the
central bank. On the other hand, banks can more effectively play on the intraday dynamics of the
money market by choosing to delay payments, at the expense of increased sytemic uncertainty
and worsening of reputation.

383

FIGURE 1 Basic functioning of an RTGS environment

DESCRIPTION OF THE MODEL

We model a stylized version of a “plain vanilla” RTGS system, excluding advanced

liquidity management tools such as optimization and centralized queues. The model is
implemented in the StarLogo2 environment, and it includes seven breeds of agents: banks, the
central bank, payment requests, defaulted operations, interbank loans, crisis events and craters,
representing banks hit by such events and accordingly unable to perform any operation. One
StarLogo second corresponds to one real-life minute.

During the setup phase, representing the start of the operational day, banks are endowed
with a starting level of cash and collateral. During the day, for every tick of the clock, each bank
hatches a certain number of new agents, representing aggregations of all payment requests to be
delivered to a single counterparty in that moment. For computational reasons, the RTGS system
is treated as direct-debit based, with payments always requested by the payee. Payment requests
are assigned individual deadlines, ranging from “upon reception” (time-critical payments) to a
certain number of minutes after reception. Amounts, deadlines and counterparties are determined
through a random draw, whose features can vary depending on the desired scenario.

Each payment request proceeds to cross the StarLogo terrain at fixed speed towards its
destination. Upon arrival, it is queued until its deadline expires, and triggers the settlement
routine. It is noteworthy to stress that this submission rule allows for the implicit modeling of
settlement delay costs banks incur: for each operation, the delay cost is assumed to be a

2 Starlogo TNG Preview 4.2, released in April 2007, freely available at http://education.mit.edu/starlogo-tng/.

384

discontinuous function of time with a jump at the payment deadline, being lower than liquidity
costs until the deadline and greater afterward.3

From the moment a payment request is generated and until it is settled, the amount
thereof is incorporated in the expectations of a liquidity change for both the originating and
receiving bank. We therefore assume that in each moment banks are perfectly informed on all
payment requests concerning them either as payer or payee; at time t banks are able to calculate
their future liquidity up to the moment T, where T-t is the maximum lifespan of a payment
request generated at t. The expectation is constantly updated as new payment requests enter the
world.

When the settlement process starts, the intended payer tries to meet its obligation with
cash. If the cash balance held at the moment is not sufficient, it tries to pledge collateral at the
central bank, who provides liquidity based on 100% percentage. If collateral is also insufficient
the bank tries to borrow on the money market (“short” bank), thus looking for a lending
counterparty (“long” bank). The short bank i randomly draws a potential counterparty k among
all the other banks with the exception of j, the bank who originated the payment request pij

t.
Bank k agrees to the loan if the condition pij

t�E [Lk
T] is met; E [Lk

T] is the expected cash balance
for k at time T. In other words, the loan to cover pij

t is extended on the basis of both present cash
balances and future liquidity expectations, as determined by other payments currently in
existence initiated by or sent to the potential lender.

Whenever a loan request is refused the payment request bounces, and the short bank
looks for another lender. A counter keeps track of the number of bounces per request: when they
exceed a certain threshold - a function of the number of possible available counterparties - the
bank who has to settle the payment is unable to obtain sufficient funds from anyone. The request
is cancelled and flagged as defaulted obligation, whose amount is recorded as an instance of
insolvency by the short bank, and as a loss by the intended payee bank. Liquidity expectations
for both ends of the transaction are adjusted accordingly.

Disaster is simulated through the introduction of an agent of the “disruptive event” breed.
This agent can be called from the StarLogo interface and its job is to pick a bank at random and
destroy it, turning it into an agent of the “crater” breed. A crater symbolizes a completely
inactive bank, who neither makes or receive payment requests, nor operates in the interbank
market (as lender or borrower). In the thirty StarLogo seconds after the disruption has taken
place, no agent is aware of it, and all surviving banks continue their routine activity. A random
process then makes the banks aware of disaster, with the probability of awareness increasing
over time. Once a bank is aware, it stops requesting payments from the bank-turned-crater, no
longer considers it as a counterparty for loan requests, transforms all payment and loan requests
that are pending toward the crater into defaulted obligations, and updates losses and expected
liquidity.

Depending on the simulated scenario, the central bank monitoring module may also be
activated. Should this be the case, after a given amount of time after the disruption the central
bank starts checking whether banks are delaying their payments beyond some pre-determined
physiological threshold. If a bank features an excessive number of delays, the central bank
supplies it with an amount of cash proportional to them. The intervention routine stops when the
number of delays is back below the threshold.

3 Though not game-theoretically founded, this rule reflects satisfactorily the fact that banks schedule a large share of outgoing
payments according to institutional cut-offs. These cut-offs are agreed with customers, who initiate payments, with the receiving
bank, when the payment arise from interbank trades (see e.g. the guidelines of the Euro Banking Federation for money market
related payments), or established by the system rules (e.g. for payments related to monetary policy operations).

385

PARAMETERIZATION AND RESULTS

We parameterize our simulation based on real Summer 2007 data for the Italian RGTS
system (BI-REL). More than 100 banks participate in BI-REL directly; for the sake of simplicity,
we collapse them into five agents. Each agent is a “superbank”, incorporating banks that appear
homogeneous in terms of payment traffic, opening balances, and collateral.4

Table 1 describes the five agents as they are in the real world. Superbanks 1 to 4 are
aggregation of Italian banks, while superbank 5 is the aggregation of Italian branches of foreign
banks. We draw simulated endowments and payment traffic from random distributions
constructed so as to consider:

1) end-of-day liquidity and collateral, used as a proxy of starting values;
2) payment flows per minute among the five entities, obtained by excising certain

categories of payments from the original dataset: intra-agent, cross-border, and payments to and
from the central bank, whose role in our model is limited to the one of lender of last resort. The
quota of neglected payments is subtracted from the endowments of cash and collateral at the
beginning of the simulation. The stream of simulated payment flows sticks to the real
distribution pattern, highly skewed, with frequent small payments and rare big ones.

Figure 2 depicts the model predictions. The four panels represent the evolution of
liquidity levels, liquidity expectations (expressed as differences between current liquidity and
liquidity as estimated after the settlement of all payment flows currently existing in the system),
money market thickness, and delays incurred by banks in settlement activity.

Under normal operational conditions, the evolution of both liquidity and expected
liquidity predictably resembles a random walk; the specific pattern observed in the sample is
almost entirely driven by the few large payment orders circulating in the system, and the starting
conditions do not appear to generate any path-dependent evolution. Banks rely on the money
market infrequently, and mostly when they need considerable amounts of liquidity; the result is
consistent with the real share of interbank loans, estimated at 5-7 per cent of the total intraday
payment traffic.

TABLE 1 Main scenario (€ millions)

Agent
number

Average payments
settled daily

Largea payments settled
(% of the total)

Average end-of-day
liquidity

Average end-of-day
collateral

1 18,384 3.0 5,302 2,648

2 22,669 6.6 3,583 3,947

3 13,718 3.1 4,780 2,766

4 18,451 8.8 2,211 850

5 43,339 7.5 439 10,119

Total 116,562 5.0 16,315 20,329
a Payments are defined “large” if their amount exceeds the 95th percentile of the global distribution of
flow values.

4 The reduction in the number of agents, forced by computational limitations, impacts on the evolution of the complex system.
The BI-REL system is, however, quite concentrated; two superbanks, for example, correspond to actual single banking groups,
with a high level of internal coordination in the payment system.

386

FI
G

U
R

E
2

P
re

di
ct

io
ns

 o
f t

he
 m

od
el

 in
 th

e
m

in
im

al
 in

te
rv

en
tio

n
sc

en
ar

io

387

When the disruptive event occurs, and one of the banks is rendered unable to perform any
operation, the system evolves through three distinct phases. At first, when no agent is aware of
what happened, a spike in expected liquidity emerges. Banks keep on sending payment requests
to the bank-turned-crater, incorporating the future settlement of such requests in their
expectations; the crater, however, is not able to send out requests of its own, resulting in failure
of the regular counterbalancing mechanism for expectations, and illusions of short-run liquidity
increases for all its counterparties.

This heralds the second phase, marked by a sizable boom of the money market. Banks
experience a lack of liquidity, because they do settle all requests from the crater that were
pending at the time of the disaster, but their own requests toward the crater are not settled. After
consuming their whole endowment of collateral in exchange for central bank money, they try to
counteract the lack of liquidity by turning to the money market. Since loans are granted based on
current and expected liquidity both, and expected liquidity is artificially inflated for the reasons
stated above, all banks are willing to lend to other banks money they do not yet have: the
thickness of the interbank market rises sharply, and as the actual liquidity fails to come in, delays
accumulate.

The third phase sets in as banks start to become aware of the disruptive event. One by
one, they realize that a bank is not operational anymore, and adjust their liquidity expectations
accordingly. Money market activity slows down, and losses are accumulated.1
 The impact of central bank intervention depends crucially on both timing and intensity. In
the scenario depicted in Figure 2 the central bank is relatively slow-moving, and it provides
banks with small amounts of extra liquidity: this results in a reduction of delays to physiological
levels, but it is not enough to staunch the flow of defaults completely. Runs of the simulation
with different behavioral assumptions for the lender of last resort show that the amount of
liquidity to funnel so as to neutralize the domino effect entirely can be estimated at somewhere
between 1.5 and 2 times the aggregate starting liquidity in the system, depending on
circumstances.

CONCLUSIONS AND FURTHER RESEARCH

The model predictions approximate the macro-features of reality adequately, but the
framework can be improved along several directions, with the aim to better reflect real RTGS
and money market environments. The payment submission process can be refined moving from
a direct-debit to a credit-transfer based system, where payments are submitted by the payer. The
number of banks should be enlarged and some source of uncertainty could be introduced, by
relaxing the independence assumption underlying the payment generation and the common
knowledge hypothesis. Moreover, banks should be assigned an end-of-day target in terms of
cash balances, to mimic the interday liquidity management optimization they pursue during the
maintenance period of required reserves.

As for the central bank, it has to be considered that it autonomously makes and receives
payments in real RTGS world, beyond the well-known liquidity supplier function. Modeling of
the money market can be refined to take into account the role of overnight interest rates in
influencing banks borrowing and lending decisions. Finally, the rest of the world could be

1 Whether the system goes back to normal functioning, aside from the accumulated stock of defaulted obligations, depends on
the relative impact of the disruptive event and its consequences compared with the global amount of liquidity in the system.
According to our model, the system would not be able to react autonomously, i.e. without bailouts from the central bank, to any
crisis neutralizing one of its major players.

388

introduced at least as an external shocking agent, also to account for the relevant (and increasing)
real-life share of cross-border payment traffic.

REFERENCES

A. Alentorn, S. Markose, S. Millard and J. Yang, 2006, “Designing large value payment systems:
An agent-based approach”, mimeo.

J. Arnold, M. L. Bech, W. E. Beyeler, R. J. Glass, K. Soramäki, 2006, “The Topology of
Interbank Payment Flows, Federal Reserve Bank of New York, staff report n. 243.

M. Bech, R. Garratt, “The Intraday Liquidity Management Game”, 2003, Journal of Economic
Theory, 109: 198-219.

M. Boss, H. Elsinger, M. Summer, S. Thurner, 2004, “Network topology of the interbank
market”, Quantitative Finance, 4: 677-684.

G. Fioretti, 2005, “Financial Fragility in a Basic Agent Based Model”, mimeo.

M. Galbiati, K. Soramäki, 2007, “A competitive multi-agent model of interbank payment
systems”, mimeo.

N. Gilbert and P. Terna, 2000, “How to Build and Use Agent-Based Models in Social Science”,
Mind & Society, 1: 57-72.

H. Leinonen (ed.) 2005, Liquidity, risks and speed in payment and settlement systems – a
simulation approach, Bank of Finland Studies, E:31.

S. Wolfram, 1994, Cellular Automata and Complexity, Addison Wesley Publishing Company,
Reading, MA.

389

390

ADVERSARIAL RISK AND FINANCIAL INSTABILITY:
A HYBRID MODEL

M. BRAGEN, Argonne National Laboratory

D.L. SALLACH, Argonne National Laboratory
P. THIMMPURAM, Argonne National Laboratory

H. RICH, Argonne National Laboratory
J.F. BURKE, Argonne National Laboratory

ABSTRACT

Because of its inherent complexity, terrorist attacks that attempt to disrupt the
international financial system are difficult to model. The present project
assembles three interaction layers — global, national, and regional, each with its
distinct dynamics — in order to explore the types of risks the financial sector
faces. The model that connects the three layers is a hybrid, with the first two
mechanisms being in the form of systems dynamics mechanisms, and the third
being a fine-grain agent simulation. Currently, a variety of scenarios are used to
exercise the model, but it is planned that these will be replaced with a scenario
generator that can perform sensitivity analysis as well.

Keywords: financial system, systemic risk, adversarial risk, capital flight,
liquidity crisis

INTRODUCTION

 Financial instability can be caused by endogenous or exogenous factors, or a
combination of the two (Johansen and Sornette 2002). Exogenous factors can be highly
disruptive and further exacerbated by endogenous weaknesses (Horwich 2000). A
particular kind of exogenous threat to financial stability is posed by substate actors
(van Creveld 1991). Unlike conventional exogenous dangers, the terrorist threat is
intentional and, thus, designed to exacerbate and amplify natural weaknesses of the
market.

Days before the most recent U.S. presidential election, for example, Osama bin
Laden (2004) released a speech to Al Jazeera in which he took satisfaction in putatively
causing a million dollars of economic disruption for each dollar that Al Qaeda spent. He
indicated that he and his co-conspirators will continue a policy of “bleeding America to
the point of bankruptcy.”

Economic and financial attacks can be used to complement and/or intensify more

comprehensive terrorist attack goals. An attack on financial institutions might have
multiple effects within a coordinated attack, including:

391

• Intensification of a complementary physical attack
• Undermining of confidence in financial and/or government institutions
• Prevention of the provision of liquidity or other financial resources
• Penetration of banking institutions to conduct proscribed transactions
• Generation of revenue for terrorist networks
• Disruption of global financial stability

However, attempting to model the consequences of an attack or a series of attacks is a
vast, unwieldy process.

The financial system is global, dynamic, and immersed in the much larger
economic system. There is extensive data on financial transactions, but most pertains to
endogenous economic and financial concerns that might mask the effects of an
adversarial perturbation. Complexities notwithstanding, a critical part of mitigation
requires recognizing vulnerabilities and assessing the potential mitigation effects of
various possible policy alternatives.

A model designed for these purposes will necessarily be partial. It must be

notional in a way that seeks to decenter endogenous economic and financial interactions,
while focusing upon perturbative effects and the conditions which heighten them. Such
notionality will need to be multilevel, recognizing that financial processes interleave
global, national, and local aspects. Finally, the threat itself must be modeled in order to
trace its consequences.

The present paper reports on a project that undertakes to address these objectives.

An integrated model is presented that accepts a particular attack scenario and explores
how the effects of the disruption spread through national, international, and regional
financial and economic institutions.

THE FINANCIAL DOMAIN

 The global financial system can be conceived as having three interacting levels.
First is the national system, which includes exchanges and their regulation, payment and
clearance system infrastructures, and a central bank and its policy capabilities.

There are multiple national systems, so their markets, payment systems, central
banks, etc., influence each other internationally; thus, the second level is global. One of
its major processes — the one addressed in the present model — is the flow of
international capital. Investments of various types move from one currency to another,
from one market to another, etc. Of course, the flow of investments influences the
financial well-being of the impacted economies. The secure communications
infrastructure has both national and international components, and some online markets
(e.g., NASDAQ) can best be regarded as global as well.

392

The third level concerns firms and, especially, their operations that initiate and
respond to orders and payments. These actors utilize financial infrastructures and are
impacted by international capital flows. Their decisions, in turn, greatly impact national
and global liquidity. Taken together, these three levels provide a complex target for
terrorists, a platform for subtle policy considerations to the Federal Reserve Board, and a
complex working environment for all financial participants.

Exchanges and the Economy

Stock markets impact and, in some ways, represent the larger economy with its
diverse and intertwined industries. From the standpoint of disruption, there are two major
categories of events: (1) major market shifts, most of which are entirely endogenous, and
(2) material and operational disruptions.

The infrastructure component represents flows of transactions through the

payment, execution, clearance, and settlement phases. Trading activities are processed
only during normal (user-specified) operating hours on normal operating days subject to
the exchange being available. The availability of the exchange can be limited by
infrastructure and workforce availability as well as automatic shutdown due to market
conditions.

Global Capital Flows

The capital flow mechanism is drawn from Tirole’s model (2002) of instability in
emerging economies and is global in nature. Its focus is the tendency for capital to flee
during disruptive crises. This pattern can be observed as arising in endogenous financial
dynamics and has the potential to be exacerbated during adversarial attacks. More
particularly, a massive and sustained withdraw of capital is potentially a source of deep
economic disruption and, accordingly, one of the fervent goals of terrorist movements.
Figure 1 summarizes the structure of the model.

393

FIGURE 1 The structure of capital flows

During normal economic periods, the importance of return on investment

(i.e., interest rates and economic productivity) causes the lower loops to dominate.
However, in a crisis period, risk becomes more salient, and the upper loop dominates the
flow of capital.

Transaction Practices

In addition to robustness issues related to physical infrastructure and operations,

there are also robustness issues related to firm responses to disruption. As an example of
the latter, after an adversarial attack on economically sensitive targets and/or international
financial infrastructures, systemic risk can be exacerbated, albeit inadvertently, by a
reluctance of firms to resume payments until the flow of payments owed them has
resumed. Because there is a densely connected network of financial obligations, each
delayed response, measured in hours, has the potential to create, and then intensify, a
liquidity crisis, correlatively deepening the danger of national and global systemic risk.

The robustness issues inherent in payment practices can best be captured by using

a fine grain, agent-based model with the potential to clarify the effects of the range of
responses of diverse firms to multiple interacting risks. The model differentiates

394

representation of firms as distributed by industry, region, and size on the basis of
empirical data from the U.S. Census Bureau (see Figure 2 for an illustration).

FIGURE 2 Illustrative firm data from the U.S. Census Bureau (Source: U.S. Census
Bureau undated)

Mechanism Integration

Taken together, the three financial layers represent different scales of interaction
and variegated types of risk. The capital flow mechanism is global in scope and places
national issues in the context of international investment decisions. Notwithstanding its
global interaction (see Figure 3), capital flow is the simplest of the three layers.

395

FIGURE 3 Global capital interactions

The exchanges and economy mechanism is national in scope and more complex

in focus. The exchanges are mostly physical and operational in form and thus can be the
direct target of attack with resulting disruption. In periods of crisis, exchanges have the
protective mechanisms of circuit breakers and margin calls, which are explicitly modeled.
There are payment and clearing infrastructures that can be a target of attack and thus can
be disrupted, causing further downstream effects. Finally, the economy incorporates
diverse industries with varied geographical distributions and effects.

The third mechanism, representing payment resumption, is the most local and

detailed of the three. It represents firm-level decisions in the face of unanticipated and
disruptive circumstances. To do so effectively, the payment resumption mechanism takes
into account the factors to which decision-makers give weight, some of which are
summarized in the preceding section. Two alternative decision models are available, and
others can be incorporated as needed.

Scenario Generation

During the development of the present model, three scenarios were discussed, and

one was developed in depth. The purpose was not only to shape the model mechanisms
described above but also to lay the groundwork for the development of a more general
scenario generator. The scenario generator will specify the nature and physical

396

consequences of one or more possible attacks and the propensities of firms to return to
their standard business practices, as mediated by industry, region, and firm size.

Notwithstanding the fact that warfare is presently largely asymmetric in form, a

scenario generator is inescapably military in nature. It concerns the preparation and
conduct of attacks designed to achieve maximum disruption of the financial system of the
United States and, more broadly, the global economic system. Such attacks may be
coordinated in complex ways and of extensive duration. Therefore, it is necessary to
construct a scenario generation system that can probe the dynamics of the three financial
layers and identify vulnerabilities that may cause such attacks to have a more disruptive
impact than might otherwise be expected.

MODELING FINANCIAL INTERACTIONS

Market Index

The Market Index as used in the model provides a diagnostic assessment for the
rest of the model. While we do not explicitly model the immediate affects of a terrorist
attack on the market index (the user supplies scenario data regarding the initial impact),
we do model market changes as the initial impact ripples through the rest of the model
(Figure 4). A stochastic stream of daily market fluctuations based on historical data from
1975–2005 is used to prime the system and provide a “normal” operating environment
for the model. As stated, the user must provide an estimated market index adjustment
profile along with the scenario data that describes the attacks.

397

FIGURE 4 Monitoring the market index

Exchanges

The exchanges section of the model keeps track of the dollar volume flowing
through the exchanges. The open hours of the exchanges are those of the New York
Stock Exchange (NYSE): Monday through Friday, 9:00 A.M. to 4:00 P.M. Eastern time.
During closed hours, no volume flows occur. The operability of the exchanges is also
dependant on a number of other factors: workforce and infrastructure availability, secure
communications availability, and automatic shutdown criteria (circuit breakers) defined
by NYSE (each of which is described in detail in a later section). The total time required
to complete a transaction is four days on average, with one day each utilized for
execution and clearance and two days utilized for settlement. These dollar volumes
“change state” as they flow through the system (Figure 5).

FIGURE 5 Monitoring the dollar volume flow through the Exchanges

398

Workforce Availability

We want to be able to model attacks against people as well as against
infrastructure (e.g., as in the anthrax release). The operation of the exchange is dependant
on the availability of the workforce. If the workforce is reduced in number for any
reason, there can be a decrease in the capability of the remaining workforce. We define a
capacity factor that ranges from 0 through 1 where 0 indicates no capacity and 1 indicates
full capacity. This capacity is then used to adjust the processing times of the various
stages of the exchanges. Currently, the user specifies this workforce capacity factor
profile as input. However, another model could easily be integrated that would compute
this capacity on the basis of scenario parameters. Note that the effects on workforce
capacity are not limited to attacks: that is, the model could be used to analyze the impact
of a pandemic flu outbreak. There are currently workforce capability factors for the
exchanges, depository institutions, and payments systems. The factors for depository
institutions and payment systems are structured identically to factor for exchanges.

Infrastructure Availability

As with the workforce, infrastructure must be available for the processing of the
transactions through the exchanges. An infrastructure capacity factor similar to the
workforce capacity factor is defined in the range of 0 through 1. This capacity factor is
then applied to the processing times of the various stages of the exchanges. This
capability factor can be used to model a variety of situations from actual infrastructure
damage, to infrastructure contamination, to lack of required resources from outside
sources (e.g., electrical power). Currently, the user specifies the infrastructure capability
profile as input. However, it would be easy to integrate additional repair or
decontamination models that would define this profile. There are currently infrastructure
capability factors for the exchanges, depository institutions, and payments systems. The
factors for depository institutions and payment systems are structured identically as for
exchanges.

Secure Communications

We model FEDWIRE and other communications in the Secure Communications
segment of the model. There are a number of steps required for completing a transaction.
We explicitly model execution, clearance, and settlement, each of which contains
multiple information and data flows between participants (Figure 6). Since we are
modeling at a high level of aggregation in this segment of the model, we do not track the
low-level detailed communications. We also only consider the communications generated
by the exchanges and payment systems. The transactions cannot complete until all
communications have completed. We created a Secure Communications Capability
Factor with the range of values of 0 through 1 that defines the capability of the
communications system and is used to adjust the data transfer times accordingly. Secure
communications are available 24 hours a day, seven days a week.

399

FIGURE 6 The state of secure communications awaiting completion (Note: BF=Banking

and Finance)

Circuit Breakers

In response to dramatic drops in the market in October of 1987 and 1988, the
NYSE instituted, and the U.S. Securities and Exchange Commission (SEC) approved, a
set of circuit breakers to reduce market volatility and promote investor confidence
(NYSE Euronext 2007). These circuit breakers are explicitly modeled and are tied to
drops in the Dow Jones Industrial Average (DJIA). They are summarized in Table 1.

TABLE 1 NYSE circuit breaker policies

Event (measured from the start of the

trading day)
Time of Day

(Eastern)
Halt Trading?

Ten percent drop in the DJIA
 Prior to 2:00 p.m. For one hour
 2:00 to 2:30 p.m. For 30 minutes
 After 2:30 p.m. No halt
Twenty percent drop in the DJIA
 Before 1:00 p.m. For two hours
 1:00 to 2:00 p.m. For one hour
 After 2:00 p.m. Close exchange for the day
Thirty percent drop in the DJIA Close exchange for the day

400

FIGURE 7 Circuit breaker shutdown timer

Margin Calls

Investors can purchase securities on margin using some personal cash along with
cash borrowed from the broker. The investor intends that the value of the securities
increase sufficiently so that the loan from the broker can be paid and a profit is realized.
To protect the broker, the investor must keep cash or other securities in a margin account
with the broker. The value of this account must be kept at or above a minimum
requirement. If the value falls below this minimum requirement, a margin call is issued
and the investor must provide additional cash or securities. The investor can accomplish
this by providing additional cash or by selling securities. In the event the investor does
neither, the broker himself can sell securities owned by the investor.

Since such forced sales have the potential to shift prices in the market, as well as

have a negative effect on investor confidence, we explicitly model these margin calls (at
a high level of aggregation). We use a mechanism similar to that used for circuit breakers
with an additional component. While circuit breakers are triggered only during extreme
market conditions, margin calls occur on a daily basis regardless of market conditions. So
we add stochastic margin call transactions to the system based on historical data. We then
monitor the changes in the market index and amplify the margin calls as the market index
drops beyond the user-specified limits (Figure 8).

401

FIGURE 8 Monitoring market fluctuation with respect to margin calls

Payment System

The model explicitly models the Payment System (PS) of the U.S. economy. The
dollar volume of payments that requires clearance and settlement (such as the issuance of
a check) are tracked by the model. Three sources of these payments are available within
the model: exchange payments, foreign indirect investment payments, and sector
payments (payments by individual firms). The Payment System is dependant on four
separate capability factors: PS Infrastructure Capability, PS Workforce Capability,
Depository Institution Infrastructure Capability, and Depository Institution Workforce
Capability. The integration of the System Dynamics model with the Agent models of
Transactions and Cash Pinch occurs in the Payment System segment of the model
(Figure 9). The agent models aggregate their data and provide it in a System Dynamics-
compatible form.

FIGURE 9 Payment systems linkage to agent models

402

International Cash Flow

The International Cash Flow segment of the model analyzes the indirect effects of
a terrorist attack on the United States through the direct effects on Economic
Productivity, Interest Rates, and Systemic Risk. The model considers both Return on
Investment (ROI) Risk and prospective undermining of the Safe Haven assumption of
foreign investors reacting to investment opportunities in the United States. When the
opportunities are favorable, foreign investment tends to increase; when unfavorable, they
tend to decrease (Figure 10).

FIGURE 10 Monitoring foreign investment

Two agent models have been integrated with the System Dynamics. Each models the
payments made and received by individual firms. They implement two different firm-
level philosophies of payment resumption after a terrorist attack.

Transactions

The Transactions segment of the model generates the hourly payables from and
receivables to the firms that are of interest within a geographic region, industry, and size
for the scenario under consideration. The annual payments, receivables, and the number
of firms are collected from the U.S. Census Bureau’s online database. On the basis of this
data, individual Firms are created that belong to a specific industry (i.e., are assigned a
four-digit North American Industry Classification System [NAICS]) and geographic
region (i.e., assigned a U.S. State) and that have expected annual payments and
receivables using a Pareto distribution. The expected annual payments are distributed into
expected daily payments and then into expected hourly distributions using Gamma
distributions. Each hourly payment is categorized into mandatory, necessary, and
contingent portions. The actual transactions (payments and receivables) can be modeled
either by Field Effects or Cash Pinch mechanisms. The two mechanisms are described
below.

Field Effects

The propensity of the Firms to pay any outstanding dues is modeled using the
Field Effects. The field effects have components that are generic, regional, and industry-

403

specific. The user inputs the field effects for the adverse conditions (e.g., terrorist attacks)
and for the recovery period. The actual hourly payments are a function of expected
hourly payments and field effects. Any payments that are not paid in the current hour are
accumulated into a backlog and scheduled into the next month’s expected payments.

Cash Pinch

The Cash Pinch agent model uses a Cash-On-Hand perspective to determine
which, if any, payments will be made. Each individual agent (firm) starts off with a
specific amount of cash in its possession along with a schedule of expected payments and
receivables. The schedule is per month and is repeated for each month in the simulation.

All spending is classified as either discretionary or nondiscretionary. As the

model executes, the firm compares the cash on hand with its payments and receivables
for the day and determines whether there are sufficient funds to pay all bills. When there
is a cash shortfall, the firm will determine which, if any, of its bills will be paid on time.
Discretionary spending is first curtailed. Any discretionary payments in arrears are
considered nondiscretionary at the point at which the new payable date is assigned. The
goal is to remain solvent through the time frame. The model makes the simplified
assumption that business makes a profit. During times of anticipated financial problems,
the firms will divert available cash to run the business.

CONCLUSION

The banking and financial sector provides services to the American economy and
increasingly to an integrated global economy. Accordingly, it is vast, dynamic, and
interwoven in complicated, evolving ways. No model can do full justice to its
complexity.

At the same time, the banking and financial infrastructure is a target for terrorism,

both directly and as a collateral consequence of attacks on other primary targets. A
successful attack on the financial infrastructure is likely to have ripple effects throughout
the country and the world. Thus, for the sake of protection and mitigation, it is imperative
that we model the financial infrastructure, including its vulnerabilities, interactions, and
the threats it faces.

The present project assembles three interaction layers — global, national, and

regional — with each having distinct dynamics in order to explore the types of risks the
financial sector faces. The model that connects the three layers is a hybrid, with the first
two mechanisms being systems dynamics, and the third being an agent simulation.
Currently, a variety of scenarios is used to exercise the model, and a scenario generator
that will perform sensitivity analysis is in the near-term plan.

404

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy, Office of Science,
under contract number DE-AC02-06CH11357.

REFERENCES

Bin Laden, Osama, 2004, "Transcript of Osama Bin Laden's Speech," Worldpress.org.

Horwich, George, 2000, "Economic lessons of the Kobe earthquake," Economic

Development and Cultural Change 48:521–542.

Johansen, Anders, and Dideriet Sornette, 2002, "Endogenous versus exogenous crashes

in financial markets" in SSRN: Social Science Research Network.

NYSE Euronext, 2007; available at www.nyse.com/press/circuit_breakers.html.

Tirole, Jean, 2002, Financial Crisis, Liquidity, and the International System, Princeton,

NJ: Princeton University Press.

U.S. Census Bureau, undated, available at http://factfinder.census.gov.

van Creveld, Martin, 1991, The Transformation of War, New York: Free Press.

405

406

MODELING THE TRANSITION TO HYDROGEN-BASED TRANSPORTATION

M.R. MAHALIK,∗ Argonne National Laboratory, Argonne, IL
G. CONZELMANN, Argonne National Laboratory, Argonne, IL

C.H. STEPHAN, Argonne National Laboratory, Argonne, IL
M.M. MINTZ, Argonne National Laboratory, Argonne, IL

T.D. VESELKA, Argonne National Laboratory, Argonne, IL
G.S. TOLLEY, RCF Economic and Financial Consulting, Inc., Chicago, IL
D.W. JONES, RCF Economic and Financial Consulting, Inc., Chicago, IL

ABSTRACT

At the Agent 2004 conference, Stephan and Sullivan reported on an agent-based model
running under Repast J that describes how a personal transportation system might
transition from petroleum to hydrogen. In this paper, we extend the original model in
several ways. First, in place of a rectilinear grid of roads, we use the road topology of a
real metropolitan area, the Los Angeles basin. Second, while the earlier model added
hydrogen-dispensing stations on the basis of a rather simple algorithm, in the present
model, station agents attempt to plan their investments on the basis of imperfect
knowledge of driver fueling behavior, the expected penetration of hydrogen, the plans of
competitors, and the amount of fuel they estimate will be dispensed. In addition, the
driver agents are more complex. Their incomes vary, and they live and work in areas
corresponding to that income on the basis of demographic data. They have attributes such
as “greenness” that affect their willingness to pay more to operate a vehicle that has
desirable environmental characteristics. We take advantage of Repast Simphony’s
networking capabilities to set up relationships between the agents on the basis of their
home neighborhoods, their places of work, and common characteristics. The agents are
influenced in their purchase decisions not only by their personal experience and a general
“belief space” reflecting the attitude of society in general toward hydrogen but also by
interactions with their peers. We examine how a transition to hydrogen succeeds or fails
as these various attributes are varied and given greater or lesser influence.

 Keywords: multi-agent modeling, hydrogen transition analysis, infrastructure investment

modeling, social networks

INTRODUCTION

Hydrogen holds great promise as an automotive fuel. It emits no greenhouse gases either
when burned in an internal combustion engine or when used to power a fuel cell, and ideally it
can be made in a way that releases no net CO2 to the atmosphere. Fuel-cell-powered vehicles can
achieve energy efficiencies two or more times those of their internal combustion engine
counterparts. Nevertheless, hydrogen faces formidable obstacles in replacing petroleum as the
fuel of choice for automobiles. While many technical hurdles remain to be overcome, another

∗ Corresponding author address: Matt R. Mahalik, Argonne National Laboratory, 9700 South Cass Avenue,

Argonne, IL 60439; email mahalik@anl.gov.

407

equally perplexing problem is how to induce both consumers to buy hydrogen-powered vehicles
and investors to build refueling infrastructure when each depends upon the other for viability and
neither exists today. This conundrum is often referred to as the “chicken and egg” problem and is
especially severe for hydrogen because of the large costs involved, although the challenges are
by no means confined to this problem.

At this point, it appears impractical and expensive to equip passenger vehicles with two
separate powertrains, one for hydrogen and one for gasoline.1 Thus, a transition from petroleum
to hydrogen will likely have to succeed on its own through reinforcing feedbacks. We can
envision a few strategically located hydrogen fueling stations (HFSs) that would induce an early
adopter group to purchase hydrogen-powered vehicles (HPVs), and that those increasing
numbers of vehicles would encourage more investment in infrastructure, and so forth. But how
could this sustained transition be achieved, particularly in the early stages? Where should early
HFSs be located, and how might investments be scheduled? What may be the range of business
models and strategies employed by potential investors in the underlying infrastructure? What
types of drivers, if any, should be targeted as the first customers for HPVs, and what
inducements would be most effective? How does the early adopter group interact with the
remaining majority of consumers, and how does that interaction affect the transition? Standard
econometric models are at a disadvantage in answering these questions because a successful
transition will likely depend upon a diversity of players. We use multi-agent modeling and
simulation to address some of these key questions.

MULTI-AGENT HYDROGEN TRANSITION MODEL

Agent-based modeling (ABM) can be especially helpful in analyzing complex problems

such as hydrogen transitioning that involve a diversity of players. Such modeling uses many
“agents” which are heterogeneous autonomous actors and decision-makers. Agents can be given
various and differing characteristics, and they interact with one another according to rules
specified in a computer simulation. At the Agent 2004 conference and elsewhere, we reported on
a Repast-based ABM of the transition from petroleum to hydrogen developed at Ford Motor
Company (Stephan and Sullivan 2004a and 2004b, Stephan 2005), and similar work has been
carried out by others (Schwoon 2007). This initial model gave interesting results, showing
different transition behaviors depending, for example, upon what relative weights drivers put on
worry and inconvenience. However, it had a number of serious limitations. For example, it did
not model a “real” metropolitan area; the investor agents’ criterion for investment, depending
only upon weighted traffic counts, may have been overly simplistic; it did not take used car
markets into account; and, finally, the driver agents, while capable of being influenced in their
buying decisions by a global “belief space,” did not interact individually with one another.

Under a U.S. Department of Energy (DOE)-sponsored project, a team drawn from

Argonne National Laboratory, RCF Economic and Financial Consulting, Inc., Ford Motor Co.,
and other organizations is building a new analysis tool and continually expanding and enhancing
it. The results reported here are from supplementary experiments that focus only on specific parts
of the core model. In particular, the paper concentrates on the sensitivity of hydrogen vehicle

1 Other schemes have been tried. On-board fuel reformers capable of producing hydrogen from gasoline were

attempted in the 1990s but abandoned as impractical. BMW is currently testing a “dual-fuel” hydrogen/gasoline
vehicle with a conventional internal combustion engine that can be switched to run on either fuel.

408

market penetration to differences in preferences and learning behaviors among drivers of
hydrogen automobiles under simplified assumptions about infrastructure investors. The driver
utility function considered here is a modified version of the one used in the core model, so that
the experiments reported here should be viewed with these limitations in mind.

Agent Environment and Agents

In the present simulation, we choose as our model region a 100-by-50-mile rectangular

area centered on the Los Angeles, California metropolitan area and divided into 5,000 square
cells (Figure 1). In addition, there is a 25-mile-wide buffer zone surrounding this region in which
agents do not live but into which they may travel. The roads on which agents travel include
actual interstate expressways and “ubiquitous” local roads passing through every cell except
where there are natural barriers. Driver agents are given a number of characteristics: income,
“greenness,” degree of concern about running out of fuel, and buyer-type “personalities.” High-,
middle-, and low-income driver agents are randomly located predominantly, but not exclusively,
in neighborhoods of the same type on the basis of demographic data and are distributed such that
the overall agent population density scales to the real population density (Figure 2). Similarly,
agents are randomly but preferentially assigned to “jobs” in locations chosen to be relatively near
their homes and the average salary levels of which preferentially match their incomes.

FIGURE 1 Los Angeles, California metropolitan area showing modeling grid structure (not
including “buffer zone”) and major expressways as laid out in the grid format

FIGURE 2 Population densities (households per square mile) in the model area

409

In addition to the driver agents, there are investor agents who build hydrogen refueling
stations at strategic locations where anticipated fuel sales will be sufficient to make a profit. The
results presented here are based on an investment decision strategy that is more simplistic, that
is, investors place or remove HFSs on the basis of suitably weighted traffic counts and sales as
opposed to exogenously supplied thresholds. We are currently testing more sophisticated
investment algorithms. Our more advanced agents make their investment decisions with
imperfect knowledge of driver vehicle purchase and fueling behaviors, the expected penetration
of hydrogen, the plans of competitors, and the total demand for fuel. Given the uncertainties they
face, the investor agents try to do the best they can, possibly make non-optimal decisions, and
learn from their experience. Our advanced investor agents work with limited knowledge about
what has happened in the past (such as fuel sales in particular locations) and have some crude
assumptions on what might happen in the future. With this limited knowledge, they develop
demand expectations for use in making their investment decisions. As the driver agents respond
to the roll-out of the supply infrastructure by purchasing HPVs and hydrogen fuel, the investor
agents receive feedback on the actual demand realization. They use this information in an ex-
post analysis to revise their expectations and adjust their future investment plans by using a
simple form of Bayesian learning. Rather than having single-value expectations, our investor
agents have subjective probability density functions of sales. The investors use rules of thumb to
determine whether and where to locate fueling stations. Similar to our driver agents, investor
agents have a utility function they try to maximize. This approach allows us to distinguish
between different types of investor agents with different attitudes toward risk, ranging from risk-
prone to risk-averse.

Agent Decision Rules

For brevity, we will concentrate our discussion of agent decision rules in this section on
the model’s driver agents. In the course of a simulation, driver agents drive to and from work and
to various destinations in the model region and the buffer zone. Drivers note the presence or
absence of HFSs (whether or not they actually own an HPV). They accumulate either real (when
driving an HPV) or potential (when driving a conventional vehicle [CV]) inconvenience and
worry. On the basis of the increasing prevalence of vehicle-based global positioning system
(GPS) units, we expect that drivers will have access to real-time data on the locations of HFSs
and automated route planners that will show in advance whether it is possible to make a trip
using an HPV and where to stop for fuel. Thus, drivers need not be concerned about the distance
to the next HFS but nevertheless will suffer some worry if the distance between two HFSs takes
their fuel below an agent-dependent “comfort level” for refueling. Drivers suffer inconvenience
if there is no HFS in either their home or their work cells and also if they have to make a special
trip to refuel before starting on a planned trip. Finally, agents are inconvenienced if their
refueling habits must be altered as a result of owning an HPV. Serious inconvenience is suffered
if the agent cannot make a desired trip with his or her HPV because of a lack of HFSs en route.
An agent suffers inconvenience to a lesser extent if he/she must make a special trip to refuel or
must refuel before he/she would otherwise want to in order to be able to reach a more distant
HFS.

When it comes time to purchase a car, the agent weighs the pluses and minuses he/she

sees of owning hydrogen versus conventional technology.2 All factors are cast in terms of

2 In order to engender the maximum number of purchases from a limited number of agents, our driver agents own

fleets of 1,000 “millicars” (millicar = 1/1000 car) and buy/sell a specific number of these millicars every quarter

410

present-value dollars and summed up in the driver agent’s personal “utility function.” These
factors include the difference in capital cost of the two types of vehicle as well as the difference
in operating cost per mile. The latter term is converted to a present-value amount on the basis of
the number of miles the agent expects to drive over the time period in which he wants to recoup
any additional capital investment. The driver assigns dollar values to intangible factors. For
example, he places a cost on the inconvenience of having to make a special hydrogen refueling
trip based in part on the distance traveled. The agent sums up all such trips he made (or would
have had to make if he had had a hydrogen car) over his driving experience, but weights recent
experience more heavily. (Clearly, it is a rare driver who performs this math in the real world,
but most drivers have some experience-based intuitive understanding of the inconvenience they
can expect to suffer as a result of a scarcity of HFSs. It is this intuitive weighing of many
different factors that we seek to simulate with a utility function.)

An important new feature is the ability of the driver agents to interact with one another

and influence each other’s buying decisions. Drivers are assigned personality types
characterizing their buying behavior, as shown in Figure 3. An Early Adopter, for example,
considers it a plus to be one of the first to buy a new technology; a Fast Follower also likes new
technology but wants others to try it out first, etc. Thus, any agent’s purchase of an HPV
influences other agents’ buying decisions either positively or negatively. Agents can interact
with one another through four spheres of influence. The first is a global influence. Agents drive
around and see others driving HPVs, see HPVs on television, and hear pundits expounding upon
them. As more and more drivers switch to hydrogen, many personality types are persuaded to
buy such vehicles themselves. Many, but not all, types want the new and uncommon: for
example, if everyone has adopted a particular technology, “Techno-freaks” feel it is time to
move on to something new.

-1.0000

-0.8000

-0.6000

-0.4000

-0.2000

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 0.2 0.4 0.6 0.8 1

Ut
ilit

y

HPV Penetration

Techno-freak
Agent wants new technology. As others get
it as well, he becomes less enthusiastic.
When everyone has it, he's off to
something new.

Early Adopter
Agent likes new technology, but others'
getting it isn't a negative influence.

Fast Follower
Agent likes new technology, but doesn't
want to be the first. As it catches on, he
embraces it enthusiastically.

Go with the Crowd
Agent is reluctant to buy H2 until at least a
few others have done so first. Once shown
that there's no problem, he rapidly loses
reluctance, then becomes relatively
indifferent until he sees everyone else
buying H2, at which point he feels positive
pressure not to be left behind.

Luddite
Agent doesn't like new technology.

FIGURE 3 Driver agent “buyer personality types”

A second sphere of influence is the neighborhood. Talking with neighbors, seeing HPVs
parked in front of their houses, and passing them on neighborhood streets likewise influences

on a schedule such that 1,000 millicars are replaced over a time period corresponding to the time that the agent
would own a single car.

411

prospective buyers. In our model, the radius of such influence can be set exogenously. The third
sphere is work. A driver talks with colleagues or sees them driving HPVs and is influenced by
their choices. The fourth sphere is through social networks, where an agent is connected with
friends or family not necessarily living in his neighborhood or working at his place of work.
Some agents will be “opinion makers,” having extensive networking connections and having
high influence on others. This last sphere, however, is still being implemented and is not
reflected in our current results. All these parameters are summarized in the agent’s utility
function as follows:

⎩
⎨
⎧

⋅+⋅−Δ⋅−+−⋅= ∑ ∑
i s

snsnininnn fHDrPerswInconvDwCapCostdtUtilitydtUtility)(211)1()1()(,,,

⎭
⎬
⎫
⎥
⎦

⎤
⎢
⎣

⎡
⋅−⋅−Δ⋅⋅+ ∑

i
nnininn WorrywInconvDDwOpCostDistDrivenerPVMultipli 43 ,, (1)

In this equation, Utilityn(t) is the utility of an HPV for agent n at timestep t. It is

normalized to range from -1 (strong desire for a CV) to +1 (strong desire for an HPV) by a
normalization factor omitted for clarity. It is based on the agent’s previous hydrogen utility
multiplied by an exponential time-decay factor d plus his utility during the current timestep
multiplied by (1 – d). In this way, older experience is discounted more heavily. ΔCapCost is the
difference in capital cost between a CV and an HPV, and InconvDIn,i represents the various types
of distance-independent inconvenience agent n has experienced. DrPersn is a function based on
Figure 3 giving the influence agent n receives when a fraction, fHs, of the agents in influence
sphere s have HPVs. The terms in square brackets are distance-dependent parameters:
DistDrivenn is the distance agent n has driven in the last timestep; ΔOpCost is the difference in
operating cost per mile between a CV and an HPV; InconvDDn are the various types of distance-
dependent inconvenience the agent has encountered in his driving; and Worry is the worry he has
experienced. The weights that the agent puts on the intangibles inconvenience, influence, and
worry are represented by the terms w1-w4. (While the wn’s can vary from agent to agent, all
results shown in this paper are based on common values for all agents). Finally, all the distance-
dependent terms are multiplied by a factor PVMultiplier to convert the experience over the
quarter to a present value on the basis of a given discount rate and the agent’s anticipated driving
over his desired payback time period.

As mentioned, agents have different levels of income. Income designation determines not

only where they live and work (and consequently who their peer groups are) but also fixes the
schedule on which they buy cars and whether those cars are purchased new or used. In the
current model implementation, we assign agents to one of three income groups: high (20%),
middle (60%), or low (20%). High-income drivers buy only new cars and then scrap or resell
them as used cars on a regular schedule (where the age distribution has a median car age of
~4 years); middle-income agents also buy only new cars, but keep them until they are scrapped
(median age ~9 years); low-income agents buy only used cars (those sold by high-income
agents) and keep them until they are scrapped (median age ~14 years). The buy/sell/scrap
distribution schedules were adjusted to match U.S. data for overall car ownership and scrappage

412

(Davis and Diegel 2007).3 Annual driving distances for older vehicle are discounted to reflect
the fact that older cars are driven less (ibid.). In the results that follow, we typically simulate
about 7,000 driver agents (representing about 0.1% of the driving population of the area),
although we have made runs with as many as 70,000 agents.

MODEL RESULTS

The model results presented here are based on agent-assigned characteristics that are not
necessarily meant to be realistic but rather are held relatively simple to show how the model
works. We choose values for model parameters such that a significant percentage of our agents
switch over to HPVs during the 20-year simulation.

Base Case – No Social Interaction (i.e., No Influence)

Figure 4 shows the penetration of HPVs into the existing fleet of CVs over a 20-year
period. At the end, 64% of the vehicles on the road are hydrogen-powered. However, this figure
varies dramatically by driver income level. While 81% of the vehicles owned by high-income
agents are HPVs, they account for only 45% of low-income agents’ vehicles. This result emerges
from the fact that in our model, low-income drivers buy only used cars and buy them only from
high-income drivers. Thus, for a period of some years before high-income drivers have first
purchased and then sold HPVs, low-income drivers are restricted by the used car market to CVs
only. As HPVs enter the used car market, they buy them whether they want the technology or
not, since they are restricted in their choice by market availability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

HP
V

pe
ne

tr
at

io
n

Years

High Inc

Mid Inc

Low Inc

Total

FIGURE 4 Fraction of HPVs owned by income group – agents have no influence
on one another

3 The schedules used are a compromise between a close approximation to reality and programming complexity. A

possible future enhancement is to create a used car market in which all agents can participate and where prices
are market-determined.

413

While this is an extreme case to a certain extent, it does reflect a real-world fact that used
car buyers have to take whatever is available. When we run the model without this constraint,
low-income buyers begin to buy HPVs as soon as they become available in their vintage, and in
fact at the end of the 20-year period, they exceed the middle-income agents in percentage of
HPVs owned. This (perhaps) counterintuitive result is explained by the fact (again, in our model)
that low-income agents buy cars more frequently (and scrap them more frequently) than do
middle-income buyers.

Early Adopters and Luddites

We now assign personalities to our agents and allow them to interact with one another.
For purposes of illustration only, we deem all high-income agents to be Early-Adopters
(hereafter referred to as HI-EAs), all middle-income agents to be Fast Followers (MI-FFs), and
all low-income agents to be Luddites (LI-LUs), as illustrated in Figure 3. First we turn on Global
Influence. That is, our agents our influenced by the fraction of HPVs they see on the road,
regardless of where they see them or who owns them. We cut off the “population of influence” at
an age of five years, so that agents ignore the technology of cars older than this age. The weight
of this influence is deliberately chosen to be high. For MI-FFs and LI-LUs it ranges from -$2,000
to +$2,000 as the fraction of HPVs on the road increases from 0 to 1. That is, when only a small
fraction of cars are HPVs, these agents regard an HPV as being worth $4,000 less to them than
when everyone owns an HPV. For HI-EAs, the range is from +$2,000 to zero.

Figure 5 shows the results for this case. Because there are very few HPVs on the road at

the start, the MI-FFs have no one to follow, so they stick with existing technology. HI-EAs start
out strongly buying HPVs, but the total HPV vehicle fraction grows significantly slower than
before, and this eventually pulls down their adoption rate. Finally the MI-FFs begin to adopt
more rapidly as the HPV fraction rises above a critical threshold. The LI-LUs are prevented from
buying HPVs early on because of their unavailability, then forced to buy them at the end when
CVs are not available. When this constraint is removed, the adoption curve for this group
becomes smoother.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

HP
V

pe
ne

tr
at

io
n

Years

High Inc

Mid Inc

Low Inc

Total

FIGURE 5 Fraction of HPVs owned by income group – agents exert global
influence on one another

414

Neighborhood and Work Influence

In our final illustration of this simulation sequence, we remove Global Influence and
substitute Neighborhood Influence and Work Influence. Figure 6 illustrates the Neighborhood
Influence case, since the Work Influence results were very similar. Compared to the No
Influence (Figure 4) and even the Global Influence (Figure 5) cases, the adoption of HPVs by
MI-FF buyers is very slow, while that of HI-EA buyers has increased slightly back to the “no
influence” level. Why should this be the case? Recall that, while neighborhoods are not
completely income-segregated, middle-income agents, which constitute the majority of the
population, are much more likely to see others like themselves as they look around their
neighborhoods rather than the high-income agents needed to kick-start the MI-FFs’ adoption.
Consequently, adoption among middle-income agents never gets off the ground. Low-income
agents are even less likely to see high-income agents in their neighborhoods, and consequently,
when they are not forced to buy HPVs, these Luddites eschew the new technology almost
completely.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

HP
V

pe
ne

tr
at

io
n

Years

High Inc

Mid Inc

Low Inc

Total

FIGURE 6 Fraction of HPVs owned by income group – agents exert
neighborhood influence on one another

CONCLUSIONS

The examples illustrated above have given us confidence in the model design. As more
sophistication is built into the model and driver and investor agents are given more diverse and
realistic characteristics, we believe the model will allow us to gain insights into how the complex
problem of interacting agents evolves in both realistic and extreme circumstances.

The purpose of the full model for the overall project is to study the development of
hydrogen infrastructure. Infrastructure suppliers and purchasers of hydrogen vehicles react to one
another’s behavior in the chicken-or-egg interactions of the early transition to a hydrogen
economy. Drivers will not purchase hydrogen vehicles unless hydrogen fuel is available
conveniently, and the incentive to supply fuel depends on the existence of hydrogen vehicles to
use the fuel, all occurring within a spatial context. The full model will allow the investor agent
supplying infrastructure to decide whether to supply hydrogen from distributed production at fuel
stations or from centralized facilities with pipeline or truck delivery to the stations. The investor

415

agents make their decisions on the basis of profitability, but with allowance for risk aversion in
their utility functions. They are “satisficers” (imperfect maximizers) who may make mistakes in
their expectations about the future. A key feature is that they learn from their mistakes by using a
Bayesian approach as events unfold. The mistakes drive the system off course, while learning
acts as a corrective mechanism. The full model will contain multiple investor agents who
compete with one another. The full model also explores whether government interventions are
needed to help speed adoption in response to energy policy goals.

As noted earlier, the experiments reported here focus on the “driver side” of the model,

using simplified assumptions about investors. The utility function of driver agents in the full
model differs from that used in the experiments reported here. The driver behavior in the
experiments here differs by using a weighted average of current and past utilities to change
behavior over time. While the experiments reported here are intriguing, it is to be emphasized
that they do not reflect any conclusions from the overall project.

ACKNOWLEDGMENT

 This work is supported by the U.S. Department of Energy, Office of Science, under
contract number DE-AC02-06CH11357.

REFERENCES

Davis, S.C., and S.W. Diegel, 2007, Transportation Energy Data Book, Ed. 26, ORNL-6978.

Schwoon, M., 2007, “A Tool to Optimize the Initial Distribution of Hydrogen Filling Stations,”

Transportation Research Part D, 7082.

Stephan, C., 2005, “Modeling the Growth of a Hydrogen Transportation Infrastructure,”

Frontiers in Transportation, Amsterdam, July 2–6.

Stephan, C., and J. Sullivan, 2004a, “An Agent-based Hydrogen Vehicle/Infrastructure Model,”

Conference on Evolutionary Computation, Portland, June 19–23.

Stephan, C., and J. Sullivan, 2004b, “Growth of a Hydrogen Transportation Infrastructure,”

Agent 2004, Chicago, October 7–9.

416

Saturday, November 17, 2007

Social Simulation Applications
Parallel Track II

Health Care and Epidemics

A SIMULATOR FOR CONTINUOUS AGENT-BASED MODELING

J. DUGGAN∗, National University of Ireland, Galway. Ireland.

ABSTRACT

This paper describes a simulation environment that can be used to integrate population-
level dynamics with those occurring at an individual, or agent-based, level. The benefit of
this approach is that individual agent behaviour may be mapped at a detailed level, using
differential equations, and aggregated over the entire population in order to determine
population-level dynamics. Furthermore, individual agents can interact with one another,
in terms of a social network structure. The environment is firmly grounded in the system
dynamics approach, and, unlike conventional agent-based simulation environments,
programming is not required in order to specify agent interactions and behaviours. The
approach is validated by using the classic SIR model of contagion.

Keywords: System Dynamics, Agent Based Modelling, Simulation, SIR Models

INTRODUCTION

This paper proposes an extension to the System Dynamics (SD) method in order to
provide a novel way for modeling multi-agent systems. Gilbert and Troitzsch (2005) comment
that “a natural way of programming agents is to use an object-oriented programming language,”
and frameworks such as RePast (North et al. 2006), AnyLogic (Borschev and Filippov 2004),
and NetLogo are commonly used to achieve this goal. A characteristic of the ABM approach is
the focus on agent heterogeneity, namely, identifying the differences in agents and simulating
their interactions and behaviour over time. System Dynamics is an alternative approach to agent-
based simulation, and employs as a robust and well-defined methodology to model the behaviour
of decision making entities. The resulting simulations are run in continuous time, and, do not
require programming expertise on behalf of the modeler. However, a disadvantage of the system
dynamics approach regards the scale of agent models. Current system dynamics tools are not
amenable to the construction of large scale agent societies, and so the possibilities for extending
the heterogeneity of models is limited. The approach presented here addresses provides an
approach and technology that allows large scale agent models to be built, based on sets of
differential equations.

SYSTEM DYNAMICS

The systems approach to problem solving has many strands and influences, and originally

emerged as a reaction to the reductionism advocated by the traditional “divide and conquer”
approach to science, namely, that in order to understand a complex system, one must take it apart
and understand its constituent parts. Systems thinking involves taking a holistic approach to
problem solving, by identifying the manner in which systems interact in order to uncover
insights regarding overall systems behaviour. System Dynamics (SD) is one of the most widely
used systems approaches in the world, and was created and pioneered by Jay W. Forrester

∗ Corresponding author address: Jim Duggan, Department of Information Technology, NUI, Galway, Ireland.

421

(Forrester 1958, Forrester 1961) as a means of simulating the behaviour of social systems,
explaining that behaviour, and crafting effective long term policies (Lane 2006). Sterman (2000)
defines SD as “a perspective and a set of conceptual tools that enable us to understand the
structure and dynamics of complex systems” and, because of its underlying mathematical
foundation, SD is also “a rigorous modeling method that enables us to build formal computer
simulations of complex systems and use them to design more effective policies and
organizations.”

Forrester’s key insight followed on his study of manufacturing supply chains, and his
observation that the chaos apparent in inventory levels throughout the supply chain could not be
explained solely by external effects. He demonstrated that many problems were in caused
internally, by the decisions of managers who were not fully aware of the feedback structures that
were present in the overall system. Forrester argued that feedback is a critical component of
human decision making, as many management decisions lead “to a course of action that changes
the state of the surrounding system and gives rise to new information on which future decisions
are made” (Forrester 1969).

FIGURE 1 Limits to growth in a feedback system

Decision makers who do not take account of the feedback view often encounter policy
resistance, where “well-intentioned policies are delayed, diluted and defeated by the unforeseen
reactions of other people” (Sterman 2000). A simple example of this is captured in Figure 1,
which shows two feedbacks. The first, a reinforcing feedback, models the “word of mouth”
phenomenon, where demand fuels orders, which in turn increase the installed base, and this leads
to further demand. The second loop, a balancing feedback, acts to dampen this growth, because
capacity limitations in the system mean that as orders rise, so to does the order completion time,
which reduces customer satisfaction, and this in turn leads to order cancellations. It is the
interaction of these loops that determines how the system behaves over time, and while sales
may grow exponentially at first, any serious capacity constraint will cause this growth to flatten
over time. A possible solution to this would be to increase capacity early (a proactive strategy) in
the product’s life cycle, rather than increasing the capacity at a later stage (a reactive strategy).

422

Figure 1 illustrates how feedback structures can be captured qualitatively, using causal
loop diagrams. In order to formally model dynamic systems, these feedbacks must be
represented quantitatively, through stock and flow diagrams. Flows are formal expressions of
policy, where equations are formulated to capture the key decision rules that control the rates of
flow through a system. Stocks are accumulations (e.g. number of employees, balance in a bank
account, number of people queuing), and the completed models are run as a set of non-linear
differential equations. However, a disadvantage of current system dynamics tools is that they do
not provide the mechanism to construct large-scale agent models. The approach presented here
addresses these shortcomings by providing an approach and technology that allows large scale
agent models to be built, based entirely on sets of differential equations.

SYSTEM DESIGN

Figure 2 illustrates the conceptual design, and this is an adaptation of Sterman’s (2000,
p.515) representation of how decision rules govern the rates of flow in systems. The central idea
is that each agent is represented by an individual stock and flow structure. An agent changes its
state by processing information cues: in this generic model, these cues can be based on the
agent’s own state, information from other agents, and information from the aggregate system
state. This aggregate system state is a summation of the individual rates of change for each agent
in the population, and so feedback exists between the aggregate level and the individual agent
level.

Figure 1: Conceptual Design for Continuous Agent-Based Modelling

FIGURE 2 Conceptual design for the continuous agent based modeller

System State

Agent State

Change in System
State

Change in Agent
State

Information from
other Agents

Cue1
Cue2

Cue n

Output = f(Cue1, Cue2, ..., Cue n)

...

Agent's Decision Rule

Change in System State = Σ Change in Agent StatesSystem State

Agent State

Change in System
State

Change in Agent
State

Information from
other Agents

Cue1
Cue2

Cue n

Output = f(Cue1, Cue2, ..., Cue n)

...

Agent's Decision Rule

Change in System State = Σ Change in Agent States

423

FIGURE 3 Architecture for the continuous agent based modeller

The system architecture is captured in Figure 3. The major software components are:

CABM Builder. This takes as input three model types, and creates: (1) a symbol table

containing each equation to be solved, including stocks, flows and auxiliaries, and (2) a
neighbourhood model that places each agent in a grid-like structure so that information cues
from neighbours can be taken into account for an agent’s decision making. The number of
equations created is a function of the number of agents. For example, if each agent is represented
by thirty equations, and there are one hundred agents, then there will be three thousand equations
in the symbol table (excluding those equations that are specified as part of the aggregate model).

CABM Solver. This solves all numerical equations contained in the symbol table, and
also has special-purpose routines that can aggregate variables in the model, and calculate
neighbourhood values for each individual agent.

There are three main types of input for the CABM Builder:

The aggregate model, which corresponds to the “System State” element of Figure 2.
These are the stocks and flows that capture the aggregate dynamics for the system of interest.
The key states in this model will change based on an aggregation of all the changes at the agent
(or lower) level of the model.

The agent models, which express important agent heterogeneities in the system under
consideration. Each agent model can have different formulations for key decision equations.

Agent
Model 1
Agent

Model 1

Aggregate
Model

Agent
Models

Agent
Instances

CABM
Builder

Symbol Table

Neighbourhood
Model

x y – 3
y INTEG(z,10)

CABM
Solver

Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Aggregate.MarketShareA Aggregate.MarketShareB

424

The agent instances, which specify how many of each agent are to be created for a

simulation run, and also can be used to vary the specified parameter values of individual agents.

In order for the system to work, three categories of mapping must be achieved when the
models are combined. The first of these is mapping from the detailed level to the aggregate level,
where a high-level flow is formulated based on an aggregation of lower level, or agent, flows. A
stock and flow is identified as an aggregate by including the tag “<is_aggregrate>” as part of it
definition (see Figure 4). For an aggregate flow, no equation is specified: instead, a purpose-built
function – called AGGREGATOR() – is invoked, and during the simulation run this function
will aggregate all the relevant agent flows.

FIGURE 4 Defining stocks and flows at an aggregate level

At the agent level, any flow that must aggregate to a higher level is specified with the tag
“<is_subflow>”, and the super flow, which is the flow that it aggregates to, is specified (Figure
5). In this example, the string “$NAME$” will be replaced by the specified agent name when the
model created. Stocks at the agent level are defined in a similar manner (Figure 6). Furthermore,
if a rate at the agent level is procedurally complex, a callout routine can be written (in C#) to
evaluate it. Rates at the agent level that mirror an aggregate rate are usually programmed to flow
over one time step, and so state switching occurs at discrete points in the simulation.

FIGURE 5 Defining flows at an agent level

425

FIGURE 6 Defining stocks at an agent level

The final mapping relates to agent-to-agent communications, where an agent uses
information from other agents in order to arrive at a decision. In order to facilitate this, the agents
are modelled as a society in a grid-like structure. In figure 7, a society of 100 agents are shown,
where each of these has a similar stock and flow structure. The purpose-built function
NEIGHBOURHOOD_AVERAGE() will find the average for a given model variable from across
all of its immediate neighbours, and this value that then be used as an important cue in an agent’s
decision making process. This value would play an important part in triggering whether or not an
individual agent may change its state (for example, from susceptible to infected in a model of
contagious disease).

FIGURE 7 Information exchange between agents and the grid society structure

100 300 100 300 100 100 100 100 100 100
100 300 300 300 300 300 300 100 100 100
300 200 200 300 100 200 300 100 100 100
300 200 300 100 100 300 300 100 100 100
300 300 300 100 100 100 300 100 100 100
300 200 300 100 100 100 300 100 100 100
300 300 200 100 100 200 200 200 100 100
300 300 300 100 100 100 200 100 100 100
300 200 300 100 100 100 100 100 100 100
300 300 100 100 100 100 100 100 100 100

426

CASE STUDY: SIR MODEL

To illustrate how the system operates, a well-known case – the SIR Model - is selected.

This has been widely modeled using both SD and agent-based methods. For this solution, the
aggregate and agent components are shown in Figure 8. At an aggregate level the population is
divided into three stocks: susceptible (S), Infected (I) and Recovered (R). The infection and
recovery rates determine the rate of flow between these stocks. However, unlike the usual SD
approach, these rate equations simply flow aggregators, and are determined by what happens at
each individual agent level.

FIGURE 8 Two-level model of the SIR phenomenon

At each agent level, the SIR structure is employed, however in this case, the sum of all
states must be 1 (i.e. an individual agent can only be one of S, I or R at any one time), and the
rates are not continuous, so that states change at one point in time in a switching-type action. The
recovery rate is simply a pipeline delay based on the infection rate (i.e. recovery follows
infection after a certain number of time has elapsed). The infection rate is determined by: (1) the
proportion of neighbours that are already infected and (2) the infectivity of the agent. An overall
infection probability is calculated, and a [0,1] random number generated in order to decide
whether an agent has been infected. If this happens, their state changes accordingly.

At a technical level, the complete model can be specified using mathematical equations,
with a minimum of actual code. Underlying the model is a grid-based social network, where each

S I R
IR RR

S I R
IR RR

S I R
IR RR

S I R
IR RR

…

S I R
IR RR

S I R
IR RR

S I R
IR RR

…

.

.
.
.

.

.

Aggregate Level

Agent Level

427

agent occupies a cell on the grid, and is influenced by its neighbours, a structure that has
parallels with a cellular automata model. Sample results from a simulation are now shown.

Figure 9 shows the overall aggregate behaviour of the agents. There are 100 in total, and
the stock of susceptible starts at 95, and depletes as the infection spreads. As the recover rates
pick up, the spread of the infection slows, and an equilibrium is reached.

FIGURE 9 Aggregation of results by SIR categories

A more detailed analysis can also be viewed based on the overall state of the “grid” as
time progresses. Figure 10 shows how the agent states have changed over a time interval of 5.
Each rectangle represented 100 agents, and green maps onto susceptible, red is infected and blue
recovered.

FIGURE 10 Change in agent states from time 0 to 5

0

20

40

60

80

100

120

0
0.7

5 1.5 2.2
5 3

3.7
5 4.5 5.2

5 6
6.7

5 7.5 8.2
5 9

9.7
5

10
.5

11
.3 12 12

.8
13

.5
14

.3 15 15
.8

16
.5

17
.3 18 18

.8
19

.5

Aggregate.Infected Aggregate.Population Aggregate.Recovered Aggregate.Susceptible

100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100
100 200 200 100 100 200 100 100 100 100
100 200 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100
100 200 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100

100 200 100 200 100 100 100 100 100 100
100 300 300 300 100 200 200 100 100 100
300 200 200 200 100 200 200 100 100 100
300 200 300 100 100 300 200 100 100 100
300 200 200 100 100 100 200 100 100 100
200 100 100 100 100 100 100 100 100 100
200 200 100 100 100 100 100 100 100 100
300 300 300 100 100 100 100 100 100 100
200 200 100 100 100 100 100 100 100 100
200 200 100 100 100 100 100 100 100 100

428

Finally, Figure 11 shows a detailed trace of how individual states change over time. The
time axis is vertical, and ranges from 0 through to 20. Each row across the diagram represents an
agent’s state at a particular point in time, and based on this it can be observed when an individual
agent changed from one state to another.

FIGURE 11 Mapping of agent state changes over time

CONCLUSIONS

This paper has presented an approach and a simulation system that can model agent-

based systems using System Dynamics. There are a number of advantages to this, including:

• Building on existing knowledge. Models built using this approach have access to
the rich body of knowledge within the field, including a wide variety of models
that capture dynamic decision making processes across a range of disciplines.

• Scalability and Performance. Given a compact and lightweight numerical solver,

this approach is scalable and should be able to accommodate a high number of
agents and calculate results speedily.

Future work will include building a graphical user-interface for the current system, and

also constructing a high performance numerical solver that will have the capability to simulate
large populations of individual agents.

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300
100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 200 200 200 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 300 300 300
100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 200 200 200 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 300 300 300
100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
100 200 200 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

429

REFERENCES

Akkermans, H. 2001. “Emergent Supply Networks: System Dynamics Simulation of Adaptive

Supply Agents.” Proceedings of the 24th Hawaii International Conference on Systems
Sciences, ISSN 0-7695-0981-9/01.

Borshchev A. and A. Filippov. 2004. “From System Dynamics and Discrete Event to Practical

Agent Based Modeling: Reasons, Techniques, Tools.” Proceedings of the 22nd
International Conference of the System Dynamics Society. Oxford, England. 2004.

Forrester, J.W. 1958. “Industrial Dynamics: a major breakthrough for decision makers.” Harvard

Business Review. 36, (4), 37-66.

Forrester, J.W. 1961. Industrial Dynamics. MIT Press, Cambridge, MA.

Forrester, J.W. 1969. Urban Dynamics. MIT Press, Cambridge, MA.

Gilbert, N. and Troitzsch, K. 2005. Simulation for the Social Scientist, Open University Press.

Lane, D.C. 2006. IFORS’ Operational Research Hall of Fame: Jay Wright Forrester. Intl. Trans.

In Op. Res. 13 (2006) 483-492.

North, M.J., Collier, N.T., and Vos, J.R. 2006. “Experiences Creating Three Implementations of

the Repast Agent Modeling Toolkit.” ACM Transactions on Modeling and Computer
Simulation. Vol.16, No.1, pp 1-25.

Sterman, J. 2000. Business Dynamics. Systems Thinking and Modeling for a Complex World.

McGraw Hill Higher Education

430

Socio-Technical Systems

ENSEMBLE COMPUTING IN AGENT-BASED MODELING FOR
TRANSCENDING PARADIGMATIC BOUNDARIES IN DECISION THEORY –

UNDERSTANDING TRIBAL POLITICS

L.A. KUZNAR∗, Indiana University – Purdue University, Fort Wayne, Fort Wayne, IN

ABSTRACT

The data outputs of agent-based models are extremely complex and that complexity is
compounded by the uncertainty surrounding model parameters. Ensemble computing utilizes sets
of models with varied parameter setting to explore the potential worlds a model could produce.
This uncertainty is compounded when different models appear to derive from different scientific
paradigms. I present a framework in which models derived from different paradigms are placed in
an ensemble, whose varied outputs allow exploration of the various strengths and weaknesses of
different decision theoretic paradigms. Specifically, theories and models derived from rational
choice theory, risk sensitivity theories, social psychology, prospect theory, bounded rationality
and culture norm theories are compared. Empirical data on political alliances in a patrilineal New
Guinea tribe are used to measure the relative effectiveness of different theories. While ensemble
computing can test competing hypotheses, its best use is in identifying the key elements any
theory must have to be explanatory and predictive. This work applies to research on decision
making and traditional tribal politics, including in regions of the world in turmoil such as Sudan,
Somalia, Iraq, and Afghanistan.

Keywords: exploratory modeling; ensembles; decision theory; theory testing

INTRODUCTION

This paper is a follow-up to a modeling study of coalition formation in a New Guinea
tribal village [Kuznar, 2006]. The evolution of coalitions among men in this village was
used to test the efficacy of theories of political and economic decision-making drawn
from rational choice, prospect theory, bounded rationality and risk sensitivity paradigms.
The preliminary study identified four models that performed particularly well, sigmoid
group (SG), full prospect theory (PT) (including effects of probability weighting, loss
aversion and framing), and the smart agent prestige bias (sP3) and smart conformism 2
(sC2) models. In this paper, I present the results of more rigorous validation metrics that
allowed finer discrimination among the competing theories.
 In this paper, I present the results of more robust metrics used for exploring the
strengths and weaknesses in decision theory models. The empirical case example used to
test these models concerns the evolution of political alliances among men in a tribal
village of New Guinea (present day Irian Jaya). This case provides an example of how
exploratory modeling may enhance scientific evaluation, offers a preliminary test of
decision theories, and suggests future hypotheses.

∗ Corresponding author address: Lawrence A. Kuznar, Dept. Anthropology, Indiana University – Purdue
University, Fort Wayne 46805; e-mail: kuznar@ipfw.edu

433

EXPLORATORY MODELING

 In exploratory modeling, the breadth of scientific ideas is captured in an ensemble
of alternative models, rather than a single comprehensive model [Bankes, 2002:7264;
Lempert, et al., 2006; Kleijnen, 1997]. Then, the resulting parameter space from these
alternatives is searched for models that explain phenomena or models that are robust
against perturbations of their parameters [Lempert, et al., 2006]. Exploratory modeling
has been used for applied purposes such as weather forecasting [Palmer, 2000] and policy
analysis [Bankes, 1993]. Since social scientists often propose theories derived from
different paradigms, exploratory modeling may assist them in dealing with their own
deep uncertainty. I present a relatively simple case where 24 decision models, derived
from several different paradigms, are tested against one another to explore their relative
explanatory power. I concentrate on only versions of the models that correspond to
specific published propositions. A full exploration of each model’s parameters and
variables would require the use of the more sophisticated sampling strategies enumerated
above.

MODELING THE KAPAUKU OF IRIAN JAYA (NEW GUINEA)

The Kapauku are a tribal people who live in the highlands of Irian Jaya. Their
economy is based on growing yams and raising pigs, they control territories that contain
their farmland and villages, they have cultural norms of patrilineal descent, and they
practiced extensive warfare in the first half of the 20th century. The anthropologist
Leopold Pospisil made detailed and extensive observations of Kapauku economy and
politics during the decade of the 1950’s, and he published data on the individual
economics and political affiliations of the 55 adult men who comprised the political
network of the Kapauku village of Botekubo [Pospisil, 1963, 1972]. Two prominent
features of Kapauku culture are men’s obsession with wealth acquisition and the
intensely political nature of men’s lives. Kapauku political coalitions center around
tonowi (wealthy men), who are both economically successful and politically powerful
[Pospisil, 1963:11, 48]. I use Pospisil’s data on individual men’s wealth and political
affiliations to test competing theories of decision making by simulating men’s decisions
with theorized decision rules and examining which rules produce Kapauku-like alliances.

I have developed a general computational model of risk-taking in which agents
interact via a coordination game with an optimal Nash mixed strategy of probabilistically
cooperating and defecting with partners [Kuznar, et al., 2006]. This general model was
adapted to represent the political behavior of the 55 men in Botekubo. The simulation
begins with each man in his own alliance, and coalitions evolve as men join or defect on
one another according to programmed decision models. Competing decision models are
evaluated based on the speed and accuracy with which alliances structurally similar to
those observed in Botekubo form.

DECISION THEORY

The field of decision theory is divided among several different paradigmatic lines,
including traditional (canonical) rational choice, various bounded rationality approaches,
and prospect theory. Sigmoid utility represents another alternative, in part derived but

434

also departing from rational choice [Kuznar, 2007]. Each paradigm gives rise to
numerous specific theories.

Rational Choice

Core elements of rational choice include the assumptions that individuals have
full knowledge of their preferences and resources, that individuals maximize their utility,
and that individuals are selfish [Cowell, 1986:Chapter 4]. Nash optimal solutions to
competitive or cooperative interactions assume rational capabilities and so represent
rational choice decision models.

Sigmoid Utility

Sigmoid utility theory maintains that an individual’s position in a wealth
distribution influences that individual’s sensitivity toward risk [Kuznar, 2002; Friedman
and Savage, 1948; Kuznar, 2007]. Individuals on the cusp of a class boundary, where
increases in social rank (climbing the social ladder) bring large increases in wealth and
status, are expected to be risk prone, or to take chances. I have applied this approach to
understanding various forms of political behavior from voting, to political coups, to
rebellions, to modern day terrorism [Kuznar and Frederick, 2003; Kuznar, et al., 2006;
Kuznar, 2007]. Since joining a group of unknown individuals carries risk, risk prone
individuals are more likely to join, and risk averse individuals are least likely to join. This
approach is derived from rational choice, but departs by being particularly sensitive to
others’ payoffs and by allowing envy at others’ well-being (rather than greed for one’s
self) as a motivator.

Group Affiliation

Social psychologists argue that small group dynamics can override selfish
motives, especially in extremely risk-prone groups that tend to become highly socially
isolated [Atran, 2003]. Therefore, the social psychological effect of small group
dynamics on members of a group will be the reverse of the effects on individuals
regarding risk sensitivity. Agents’ probability of joining with non-members will be
inversely proportional to their group’s risk sensitivity; members of highly insular groups
never join with outsiders. By using sigmoid utility theory and Arrow-Pratt measures, this
model combines elements of sigmoid and small group psychology paradigms.

Prospect Theory

Prospect theory [Kahneman and Tversky, 1979, 2000] is a collection of
propositions about human decision making that are derived from and empirically
supported by experimental studies. Prospect theory’s three core propositions are that
people systematically distort probabilities (overestimating low probabilities and
underestimating high probabilities), that people are loss averse (experiencing twice the
disutility of a loss than the utility of an equal gain), and that framing profoundly affects
decision-making with people (people are risk prone when considering losses and risk
averse when considering gains) [Kahneman, 2000]. Prospect theorists have derived

435

mathematical functions for probability weighting [Prelec, 2000:77] and the disutility of
loss aversion [Tversky and Fox, 2000:104; Tversky and Kahneman, 1992:57] and I use
these functions to model probability weighting (PW) and loss aversion (LA) respectively.
I model framing (FR) by recording whether an agent’s wealth has increased or decreased,
assigning an adjusted Nash optimal join probability for agents in a frame of gains or the
reciprocal probability for agents in a frame of decreases.

Prestige Bias

 Prestige bias is the imitation of those with higher social status [Boyd and
Richerson, 1985], and is a simple heuristic proposed by bounded rationality theorists.
Prestige bias theories fail to specify the scales at which it operates. Therefore, I modeled
prestige bias at different scales including imitating a higher-status partner (Prestige 1,
P1), imitating the household patriarch (Prestige 2, P2), imitating the wealthiest member
of a coalition (Prestige 3, P3), and imitating the wealthiest member of the society
(Prestige 4, P4).

Conformist Transmission

 Conformist transmission refers to the copying of normative behavior in a society
[Boyd and Richerson, 1985], and is another bounded rationality decision heuristic. As
with prestige bias theory, conformist transmission theory offers no guidance as to what
social norms are copied, those of a neighborhood, a tribe, a nation, or the global village.
Consequently, I developed alternative models of conformist transmission including
conformism to one’s household (Conformism 1, C1), to one’s alliance (Conformism 2,
C2), and to the entire society (Conformism 3, C3). Models assuming that probabilities
were drawn on a [0,1] interval (naïve agents) vs. probabilities that bracketed the Nash
optimum (smart agents) were run for both the prestige bias and conformism models. The
models that bracketed the Nash optimum combine elements of quasi-rational choice with
bounded rationality.

Validation Metrics

Evaluating the goodness of fit of computational models is challenging. To date,
many validations consist of producing graphical outputs (or often 2-dimensional
geographic maps) that look like some stylized fact the researchers are modeling [Kohler,
et al., 2005; Lansing, 1993; Kuznar and Sedlmeyer, 2005]. Some computational
methodologists label this “viewgraph validation,” and point out that while intuitive visual
aids can be a useful starting point for validating models, they fall short of rigorous and
thorough validations of the model [Kleijnen, 1995; Oberkampf and Trucano, 2002;
Oberkampf, et al., 2004].

It is necessary to use quantitative measures of a model’s performance in order to
evaluate the degree to which different models are successful and in what ways
[Oberkampf, et al., 2004]. Simulation researchers use Thiel’s Inequiality Coefficient
(TIC) to compare model and empirical outputs and have expanded it to incorporate

436

multiple dimensions of goodness of fit [Murray-Smith, 1998; Kheir and Holmes, 1978].
The single-dimension metric is calculated as:

zy

yz

n

i
i

n

i
i

n

i
ii

dd
n

zy

zy
TIC

+
=

+

−
=

∑∑

∑

==

=

1

2

1

2

1

2)(

Where yi is an empirical measure, zi is a model output that corresponds to the empirical
measure, i indexes the ith model run, and n is the number of runs. We use Thiel’s
Inequality Coefficient to compare the number of coalitions generated by a model and
mean coalition size to Pospisil’s data. Its values vary from 0 to 1, with 0 indicating a
close fit (no difference). The normalized values of the TIC allow comparison of different
models and different performance variables.
 Point measures like means, variances and TICs are commonly used and provide
one means of evaluating goodness of fit. However, one can have identical means drawn
from very different data distributions. The Kolmogorov-Smirnov D – Statistic provides a
non-parametric test for the equality of distributions [Blalock, 1979:266-269]. Models that
produce statistically significantly different data distributions clearly perform poorly, and
models with large p – values produce data distributions statistically indistinguishable
from actual data.

RESULTS

An ensemble of 24 models represents the basic propositions of these theories,
derived from four paradigms (rational choice, sigmoid utility, small group social
psychology, prospect theory) (Table 1). Each model was run 100 times, and 10 model
runs were selected from each run for analysis of how quickly the model converged to
alliances similar to those empirically observed in the tribe. The performance of each
model at iteration 15 was used to standardize the comparisons.

Table 1. Relationship between Decision Theoretic Paradigms and Decision Models
Tested in Kapauku Simulation.

Paradigms Models
Rational Choice Nash optimum (N)
Modified Rational Choice Sigmoid utility (S)
Modified Rational Choice
/
Social Psychology

Sigmoid utility+Group affiliation (SG)

Prospect Theory Probability weighting (PW), Loss aversion (LA), Framing effects (FR),
PW+LA, PW+FR, LA+FR, PW+LA+FR

Bounded Rationality naïve Prestige bias 1 (nP1), naïve Prestige bias 2 (nP2), naïve Prestige bias 3
(nP3), naïve Prestige bias 4 (nP4), naïve Conformism 1 (nC1), naïve
Conformism 2 (nC2), naïve Conformism 3 (nC3)

Bounded Rationality /
quasi-Rational Choice

smart Prestige bias 1 (sP1), smart Prestige bias 2 (sP2), smart Prestige bias 3
(sP3), smart Prestige bias 4 (sP4), smart Conformism 1 (sC1), smart
Conformism 2 (sC2), smart Conformism 3 (sC3)

437

Four models provided close fits to empirical data, including sigmoid utility (S), sigmoid
group affiliation (SG), smart conformism 2 (sC2), and loss aversion (LA). These results
differ from an earlier effort that did not use Theil’s Inequality coefficient and
Kolmogorov-Smirnov. In that earlier study [Kuznar, 2006], a prestige bias model and the
full prospect theory model also performed well. The results from using more robust
metrics are more discriminating. They also are more discriminating among the well-
performing models. Two models consistently performed well across all metrics, and they
were the sigmoid utility (S) and smart conformism 2 (sC2).

Table 2. Model Performance in the Kapauku Simulation.
Model TIC

Coalition
Number

TIC Mean
Coalition
Size

Difference
from Actual
Coalition
Number

Difference
from Actual
Coalition
Size

No.
Distribution
Matches per
20 runs

Kologorov-
Smirnov
mean p-
value

Nash 0.118 0.105 3.35 0.55 15 0.258
Sigmoid 0.074 0.066 1.40 0.24 15 0.252
Group
Affiliation

0.095 0.085 2.30 0.39 11 0.199

Prestige I 0.109 0.096 3 0.50 13 0.310
Prestige II
[0,1]

0.267 0.252 11 1.37 1 0.024

Prestige III
[0,1]

0.240 0.220 9.2 1.21 4 0.072

Prestige IV
[0,1]

0.242 0.223 9.35 1.22 1 0.034

Prestige II
[0.3,0.9]

0.145 0.128 4.2 0.64 14 0.275

Prestige III
[0.3,0.9]

0.150 0.141 5.15 0.81 13 0.173

Prestige IV
[0.3,0.9]

0.245 0.225 9.5 1.23 3 0.050

Conformism I
[0,1]

0.204 0.181 7.1 0.99 5 0.112

Conformism II
[0,1]

0.248 0.240 10.2 1.32 0 0.019

Conformism
III [0,1]

0.213 0.192 7.7 1.07 7 0.172

Conformism I
[0.3,0.9]

0.130 0.113 3.15 0.47 13 0.202

Conformism II
[0.3,0.9]

0.083 0.073 2 0.35 15 0.230

Conformism
III [0.3,0.9]

0.120 0.107 3.4 0.55 16 0.181

PW
(probability
Weighting)

0.171 0.163 6.2 0.94 10 0.199

FR (Framing) 0.210 0.199 8 1.12 7 0.079
LA (Loss
Aversion)

0.090 0.103 1.7 0.49 17 0.371

PW FR 0.187 0.175 6.8 1.00 5 0.088
FR LA 0.365 0.365 17.95 1.80 0 0.004
PW FR LA 0.284 0.271 12.1 1.45 3 0.042

438

(Full Prospect
Theory)
Mean 0.181 0.169 6.58 0.896 8.5 0.152
s.d. 0.077 0.075 4.15 0.422 5.9 0.106
Threshold <0.104 <0.094 <2.43 <0.474 >14.4 >0.258

A more fruitful approach is to explore new hypotheses by asking what the successful
models had in common. Successful models had two characteristics in common: 1)
agents behaved in a quasi-optimal manner by selecting strategies that did not deviate far
from Nash optimality, and 2) agents were not homogenous in their decisions. Therefore,
the specific models derived from four different paradigms might not so much accurately
represent reality as much as capture some essential elements that a model must have to be
valid.

CONCLUSION

Computational models provide new and flexible capabilities for representing
social theories from different paradigms. Exploratory modeling using ensembles of
models provides a method by which competing theories can be tested. The result of the
testing may not be a single correct answer, but insights into what essential elements better
theories must contain. In the Kapauku case, theories related to rational choice, prospect
theory, and bounded rationality each has some merit. In particular Kapauku men appear
to have a general sense of what an optimal political strategy is, they may be imitating one
another to refine their strategies, and their decisions appear to be conditioned by prospect
theory biases, risk sensitivity, and group pressures to conform. Exploratory modeling
with ensembles provides a method for more systematically searching the implications of
these theories and suggesting new hypotheses that may aid in the search for more
comprehensive and valid theories.

References

[Atran, S., 2003] Atran, S., 2003, "Genesis of Suicide Terrorism," Science 299(5612):1534-1539.
[Bankes, S., 1993] Bankes, S., 1993, "Exploratory Modeling for Policy Analysis," Operations

Research 41(3):435-449.
[Bankes, S. C., 2002] Bankes, S. C., 2002, "Tools and Techniques for Developing Policies for

Complex and Uncertain Systems," Proceedings of the National Academy of Sciences
99(Supplement 3):7263-7266.

[Blalock, H. M., 1979] Blalock, H. M., 1979, Social Statistics, Revised Second Edition, New
York: McGraw-Hill, Inc.

[Boyd, R. and P. J. Richerson, 1985] Boyd, R. and P. J. Richerson, 1985, Culture and the
Evolutionary Process, Chicago: University of Chicago Press.

[Cowell, F., 1986] Cowell, F., 1986, Microeconomic Principles, Oxford: Oxford University
Press.

[Friedman, M. and L. J. Savage, 1948] Friedman, M. and L. J. Savage, 1948, "The Utility
Analysis of Choices Involving Risk," Journal of Political Economy 4:279-304.

[Kahneman, D., 2000] Kahneman, D., 2000, "Preface,"in Choices, Values, and Frames,
Kahneman, D. and A. Tversky (Ed.), pp. i-xvii, Cambridge: Cambridge University Press.

439

[Kahneman, D. and A. Tversky, 1979] Kahneman, D. and A. Tversky, 1979, "Prospect Theory:
An Analysis of Decision under Risk," Econometrica 47(2):263-291.

[Kahneman, D. and A. Tversky, 2000] Kahneman, D. and A. Tversky, ed. 2000, Choices, Values,
and Frames, Cambridge: Cambridge University Press.

[Kheir, N. A. and W. N. Holmes, 1978] Kheir, N. A. and W. N. Holmes, 1978, "On Validating
Simulation Models of Missile Systems," Simulation 30(April 1978):117-128.

[Kleijnen, J. P. C., 1995] Kleijnen, J. P. C., 1995, "Verification and Validation of Simulation
Models," European Journal of Operational Research 82:145-162.

[Kleijnen, J. P. C., 1997] Kleijnen, J. P. C., 1997, "Sensitivity Analysis and Related Analyses: A
Review of Some Statistical Techniques," Journal of Statistical Computer Simulation
57:111-142.

[Kohler, T. A., G. J. Gumerman and R. G. Reynolds, 2005] Kohler, T. A., G. J. Gumerman and
R. G. Reynolds, 2005, "Simulating Ancient Societies," Scientific American 293(1):67-73.

[Kuznar, L. A., 2002] Kuznar, L. A., 2002, "Evolutionary Applications of Risk Sensitivity
Models to Socially Stratified Species: Comparison of Sigmoid, Concave and Linear
Functions," Evolution and Human Behavior 23(4):265-280.

[Kuznar, L. A., 2006] Kuznar, L. A., 2006, "Exploratory Modeling of Ensembles for Testing
Decision Theory Paradigms,"in Proceedings of the Agent 2006 Conference: Social
Agents: Results and Prospects, Sallach, D. L., C. M. Macal and M. J. North (Ed.), pp.
157-166, Chicago, Illinois: Argonne National Laboratory.

[Kuznar, L. A., 2007] Kuznar, L. A., 2007, "Rationality Wars and the War on Terror: Explaining
Terrorism and Social Unrest," American Anthropologist 109(2):318-329.

[Kuznar, L. A. and W. G. Frederick, 2003] Kuznar, L. A. and W. G. Frederick, 2003,
"Environmental Constraints and Sigmoid Utility: Implications for Value, Risk
Sensitivity, and Social Status," Ecological Economics 46:293-306.

[Kuznar, L. A. and R. L. Sedlmeyer, 2005] Kuznar, L. A. and R. L. Sedlmeyer, 2005, "Collective
Violence in Darfur: An Agent-Based Model of Pastoral Nomad/Sedentary Peasant
Interaction," Mathematical Anthropology and Culture Theory 1(4):1-22.

[Kuznar, L. A., J. Toole and N. Kobelja, 2006] Kuznar, L. A., J. Toole and N. Kobelja, 2006,
"Emergent Agents and the Simulation of Political Unrest: Application to Palestinian
Political Coalitions," Proceedings of the AGENT 2005 Conference: Generative Social
Theory

[Lansing, J. S., 1993] Lansing, J. S., 1993, Priests and Programmers: Technologies of Power in
the Engineered Landscape of Bali, Princeton: Princeton University Press.

[Lempert, R. J., D. G. Groves, S. W. Popper and S. C. Bankes, 2006] Lempert, R. J., D. G.
Groves, S. W. Popper and S. C. Bankes, 2006, "A General, Analytic Method for
Generating Robust Strategies and Narrative Scenarios," Management Science 52(4):514-
528.

[Murray-Smith, D. J., 1998] Murray-Smith, D. J., 1998, "Methods for the External Validation of
Continuous System Simulation Models," Mathematical and Computer Modeling of
Dynamical Systems 4(1):5-31.

[Oberkampf, W. L. and T. G. Trucano, 2002] Oberkampf, W. L. and T. G. Trucano, 2002,
"Verification and Validation in Computational Fluid Dynamics," Progress in Aerospace
Sciences 38:209-272.

[Oberkampf, W. L., T. G. Trucano and C. Hirsch, 2004] Oberkampf, W. L., T. G. Trucano and C.
Hirsch, 2004, "Verification, Validation, and Predictive Capability in Computational
Engineering and Physics," Applied Mechanics Reviews 57(5):345-384.

[Palmer, T. N., 2000] Palmer, T. N., 2000, "Predicting Uncertainty in Forecasts of Weather and
Climate," Reports of Progress in Physics 63:71-116.

[Pospisil, L., 1963] Pospisil, L., 1963, The Kapauku Papuans of West New Guinea, New York:
Holt, Rinehart and Winston.

440

[Pospisil, L., 1972] Pospisil, L., 1972, Kapauku Papuan Economy, New Haven, Connecticut:
Human Relations Area Files.

[Prelec, D., 2000] Prelec, D., 2000, "Compound Invariant Weighting Functions in Prospect
Theory,"in Choices, Values and Frames, Kahneman, D. and A. Tversky (Ed.), pp. 67-92,
New York: Cambridge University Press.

[Tversky, A. and C. R. Fox, 2000] Tversky, A. and C. R. Fox, 2000, "Weighing Risk and
Uncertainty,"in Choices, Values, and Frames, Kahneman, D. and A. Tversky (Ed.), pp.
93-117, New York: Cambridge University Press.

[Tversky, A. and D. Kahneman, 1992] Tversky, A. and D. Kahneman, 1992, "Advances in
Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and
Uncertainty 5(4):297-323.

441

442

BUSINESS NETWORK TOPOLOGY AND RIGIDITIES IN PRODUCTION

 G. CASTAÑEDA,* El Colegio de México, México D.F.
 R. CHAVARIN, Universidad de Guadalajara, Jalisco, México

ABSTRACT

An agent-based model is built with the aim of explaining the effect that organizational
architecture has on the performance (network size and stability) of a business group. An

artificial network is grown where each node (firm) is subject to random income shocks while
the degree of flexibility of the productive system (labor marker rigidity and technology’s
capita-labor ratio) is assumed exogenously. Two variants of network topology are considered:
(i) decentralized management where each node makes local decisions and behaves
opportunistically with a positive probability when a troubled partner needs to be rescued, and
(ii) centralized management where financial transfers from other firm are made with certainty

as long as it has available funds, although, the functioning of this topology entails some
monitoring cost.

Keywords: Business groups, network topology, economic volatility, labor rigidities

INTRODUCTION

 This paper attempts to understand why business networks may transform their topology or
organizational architecture when the productive systems becomes less flexible, either because there
is an increase in the rigidity of the labor market or because the participation of the firm’s fixed costs
increases due to an industrialization process based on capital-intensive production. The hypothesis to
be theoretically validated here with an agent-based model (ABM) asserts that these rigidities make
more cumbersome the operation of a decentralized network where decision-making is entirely local
and, thus, entrepreneurs have the incentive to transform the network adopting a centralized
architecture.
 Decentralization is less problematic in an environment with minor rigidities since a firm
(node) can respond by itself to a negative shock in demand by adjusting its variable costs which are a
relatively large component of the cost structure. The adjustment in variable costs is mandatory when
the financial system exhibits deficiencies that inhibit cash flow smoothness through credit
borrowing. On the contrary, a centralized network fosters the use of financial transfers among firms
facing uncertain shocks when cost rigidities preclude a solution to the cash flow problem at the level
of individual nodes. In spite of the higher monitoring costs, the centralization of a network is
advantageous in this economic setting since it can overcome to a large extent the opportunistic
behavior that go with decentralization. These costs are paid to keep a stringent control in the
allocation of the subsidiaries’ cash flow surpluses and in the nodes’ management.
 The ABM presented in this paper is built having in mind some features of the Mexican
experience in the XIX and XX centuries (Castañeda and Chavarín 2007), and the artificial facts
generated with it are contrasted with such experience. However, it can be argued that the model is
also adequate to explain the transformation of managerial practices and business alliances in any
other country that undertook an industrialization process characterized by a steady increase in the
rigidity of the productive system and the prevalence of institutional drawbacks that hampered the
functioning of financial markets (Leff 1978, Weinstein and Yafeh 1995, Kali 2003, Khanna and
Yafeh 2005, Feenstra, Hamilton and Lim 2002).

* Corresponding author address: El Colegio de México; Camino al Ajusco No. 20, Pedregal de Santa Teresa, Ciudad
de México, 10740 México; (52-55) 5449-3000 ext. 4064; e-mail: sociomatica@hotmail.com

443

AN AGENT-BASED MODEL

 When ‘growing’ a business network in the sense of Epstein (2006) it is possible to observe
tick by tick how rapid the spin-offs expand and how the network responds to increased labor
rigidities and higher volatility. In other words, the ABM allows the observer to discover the
performance of a business network that changes from a decentralized status to a centralized one after
the fixed costs have increased in the economy. Moreover, the simulation of the model with
variations in critical parameters make possible to establish precise conditions that are required to
validate the hypothesis theoretically.

Methodology

 Artificial business groups are grown assuming two different network topologies: (i) a
decentralized management where each node can fail to meet its commitment to transfer resources to
firms facing financial difficulties, and (ii) a centralized management where an implicit holding
structure precludes opportunistic behavior by network members. The performance or macroscopic
pattern can be measured in terms of the mean network size, its standard deviation and the time span
for the network to collapse.
 The model is very simple to avoid excessive parameters that can confuse the understanding
on how the aggregate outcomes emerge; therefore, the heuristic rule for surplus nodes in the
decentralized network is to rescue troubled firms with a probability p < 1 (where 1-p is the
probability of opportunistic behavior); likewise, the remaining cash flow is used to form a new spin-
off that is connected to its parent firm, irrespectively of the amount earned in the previous tick. On
the contrary, for centralized management there are monitoring costs that reduce earnings in each of
the nodes, and the probability of being opportunistic is equal to zero since surplus firms are required
by corporate offices to rescue member firms with a deficit, yet the new spin-offs are also attached to
their parent firms.

Income Shocks Due to Changes in Firms’ Demands

 Starting with a central point in the grid of a torus, in each tick income fluctuates for the
existing nodes according to a uniform distribution U[a, b]. Since fixed costs (k) are such that a < k <
b it is likely that a firm can experience a liquidity problem through its life span, when the opposite
happens the node creates a spin-off that becomes a member of the network. Nodes can be
differentiated in terms of income volatility; for instance, those firms whose lower-bound income is
zero have a higher probability of facing financial difficulties than those nodes where a > 0.

Market Congestion and Diseconomies of Scale

 Firms’ earnings are reduced because of market congestion, that is, with more network
members the market has to be split and this precludes the network to grow without bound. Since
competition between different networks is not implemented in the model, market congestion can be
interpreted as the cannibalization of the clients between subsidiaries, branches or franchises that
belong to the same business group. This constrain of network size can also be interpreted as
diseconomies of scale that appear in large conglomerates. In the case of a centralized topology,
firms’ earnings in each tick are also reduced through a monitoring cost that is proportional to firm’s
income (0 < m < 1); presumably, more economic activity in a subsidiary requires more stringent
controls by corporate headquarters.

444

Financial Rescuing of Troubled Firms

 The procedure for the rescue operation is as follows: (a) with decentralized management the
troubled firm can ask for support to autonomous surplus firms, each of them provide it with
probability p < 1, thus if there are three surplus firms the probability of not getting any financial
support is given by (1-p)(1-p)(1-p) since each node acts locally; (b) with centralized management
surplus firms with enough funds have a mandate to help deficit firms that ask for it and hence p = 1.
Three types of matching between surplus and deficit firms are considered in the model: power-
matching, random-matching and accumulated matching. With power-matching the troubled nodes
with more ties coming out are rescued first, and surplus nodes with more ties coming out are asked
last. This heuristic rule implies that powerful firms (those with more spin-offs) influence network’s
decisions on who is initially rescued and whose funds are used. However, with random-matching
deficit and surplus firms are sorted randomly and, thus, the order of the rescue operation does not
depend on any specific feature of the firms or hierarchical consideration.
 Because these two types of matching are applied in the centralized and decentralized
architectures, the only differences between these topologies have to do with the value of p and
whether monitoring costs are relevant or not. In contrast, accumulated-matching is only used by
networks with centralized management. Under this heuristic all funds of surplus firms are
accumulated in the network’s treasury and then used to rescue deficit firms sorted hierarchically, so
that firms with more ties coming out are rescued first; therefore, when a centralized architecture
adopts an accumulated-matching procedure its performance is compared with a decentralized
topology with power-matching. Furthermore, the remaining funds after the rescue operation are
used by the contributing firms to create spin-offs regardless of architecture and matching procedure.

Endogeneity of Opportunistic Behavior

 In the case of decentralized management the probability of opportunistic behavior is
endogenized. Since in each tick there can be a fracture in the network when a node vanishes due to
liquidity problems and partners that are not capable or willing to provide financing, the out-coming
nodes split from the rest of the group and give birth to different sub-networks. Therefore, the value
of 1-p increases with the number of sub-networks to reflect the fact that under this new structure
opportunistic behavior is more predominant. This artifact can be interpreted as increased fissures in
the business group that make reciprocal funding less likely, the denial of funding can be understood
as a decomposition in the social fabric of entrepreneurs involved in a decentralized network.

The Model’s Pseudo-Code

 A better understanding of the algorithm can be grasped by means of the diagrammatic
pseudo-code presented in Figure 1. Notice that the exogenous parameters and procedures (identified
with ovals and dashed arrows) that can be modified by the observer are the following: maximum
income and degree of volatility that affect the nature of the random shocks; fixed costs and the
selection of network topology that influence net earnings in each firm as a consequence of the
socioeconomic environment and by making monitoring costs relevant, respectively; this latter
selection, the possibility of making endogenous the probability of opportunistic behavior in
decentralized networks and the sorting criteria for matching resources affect the rescue operation.
The effect of market congestion is another exogenous parameter that is pre-specified in the program
yet it is not relevant for the inferences of the model under a wide range of values.
 Once the limits of the uniform distribution are specified by the observer, income shocks are
seeded randomly in new and old nodes in each tick and, then, the proliferation of nodes determine
the level of market congestion and net earnings for each firm. After the production process takes
place with the given fixed costs and sales are defined in terms of market congestion, the financial
situation of each firm is analyzed. Afterwards, resource matching takes place in terms of the sorting
criteria defined by the observer, and in terms of the probability of opportunistic behavior.

445

 Nodes that are rescued stay alive in the network while troubled ones that do not receive
support die; under the latter scenario the probability of opportunism increases as a function of the
number of sub-networks that the dying nodes generate. Firms with available cash flow net of
financial transfers create new spin-offs that depart from the parent node and a new iteration in the
program ensues. Finally, when the financial fragility of the nodes is generalized the network
collapses and the program stops.

Figure 1 Diagrammatic Pseudo-code

random shocks in each
firm’s income:

U[a, b]

observer: a, b observer:

fixed costs

net earnings depend on
market congestion (how the
market is split) and
monitoring cost

network

topology

firms’ financial

analysis

deficit firms

are sorted

surplus firms
are sorted

rescue operation:
(a) resource-matching

(b) opportunistic behavior

surplus firms
create spin-offs

nodes are kept

alive

deficit nodes

die

probability is

recalculated

bad good

some are

unsuccessful

 some are

 successful

network collapses

financial fragility

generalizes

endogenous
probability:

yes/no

 a new iteration

 starts

Symbols: defined by the observer; program sequence

 a concrete action affects data in the node a procedure is implemented

 observer specifies an exogenous selection

sorting

criteria

446

SOME SIMULATIONS

The Main Hypothesis and Variations in Monitoring Costs

 This hypothesis asserts that a centralized architecture has a better performance in a post-
revolutionary setting (high fixed cost and high income variability) than the decentralized variant,
while the opposite holds in a pre-revolutionary environment.1 Accordingly, for this hypothesis to be
theoretically valid the two statements have to be met simultaneously for a range of the monitoring
costs in the centralized topology. Figures 2 and 3 present the mean network size, estimated with ten
runs, and its confidence intervals for the pre-revolutionary and post-revolutionary settings,
respectively. For the point estimates of mean values the decentralized topology performs better in
the pre-revolutionary period in the range [0.08, 0.25] while the centralized one has a better
performance in the post-revolutionary period in the range [0.05, 0.2]; that is, taken these two
intervals jointly it can be argued that the hypothesis holds for the intersection [0.08, 0.2]. Although,
the range is shortened to [0.1, 0.15] when considering non-overlapped intervals with 95% of
confidence.

60

65

70

75

80

85

90

95

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0
.1

1

0
.1

2

0
.1

3

0
.1

4

0
.1

5

0
.1

6

0
.1

7

0
.1

8

0
.1

9

0
.2

0
.2

1

0
.2

2

0
.2

3

0
.2

4

0
.2

5

Monitoring Costs

N
u

m
b

e
r

o
f

fir
m

s

Descentralized 2-standard deviations Centralized 2-standard deviations

Figure 2 Mean network size for the two topologies in a pre-revolutionary context
Notes: (a) Each simulation is produced with three stages of 50 ticks each. The aim of the first stage is to let the network

grow until it stabilizes due to market congestion. The first two stages are run with a decentralized topology and the third

stage with a centralized topology, which is the historical sequence of events. (b) A partial mean size for each topology is

calculated using the arithmetic means of the last 10 ticks of stages two and three for the series of moving averages with

30 values of the number of firms; then, the final mean size is obtained averaging the partial means of ten repetitions. (c)

The intervals of confidence for the average number of firms are calculated with the mean plus-minus two standard

deviations. (d) A pre-revolutionary setting is characterized by the following parameters: low fixed costs (k = 3), low

volatility (a = 3, i.e. ratio-of-volatility = 1 in the NetLogo interface). (e) For the rescue operation firms were sorted using

power-matching. (f) The probability of opportunistic behavior is endogenous and starting at 1-p=0.7.

 In terms of the second indicator of performance (stability), results not shown in the paper
indicate that the coefficients of variation of network size are higher with the decentralized topology

1 The pre-revolutionary and post-revolutionary terms are chosen in reference to stylized fact of the Mexican history.

447

in both environments, irrespectively of monitoring costs; nonetheless, the gap between this indicator
for the two topologies is much smaller in the pre-revolutionary setting (e.g. approximately 3 times
lower). Therefore, in a pre-revolutionary environment network size seems to be a more important
issue given the fact that the economy is less volatile and, hence, when this condition changes in the
post-revolutionary environment a centralized architecture offers a better performance in terms of
both indicators.

17

19

21

23

25

27

29

31

33

35

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0
.1

1

0
.1

2

0
.1

3

0
.1

4

0
.1

5

0
.1

6

0
.1

7

0
.1

8

0
.1

9

0
.2

0
.2

1

0
.2

2

0
.2

3

0
.2

4

0
.2

5

Monitoring Costs

N
u

m
b

e
r

o
f
F

ir
m

s

Descentralized 2-standard deviations Centralized 2-standard-deviations

Figure 3 Mean network size for the two topologies in a post-revolutionary context
Notes: (a) A post-revolutionary setting is characterized by the following parameters: high fixed costs (k = 5), high

volatility (a = 0, i.e. ratio-of-volatility = 0 in the NetLogo interface).

Stability of the Network and Counterfactual Exercise

 In the following analysis the stability of each topology is tested in a volatile environment (a
= 0) with high rigidities in the productive system (k = 6). The simulations are generated for a value
of monitoring costs in the centralized topology which is within the range that validates the
hypothesis (m = 0.13), and for an endogenous probability of opportunistic behavior starting at (1-p)
= 0.7 in the case of a decentralized variant. An upper limit of 500 is set for the number of ticks and
25 simulations are run for each topology, 11 of them reach this limit when networks are organized
with the centralized architecture and none with the decentralized topology. Likewise, the median
number of ticks until the network collapses is 239 for the centralized topology and 55 for the
decentralized one. The minimum and maximum ticks for these topologies are [13, 202] in the
decentralized case and [16, 500] in the centralized case. Accordingly, these results indicate that the
centralized architecture becomes critical for the survival of the network in a post-revolutionary
environment characterized by important rigidities in the labor market and capital intensive
production.
 Next, history is re-played by growing a network in a socioeconomic environment that
moves from the pre-revolutionary to the post-revolutionary setting in five stages described by the
following parameter values [(a=3, k=3), (a=3, k=4), (a=3, k=5), (a=0, k=5) and (a=0, k=5)], each of
them lasting 50 ticks. In the first four stages the decentralized architecture operates (with
endogenous probability and 1-p=0.7) and, thus, 20 repetitions produce an average network size of

448

86, 53, 34 and 23,2 while in the fifth stage the firms transform to a centralized system (with m=0.13)
as the stylized facts of history indicate for a an average network size of 27. In contrast, the average
size remains in 23 firms when in the fifth stage a counter-factual exercise is simulated with firms
sticking to the decentralized topology; therefore, the adoption of a centralized architecture has
economic sense in a volatile and rigid environment.

Phase Transition in the Opportunistic Behavior Space

 The probability of opportunistic behavior in the decentralized topology (1-p) is modified
within the range [0.5, 0.9] to calculate the average number of firms in the pre-revolutionary setting
(k=3, a=3). Figure 4 describes the mean network size and its interval of 95% confidence calculated
with 10 repetitions for each starting probability value. There is an initial plateau of the average
number of firms for the starting values of 0.5 and 0.6, but network sizes drops sharply for a
probability of 0.7 and, then, another plateau at a lower level is established for the values of 0.8 and
0.9.

111 110

86

81 80

75

80

85

90

95

100

105

110

115

0.5 0.6 0.7 0.8 0.9

Probability of opportunistic behavior

N
u

m
b

e
r

o
f

fi
rm

s

Mean value 2-standard deviations

Figure 4 Mean network size for different opportunistic behaviors in a pre-revolutionary setting

Notes: (a) Arithmetic averages are calculated with the last 10 ticks of stages with 50 ticks. (b) The first stage in the

simulations considers (1-p) = 0.5, and this probability is increased one decimal points in each of the subsequent four

stages. (c) Ten simulations are run and, hence, mean network size for each parameter value is calculated with the mean

of the arithmetic average estimated in each stage of the simulation. (d) In the pre-revolutionary setting: k = 3, a = 3.

 There is a phase transition when the opportunistic conduct in the rescue operation starts at 0.7
since the emerging patterns in the dynamic system change drastically when crossing this threshold.
The modification in the outcome of the model at this critical value is observed by running 10 more
simulations in the post-revolutionary environment (a=0, k=5) for each of the two topologies. While
for (1-p)=0.6 the average number of firms is 32 for the decentralized topology, this number is 29 for
the centralized variant with monitoring cost of 0.13; means that are statistically different. This is the
inverse result to the outcome obtained for (1-p) = 0.7 where the corresponding average sizes are 22

2 First a partial mean size is calculated using the arithmetic mean of the last 10 ticks of the stage for the series of
moving averages with 30 values of the number of firms; then, the final mean size is obtained averaging the partial
mean size of the different repetitions.

449

and 28 (also statistically different), respectively. Accordingly, the hypothesis stated in this paper is
theoretically validated only when the probability of opportunistic behavior in a decentralized
architecture is relatively high, that is, for starting values of 0.7 or more.

Different Types of Matching in the Rescue Operation

 Now the robustness of the hypothesis is checked with regard to the type of matching used to
rescue troubled firms. Two more alternatives are considered: (i) random-matching where surplus
firms rescue deficit firms sorted randomly, and (ii) accumulated-matching where all surplus funds
are accumulated in the network’s treasury and deficit firms are rescued in terms of their hierarchy
(number of ties coming out) until there are no more resources available. In terms of network size the
results obtained for power and random matching are practically identical for an scenario with
m=0.13 and starting (1-p)=0.7 (see rows 3-6, Table 1). Again network stability is always better with
the centralized topology and especially in the post-revolutionary context (see rows 9-12, Table 1).
 Furthermore, with accumulated-matching the simulation results validate the hypothesis fairly
well for both indicators of performance, network size and stability, in a scenario with m=0.13 and
initial (1-p)=0.7. While in the pre-revolutionary environment the decentralized topology outperforms
the centralized one with regard to stability (see rows 7 and 8, Table 1), in the post-revolutionary
setting the centralized architecture is more stable and also generates larger networks. Notice,
however, that the number of firms is statistically identical for both topologies in the pre-
revolutionary setting (see rows 1 and 2, Table 1). Statistical results not presented here indicate that
using accumulated-matching the hypothesis holds in the intersection interval [0.11, 0.23] for both
criteria (network size and stability).

Table1 Network performance (size and stability) for different types of matching

 Pre-

revolutionary

Pre-

revolutionary

Post-

revolutionary

Post-

revolutionary

 Type of

matching

Type of topology Average number

of firms

Interval of 95%

confidence

Average number

of firms

Interval of

95% confidence

1

2

accumulated Decentralized

Centralized

85

86

(87.23, 82.77)

(88.13, 83.87)

23

32

(24.36, 21.64)

(33.00, 31.00)

3

4

power Decentralized

Centralized

86

78

(87.94, 84.06)

(79.08, 76.92)

22

28

(23.32, 20.68)

 (28.88, 27.12)

5

6

random Decentralized

Centralized

86

78

(87.55, 84.45)

(78.78, 77.22)

23

28

(24.30, 21.70)

(28.49, 27.51)

 Coefficients of

variation

Standard

deviation

Coefficient of

variation

Standard

deviation

7

8

accumulated Decentralized

Centralized

0.17

0.37

0.008

0.012

0.33

0.26

0.022

0.013

9

10

power Decentralized

Centralized

0.16

0.12

0.009

0.004

0.34

0.18

0.023

0.008

11

12

random Decentralized

Centralized

0.17

0.11

0.006

0.004

0.34

0.19

0.018

0.010

Notes: (a) The coefficient of variation is measured as the ratio of the standard deviation to the mean. A partial estimation

is calculated with an arithmetic mean of the coefficients of variation for the last 10 ticks in the corresponding stage using

moving means and moving standard deviations of the last 30 numbers of firms, then, a final estimation is calculated with

the average of the partial estimations for 10 repetitions. (b) The probability of opportunistic behavior is endogenous and

starting at 1-p=0.7. (c) Monitoring cost in the centralized topology is such that m = 0.13.

450

CONCLUSIONS

 This paper shows that once labor market became very rigid and the industrialization took
place in Mexico during the 30’s-60’s of the XX century there were valid reasons to establish a
centralized topology. The high fixed cost and the volatile economic environment made the
monitoring costs prevailing in this topology less relevant and, thus, entrepreneurs designed a
mechanism to solve automatically the liquidity problems experienced by each node of the network.
This situation contrasted with the stylized facts of the 1870-1910 period, where the labor market was
flexible and fixed cost relatively small. Under this socioeconomic setting prevailed a decentralized
topology where each firm decided independently whether to rescue or not the troubled firms in the
group. These facts are consistent with the Monte Carlo simulations produced with an ABM of
network formation, at least for some range of monitoring costs and opportunistic behavior.

REFERENCES

Castañeda, G., R. Chavarín, 2007, “The Transformation of Business Networks Due to Increased
 Rigidities in the Productive System. An Historical Analysis of Mexican Firms,”
 unpublished manuscript, El Colegio de México.
Epstein, J., 2006, Generative Social Science. Studies in Agent-Based Computational Modeling,
 Princeton NJ: Princeton University Press.
Feenstra, R., G. Hamilton and E.M. Lim, 2002, “Chaebol and Catastrophe: a New View of Business
 Groups and their Role in the Korean Financial Crisis,” Asian Economic Paper, 1 (2); 1-45.
Kali, R., 2003, "Business Groups, the Financial Market and Modernization," Economics of

 Transition. 11 (4).
Khanna, T and Y. Yafeh 2005, “Business Groups and Risk Sharing around the World,” The Journal

 of Business, 78: 301–340.
Leff, N.1978, “Industrial Organization and Entrepreneurship in Developing Countries: The
 Economic Groups,” Economic Development and Cultural Change, 26: 661-75.
Weinstein, D. and Y. Yafeh 1995, “Japan’s Corporate Groups: Collusive or Competitive? An
 Empirical Investigation of Keiretsu Behavior,” Journal of Industrial Economics, 43: 359-
 376.

451

452

Saturday, November 17, 2007

Social Simulation Applications
Combined Track

Spatial Agents

GEOSPATIAL EXOSKELETONS FOR AUTOMATA IN AGENT-BASED MODELS
P.M. TORRENS,∗ Arizona State University, Tempe, AZ

ABSTRACT
In this paper, I introduce a new approach to agent-based modeling in geospatial contexts. The
novelty of the approach stems from introducing geospatial functionality as an exoskeletal wrapper
around standard socio-communicative and goal-oriented agent-based AI. Operationally, I also
introduce an integrated and symbiotic tight-coupling to motion capture and Geographic
Information Systems, based on space-time Geographic Information Science. To prove the
usefulness of the approach in simulation, I describe application of the model to a relatively well-
understood (yet widely misrepresented) scenario involving crowd evacuation in constrained
infrastructure.

Keywords: Geographic Information Science, geocomputation, geosimulation, multi-agent
systems, agent-based models, geographic automata, urban simulation, crowd behavior, complex
systems

INTRODUCTION
Geospatial functionality is essential in many agent-automata models. Geography is central to

many agent rule-behaviors and is critical in defining agency. Indeed, for multi-agent systems that rely on
environmental settings geography invariably occupies a pivotal contextual role in explaining and
bounding actions and interactions between the system's constituent agents. There has been a recent surge
in agent-based methodological development in Geographic Information Science and gecomputation and
a steady growth in the application of agent-based models as experimental toolkits in physical and human
geography studies.

Despite the flurry of activity in agent-automata modeling and enthusiasm for their potential in
pushing the geographical sciences in new directions, both tool-forging and applied examples have, to
some extent, missed opportunities to imbue the research agenda with geospatial science and spatial
thinking. Geographers and other social scientists building spatial models have adopted tools and
techniques often developed in non-spatial domains with the result that much of their work lacks real
geospatial functionality or abstracts from the full geography of the systems or phenomena that they are
actually modeling.

Chief among these problems is the use of cellular automata (CA) as agent-based models that
require locomotion, even though they are relatively poorly suited to such applications. (As most
developers of automata models know, gliders don't really exist outside the retina of the observing
model-user (Faith 1998).) In many respects, this is a legacy of automata use in geographical models that
was dominated by cellular models and a natural alliance between cells and digital geographic data
structures and models based around rasters and raster-landscapes. Similarly, the first ABM development
efforts in the geographical sciences were anchored in Geographical Information Systems that sported a
slew of code libraries and common object models for reconciling raster layers over time, but treated
dynamic vector models comparatively anemically. Similarly, spatial analysis is replete with
methodology and algorithms for reconciling the composition and configuration of rasters through
relatively straightforward schemes based on "map algebra". (These pattern-matching methodologies are

∗ Corresponding author address: Dr. Paul M. Torrens, School of Geographical Sciences, Arizona State University, Box
875302, Tempe, AZ 85287-5302; e-mail torrens at geosimulation dot com.

457

hugely popular in validating geographical models, despite widely-acknowledged problems and fallacies
in their use.) Raster-based techniques and skills are standard in a geographer's skill-set, while relatively
more complicated calculus for vectors and computational geometry is often not as well-developed.
Geographers' (and Geographic Information Scientists in particular) natural comfort with conceptualizing
systems in cartographic terms and the standard training for social-scientific geographers that often
emphasizes qualitative methods and multivariate statistics over approaches like artificial intelligence
(AI) or computable heuristics also contribute to these difficulties.

The unfortunate situation that ABM modelers in geography are left with is that physics-inspired
random walks and potential-field-following heuristics dominate geospatial models, ignoring over one
hundred years of behavioral geography cataloging the myriad ways in which people differ from particles
in fluid-flows or mobile pebbles under the sway of gravity or their own kinetic energy. Automata-based
modeling in geography, having enjoyed a period of infancy in its development up until relatively
recently, has not had to face these issues. However, as the methodological and applied research agendas
of agent-based modeling and the geographical sciences have grown more closely aligned, the inability of
the tools that are available to answer the questions to which we would like to deploy them has become
quite problematic.

In this paper, I introduce a novel approach to agent-based modeling by wrapping agents in a
geospatial exoskeleton that affords them geospatial AI for their actions and interactions. (I refer to this
as an exoskeleton because we leave certain core agent-based functionality intact, essentially
“geospatializing” it via exoskeletal interfaces.) Semantically, the agent-automata that I deploy become
geographic automata and the systems they form are better thought of as geographic automata systems.
There is more to the scheme than semantic nuances, however. The conceptual foundation for the model
is steeped in behavioral and urban geography theory. Mechanically, our modeling methodology is
integrally bound to geosimulation, geocomputation, Geographic Information Systems, space-time
analytics, and geovisulization. Introducing geographic agency from first principles in this way produces
fantastic insight into the space-time processes driving even a relatively simple system such as crowd
movement.

GEOSIMULATION AND GEOGRAPHIC AUTOMATA
Geosimulation (Benenson and Torrens 2004) sits in the background for the work that I will

present, offering distinct advantages over conventional approaches. First, the traditional consideration of
average and spatially-modifiable geographical units or (statistically) mean individuals is replaced in
geosimulation. Instead, units are regarded as spatially non-modifiable entities, with individual
descriptions and independent functionality. Where aggregates are considered, they are formulated
generatively, built from the bottom up by assembling individual entities for the purposes of
accomplishing an aggregate task or amassing an aggregate structure. Second, simulated entities are
independent and autonomous in their geospatial behavior, turning attention to specification of
individual-level behaviors when model-building. Entity behavior is not necessarily treated as spatially or
spatiotemporally homogenous across the system being considered. Third, models are commonly
designed as event-driven, rather than time-driven, and are built with packets of spatiotemporal change
based on the independent internal clocks of simulated components. When put together to form a system,
update of these clocks may be flexibly-defined and the methodology can reconcile diverse
spatiotemporal scales.

The idea of geosimulation has caught-on in agent-based modeling, thanks in part to development
of operational toolkits that allow people to build their own geosimulation models (Benenson and Torrens
2005), or to use of geosimulation as an interfacing mechanism (Bernard et al. 2002). In addition to its
use in dynamic Geographic Information Science (Albrecht 2005), agent-based modelers in computer
animation (Ali and Moulin 2005; Moulin et al. 2004), social geography (Koch 2003), location-allocation
modeling (Ligmann-Zielinska et al. 2005), machine learning and data-mining (Filho et al. 2004),

458

human-computer interaction (Furtado et al. 2007; Furtado and Vasconcelos 2007), criminology (Melo et
al. 2006), and medical epidemiology (Ward et al. 2007) have developed geosimulation models.
Geosimulation has also been used to extend neighborhood functionality for CA methodology (Zhao and
Murayama 2007). The work reported in this paper is part of our efforts to develop more core geospatial
functionality for geosimulation-based agent models.

Operationally, we use automata as the vehicle for geosimulation. We have developed a scheme
for building Geographic Automata Systems (GAS), fusing the computational properties of automata
with Geographic Information Science (GISci) functionality (Torrens and Benenson 2005). GAS are,
fundamentally, automata and retain components from cellular automata and intelligent agents. We add
the ability to express spatiotemporal relationships based on the full range of spatial analysis routines
available in GISci. Geographic Automata (GA) may be located by any geo-referencing convention (L)
and can also move through the spaces they occupy by any locomotion regime (RL). L allow GA to be
registered in space and time (i.e. L = Lt), either directly or indirectly, on a one-to-one, one-to-many,
many-to-one, or many-to-many basis. A typology or ontology (K) of GA entities mediates the nature of
L and RL. Input to GA is considered geographically as neighborhoods of interaction and influence. GA
neighborhoods may differ heterogeneously in extent and shape per GA and may change dynamically so
that N = Nt. Neighborhood rules (RN) determine these changes. Neighborhood relationships, expressed as
cognitive filters, social relationships, lines-of-sight, and so on can be introduced and allowed to vary
over space and time. Many GA (G below) may be combined in a systems context, with each GA in the
collective GAS coded heterogeneously:

 ~ , , , , , , , where : ; : ; and : .

Among other things, this allows us to distinguish agent types based on their geospatial behavior.
In the models to be described, five entity types (classes in an object-oriented sense) are used: World,
FixedObjects, MobileObjects, Goals, and Probes. World represents the simulated environment (a city). It
subsumes (contains, encapsulates) all other entities in the simulation. It also acts as a template for
georeferencing, handling entities’ absolute position in the World and their position relative to other
entities in the World. FixedObjects is used to represent the urban infrastructure and thus handles buildings
and obstacles (parked cars, trees). FixedObjects do not move, although they can influence the movement
of other mobile entities. MobileObjects represent people in isolation, crowds and the groups that they
form, as well as particles (smoke, embers, mobile toxins). MobileObjects move, as the nomenclature
suggests. Goals are used to structure events. They are used as space-time anchors, operating as beacons
for actions to be executed. Goals may be used by specific groups or individuals, in specific places and/or
at specific times. Probes function as data-collecting entities that linger in the model world with the intent
to capture attributes of the simulation (as an executable computer program), the simulated system (as a
synthetic representation of phenomena of interest or under study), and model entities’ states and actions.
Probes are endowed with the ability to sift through data, sort it, and exchange it with caches for
input/output to/from GIS as well as spatial and statistical analysis.

GEOSPATIAL FUNCTIONALITY FOR A GEOSPATIAL MODEL
The next step is to imbue this modeling scaffold with theory-driven heuristics. The sub-field of

behavioral geography is replete with theory and explanation for human geospatial behavior. We take our
cues, in developing geospatial functionality for our modeled agents, from decades of work in behavioral
geography.

First, we acknowledge that geospatial behavior is largely determined by heterogeneous
geospatial traits per-agent. While seeming to behave with universal behavior at a macroscopic scale of
observation, people move and navigate through urban settings with a great deal of individuality and their

459

movement behavior is formed heterogeneously from independent geospatial and geotemporal
characteristics. Infrastructure characteristics are established and assigned to geometry in GIS. Pedestrian
agents are endowed with characteristics from a synthetic data population, using statistical, geostatistical,
and geodemographic inference to down-scale aggregate data sources to micro-levels. Motion capture
and motion editing are used to produce realistic-looking movement, heterogeneously, per-agent. The
technique also provides upper- and lower-bounds for pedestrian velocity, as well as free speed. This
allows us to calibrate rates of acceleration/deceleration per agent, accounting for differences in habits,
gait and allows us to encode body language into simulations geometrically.

Second, we base our modeled agents on an assumption that they plan their paths geographically
and use waypoints to develop a general sense of how to get somewhere. Path planning is introduced to
the modeling framework per-agent as a low-level search heuristic that determines (graph-based) nodal
waypoints through which agents then ambulate using a second, higher-level way-finding heuristic,
whereby agents plan their route between waypoints before mobilizing.

Third, we wrap agents with spatial cognition as part of their behavioral AI. A traditional
automata-based socio-communicative and goal-oriented agent AI sits at the core of modeled entities'
behaviors, but those routines are passed through a second layer of geospatial AI, thereby dictating when,
where, and in what spatiotemporal contexts that functionality should be employed. Agent walkers are
endowed with an individual-centric geography around themselves, used to filter the world as they move.
This is formed as a vision cone centered on the agent and cast (as a ray) in a forward direction. Cone
properties vary heterogeneously and spatiotemporally based on changes in pedestrians’ behavior,
characteristics, and surroundings. Potential collisions are registered in an array and sorted for relevance
(angry dogs may get priority for some people, but not others, for example). Once free from encounters,
pedestrians navigate to return to their shortest path route.

Fourth, we make use of the fact that people’s activities strongly structure their use of space and
time. Walkers may organize their paths through space-time as events fashioned around their activity
goals and these serve as spatiotemporal anchors. We have developed an integrated GIS-based analytical
toolkit for sweeping the parameter-space of simulations and for registering simulations to real-world
conditions, based on space-time paths and prisms for individual, dyad, and group behavior and
isochrones for individuals, groups, and events.

AN APPLIED EXAMPLE
I will now demonstrate the usefulness of this approach through discussion of the model’s

application to evacuation of agents through confined urban infrastructure. The physics of such effects
have been well-modeled on the basis of association between the physical properties of crowd evacuation
in such contexts and those of fluid and excitable media in granular or gas-kinetic environments (Helbing
et al. 2000). However, true behavioral models have not been developed to model such situations, save a
“social force” extension of Newtonian dynamics.

The simulation is set-up as follows. Synthetic pedestrians were arbitrarily loaded to an urban
scene and run with innate behavior. Motion capture data dictate their free, upper, and lower speeds and
acceleration/deceleration (figure 1). They possess one higher-level driver, an impulse to evacuate from
their seed position to a goal at the end of the modeled world. Only one exit exists.

460

Time t

Time t +1 second

FIGURE 1. Velocity data are derived from motion capture of a real-world actor’s movement.

An A* algorithm is run to find the shortest route to that exit for each pedestrian. Pedestrians will
follow this track unless their innate behavior dictates otherwise. At the onset of the simulation,
pedestrians orient themselves in the direction of the exit. Taking a prompt from higher-level behavior
(i.e., to proceed calmly to the exit, or flee at all costs), they quickly scale their velocity from a position
of rest to their free speed, navigating, path-planning, and mobilizing to an assembly point on the other
side of the exit (figure 2). Some pedestrians have line-of-sight to the destination, while others must steer
clear of infrastructural objects (walls) before they can see the goal.

Agents that make it to the exit early are able to evacuate the enclosed space relatively freely.
However, a bottleneck soon forms at the mouth of the exit. As the crowd of pedestrians builds up behind
and to the sides of this obstruction, a characteristic arch forms at the entry to the exit corridor, which
impedes escape further. The crowd begins to wedge at ± 45 degree angles on either side of the exit. This
is a well-known emergent property (Helbing et al. 2001).

Probes continually report pedestrians’ positions. Those data are run through a space-time GIS
that builds space-time paths as graphics and geometry, allowing the parameter-space of the simulation to
be swept. As seen in figure 3, Agent 1 exits (the space-time path becomes a vertical, indicating rest)
quickly, following the shortest path relatively free of collisions. Agent 2 encounters crowded conditions,
however, taking longer to exit. Agents 3 and 4 proceed well until their geospatial AI is impeded by a
jam toward the end of their space-time path. Compaction and expansion of their space-time paths is
evident, illustrating frustrated cycles of speeding-up and slowing-down. These signatures are similar to
those in car traffic jams following accidents (Nagel and Schrekenberg 1995). The onset of a traffic jam
is clear (figure 2c, 3a). The slope of the space-time path of individual walkers rises sharply as
pedestrians enter the exit corridor, leveling out somewhat thereafter (figure 3).

Mapping textures to simulated pedestrians (cloth, hair) and infrastructure (concrete), lighting,
and shadow-mapping is useful in generating realistic-looking simulations (figure 2). This is particularly
important in conveying the themes of modeled scenarios to viewers of the simulation. Buildings may be
rendered as transparent or reflective so that the dynamics of crowd flow can be viewed through dense
simulated infrastructure as the simulation runs.

461

(a)

(b)

(c)

(d)

FIGURE 2. (a) Seed conditions. (b) Nearby agents exit quickly (t = 3 seconds). (c) Gridlock forms for agents that arrive at the
exit later; pressure builds as the crowd compacts (t = 33 seconds). Characteristic lateral wedges of jammed agents form at the
exit’s sides, further obfuscating evacuation (t = 66 seconds). (d) As the pressure in the congested crowd subsides, evacuation
proceeds more efficiently (t = 133 seconds.

(a) (b)
FIGURE 3. (a) Space-time paths for all agents. Spatial movement is shown in (x,z), temporal movement in y. (b) Agent 1
evacuates quickly and easily, as shown by the relatively straight and flat space-time profile. Agent 3 encounters some traffic
over the last two-thirds of her journey. Agent 3 evacuates relatively slowly, while agent 4 has a difficult evacuation, as shown
by the tortuous and steep space-time path of her movement.

CONCLUSIONS
A demonstration of the usefulness of behaviorally-driven models and analyses in developing

realistic and intelligent synthetic representations of geospatial behavior in urban environments has been
shown in this paper. The advantages of this approach have been illustrated through application of the
scheme to evaluation of large-scale evacuation dynamics in downtown settings. The scheme that has
been described is valuable in proving the underlying computation, but also demonstrates the potential

462

for approaches of this kind in exploring and generating theory in studying spatial cognition, sociality,
collective behavior, and human-environment interaction.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National Science Foundation under Grant No.

0624208 from the Human and Social Dynamics program and Grant No. 0643322 from the Geography
and Regional Science and the Methods, Measurement, and Statistics programs, and support from
Autodesk, Inc. and Alias Research.

REFERENCES
Albrecht, J. 2005. A New Age for Geosimulation. Transactions in Geographic Information Science 9

(4):451-454.
Ali, W., and B. Moulin. 2005. 2D-3D Multiagent GeoSimulation with knowledge-based agents of

customers' shopping behavior in a shopping mall. Paper read at Conference on Spatial
Information Theory, at Ellicottville, NY.

Benenson, I., and P. M. Torrens. 2004. Geosimulation: Automata-Based Modeling of Urban
Phenomena. London: John Wiley & Sons.

———. 2005. A minimal prototype for integrating GIS and geographic simulation through Geographic
Automata Systems. In GeoDynamics, eds. P. Atkinson, G. Foody, S. Darby and F. Wu, 347-369.
Florida: CRC Press.

Bernard, L., I. Simonis, and A. Wytzisk. 2002. Dynamic interoperable geoprocessing and geosimulation:
An OpenGIS/HLA based interoperability architecture. Paper read at European Interoperability
Workshop, June 24 to 26, at London.

Faith, J. 1998. Why Gliders Don't Exist: Anti-Reductionism and Emergence. In Artificial Life VI:
Proceedings of the Sixth International Conference on Artificial Life, ed. C. Adami. Cambridge,
MA: MIT Press.

Filho, E. V., V. Pinheiro, and V. Furtado. 2004. Mining data and providing explanation to improve
learning in geosimulation. In Lecture notes in computer science 3220: Intelligent Tutoring
Systems, eds. R. M. Vicari and F. Paraguaçu, 821-823. Berlin: Springer.

Furtado, E., V. Furtado, and E. Vasconcelos. 2007. A conceptual framework for the design and
evaluation of affective usability in educational geosimulation systems. In Lecture Notes in
Computer Science 4662: Human-Computer Interaction (INTERACT 2007), eds. M. C. C.
Baranauskas, P. A. Palanque, J. Abascal and S. D. J. Barbosa, 497-510. Berlin: Springer.

Furtado, V., and E. Vasconcelos. 2007. Geosimulation in education: A system for teaching police
resource allocation. International Journal of Artificial Intelligence in Education 17 (1):57-81.

Helbing, D., F. Illés, and T. Vicsek. 2000. Simulating dynamical features of escape panic. Nature 407
(September 28):487-490.

Helbing, D., P. Molnár, I. Farkas, and K. Bolay. 2001. Self-organizing pedestrian movement.
Environment and Planning B 28:361-383.

Koch, A. 2003. Sozialgeographische agentenbasierte geosimulation: Zur komplementarität von
raumsemantik und raummodell. In Klagenfurter Geographische Schriften 23: Multi-Agenten-
Systeme in der Geographie, eds. A. Koch and P. Mandl, 35-64. Klagenfurt: Institut für
Geographie und Regionalforschung der Universität Klagenfurt.

Ligmann-Zielinska, A., R. L. Church, and P. Jankowski. 2005. Exploring multiobjective urban land
allocation with geosimulation: Are optimized spatial alternatives doable in practice? Paper read
at Geocomputation 2005, at Ann Arbor, Michigan.

Melo, A., R. Menezes, V. Furtado, and A. L. V. Coelho. 2006. Self-organized and social models of
criminal activity in urban environments. In Lecture Notes in Computer Science 4150: Ant Colony
Optimization and Swarm Intelligence, eds. M. Dorigo, L. M. Gambardella, M. Birattari, A.
Martinoli, R. Poli and T. Stützle, 518-519. Berlin: Springer.

Moulin, B., W. Chaker, and J. Gancet. 2004. PADI-Simul: an agent-based geosimulation software
supporting the design of geographic spaces. Computers, Environment and Urban Systems 28
(4):387-420.

463

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0643322

Nagel, K., and M. Schrekenberg. 1995. Traffic jams in stochastic cellular automata. Los Alamos, NM:
Los Alamos National Laboratory.

Torrens, P. M., and I. Benenson. 2005. Geographic Automata Systems. International Journal of
Geographical Information Science 19 (4):385-412.

Ward, M. P., S. W. Laffan, and L. D. Highfield. 2007. The potential role of wild and feral animals as
reservoirs of foot-and-mouth disease. Preventive Veterinary Medicine 80:9-23.

Zhao, Y., and Y. Murayama. 2007. A new method to model neighborhood interaction in cellular
automata-based urban geosimulation. In Lecture Notes in Computer Science 4488:
Computational Science (ICCS 2007), eds. Y. Shi, G. D. Albada and J. Dongarra, 550-557.
Berlin: Springer.

464

ENACTMENT SOFTWARE:
SPATIAL DESIGNS USING AGENT- BASED MODELS

T. NARAHARA∗, Harvard University, Cambridge, MA

ABSTRACT

This paper introduces a potential use of agent-based computational models into
architectural spatial design strategies. Visualization of the human behaviors within
architectural spaces is one of the uncultivated areas in the field of architectural design.
The use of agent-based computational tools such as NetLogo has a great potential to
overcome various shortcomings in the existing architectural design software.

Keywords: Architectural Design, Visualization, Agent-based Computation, NetLogo,
CAD software, Image Rendering, Human Behaviors.

INTRODUCTION

Spatial qualities in architectural design cannot be fully evaluated solely by observing
geometrical constructs without reference to inhabitants placed inside. However, imagining what
happens to those inhabitants and appreciating their movement is difficult even for trained
architects. Architects tend to underestimate the importance of the role of people inside their
buildings; they are often not fully aware of the behaviors induced by the spaces which they
design. The existing analytical means of architectural representations – plans, sections,
elevations, axonometric, and perspective – are not sufficiently capable of visualizing the
psychological behaviors of people.

Behavioral aspects of the spatial design have yet to be addressed well in any existing

architectural design tools. As architectural projects become increasingly more complex in their
formal manifestation as well as functional requirements, new methods are sought to address the
complexities. Contemporary designs by today’s leading architects are often filled with their
signature expressions, and some of their design decisions seem to be executed based on their
individual sensitivities and intuitions without enough concern for behavioral aspects of users.
Today’s advanced computational design tools (CAD software) can produce complex forms and
sophisticated visualizations of light, materials and geometry. But they are not suitable for helping
people to quickly study and understand a spatial design as it would be inhabited. The proposed
method lays a foundation for developing a new kind of software that overcomes this shortcoming
by the use of agent-based computation.

 In architecture, many spatial problems are indeterministic. Solutions to particular design
problems are usually constrained by multiple criteria and are far from obvious. Normally,
architectural design has multiple evaluation factors, and this fact prevents it from having simple

∗ Corresponding author address: Taro Narahara, Harvard University, Graduate School of Design, 48 Quincy Street,
MA 02138; e-mail: narahara@gsd.harvard.edu

465

straightforward equations or methods to reach solutions. Moreover, this ambiguity and
invisibility of spatial qualities tends to hide the actual problems from designers’ eyes. Aesthetic
values may scarcely ever be quantified or objectively evaluated, but even mere functional aspects
of architecture are hard to evaluate. For instance, architectural codes respond to constituent parts
of dimensional constraint in architectural spaces. However, for a building as a whole, whether or
not the end products of assembly of all locally constrained parts are efficient and comfortable,
are very difficult to predict before actual user involvement. A “walking actual human” on full-
scale mock-up can be one solution to check the level of comfort in architecture although time
and cost that it takes to execute it is considerable. Another possible approach can be using a
synthetic figure based on human behavioral patterns to test the performance of space before
realization of the physical space.

The paper seeks to find a tool with which to capture human reactions in architectural

spaces in an animated format. By suggesting another layer of architectural quality hidden behind
the constructive forms, this paper aims to bring the designers’ attention back to a man on the
stage, and the eyes of a user. By walking a synthetic figure through architectural space, this tool
will visualize the psychological response to architectural elements in motion.

The main difference between conventional architectural representations and this tool lies

in the presence of autonomous behaviors embedded in the figures. Through agent-based
computation, it moves inside the model and displays various behaviors in reaction to spatial
characteristics such as transparent surface, opaque surface, perforation and furniture. Typically
all the figures in architectural animations are controlled, prepared, and inserted afterward, on top
of their 3D models in a top-down manner. For example, most of the walking figures merely
follow the paths that were drawn and reinterpreted by the designer on their 3D models, and their
motions are post-rationalized by the creator (animator) of the presentations. There are some
levels of discontinuity between the motions of the figures and their surrounding architectural
environments since they are results of reinterpretations by the observers who reside outside the
environments. This new tool attempts to omit this final tweaking process by according some
level of cognition to these figures from the outset of the process. These cognitive capabilities
include collision detection, obstacle (walls, etc.) detection, cognition among others, and
cognition of the attractors in architectural environments.

FIGURE 1. Proposed Tool (left), and Conventional design communication tools (right).

466

Re-Action to the architectural spaces, including the reaction to the different materiality of the
architectural elements, is one of the most unique features implemented in this tool. These
cognitions are directly embedded in the figures on the stage sets, and they are not from the re-
interpretation or the post-rationalization.

METHODOLOGY

The proposed method uses two platforms; the agent-based environment which computes

the behaviors of each figure, and the 3-D visualization environment inside a rendering
application. Results from the agent-based computation will define all the behaviors and
movements of the figures. In other words, all the intelligence about the autonomous behaviors is
acquired from the simulation program developed by the author in the programming environment
in NetLogo (Wilensky, 1999.) In order to achieve physical three dimensional qualities in
representation, all these behavioral information will be once translated (encoded) into text files to
export the information into external visualization environment. 3d Studio Max release 8 is
selected for the final visual representational platform due to its high-end rendering capabilities,
and its availability among the architects and students. Furthermore 3d Studio Max release 8
comes with CharacterStudio which provides standard bipedal character skeletons. This biped
figure is used as an actor inside the Space Re-Actor’s environment based on the results acquired
form the agent-based computation.

In the field of architectural design profession, it is fairly typical for designers to build 3-d

models of their own building designs within the CAD (computer aided design) software
environments such as AutoCAD, 3d Studio MAX. The proposed method introduces walking
scale figures in geometric models. The goal is to add a sense of place to the geometry, and
augment the representation of its spatial quality for designers and audience. Through agent-based
computation using NetLogo, they move inside the model and display various behaviors in
reaction to spatial characteristics such as transparent surface, opaque surface, perforation and
furniture.

FIGURE 2. The Agent-based Environment in NetLogo (left), and the 3-D Visualization (right)

467

The figure is assigned a psychological profile with a different degree of sociability, and reacts to
proximity and visibility of others in the same model. In order to provide cognitive and behavioral
capabilities to the figures in the agent-based environment, individuals are equipped with series of
internal variables such as vision, memory, energy, level of curiosity toward attractors, sociability,
and so on. NetLogo’s programming language is used to describe various architectural elements
such as walls, glazing, doors, furniture, water feature, and so on as attractors which define the
behavioral responses from agents on scenes. NetLogo’s pixel-based graphic environment allows
users to import any architectural floor plans’ information from CAD software environments, and
users can color-code preceding various attractors on their floor plans in real-time manner.
Furthermore, computational results from NetLogo program can be exported into architectural
animation software’s 3-D environment using text codes indicating every agents coordinates
information and series of ASCII codes representing agents’ behavioral responses which are
associated with proper motion capture files for bipedal character skeletons for cinematic
representational purposes.

Series of built and un-built works by Mies van der Rohe are selected for the case studies.

Mies is regarded as one of the pioneer of modern architecture and left series of minimalistically
composed plans for his projects. The spaces designed by Mies are relatively loosely defined in
terms of the programs and the specific usages of each individual spatial compartment, thus
results of human responses are less predictable, and they are considered to be suited for the study.
The German Pavilion at the International Exposition in Barcelona (1928-1929) by Mies, usually
referred to as the “Barcelona Pavilion” is one building on which the functionality of this tool, the
Space Re-Actor, will be tested. As a building type, a pavilion does not force any specific
objective on the people visiting the building. Visitors’ behaviors will be in direct response to the
building’s architectural features such as water features, benches, and sculptures, as well as to the
transparency, opaqueness, or texture of the surface materials. They begin by wandering around
the building and gradually find their ways toward what naturally attracts them. The visitors’
behaviors are induced by the architectural elements present, and this condition is well suited for
solely concentrating on evaluating the spatial conditions.

The followings are the examples of various reactions to architectural elements

implemented in the synthetic figures. The tool also allows users to sketch and color-code the
architectural elements to assign different qualities and characteristics to the materiality and
features intrinsic to architectural spaces in real time manner.

FIGURE 3. Re-Actions to Architectural Elements. Interactions among Agents. Series of Re-
Actions gained from NetLogo are associated with various behavioral motion captured files.

468

• Attractor-based Reaction: users can assign attractors such as sculptures or water
features. They attract visitors’ attention, and the visitors may halt for a moment to enjoy the
views. For instance, the Barcelona Pavilion has two water ponds as major architectural features.
Spatial allocation of these elements inside the overall composition by definition reflects the
master designer’s intention and motivation to shape people’s circulation and experience. How
the specific placement of those attraction features can manipulate the visitors’ behaviors and
contribute to the overall experience of the pavilion are the questions to be explored by seeing the
real-time reactions of walking figures.

• Agents’ Variable-dependent Reaction: Depending on a visitor’s activity level, she or he
might find comfort by sitting on the benches. Figures have an internal variable to measure their
activity level (energy level) to check whether they feel like sitting or not. This type of attractor
will be conditionally applied based on the internal variables of the figures. For instance, if the
energy level is lower than a certain threshold value, they will start to seek the place to rest
(furniture: Bench). After regaining the energy, they will go back to respond with the normal level
of curiosity to other attractors.

• Visibility-based Reaction: “Can see and can be seen” is an important concept for the
behavior of figures. The synthetic figures have vision, and some of their reactions are based on
visibility. Better visibility allows them to find not only the attractors but also the others inside the
space who could influence their next moves. The tool calculates the visibility at every coordinate
point of the accessible space.

• Agents-to-Agents Reaction: Besides the simple avoidance and collision detections,
interactions between the agents are considered. Having different degrees of sociability for figures,
the tool can start to render an event in the scene. Heterogeneity among the agents governs the

Agent’s Variables

- Vision

- Memory =
- Energy =
- Sociability =
- Curiosity =

Probability Density
(Color indicates objects ahead)

FIGURE 4. Agents’ Vision (left), Example of Stochastic Decision Process (middle and right)

469

variations in interactions among the visitors. Some like to have more interactions with others and
some do not. When two sociable people meet within a certain level of proximity on the street,
conversation will start, and this begins to add a sense of place to the geometry.

Every trial of the tool produces different possible events, based on the stochastic decision

making process which is implemented in figures. However, by seeing series of possible scenarios,
users can identify behavioral tendencies and actions inherent in the space which they are
designing. A series of behavioral choices are chained and branched out from the current states of
the figure, and they will choose their next states based on situations from their surrounding
environments, their internal variables, and the different probabilities with which possible next
states are weighted. Likelihoods of one behavior over the other can be expressed by directing
randomness to a certain manner. Their chances of occurring are not uniformly distributed. For
the sake of simulation, these differing probabilities are interpreted and applied to the figure’s
tendencies to select one state over the others. The interpretation of the events’ likelihoods should
ideally reflect patterns of human behavior in real-life from available knowledge-based data. The
aim of these exercises is to render the potential events and scenes of the building ideas, which
had been left simply as states of geometry.

Another implementation for the figures’ behaviors is called Privacy mapping. Privacy

mapping is a concept for gauging the level of privacy inside the space. This method is
particularly interesting for analyzing residential spaces. I based the concept on two proposed
criteria: level of exposure to the exterior environment (public) and the numbers of others who
can see within the house. The first criterion can be simply calculated by projecting invisible rays
360 degrees around every point within spaces. Areas of visual exposure to the exterior in
elevations are calculated using trigonometry, and it is simply the sum of these areas from the
entire surroundings that indicates the privacy level of this coordinate point. This measure is
based on agents’ locations and is highly influenced by the materiality (transparency) of the walls
and partitions inside spaces. Any change of the materials and their locations may affect this
measure which provides spatial hierarchy based on the privacy.

One other criterion that I proposed is to measure privacy based on how many others are

seen. When the density of the space is higher, people are likely to be seen by others, and this
value will indicate the capacity of spaces that can maintain a level of privacy. The relationship
between the distance around oneself and one’s perception of others has been introduced the

FIGURE 5. Plan of Country House by Mies, 1932 (left), Privacy level, from Red being high to
Purple, being low (middle), Personal distance among Agents (right).

470

studies such as Proxemics by Edward T. Hall. In “The Hidden Dimension,” Hall suggests that
four feet is considered to be “personal distance” which maintains a small hypothetical protective
sphere between oneself and others. This dimension also varies, depending on one’s cultural
background, and is hardly ever objectified. It is an interesting idea to test the spaces with the
different cultural dimensions possessed by various social groups. As a starting point of this study,
any numbers of others within the dimension from Hall’s studies, plus-or-minus four feet in
radius as a threshold value, are counted as people who can greatly influence one’s sense of
privacy. Any others in visible areas outside of this distance are considered less influential; hence,
those values decrease in inverse proportion to the distances from oneself.

CONCLUSION

The animated result from the tool brings a sense of place to the geometry by displaying

the figures in motion. By observing the scales and numbers of footsteps that it takes to move
figures from one location to the other, viewers can obtain a sense of speed and physical three-
dimensionality. The tool’s results offer a starting point for initiating users’ conceptions of a
space and help them to immediately study a spatial design as inhabited. Through considering the
results that I have obtained from the series of experiments using the Space Re-Actor, I began to
realize that the importance of the tool lies in the effort to integrate “human involvement” into a
spatial design. A space seems to exhibit different characteristics according to the numbers of
occupants, their objectives inside the space, and the proportions of groups with different degrees

FIGURE 6. The group of court house by Mies (1931) and various Behavioral Responses from
plan schemes with different degrees of Privacy using the Space Re-Actor

471

of sociability. Behavioral aspects of the spatial design have yet to be addressed well in any
existing design tools. One may be able to obtain discrete numerical data about people’s comfort
levels as they depend on the density of a space through analytical means, but comfort and other
characteristics in particular spatial layouts and conditions can be more fully grasped through the

Figure 5. Brick Country House by Mies (1923) and Animated results from the Space Re-Actor

472

use of simulations. Aggregation of all the architectural components, such as doors, partitions,
windows, staircases, and furniture in specific layouts can be understood through the use of the
Space Re-Actor.

Describing the people’s behaviors computationally is a controversial issue. That “an
Agent-based model can never perfectly duplicate human social interaction” is a perennial
critique and a genuine problem for the computer and social scientists involved in behavioral
simulations. Simulations are always based on premise that human beings will behave in certain
ways under specific conditions. Even though possible behaviors are incorporated from actual
events and scenarios, there is no proof that the behaviors include all possible occurrences. The
scope of reliability of results obtained through behavioral simulation is a critical bone of
contention for researchers, not only in computer science, but also in operations research, social
science, behavioral economics, and so on.

The fact that many scientists involved with neural-coding are actively using probabilistic

approaches such as Bayesian analysis suggests that any study involving our “self” requires some
degree of understanding of indeterminacy. Unlike discrete and determinant geometrical
construction seen in architectural design, behavioral implementation can not be fully described
without applying a notion of “indeterminacy.” Describing a transition from one state to the other
or one formal solution to the other by the decision of a human being may require a probabilistic
treatment as is often true in nature.

“Is this really Simulation?” is an interesting question. The Space Re-Actor provides

animated possible scenarios based on the qualities inherent in architectural spaces. The
plausibility or persuasiveness of these results probably depends also on viewers’ own attitudes
and perceptions toward the “reality” around themselves. But the tool provides multiple
interpretations of the spaces based on the stochastic decision process implemented in the figures,
which is meant to reflect the indeterminacy of human behavior. “Reality,” I believe does
possesses indeterminacy. To determine types of people visiting the Mies’s country house at
particular times of the day is not realistic. Every trial of the tool produces different possible
events, and the original intention was to identify tendencies in behaviors and actions by seeing
series of possible scenarios. What we have witnessed in the several visualization results of the
Space Re-Actor may not be certain to occur in reality. However, neither can one completely
deny the potential occurrence of such events. It is, so to speak, dramatization tool for spatial
designers, and I argue that the Space Re-Actor may more properly be considered as the first
instance of a new category I am calling “Enactment software.” One’s attitude toward “reality”
will surely influence how we regard this new tool, the Space Re-Actor.

Spatial qualities in architectural design cannot be fully evaluated solely by observing
geometrical constructs without reference to inhabitants placed inside. The consequent emergent
behaviors of people induced by characteristics of spaces may be impossible to predict, and
indicate another layer of spatial qualities beyond the visible, formal, and aesthetic. A method for
informing designers about the potential interactions between human behaviors and the spaces
they are designing will constitute a valuable tool. As a future exploration, these figures’ profiles
or behavioral tendencies can be controlled by the users of the tool based on the conditions and
the building types which they are considering.

473

ACKNOWLEDGEMENTS

I would like to sincerely thank, my academic adviser at the Massachusetts Institute of
Technology, Professor Takehiko Nagakura for his insightful guidance and constant support
during the development of this project. I would also like to thank my current academic adviser,
Professor Kostas Terzidis at the Harvard University, Graduate School of Design for his valuable
comments and feedback. This project is based on my thesis work, and it would not have been
possible without their help.

REFERENCES

Benenson, I. and Torrens, P., 2004, Geosimulation: Automata-based modeling of urban
phenomena. :Wiley.

Franpton, K., 1992, Modern Architecture: A Critical History. New York, NY.: Thames and

Hudson.

Gilbert, N. and Troitzsch, K. G., 2005, Simulation for the Social Scientist. :Open University

Press.

Hall, E. T., 1969, The Hidden Dimension, Garden City, New York: Doubleday.

Nagakura T. and Chatzitsakyris P., 2006, “A Synthetic Moviemaker for Spatial Representation.”

Proceedings of ACM SIGGRAPH, Sketches, 2006, Boston.

Narahara T. and Terzidis K., 2006, “Multiple-constraint Genetic Algorithm in Housing Design,”

[ACADIA International Conference, Synthetic Landscapes | Digital Exchange] Louisville
USA. 12-15 October.

Werner, B. 1997, Mies van der Rohe. Berlin, Germany: Birkhauser Verlag.

Wilensky, U. 1999, “NetLogo,” Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL; available at http://ccl.northwestern.edu/netlogo/.

474

SHULGI: A GEOSPATIAL TOOL
FOR MODELING HUMAN MOVEMENT AND INTERACTION

S. BRANTING, University of Chicago, Chicago, IL

Y. WU, Argonne National Laboratory
and Illinois Institute of Technology, Chicago, IL

R. SRIKRISHNAN, Argonne National Laboratory
and Illinois Institute of Technology, Chicago, IL

M. R. ALTAWEEL,* Argonne National Laboratory
and University of Chicago, Chicago, IL

ABSTRACT

Theories and models of movement are central to understanding a wide range of social
phenomena that crosscut numerous disciplines. Despite its importance, walking is one
form of movement for which models are badly underdeveloped within tools such as
transportation geographic information systems (GIS-T) that modern planners and
researchers use. Analysts and researchers are in need of tools that can integrate the
complexities of nonmechanized modes of transportation and are also capable of easily
producing appropriate models that can be studied in the service of making critical
decisions and obtaining useful insights within different social-theoretical perspectives.
This paper introduces the developing agent-based modeling tool called SHULGI. This
tool enables multiple sociological and socio-physical processes to be incorporated in
order to assess different factors that can impact transportation decision making and
events. Particular attention is given to SHULGI’s modeling capabilities for addressing
pedestrian movements within an urban context. Models discussed in this paper include
metabolic and human decision models that will enable different types of agents to
develop satisficing or optimizing route selections. These selections can impact overall
traffic and movement within the transportation networks addressed. Simulation
functionality and outputs provide a preliminary demonstration of SHULGI’s capabilities.

Keywords: Pedestrian Movement, Agent-Based, GIS-T, Repast Simphony, Archaeology

INTRODUCTION

Theories and models of movement are central to understanding a wide range of
phenomena that crosscut numerous disciplines. Models of how people move and interact are
complicated by the fact that people are thinking agents. We perceive the world and the actions of
people around us and chose to alter our own movements and activities accordingly. This context
is experienced by nearly everyone, every day, and it is something that scholars working within
the broad interdisciplinary boundaries of location theory have strived to understand for centuries
(von Thünen 1826; Weber 1909; Christaller 1933). A critical question in location theory is how
does transportation and movement through space affect activities and the use of space at

* Corresponding author address: Mark R. Altaweel, Argonne National Laboratory, 9700 S. Cass Avenue

Argonne, IL 60439; phone: 630-252-1379; e-mail: maltaweel@anl.gov, mraltawel@uchicago.edu.

475

particular places? This seemingly simple question belies a complex dialectic between
transportation and land use that plays an important role in defining human-human and human-
environment interactions.

This paper introduces an object-based geosimulation environment for modeling

transportation, called SHULGI, which seeks to address this critical question in location theory.
SHULGI uses the newly released Repast Simphony (Repast S) modeling toolkit as its
foundational technology (North et al. 2005). With a modular object-based framework, SHULGI
is designed as an easy to use, flexible simulation tool that can model multiple modes of
transportation at multiple temporal and spatial scales. This paper will begin to demonstrate
SHULGI’s capabilities in modeling pedestrian traffic within an urban context. Despite its
importance, models for addressing walking in existing spatial modeling tools, such as
transportation geographic information systems (GIS-T), are largely underdeveloped. SHULGI
incorporates a methodology for modeling pedestrian movement as developed by Branting
(2004), which has demonstrable applicability in both the present and the past.

SOCIAL THEORY AND MOVEMENT

While movement creates opportunities for nearly boundless sets of choices and actions, it
is at the same time self-limiting. Choices individuals make concerning what to do at a given
point in time, along with the routes chosen to get to the required location to engage in that
activity, will variously constrain what individuals can do in wider or shorter spans around the
time of that activity. The realization of the importance of choices and movement within the finite
framework of time has been used for decades to powerful effect within time-geography as a way
to parse social and individual actions and interactions (Hägerstrand 1970; Pred 1986; Kwan
1999). The concept of the path taken by the individual through time and space is central to time-
geography conceptualizations, accurately reflecting the importance of linear movement within
this equation. Traffic patterns, as the aggregates of individuals’ movement, can be seen through
this lens of time-geography as constraining and, at the same time, as very revealing of the
choices people make, including the activities they engage in individually and corporately.

In a complementary theoretical vein, location theory has long stressed the importance of

movement and transportation in parsing choice, particularly in terms of land-use planning. Land-
use and transportation form a symbiotic relationship in this regard, a point stressed by Blunden
(1971). By the time of von Thünen around 1800, transportation was seen as a key factor in
optimizing land-use allocation (von Thünen 1826). This was subsequently carried over into
explicitly urban situations through work undertaken by Alonso (1964). Transportation and land-
use played a key role in the calculus of industrial production and consumption put forth by
theorists such as Weber (1909) and Isard (1956) and research addressing the transport of goods
and services (Christaller 1933; Lösch 1954). The importance of transportation and movement
seen in each branch of these basic schools of location theory continues to this day, with
transportation and land-use playing key roles in human-to-human and human-to-environmental
interactions (Rapoport 1977; Rapoport 1990; Johnston and de la Barra 2000; Stough 2004).

476

MODELING MOVEMENT

GIS-T Approach to Transportation and Pedestrian Traffic

A methodology addressing both the paths and patterns of traffic along with their
symbiotic relationship to land-use offers enormous possibilities for exploring not only the form
of the built environment, but also the social and individual thoughts and actions involved in its
creation and alterations. GIS-T provides particularly good tools and methods to address both of
these areas and indeed is being used by city and regional planners around the world. GIS-T is a
domain within GIScience that only emerged during the 1990s, linking together established
transportation models and methods with the display and organizational abilities of GIS
(Thill 2000; Goodchild 2000). It provides network-based modeling and analysis tools that are
particularly effective in forecasting and exploring traffic patterns both at various levels of
aggregation as well as individual movement.

For situations where traffic is constrained, either through the framework of the built
environment or through repeated practice (Helbing et al. 1997), GIS-T proves particularly
effective. This applicability includes the case of pedestrian traffic, which might be considered
much more variable than that of mechanized modes of transport (e.g., cars or trains) that require
significant infrastructural investments (Branting 2004). There are a number of advantages to
modeling pedestrian transportation using network-based approaches like those found in GIS-T
(Branting 2004). Yet, surprisingly, this functionality is an almost unexplored area within the
domain, with most GIS-T work focused specifically on modern mechanized transport. One of the
key reasons why this is surprising is because walking is the most common mode of movement
and transportation in the present as well as the past (Amato 2004; Solnit 2000; Branting 2004).
For preindustrial cities, such as the ancient city at Kerkenes Dağ that is the focus of the case
study below, modeling traditional modes of transportation like walking is crucial for
understanding transportation. But even in present-day case studies, pedestrian transportation is a
critical part of any transportation system and one that is growing in importance in light of issues
with congestion and energy policies.

While the pedestrian GIS-T methodology developed by Branting (2004) has performed

remarkably well, there is room for improvement. Three key difficulties with the methodology in
its current implementation were identified. First, there are limitations in the flexibility of the
method. Dynamic activity in time and space has always presented problems for GIS
(Peuquet 2001). This was compounded by difficulties in implementing more complex scenarios,
particularly those involving interactions between people in time and space. Second, the
methodology became cumbersome as the range of simultaneous factors applied to a given
scenario was expanded. This difficulty was manifested less in terms of computational processing
speed but had more to do with the specification of the combinatory interactions between the
factors. Third, the pedestrian GIS-T methodology was difficult and expensive to utilize. Several
commercially available software packages, including ESRI’s ArcGIS and Caliper’s Transcad,
were used to power both the modeling and the enormous amount of data formatting and
preparatory work necessary between the various stages. Significant investments were needed in
terms of both time and money to apply the methodology.

477

Agent-Based Modeling and Transportation Modeling

 Agent-based modeling (ABM) provides a way beyond these difficulties with the
pedestrian GIS-T methodology. Numerous cases have applied ABMs to transportation issues
(Rickert and Nagel 2001; Batty 2001; Lake 2001), particularly because ABMs provide clear
benefits to understanding human choice and decision making in movements within grids or
networks. SHULGI has been designed to take full advantage of this flexibility and to allow for
future extensions within a modular framework. In addition, SHULGI has been designed to make
the modeling of complex transportation easier than in the GIS-T methodology by facilitating data
integration, analysis, and model creation and use within this framework.

 Among the benefits of SHULGI, the system allows users to load different forms of
spatial and nonspatial data, either through a user’s graphical user interface (GUI) or eXtensible
markup language (XML) file reference, to instantiating simulation agents or other objects. Users
can select from among the built–in least cost pathway algorithms, which currently include the A*
and Dijkstra algorithms (Hart et al. 1968; Dijkstra 1959), or load those created by the user
through XML references. In SHULGI, the A* and Dijkstra algorithms have been slightly
modified so that they can factor multiple edge weights. Specific models that can be chosen in
SHULGI include those that address pedestrian movements. These models address metabolic
expenditures, velocities, and route decision making. The metabolism models that have been
integrated include the Pandolf and McDonald models (Pandolf et al. 1977; McDonald 1961).
These models take into account energy requirements over a given terrain. The velocities for these
models are derived from studies of human walking (Sun et al. 1996; Kawamura et al. 1991).
Time costs for the activity can also be determined from separate models such as Imhof (1968).
Route decision models, which enable agents to decide where to go at a given time step, will be
discussed shortly. In addition to using currently integrated models, users can create their own
models, and then reference these within an XML structure to add the models within SHULGI’s
model library that provides the full array of model choices to analysts.

In SHULGI, models are not integrated directly with agent or entity objects; this aspect of

its design is beneficial in that it allows various theoretical perspectives to be integrated using the
same agent or entity1 types. In summary, users can select a range of models addressing a specific
behavior, with processes relevant for applied theoretical perspectives strictly implemented within
models. Users can use SHULGI and Repast S tools that allow the construction of additional
models and objects (North et al. 2005; Parker et al. 2006). In addition, SHULGI can be run
within a computer cluster; the current implementation uses Terracotta software
(Terracotta 2007). Current simulation models can be executed by using process-oriented discrete
events, enabling contextual data to be passed to objects applying processes at relevant simulation
time scales.

 Object types that can be instantiated with spatial (e.g., shapefile) and nonspatial
(e.g., CSV file) data include those listed in Table 1. After the appropriate simulation data have
been loaded, users can map the data to an object type (e.g., TransportAgent) applied in the
simulation. Data loaded and mapped include velocity values or default initial locations. Mapping
the specific object parameters and data is accomplished through XML references or a GUI that

1 Entity objects are software objects that have behaviors or processes associated with them. Entity objects can be

agents; however, entities can also be noncognitive physical or environmental objects such as trees or river
systems.

478

applies users’ input. Regardless of the technique, users reference the locations (e.g., column
titles, file locations) of the data values and the object variables that link to the data. Once the data
mapping is complete, the simulation can be executed. Alternatively, simulation scenarios can be
executed via batch runs, which can link to multiple computer nodes or a single computer. Batch
mode is used for both verification and validation (V&V) as well as for producing a large number
of results. Input data for batch simulations are all loaded via XML files using custom and
Repast S batch mode capabilities. In batch mode, all mapping of object parameters with input
data is performed automatically using XML files after the mode is launched. Figure 1 shows
SHULGI’s current interface used for data, model, and analytical tool integration as well as data
mapping to simulation objects.

Table 1 Object types integrated in SHULGI

Object Description
TransportAgent Any type of moving agent
ShulgiEdge Modified network edge
Structure Compounds or fixed structures
Network A Repast S network object
DestinationNode A node a TransportAgent desires to reach
RoadNetworkNode A node a TransportAgent can traverse

FIGURE 1 SHULGI’s interface that loads models and data as well as allows mapping of data to
objects

479

Kerkenes Dağ Case Study

The primary area to which SHULGI has been applied to date is that of pedestrian
movements and route decision making. Current example scenarios derive from data obtained
from the archaeological site of Kerkenes Dağ, an ancient city in Turkey dating to the 6th century
B.C. (Summers et al. 2005; Summers et al. 2007). This example is one of the same datasets used
in the development of the GIS-T methodology, allowing a direct comparison between the two
approaches. As with the GIS-T methods, the type of agent is disaggregated from a generic
human being into different genders and age groups based on the differing walking characteristics
of each (Branting 2004). Six different types of agents have been used so far: young men (aged
10–34), young women (aged 10–34), middle-aged men (aged 35–55), middle-aged women (aged
35–55), older men (aged 56–75), and older women (aged 56–75). The movement space that
agents operate within SHULGI can be either a grid or network. In the examples executed,
SHULGI has been applied using road networks. Road network edges (i.e., ShulgiEdge object)
can store multiple weight values or calculate a given weight as needed in runtime. The Standard
Decision Model (SDM) is a SHULGI test model used by agents to decide where to move based
on agent goals. Calculated metabolic expenditures using the Pandolf or McDonald models, with
inputs for slope and speed based on localized internal and external factors, determines how
costly an edge is for the given type of agent in the Kerkenes Dağ examples. In other words, the
more energy required to cross a given route segment, the more costly that entire route becomes
to an agent. In this first example, agents simply determine where to go by finding the nearest
DestinationNode (DN) that was not previously visited by an agent. The agent then determines
the shortest path route using a least cost algorithm. A DN represents an ultimate destination that
agents want to reach and that are associated with the center of compounds or walled urban
blocks. Agents, therefore, attempt to visit each DN only once or until the simulation ends. In
contrast, a RoadNetworkNode (RNN) is a type of DN that forms the ShulgiEdge nodes, but an
RNN can be traversed continuously in the SDM. The following Java code in Figure 2 illustrates
the decision step used by agents to find the path to the nearest DN.

480

public void decideTargetLocation(){

 target = null;

 shortestPath = new ArrayList<ShulgiEdge>();

 RoadNetworkNode lastStep = null;

 //sort DestinationNodes, fined nearest node

 PriorityQueue<DestinationNode> destinationQueue =

priorityQueue(ta.getX(), ta.getY(), ta.getZ(),

destinationNodes.size());

 destinationQueue.addAll(destinationNodes);

 boolean got = false;
while((!got || lastStep == null)&& !destinationQueue.isEmpty()){

 //potential node

target = (RoadNetworkNode) destinationQueue.poll();

 if (!visited.contains(target)) //see if visited node before

 got = true;

 else

 continue;

 lastStep = getLastStep(); // edge prior to DestinationNode

 }

 removeEdges(); //removes other destination nodes

 if (lastStep != null)

 findShortestPath(source, lastStep); //gets shortest path

 addEdges(); //add all removed DestinationNodes

 if (shortestPath.size() != 0) //connect to final edge

shortestPath.add((ShulgiEdge) network.getEdge(lastStep, target));

 }

FIGURE 2 Decision step used by agents to find the path to the nearest DN

Currently, output produced by SHULGI can be viewed or analyzed in different formats

and within different tools. This function includes a GIS viewer that used GeoTools 2.3
(GeoTools 2007) to output spatial changes and movements of agents. Chart tools and network
layout displays can be used to visualize some of the results. Aggregate and agent outputs
produced are also provided as comma delimited data, which can then be analyzed with Repast S
or other tools.

Results

Results from SHULGI help demonstrate the modeling tools’ capabilities discussed

previously. Scenarios have focused on energy expenditure by agents as they traverse the street
network of Kerkenes Dag. Figure 3 shows the street network layout of the city with compounds,
urban blocks, city wall, streets, and young male agents. In this image, GeoTools is used to
visualize agents as they move across the network based on the SDM. One of the key interests for
the initial modeling trials is to determine which roads are the most primary used by agents in

481

order to reach most destinations. Among other output results that can be displayed, the GeoTools
viewer in SHULGI can show the number of instances that roads are used or the overall traffic
volume. Other GIS output results can be selected by the user within a wizard editor coupled in
SHULGI. Disaggregated and aggregated output, such as energy expended by agents, can be
shown within graphs. Figure 4 indicates the mean energy expenditure of young men as they
move along routes selected during simulation time steps. This graph is produced using Repast S
plug-in tools for data output and display. In addition to mean energy expenditure, simulations
record mean and maximum distance traveled as agents move along various routes (Figure 5); in
this case, output is shown using Repast S chart tools. Figure 5’s results provide an indication as
to whether or not young men need to travel significantly further in a given time instance to reach
more distant nodes from their original locations. Other visual displays include network layouts;
however, this display has not been used extensively in the current SHULGI scenarios. At this
stage of SHULGI’s development, our efforts are focused on conducting V+V on the current
models that have been integrated as well as on performing further tool enhancements to enable
more detailed analyses of modeling results.

These results are preliminary for the agent categories to which the scenarios have been

applied, but outputs produced do show the benefits of applying an approach that can couple
metabolic and other relevant cost and decision models within an overall ABM approach. By
using models for social and physical processes affecting route costs, results can be used to assess
optimal or satisfactory route selections for agents as influenced by multiple factors.

FIGURE 3 The street network (in red), compounds (in yellow), city wall, and young male agents
(blue dots) during the simulation as they move and reach compounds

482

FIGURE 4 Mean energy expenditure (MJ/time step) for all young male agents

FIGURE 5 Mean (red) and maximum distance traveled (blue) during simulation time steps;
distance measurements are in meters

483

DISCUSSION

Although SHULGI’s full range of planned modeling capabilities have not been
implemented, its tools have proven able to reproduce results developed within GIS-T
applications and provide significant enhancements. By using an ABM approach, the modeling of
pedestrian or other forms of movement can be far more flexible to theoretical applications and
integration of alternative models and behaviors as compared to other geospatial approaches.
Proper ABM design enables alternative models at varied temporal scales to be applied to
different scenarios, allowing researchers to assess how individuals in a given transport structure
may change or adapt their movements. The ability of SHULGI to simplify the integration of data
and models for pedestrian movements addresses deficiencies in tools used by urban planners and
geographers.

We anticipate that as SHULGI develops further, enhanced capabilities will be enabled.

For instance, although SHULGI has been executed on multiprocessor clusters, our effort seeks to
make the inclusion of multiple nodes a relatively simple process for the user by using appropriate
GUI-based tools within SHULGI’s main interface. We intend to apply and enhance SHULGI’s
capabilities to address other domains, including the modeling of pedestrian traffic in modern
urban centers, as the tool further develops. The development of SHULGI as a freely available
tool will insure its affordability for scholars and researchers interested in applying this ABM
technology to their own transportation and land-use research.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy, Office of Science, under
contract number DE-AC02-06CH11357. This work was also supported by the Joint Theory
Institute funded together by Argonne National Laboratory and the University of Chicago. Data
for the modeling demonstrations were provided by the Kerkenes Dağ Project
(http://www.kerkenes.metu.edu.tr).

REFERENCES

Alonso, W., 1964, Location and Land Use: Toward a General Theory of Land Rent, Cambridge:
Harvard University Press.

Amato, J.A., 2004, On foot: a history of walking, New York: New York University Press.

Batty, M., 2001, “Agent-based Pedestrian Modeling,” Environment and Planning B: Planning

and Design B 28:321–326.

Blunden, W.R., 1971, The Land-Use/Transport System: Analysis and Synthesis, Oxford:

Pergamon Press.

Branting, S., 2004, Iron Age Pedestrians at Kerkenes Dağ: An Archaeological GIS-T Approach

to Movement and Transportation, Ph.D. Thesis, State University of New York at Buffalo.

484

Christaller, W., 1933, Die zentralen Orte in Süddeutschland, Jena, Germany: Gustave Fischer.

Dijkstra, E.W., 1959, “A Note on Two Problems in Connexion with Graphs,” Nmerische

Mathematik 1:269–271.

GeoTools, 2007; available at http://geotools.codehaus.org.

Goodchild, M.F., 2000, “GIS and Transportation: Status and Challenges,” Geoinformatica

4(2):127–139.

Hägerstrand, T., 1970, “What about People in Regional Science?,” Papers of the Regional

Science Association 24:7–21.

Hart, P., N.J. Nilsson, and R. Bertram, 1968, “A Formal Basis for the Heuristic Determination of

the Minimum Cost Paths,” IEEE Transaction on Systems Science and Cybernetics SSC
4(2):100–107.

Helbing, D., J. Keltsch, and P. Molnár, 1997, “Modelling the Evolution of Human Trail

Systems,” Nature 388(6637):47–50.

Imhof, E., 1968, Gelande und Karte, Zürich, Switzerland: Eugen Rentsch-Verlag.

Isard, W., 1956, Location and Space-Economy: A General Theory Relating to Industrial

Location, Market Areas, Land Use, Trade, and Urban Structure, Cambridge, MA: M.I.T.
Press.

Johnston, R.A., and T. de la Barra, 2000, “Comprehensive Regional Modeling for Long-Range

Planning: Linking Integrated Urban Models and Geographic Information Systems,”
Transportation Research Part A 34:125–136.

Kawamura, K., A. Tokuhiro, and H. Tahechi, 1991, “Gait Analysis of Slope Walking: A Study

on Step Length, Stride Width, Time Factors and Deviation in the Centre of Pressure,” Acta
Medica Okayama 45:179–184.

Kwan, M-P, 1999, “Gender and Individual Access to Urban Opportunities: A Study using Space-

Time Measures,” The Professional Geographer 51:210–227.

Lake, M., 2001, “The Use of Pedestrian Modeling in Archaeology, with an Example from the

Study of Cultural Learning,” Environment and Planning B: Planning and Design B
28:385–403.

Lösch, A., 1954, The economics of location, New Haven: Yale University Press.

McDonald, I., 1961, “Statistical Studies of Recorded Energy Expenditure of Man: Expenditures

on Walking Related to Weight, Sex, Age, Height, Speed, and Gradient,” Nutrition
Abstracts and Reviews 31(3):739–762.

485

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005, “The Repast Simphony Development
Environment,” in Proceedings of the Agent 2006 Conference on Social Agents: Results and
Prospects, pp. 69–79, Chicago, IL, October 13–15.

Pandolf, K.B., B. Givoni, and R.F. Goldman, 1977, “Predicting Energy Expenditure with Loads

While Standing or Walking Very Slowly,” Journal of Applied Physiology 43:577–581.

Parker, M.T., M.J. North, N.T. Collier, T.R. Howe, and J.R. Vos, 2006, “Agent-Based Meta-

Models,” in Proceedings of the Agent 2005 Conference on Generative Social Processes,
Models, and Mechanisms, pp. 159–166, Chicago, IL, September 21–23.

Peuquet, D.J., 2001, “Making Space for Time: Issues in Space-Time Data Representation,”

GeoInformatica 5(1):11–32.

Pred, A., 1986, Place, Practice and Structure: Social and Spatial Transformation of Southern

Sweden, Cambridge: Polity Press.

Rapoport, A., 1977, Human Aspects of Urban Form: Towards a Man-Environment Approach to

Urban Form and Design, Oxford: Pergamon Press.

Rapoport, A., 1990, “Systems of Activities and Systems of Settings,” in Domestic architecture

and the use of space: An interdisciplinary cross-cultural study, S. Kent (ed.), pp. 9–20,
Cambridge: Cambridge University Press.

Rickert, M., and K. Nagel, 2001, “Dynamic Traffic Assignment on Parallel Computers in

TRANSIMS,” Future Generation Computer Systems 17(5):637–648.

Solnit, R., 2000, Wanderlust: A History of Walking, New York: Penguin.

Stough, R.R., 2004, “Institutions, Land Use and Transportation,” in Handbook of Transport

Geography and Spatial Systems, D.A. Hensher, K.J. Button, K.E. Haynes, and P.R. Stopher
(eds.), pp. 27–42. Amsterdam: Elsevier.

Summers, G., F. Summers, and S. Branting, 2005, “Kerkenes News 7, 2004”, Kerkenes

Haberler 7, Ankara, Turkey: METU Press; available at
http://www.kerkenes.metu.edu.tr/kerk2.

Summers, G., F. Summers, and S. Branting, 2007, “Kerkenes News 9, 2006,” Kerkenes

Haberler 9, Ankara, Turkey: METU Press; available at
http://www.kerkenes.metu.edu.tr/kerk2.

Sun, J., M. Walters, N. Svensson, and D. Lloyd, 1996, “The Influence of Surface Slope on

Human Gait Characteristics: A Study of Urban Pedestrians Walking on an Inclined
Surface,” Ergonomics 39(4):677–692.

Terracotta, 2007, available at http://www.terracotta.org.

Thill, J-C, 2000, “Geographic Information Systems for Transportation in Perspective,”

Transportation Research Part C 8:3–12.

486

von Thünen, J.H, 1826, Der Isolierte Staat in Beziehung auf Landwirtschaft und

 Nationalökonomie, Jena, Germany: Fischer Verlag.

Weber, A, 1909, Über den Standort der Industrie: Reine Theorie des Standorts, Tübingen,

Germany: Mohr.

487

488

Proceedings of the

Agent 2007
Conference
on Complex Interaction and Social Emergence

ANL/DIS-07-2

Decision and Information Sciences Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 900
Argonne, IL 60439-4832

www.anl.gov

Northwestern University
Norris Center
1999 Campus Drive
Evanston, Illinois

November 15-17, 2007

A U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC

Co-hosted by
Argonne National Laboratory
Northwestern University

In association with
North American Association for Computational Social and Operational Science

	CONTENTS
	FOREWORD
	AGENT CONFERENCE INVITED SPEAKERS AND PRESENTATIONS FROM 1999-2007
	ACKNOWLEDGMENTS
	ORGANIZING COMMITTEE
	METHODS AND TECHNIQUES -- PARALLEL TRACK I
	MULTIPLATFORM METHODS
	THE IMPORTANCE OF BEING DOCKED

	MEASUREMENT AND VALIDATION METHODS
	INTEGRATING ABM & GIS TO MODEL TYPOLOGIES OF PLAYGROUP DYNAMICS IN PRESCHOOL CHILDREN
	AN INFERENTIAL APPROACH FOR VALIDATING AGENT SIMULATIONS
	COMPARING AGENT TRAJECTORIES

	EVOLUTIONARY METHODS
	SUGARSCAPE ON STEROIDS: SIMULATING OVER A MILLION AGENTS AT INTERACTIVE RATES
	EVOLUTIONARY MULTI-AGENT TEAMS FOR ADAPTIVE OPTIMIZATION
	THE EL FAROL BAR PROBLEM AND COMPUTATIONAL EFFORT: WHY PEOPLE FAIL TO USE BARS EFFICIENTLY

	TOOLKITS TRACK -- PARALLEL TRACK II
	TOOLKIT SURVEYS
	ANATOMY OF A TOOLKIT: A COMPREHENSIVE COMPENDIUM OF VARIOUS AGENT BASED MODELING TOOLKITS ON THE MARKET TODAY
	OUR SUMMER WITH REPAST: FORGING A MODELING AND SIMULATION FOUNDATION

	EMERGING TOOLKITS
	ADAPTIVE SIMULATION: A COMPOSABLE AGENT TOOLKIT FOR WAR GAME ADJUDICATION
	INTRODUCING GROWLAB: A TOOLKIT FOR LAYERED AGENT-BASED MODELING
	IDEAS - INTERACTIVE DEVELOPMENT ENVIRONMENT FOR AGENT-BASED SIMULATION

	NETLOGO TOOLKIT DEVELOPMENTS
	TURTLE HISTORIES AND ALTERNATE UNIVERSES: EXPLORATORY MODELING WITH NETLOGO AND MATHEMATICA
	EXAMINING GROUP BEHAVIOR AND COLLABORATION USING ABM AND ROBOTS

	REPAST TOOLKIT DEVELOPMENTS
	VISUAL AGENT-BASED MODEL DEVELOPMENT WITH REPAST SIMPHONY
	ROAD MAP: TRANSFORMING AND EXTENDING REPAST WITH GROOVY
	MODEL EXPLORATION MODULE

	COMPUTATIONAL SOCIAL THEORY
	ORIENTATION AND ACTION
	MODELING COLLECTIVE COGNITIVE CONVERGENCE
	MODELING SITUATED ABSTRACTION: ACTION COALESCENCE VIA MULTIDIMENSIONAL COHERENCE
	NEXUS: AN INTELLIGENT AGENT MODEL OF SUPPORT BETWEEN SOCIAL GROUPS
	HIGH-FIDELITY MATHEMATICAL MODELS OF SOCIAL SYSTEMS

	NETWORK DYNAMICS
	THE DYNAMICS OF NETWORK-EFFECTS IN TWO-SIDED AND MULTI-SIDED MARKETS: AN AGENT-BASED APPROACH
	AXELROD’S METANORM GAMES ON COMPLEX NETWORKS
	NETWORK FRACTURE: HOW CONFLICT CASCADES REGULATE NETWORK DENSITY

	ORGANIZATIONAL THEORY AND PRACTICE
	AGENT-BASED SIMULATION OF PRODUCT INNOVATION: MODULARITY, COMPLEXITY AND DIVERSITY
	THE EVOLUTION AND PERSISTENCE OF DOMINANT ROLES IN INTERORGANIZATIONAL RELATIONSHIPS
	THE DYNAMIC ENDOGENOUS EVOLUTION OF VOTER PREFERENCES
	SPONTANEOUS COORDINATION

	SOCIAL SIMULATION APPLICATIONS -- PARALLEL TRACK I
	SOCIAL INTERACTION AND COGNITION
	LEGAL AGENTS: AGENT-BASED MODELING OF DISPUTE RESOLUTION
	AGENT-BASED MODELING OF USABILITY FROM A DISTRIBUTED COGNITIVE PERSPECTIVE
	SPY V. SPY: A UTILITY-BASED APPROACH TO AGENT-BASED ADVERSARIAL REASONING

	BANKING, FINANCE, BUSINESS, AND ECONOMICS
	AN AGENT-BASED MODEL FOR CRISIS SIMULATION IN PAYMENT SYSTEMS
	ADVERSARIAL RISK AND FINANCIAL INSTABILITY: A HYBRID MODEL
	MODELING THE TRANSITION TO HYDROGEN-BASED TRANSPORTATION

	SOCIAL SIMULATION APPLICATIONS -- PARALLEL TRACK II
	HEALTH CARE AND EPIDEMICS
	A SIMULATOR FOR CONTINUOUS AGENT-BASED MODELING

	SOCIO-TECHNICAL SYSTEMS
	ENSEMBLE COMPUTING IN AGENT-BASED MODELING FOR TRANSCENDING PARADIGMATIC BOUNDARIES IN DECISION THEORY - UNDERSTANDING TRIBAL POLITICS
	BUSINESS NETWORK TOPOLOGY AND RIGIDITIES IN PRODUCTION

	SOCIAL SIMULATION -- APPLICATIONS COMBINED TRACK
	SPATIAL AGENTS
	GEOSPATIAL EXOSKELETONS FOR AUTOMATA IN AGENT-BASED MODELS
	ENACTMENT SOFTWARE: SPATIAL DESIGNS USING AGENT- BASED MODELS
	SHULGI: A GEOSPATIAL TOOL FOR MODELING HUMAN MOVEMENT AND INTERACTION

